
December 2001

NASA/TM-2001-211426

A Survey of Complex Object Technologies
for Digital Libraries

Michael L. Nelson
Langley Research Center, Hampton, Virginia

Brad Argue, Miles Efron, Sheila Denn, and Maria Cristina Pattuelli
University of North Carolina, Chapel Hill, North Carolina

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These
results are published by NASA in the NASA STI
Report Series, which includes the following
report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of
NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary
or of specialized interest, e.g., quick release
reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help

Desk at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

December 2001

NASA/TM-2001-211426

A Survey of Complex Object Technologies
for Digital Libraries

Michael L. Nelson
Langley Research Center, Hampton, Virginia

Brad Argue, Miles Efron, Sheila Denn, and Maria Cristina Pattuelli
University of North Carolina, Chapel Hill, North Carolina

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

A Survey of Complex Object Technologies

for Digital Libraries

Michael L. Nelson
NASA Langley Research Center

MS 124
Hampton VA 23681

m.l.nelson@larc.nasa.gov

Brad Argue, Miles Efron, Sheila Denn and Maria Cristina Pattuelli
University of North Carolina

School of Information and Library Science
Chapel Hill NC 27599

{argub, efrom, denns, pattm}@ils.unc.edu

Abstract

Many early web−based digital libraries (DLs) had implicit assumptions reflected in their architecture that
the unit of focus in the DL (frequently "reports" or "e−prints") would only be manifested in a single, or at
most a few, common file formats such as PDF or PostScript. DLs have now matured to the point where
their contents are commonly no longer simple files. Complex objects in DLs have emerged in response
to various requirements, including: simple aggregation of formats and supporting files, bundling
additional information to aid digital preservation, creating opaque digital objects for e−commerce
applications, and the incorporation of dynamic services with the traditional data files. We examine a
representative (but not necessarily exhaustive) number of current and recent historical web−based
complex object technologies and projects that are applicable to DLs: Aurora, Buckets, ComMentor,
Cryptolopes, Digibox, Document Management Alliance, FEDORA, Kahn−Wilensky Framework Digital
Objects, Metadata Encoding & Transmission Standard, Multivalent Documents, Open eBooks, VERS
Encapsulated Objects, and the Warwick Framework.

1.0 Background

Many web−based digital libraries (DLs) evolved from departmental report servers or
pre−print collections, where compressed PostScript files (and later PDF files) were often
the complete manifestation of the logical "document". Even as DLs became
progressively more sophisticated in acquiring their holdings and the services provided on
them, they still used the raw file format as the focus object. Consider the early DL,
UCSTRI (http://www.cs.indiana.edu/ucstri/info.html; Van Heyningen, 1994). UCSTRI
would harvest metadata from a list of ftp servers and use heuristics to match the
README and abstract files with the file listings of the ftp server. Search services were
provided on the metadata harvested from various sites, with the pointers to individual
".ps.Z" files. Though far more advanced, ResearchIndex
(http://www.researchindex.com/; Lawrence, Giles & Bollacker, 1999) is similar in to
UCSTRI in that it crawls a known list of web pages to extract PostScript and PDF files.
It provides an impressive list of services based on extracted metadata and citation

1

information from those files, but the requirement remains that ResearchIndex have direct
access to the PostScript and PDF files themselves.

Of course, there are notable exceptions. The physics e−print archive
(http://www.arxiv.org; Ginsparg, 1994) handles aggregation through dynamic conversion
from the author−supplied TeX source files. The Dienst protocol (Davis & Lagoze, 2000)
has a complex document object model built into the protocol to handle the many files
resulting from scanned images (TIFFs, OCR, composite GIFs), in addition to the
standard PostScript and PDF. While admittedly a subtle distinction, these DLs can be
characterized as providing sophisticated services on specific file formats, and not
deferring the complexity into the object itself.

Similarly, some DLs, such as software focused DLs like Netlib (http://www.netlib.org/;
Browne et al., 1995), can ship Unix tar files (."tar"), PC zip files (".zip"), Linux RPM
files (."rpm") or similar aggregation / compression formats, but the usage model for these
are slightly different. These formats are generally used for transport, and the user
typically interacts with these files using additional applications leaving the user’s
experience with the files outside of the DL environment.

Of course, creating complex objects for aggregation and preservation pre−dates web−
based DLs. For example, a number of filesystem projects and scientific data set projects
have implemented to achieve some of the same goals. The Extensible File System
(ELFS) (Grimshaw & Loyot, 1991; Karpovich, Grimshaw & French, 1994; Karpovich,
French & Grimshaw, 1994) implemented object−oriented (OO) technologies such as
inheritance and encapsulation on "file objects" in Unix filesystems. ELFS allowed
various access methods for the object (i.e., row−major or column−major access),
providing a layer of abstraction around data storage and data access in a filesystem
environment. Slightly less OO but still offering unique aggregation capabilities, Nebula /
Synopsis (Bowman et al., 1994; Bowman & Camargo, 1998) and the Semantic File
System (Gifford et al., 1991) allowed user−definable aggregation of file objects through
"directories" created by queries on automatically extracted metadata from file objects.

In scientific data, NetCDF (Unidata NetCDF, 2001), HDF (Folk, 1998) and SmartFiles
(Haines, Mehrotra & Van Rosendale, 1995) all offer varying implementations that
provide roughly the same "self−describing" functionalities of encapsulating the data with
the necessary metadata, units, accessing functions to assist in long term preservation of
the data semantics as well as the structural syntax to allow for conversion and translation.
Bundling the metadata with the data itself is especially important for scientific data
because unlike text documents, metadata for scientific data frequently cannot be
regenerated if lost. Bundling also offers the advantage of being accessible to other
filesystem commands ("cp", "rm", etc.).

The motivation for studying digital objects is not limited to just understanding the
implementations of previous DL projects. Digital objects are expected to grow in
sophistication and assume greater roles and responsibilities. For example, Kahn & Lyons
(2001) discuss the use of digital objects for "representing value", including concepts

2

generally associated with canonical physical manifestations such as financial records,
monies, and deeds. Erickson (2001a; 2001b) argues that advances in digital rights
management can be made by embedding rights information within digital objects
themselves and defining a "digital object infrastructure" to handle open, fine−grained
negotiation and enforcement of individual intellectual property rights policies.
Additionally, Kang & Wilensky (2001) draw from the peer−to−peer model and define
how digital objects can be "self−administering" through internalizing declarative
descriptions of their service requirements and matching these descriptions with the
availability of a wide−spread infrastructure of "self−administering data handlers". The
technologies surveyed in this paper can be considered the vanguard to these more
ambitious applications of digital objects.

1.1 Technologies Surveyed

We studied a number of current and historical projects and models that employed
complex objects suitable for DL use. This list should not be considered exhaustive, but
we have tried to review all the technologies of which we are aware. To restrict the size
and scope, generalized technologies were not considered, such as portal systems (e.g.,
Metaphoria/Smartcode (Shklar et al., 1998)) component software environments (e.g.,
JavaBeans, OLE/COM, OpenDoc, etc. (Ibrahim, 1998)) or object−oriented databases
(e.g., Gemstone, Objectivity, etc. (Zand, Collins & Caviness, 1995)). While not
specifically designed for DL applications, these technologies could be deployed in DL
environments, and some are the base technologies used to implement some of the DL−
specific systems described below.

It should stressed that this is not a review against performance criteria, but rather a
survey to raise awareness of the various projects and outline their unique capabilities and
features. Each of the technologies were created to address different problems, so readers
will have to judge which technology best addresses requirements similar to theirs.
However, a rough grouping of technologies does emerge: e−commerce/security
(Cryptolopes, Digibox, eBooks), aggregation of content and services (Aurora, Buckets,
FEDORA, Kahn−Wilensky Digital Objects, Metadata Encoding & Transmission
Standard, Warwick Framework), annotation and collaboration (ComMentor, Document
Management Alliance, Multivalent Documents) and preservation (VERS Encapsulated
Objects).

1.2 Survey Methodology & Structure

The survey was conducted by reading the literature that was available, the availability of
which varied greatly from project to project. Where possible, we also downloaded and
ran demonstration software (this was obviously not possible for recently defunct projects
and projects that presented only theoretical models). We have also borrowed screenshots
and figures from reports and webpages where we thought them to be useful. The results
of our analysis are presented in the following format:

3

� Overview
� Developers
� Motivation

� Analysis
� Architecture
� API
� System Requirements
� Example Application

� Summary
� Strengths
� Weaknesses
� Future Directions

The format will occasionally deviate where applicable, but generally follows this
structure. While we strived to be thorough and accurate, any errors that may be present
are our responsibility, and not that of the systems developers.

2.0 Aurora

2.1 Overview

Aurora is an architecture for enabling dynamic composition of distributed, autonomous
web services in an open environment (Marazakis, Papadakis & Nikolaou, 1997;
Marazakis, Papadakis & Nikolaou, 1998). Aurora’s architecture is based on a container
framework that allows for unified access to disparate services. Aurora provides a run−
time environment for HERMES, a specification language that defines resources and
business rules or "service flows" (Nikolaou et al., 1997). Aurora complements middle−
ware tools such as CORBA and Java applets as it addresses the collaboration and
coordination needs of emerging network−centric applications such as digital libraries, e−
commerce, and scientific collaborative work environments.

2.1.1 Developers

Aurora’s primary architect is Christos Nikolaou, the head of the Parallel and Distributed
Systems Division (PLEIADES) at the Institute of Computer Science, Foundation for
Research and Technology − Hellas (FORTH), in Crete. Manolis Marazakis and Dimitris
Papadakis, PhD students at the University of Crete Computer Science Department
assisted with development as well. Most of the documentation related to the project was
published in late 1997 and early 1998.

2.1.2 Motivation

Aurora addresses the need for a scripting environment that can tie together distributed

4

objects. Its developers set out to extend the capabilities of CORBA and Java applets by
providing coordination and collaboration services in a dynamic environment. Object
frameworks such as CORBA have typically supported object creation and management
but have not provided flexible ways to dynamically combine objects into applications via
scripting. Aurora seeks to provide a generic infrastructure that enables flexible
composition of distributed objects into "network−centric applications."

2.2 Analysis

The Aurora application model is based on a "service flow paradigm" in which composite
services are unified in the context of a work session. Work sessions are comprised of
series of simple and compound "tasks." Simple tasks are activities that use one
resource/service while compound tasks require multiple resources. The Aurora
architecture also supports the notion of an "event," which includes service request, state
transition, and other application−specific messages. Resources, tasks, and events are
described using metadata container constructs provided by the HERMES specification
language.

2.2.1 Architecture

The Aurora architecture can be thought of in terms of five interrelated components: the
container framework, metadata framework, repository service, session manager, and
monitoring infrastructure.

In the Aurora architecture (Figure 2.1), application components are encapsulated by
uniform containers. Containers are extensible shells that consist of a uniform
management interface and component−specific metadata and code. The uniform
management interface mediates all access to the container in addition to facilitating
monitoring and control operations involving the component. The container framework
also provides input and output ports as well as event detection and handling services.

Aurora uses a metadata framework to describe resources owned by external providers in
order to determine which services may be useful for a particular task and to define access
methods. An extensible, self−describing framework is specified using HERMES. The
metadata framework describes only generic concepts such as resources, tasks, and events,
enabling developers and providers of services to create application domain−specific sets
of attribute−value pairs. The repository service manages this metadata in addition to
providing directory and binding services. The directory service allows providers to
advertise their services and applications to find the components that satisfy their
requirements. The binding service dynamically binds tasks to available resources.

The Aurora session manager manages the session establishment and communication
between container components. It acts as the run−time environment for containers,
assuming on the responsibility of parsing the service flow script and determining which
resources to use via the directory service. The session manager’s distinct components
include a task scheduler, container run−time environment, and logging system. This

5

logging system provides the basis for a distributed monitoring infrastructure. The
monitoring infrastructure tracks the progress and current state of service flows and
maintains of all component interactions. It also provides an interface for querying
system logs.

Figure 2.1. The Aurora Architecture (from
http://www.ics.forth.gr/pleiades/projects/Aurora/aurora.html)

2.2.2 API

The Aurora documentation provides interface specifications for a number of the
architecture components, including the directory service, uniform management interface,
task scheduler, component interface, session manager, and communication interface. See
Marazakis, Papadakis & Nikolaou (1997) for the complete API documentation.

2.2.3 Example Applications

The following HERMES code excerpt (Figure 2.2) defines a workflow (a.k.a. service
flow) in which four services are involved: a collector, evaluator, broker, and provider.
This application exemplifies a work session in which a consumer is searching for product
information on the web. In this scenario, the user submits a string of keywords to a
collector agent. The collector passes the query to a broker agent that returns some
number of potential providers of this information. The broker service then
communicates with the group of potential providers and an evaluator agent that filters the
information returned by the providers. At run−time the session manager would process
the code and manage coordination among the various encapsulated components.

6

DEFINE WORKFLOW SearchScenario {
TYPE: AuroraProcess;
TYPE defines which "attribute model" to use
INPUT: SearchKeywords: STREAM { Keyword: STRING; Weight: INTEGER; };
OUTPUT: STREAM { FilteredResult: OBJECT; };
PLAN: {
Upon session activation workflow input becomes Collector’s input
WHEN (SearchScenario.START) {
Collector.START [SearchScenario.Input BECOMES Collector.Input];

}
WHEN (Collector.START) {
Collector.START_PHASE("Broker Interaction");
Collector interacts with Broker, provides it with input,
and receives its output
BrokerTask.START [Collector.Output BECOMES BrokerTask.Input;
BrokerTask.Output BECOMES Collector.Input];

}
}
WHEN (BrokerTask.DONE) { # Actions after Broker has finished its work
Collector.END_PHASE("Broker Interaction");
Collector.START_PHASE("Access Providers") [
Collector provides input to group members,
and receives their output
Collector.Output BECOMES ProviderTaskGroup.Input;
ProviderTaskGroup.Output BECOMES Collector.Input];
Evaluator receives the same input as Collector, and its output
is the output of the workflow
Evaluator.START [Collector.Input BECOMES Evaluator.Input;
Evaluator.Output BECOMES SearchScenario.Output];

}
WHEN (Collector.END_PHASE("Access Providers")) {
ProviderTaskGroup.DONE;
Evaluator.DONE;
Collector.DONE;
SearchScenario.DONE;

}
ATTRIBUTES:
Description: "Workflow corresponding to the search scenario";
Participants: {"Collector", "Evaluator", "Broker",
"ProviderTaskGroup"};

}

Figure 2.2. HERMES Service Flow

2.3 Summary

Aurora addresses a common need among emerging network−centric applications such as
digital libraries, eCommerce, and scientific collaborative work environments: namely,
the ability to coordinate distributed web services and collaborate in a dynamically
constructed, shared workspace. The Aurora architecture supports coordination and
collaboration through flexible run−time composition of diverse components encapsulated
in general−purpose containers. The session manager provides a run−time environment
for containers and is supervised by a monitor. The repository service manages the
required metadata, publishes a directory of resources, and handles the dynamic binding
of tasks to available resources.

7

2.3.1 Strengths

Aurora is well suited for a digital library or other web application setting in which
multiple distributed services need to be utilized within a unified workspace. Its
architecture is designed to flexibly facilitate coordination of services as well as
collaboration between users. Another strength of the Aurora framework is its reliance on
open technologies and dynamic composition of objects at run−time.

2.3.2 Weaknesses

It is unclear from the available information whether Aurora was ever fully implemented.
In any case, the work on the project does not appear to be proceeding and functioning
software (if it exists) is not widely available. Development tools, especially for building
HERMES scripts, are not readily available and would have to be developed as well to
encourage its adoption.

2.3.3 Future Directions

The most recent Aurora articles found were published in 1998−1999. They indicated a
number of future directions including incorporation of XML−based metadata and
messaging as well as a potential user interface based on standard HTML, forms, and Java
applets. However, the lack of more recent publications and updates to the Aurora site
(http://www.ics.forth.gr/pleiades/projects/Aurora/aurora.html) leaves the current status of
the project unknown.

3.0 Buckets

3.1 Overview

Buckets are an aggregative, intelligent construct for publishing in DLs. Buckets allow the
decoupling of information content from information storage and retrieval. Buckets exist
within the Smart Objects and Dumb Archives model for DLs (Maly, Nelson & Zubair,
1999) in that many of the functionalities and responsibilities traditionally associated with
archives are "pushed down" (making the archives "dumber") into the buckets (making
them "smarter"). Some of the responsibilities imbued to buckets are the enforcement of
their terms and conditions, and maintenance and display of their contents. These
additional responsibilities come at the cost of storage overhead and increased complexity
for the archived objects. A bucket is a self−contained storage unit that has data and
metadata, as well as the methods for accessing both.

3.1.1 Developers

Buckets were developed by Michael Nelson (NASA Langley Research Center) and
others at Old Dominion University. They were first described in Nelson, Maly & Shen
(1997).

8

3.1.2 Motivation

The development of buckets is guided by a number of design goals. As suggested by the
SODA model, buckets have unique requirements due to their emphasis on minimizing
dependence on specific DL implementations. The design goals are: aggregation,
intelligence, self−sufficiency, mobility, heterogeneity and archive independence.

It is difficult to overstress the importance of the aggregation design goal. In previous
experience with NASA DLs, data was often partitioned by its semantic or syntactic type:
metadata in one location, PostScript files in another location, PDF files in still another
location, etc. Over time, different forms of metadata were introduced for different
purposes, the number of available file formats increased, the services defined on the data
increased, new information types (software, multimedia) were introduced, the logging of
actions performed on the objects became more difficult. The result of a report being "in
the DL" eventually represented so much DL jetsam − bits and pieces physically and
logically strewn across the system. The architecture of buckets reflects the reaction to
this situation.

3.2 Analysis

Based on previous NASA DL experience, buckets have a two−level structure:

� buckets contain 0 or more packages

� packages contain 0 or more elements

Actual data objects are stored as elements, and elements are grouped together in packages
within a bucket. A two−level architecture was considered sufficient for most
applications, and thus employed as a simplifying assumption during bucket
implementation. Current work involves implementing the semantics for describing
arbitrarily complex, multi−level data objects.

An element can be a "pointer" to another object: another bucket, or any other arbitrary
network object. By having an element "point" to other buckets, buckets can logically
contain other buckets. Although buckets provide the mechanism for both internal and
external storage, buckets have less control over elements that lie physically outside the
bucket. However, it is left as a policy decision to the user as to the appropriateness of
including pointers in an archival unit such as a bucket. Buckets have no predefined size
limitation, either in terms of storage capacity, or in terms of number of packages or
elements. Buckets are accessed through 1 or more URLs. For an example of how a
single bucket can be accessed through multiple URLs, consider two hosts that share a file
system:

http://host1.foo.edu/bar/bucket−27/
http://host2.foo.edu/bar/bucket−27/

9

Both of these URLs point to the same bucket, even though they are accessed through
different hosts. Also, consider a host that runs multiple http servers:

http://host1.foo.edu/bar/bucket−27/
http://host1.foo.edu:8080/bucket−27/

If the http server running on port 8080 defines its document root to be the directory
"bar", then the two URLs point to the same bucket.

Elements and packages have no predefined semantics associated with them. Authors can
model whatever application domain they desire using the basic structures of packages
and elements. One possible model for bucket, package, and element definition is based
on NASA DL experiences. In Figure 3.1, packages represent semantic types (manuscript,
software, test data, etc.) and elements represent syntactic representations of the packages
(a .ps version, .pdf version, .dvi version, etc.). Other bucket models using elements
and packages are possible.

Figure 3.1. A model of a typical NASA bucket.

3.2.1 Architecture

The current implementation of buckets are written in Perl 5, and are accessed by an http
server. Other non−Perl based implementations are being explored, and this description
does not apply to them. Buckets take advantage of the package/element construct for
their internal configuration. In addition to the user data entered as packages and
elements, the bucket keeps its own files as elements in certain reserved packages. Thus,
methods such as "add_element", "delete_element" and so forth can be used to update the
source code for the bucket, update the password files, etc. Table 3.1 lists the predefined
packages and some of the elements they contain. By convention, these packages begin

10

with an underscore ("_") character. Figure 3.2 provides a model representation of the
structure of a typical bucket, with internal packages and elements on the left and user−
supplied data packages on the right.

Package Elements Within the Package

_http.pkg cgi−lib.pl − Steven Brenner’s CGI library
encoding.e − a list of MIME encoding types
mime.e − a list of MIME types

_log.pkg access.log − messages received by the bucket

_md.pkg [handle].bib − a RFC−1807 bibliographic file
 other metadata formats can be stored here, but
 the .bib file is canonical

_methods.pkg 1 file per public method

_state.pkg 1 file per stored state variable

_tc.pkg 1 file per .tc (terms and condition) file
password file & .htaccess file

Table 3.1. Reserved packages in buckets.

Figure 3.2. Internal bucket structure.

11

Bucket

_method.pkg _http.pkg _log.pkg _tc.pkg

_md.pkg _state.pkg

source files
for methods

http
dependency
files

logs
terms
and
conditions

metadata bucket
state

default bucket packages sample bucket payload

index.cgi

report.pkg appendix.pkg

software.pkg testdata.pkg

3.2.2 API

Regardless of bucket implementation, the bucket API is encoded using http as the
transport protocol. There are currently approximately 30 methods define for bucket
interaction and maintenance. The bucket API is fully defined in Nelson (2000).

3.2.3 System Requirements

From a server side, all that is needed to keep the current implementation of buckets
functioning is Perl 5 (or better) and a http server that allows the ".cgi" extension. No
other assumptions about the run−time environment or package installation are made.
Alternate implementations of buckets are possible, but will continue to follow the
minimalist server environment philosophy.

3.2.4 Example Applications

Readers are referred to the appendices in Nelson & Maly (2001) for QuickTime videos of
buckets in operation.

3.3 Summary

3.3.1 Strengths

Buckets are well suited for aggregating heterogeneous content and remaining functional
in low−fidelity environments. Since they are self−contained, independent and mobile,
they should be resilient to changing server environments. Buckets can be adapted to a
variety of data types and data formats.

3.3.2 Weaknesses

Bucket functionality introduces both storage overhead and management complexity
overhead. Storage issues are only significant in very large numbers of buckets (>
100,000) and can be addressed. More significant is the issue of complexity management.
Since buckets are designed to be independent, they contain much redundant information,
introducing the possibility of the buckets becoming out of synchronization with each
other. Tools and models for the management of large numbers of buckets exist, but
remain largely untested.

3.3.3 Future Directions

Buckets are still being actively developed, with a focus on increasing their intelligence
for digital preservation applications and consuming less resources than the current
implementation. Various bucket versions and their notes can be accessed at
http://dlib.cs.odu.edu/bucket−shop/.

12

4.0 ComMentor

4.1 Overview

ComMentor was a system designed to facilitate creating, sharing, and accessing
annotations to web documents. ComMentor included a client−server protocol, a
customized metadata description language called PRDM (Partial Redundant Descriptive
Meta−Language), a server based on NCSA http 1.3, and a modified xMosaic 2.4 browser
(Röscheisen, Mogensen & Winograd, 1997).

4.1.1 Developers

ComMentor was developed by members of Stanford University’s Digital Library
research group. The first references to ComMentor appear in 1994 (Röscheisen,
Mogensen, & Winograd, 1994), and it appears that development was suspended toward
the end of 1995. The most recent reference to ComMentor in the literature appears in
1997 (Röscheisen, Winograd, & Paepcke, 1997).

4.1.2 Motivation

There are a number of situations in which people would like to be able to communicate
with one another about the documents they encounter in a networked environment. In
many cases it would be convenient to have this kind of communication take place by
being able to append information or annotations directly to a document so that others
who are interested (such as other members of a workgroup, for example) would have a
way to view those comments precisely at the point within a document to which they are
relevant. In addition, it would be advantageous to be able to use such annotations as a
way of providing multiple trails through a group of documents, or to be able to provide
people with a way to evaluate and sift through documents based on collaborative
filtering.

These functionalities are not supported by the native HTML format, and they all fall
under the umbrella of providing ways to access certain kinds of meta−information
associated with a document or group of documents. ComMentor was developed to
address these issues and to devise a general architecture for capturing and managing this
kind of meta−information.

4.2 Analysis

Objects in the PRDM language can be passed to browsers as the contents of a special
MIME type message, or by embedding the information in HTML META tags. PRDM
are interpreted on the client end through the use of a modified Mosaic 2.4 browser and
CGI scripts written in Perl and C++.

13

4.2.1 Architecture

The ComMentor system architecture includes a client−server protocol, the PRDM
metadata description language, a server built on NCSA http 1.3, and the modified Mosaic
2.4 browser.

Annotation objects are specified in PRDM, and they can be aggregated into sets. Each
annotation refers to a specific location within a particular document. Each annotation has
a particular server location and a URL−like identity for locating the annotation on that
server. Control over access to annotations is handled at the set level − so there can be
private, group, and public annotation sets. Any authentication procedures must be
handled outside of the ComMentor architecture.

The browser used by ComMentor consists of the interactive renderer built into Mosaic, a
document synthesis module, and a context control application. The document synthesis
module is responsible for querying the appropriate servers for documents and any
annotation sets associated with those documents, and includes functionality for
synthesizing the document and its annotation set into one virtual document dynamically.
The context control application is the module that mediates communication between the
renderer and the document synthesis module and manages state information based on the
user’s option choices.

On the server side, the basic information unit is a PRDMitem. These items can include
text content as well as links to other documents. The server manages an index of all of
the annotation items that constitute a set. The system is designed so that the server that
houses the annotation set for a document can be completely separate from the server that
houses the original document.

The PRDM language that is used to create meta−information items is a typed, declarative
object language. It is designed to be self−identifying in terms of the name and version of
the language without having to know about the language’s structure. Descriptions in
PRDM can be partial, distributed and redundant, meaning that PRDMitems on a given
server might provide only a partial description of all of the meta−information available
about a given document. There may be overlap in the descriptive metadata that is stored
about a document as part of different annotation sets on different servers, so in this way
the objects may be redundant.

The procedures for performing the actual synthesis of documents and meta−information
are contained in the merge library. The merge library takes as input a document and a list
of annotation items and outputs the document with the annotations rendered in−line. For
HTML and plain text, the in−line rendering is accomplished through the use of string
position trees applied to a canonical representation of the document. Each annotation
item has an associated highlighted text string and a position identifier string. The position
identifier strings are designed to be robust in the face of document modifications. Any
annotations whose position cannot be reconstructed are appended to the end of the
document with a notation that they are unassigned.

14

4.2.2 API

There is not an API per se (and the source code is no longer available from the Stanford
Digital Library website) but there is a description of the PRDM language and the object
interfaces available in Röscheisen, Mogensen & Winograd (1994) in Appendices B and
C.

4.2.3 System Requirements

ComMentor does not run under any current operating systems or browsers, and is no
longer available.

4.2.4 Sample Operation

In Figure 4.1, the modified HTML document is presented to the user with annotations
marked as images in the text. Figure 4.2 illustrates a pop−up annotation by mousing over
the facial image of the annotator. Figure 4.3 illustrates additional configurability
showing text highlighting and the identify of the annotator diminished. (All screenshots
taken from: http://www−diglib.stanford.edu/rmr/TR/shots/)

15

Figure 4.1. Annotations in−lined in the document returned to the user.

16

Figure 4.2. Pop−up Annotation in ComMentor.

17

Figure 4.3. Highlighted Text in ComMentor.

18

4.3 Summary

4.3.1 Strengths

The ComMentor system was especially well suited to digital libraries containing
materials that might also want to capture annotations that are not part of the original
document, or archives that want to provide more than one logical path through the
collection (such as in the case of providing specialized tours through an art museum’s
digital collections based on topic, medium, artistic school, etc.) The fact that the object
specifications could be passed either as MIME types or through HTML meta tags meant
that overhead could be kept fairly minimal. Allowing for documents and annotations to
reside on different servers without explicit knowledge of the creators of those materials
allows for one document to be annotated by different groups according to their specific
needs.

4.3.2 Weaknesses

The fact that the document synthesis module was coupled with the browser would have
required the user to obtain the specially modified Mosaic browser in order to view
ComMentor annotations. However, this implementation method represented the state of
the art in the pre−Java web and illustrates many of the concepts that would later show up
in Multivalent Documents. ComMentor was also not designed to handle any kind of
security issues, such as terms and conditions or authentication.

4.3.3 Future Directions

Although ComMentor is not currently under development, the website can still be
accessed at http://hci.stanford.edu/commentor/.

5.0 Cryptolopes

5.1 Overview

Cryptolopes (cryptographic envelopes) are self−contained structures that combine digital
content, descriptive and administrative metadata, and authentication materials.
Implemented as part of a 3−tiered architecture, cryptolopes offer secure distribution of
digital content over non−secure channels. Along with clearinghouses and publishers,
cryptolopes comprise an architecture that permits superdistribution of digital content
without loss of control over materials. By protecting materials at the document level, the
cryptolope system attempts to obviate the problems and cumbersome procedures
common to digital content secured at the channel level−difficult distribution, repeated
user authentication, labor−intensive rights management. And by integrating digital
signatures and digital watermarks, cryptolope developers offer strong authentication and
rights management. Although IBM developed cryptolopes in the context of e−commerce
applications, its developers have subsequently integrated the cryptolope system into the
IBM Digital Library package.

19

5.1.1 Development History

Created at IBM, cryptolopes were proposed by Jeff Crigler and Marc Kaplan. In the
context of IBM’s InfoMart, Crigler and Kaplan recognized the need for automated rights
management of digital content. InfoMart acted as a clearing house for digital content.
Organizations submitted content to InfoMart, which IBM managed, collecting fees for
content use and negotiating access. Crigler and Kaplan worried that managing such a
clearing house manually would not scale well. Cryptolopes were proposed as a remedy
to this dilemma.

An initial prototype of cryptolopes was implemented by Kaplan, Josh Auerbach and
Chee−Seng Chow in 1995. Kohl, Lotspiech, and Kaplan (1997) continued to develop the
system. In 1996 IBM licensed Xerox PARC’s Digital Property Rights Language (DPRL)
(Ramanujapuram & Ram, 1998) for use in Cryptolopes, enhancing the system’s ability to
automate rights management transactions. A 1997−98 series of articles in D−Lib
Magazine described the completed cryptolope architecture to the digital library
community in a variety of applications (Gladney, 1997; Gladney, Mintzer &
Schiattarella, 1997; Gladney & Lotspiech, 1997; Herzberg, 1998; Gladney, 1998;
Gladney & Lotspiech, 1998).

5.1.2 Motivation

The goals of the cryptolope system are described in Kohl, Lotspiech & Kaplan (1997),
who articulate four primary concerns:

� Authentication of the publisher and the reader
� Authentication of the content
� Reader privacy
� Superdistribution

Cryptolopes attempt to automate the negotiation between publishers and readers of
digital content. Its developers argue that automating rights management improves
content distribution by scaling well and by removing the administrative burdens incurred
under manual systems. Under the rubric of automatic rights management cryptolopes
implement superdistribution of digital content. Superdistribution, defined in Mori &
Kawahara (1990), holds that given an abundance of cheap media (CDROM, DVD, the
Internet) creators of digital content should have the ability to distribute their materials
liberally without a concomitant loss of control over them. A company that permits users
to sample their software by offering a downloadable free version with limited
functionality, for instance, engages in superdistribution. To make superdistribution
viable, distributors must decouple distribution and rights management. That is,
superdistribution depends on a mechanism for enforcing terms and conditions of use
throughout the life−cycle of a digital object.

20

Cryptolopes enable superdistribution by protecting content at the document level. Many
security architectures (e.g. SSL and HTTPS) provide a secure channel through which
protected information is passed in an encrypted state. However, on both the client and
server sides, this information is decrypted. Thus once information is acquired over the
channel, its owner may copy and redistribute it without permission of the distributor.
Cryptolopes, on the other hand, hide digital content within an opaque container. Access
to information inside this container is controlled cryptographically. Cryptolope creators
specify terms and conditions of use, which users must satisfy in order to gain access to
the Cryptolope’s content. Once a user does satisfy the creator’s terms and conditions, he
or she is able to use the content in a controlled environment (described below), thus
ensuring that the content remains under protection.

5.2 Analysis

A Cryptolope consists of several distinct parts, bundled into a single container
(Cryptolopes are implemented as Java .jar files). Each Cryptolope contains:

� Encrypted content
� Non−encrypted (clear) metadata
� Authentication materials

The creator of a Cryptolope may include content in any format. A typical Cryptolope
might contain the same information stored in several formats, or several different
versions of a document, each of which is subject to unique terms and conditions. This
content is encrypted. When a user attempts to open a Cryptolope, he is presented with
the non−encrypted metadata. This provides information about the contents of the
package and about the terms and conditions that he must satisfy to gain access to them.

If the user decides to "purchase" some or all of the Cryptolope’s content, the Cryptolope
system connects to a so−called clearinghouse. Once connected with a clearinghouse, the
user may satisfy the terms and conditions expressed in the Cryptolope. Having fulfilled
these, the clearinghouse delivers a cryptographic key to the user’s system. This key is
then used to decrypt the appropriate subset of the Cryptolope’s content.

5.2.1 Cryptolope System Architecture

Kohl, Lotspeich & Kaplan (1997) describe a three−tiered Cryptolope architecture. The
elements of this system are:

� Builder software
� Clearinghouse servers
� Client player/opener

21

Software for creating Cryptolopes is currently included in the IBM Digital Library
package. This allows content distributors to store information in Cryptolopes, and to
associate content with terms and conditions of use, expressed in machine−readable
format via the Digital Property Rights Language.

Clearinghouses enable superdistribution by providing a platform on which to negotiate
intellectual property transactions. Having secured content inside Cryptolopes,
clearinghouses act as gate−keepers, providing appropriate access to protected
information. IBM’s InfoMart constitutes such a clearinghouse. Gladney et al. (1997)
imagine digital libraries fulfilling the clearinghouse role.

Finally, the client application fulfills two roles in the Cryptolope architecture. First, it
allows the end−user to interact with a clearinghouse, prompting him to respond
appropriately during any transactions. Second, the client actually displays any content
requested by the user. Since content may ostensibly take any format, the role of the
client is non−trivial. IBM’s literature describes the Cryptolope client as a plug−in for
web browsers. However, the versions sampled for this study (see below) ran as
applications in their own right.

Figure 5.1. Cryptolope Architecture (from Kohl, Lotspiech & Kaplan (1997)).

Figure 5.1 shows the logical structure of a Cryptolope. Each Cryptolope contains a
variety of non−encrypted information. The Manifest describes the contents of the
Cryptolope. The section labeled Abstract/Metadata describes the Cryptolope in human−
readable form. This section might include "teasers," portions of non−encrypted content,
combined with instructions for acquiring access to the encrypted data. A Cryptolope also

22

contains a variety of decryption keys. Each content block possesses its own decryption
key. To prevent unauthorized use, these keys are themselves encrypted with a Master
key. When the user fulfills terms and conditions of use, the clearinghouse delivers the
client a key that is used to decrypt the Master key. Once this is accomplished, the other
keys can be decrypted using information native to the individual Cryptolope. This is
important because it bears on the deployment of clearinghouses. Because the
clearinghouse need only decrypt Master keys, the number of keys stored by
clearinghouses is low.

The other elements of a Cryptolope pertain to the system’s verification and
authentication functions. These functions are of two types, one of which protects end−
users, and one of which protects content publishers. Each Cryptolope contains a series of
checksums that are used to ensure the completeness and authenticity of the attached
content. Thus when a user purchases information, the system verifies that he is in fact
getting what he believes he is getting. To protect publishers, Cryptolopes also contain
digital watermarking and fingerprinting instructions. When content blocks are decrypted,
they are stamped with watermarks and fingerprints. Digital watermarks describe the
provenance of a digital object. Thus if a user managed to create illicit copies of
decrypted data, they would contain proof of their origin with the publisher. Digital
fingerprints are unique to a given client’s copy of Cryptolope content. Thus illegal
copies of information will contain identifying information about their source.

5.2.3 Sample Operation

To sample the Cryptolope system we installed the Cryptolope Player version 1.1
(http://www−4.ibm.com/software/security/cryptolope/downloads.html). IBM’s
documentation indicates that the player runs under Win32 platforms. However, our
installation was successful only under Windows NT (Windows 98 and Windows 2000
Professional failed). Screen captures from subsequent trials are shown in Figures 5.2 and
5.3. These figures derive from two example scenarios posted on IBM’s Cryptolope
website (http://www−4.ibm.com/software/security/cryptolope/casestudy.html). One
treats authentication and verification, while the other highlight’s Cryptolopes’ rights
management capabilities.

23

Figure 5.2. Requesting payment before viewing a large image.

24

Figure 5.3. Examining the manifest of a Cryptolope.

5.3 Summary

5.3.1 Strengths

Cryptolopes are potentially useful for administrators of digital libraries in several
regards. Their ability to provide persistent rights management for digital objects is
highly desirable for many digital libraries where intellectual property concerns are

25

serious. Not only do Cryptolopes enable superdistribution; they also permit
administrators to automate rights management transactions, and they enforce terms and
conditions at any level of granularity.

5.3.2 Weaknesses

The proprietary viewing software that readers must use to purchase and make use of
Cryptolope content is troublesome. In addition to its failure to run on several supported
platforms, this software runs the risk of obsolescence. Providers of digital content might
be uncomfortable delivering their information in a closed format that is not supported by
major standards bodies. Recent lack of activity on the Cryptolope website, and the slow
pace of recent Cryptolope publications serve to reinforce such misgivings.

5.3.3 Future Directions

We are unsure of the current status and future direction of the Cryptolope project. There
has been little activity at http://www−4.ibm.com/software/security/cryptolope/ and it is
possible that the technology has been folded into other IBM DL products.

6.0 Digibox

6.1 Overview

Like IBM’s Cryptolopes, InterTrust’s Digibox technology is intended to allow secure
distribution of digital content over open channels. To accomplish this, Digiboxes
combine encrypted content and rights management "controls" in an opaque container.
Part of InterTrust’s larger MetaTrust framework, Digiboxes allow peer−to−peer
enforcement of "distributed electronic contracts" (Sibert, Bernstein & Van Wie, 1995),
permitting content providers and distributors to maintain control over terms and
conditions of use throughout the lifecycle of a digital object. InterTrust has succeeded in
licensing it’s MetaTrust technologies (including Digiboxes) to such companies as Adobe,
Nokia, and America Online. Support from major software vendors, and InterTrust’s
continued influence with standards bodies such as MPEG and SDMI suggests that
Digiboxes are gaining sufficient market saturation to enhance their appeal to
administrators of digital collections.

6.1.1 Developers

The Digibox architecture was first described by Sibert, Bernstein & Van Wie (1995). At
that time, Sibert and his co−authors were at Electronic Publishing Resources, Inc.
During subsequent years research continued within InterTrust’s STAR Labs. In 1997,
researchers at STAR Labs published Sibert, Horning & Owicki (1997), which elaborates
InterTrust’s digital rights management (DRM) architecture, in which Digiboxes play a
key part.

26

6.1.2 Motivation

In the 1995 description of Digiboxes, the stated goal was to support "information
commerce." By "information commerce" they refer to trade in electronic information,
such as data from databases, articles, music, video, etc. They define three goals for any
software purporting to enable such trade. Using this software:

1. Information providers can be assured that their content is used only in
 authorized ways;
2. Privacy rights of users of content are preserved;
3. Diverse business models related to content can be electronically
 implemented

Due to the openness of distributed environments, issues of copyright and other rights
management matters plagued early information commerce architectures. Moreover,
these early systems limited the viable business models available for information vendors.

Like the developers of Cryptolopes, the Digibox developers hoped to enable
superdistribution of digital content. The same openness that made distributed
environments difficult for information trade also made the distribution of information
cheap and easy. The goal, then, was to decouple the information itself from the rights to
the information. Digiboxes accomplish this by making content usable only in accordance
with control directives, specified by the Digibox’s creator. Thus by giving content−rich
Digiboxes to a wide market, vendors do not correspondingly give away control of their
intellectual property. By charging customers for the rights to use information rather than
charging for possession of the information itself, and by affording providers flexibility in
expressing rights management rules, Digiboxes permit a wide assortment of information
commerce business models.

6.2 Analysis

Digibox is "implemented in a set of platform−independent class libraries that provide
access to objects in the container and extensions to OpenDoc and OLE object
technologies" (Sibert, Bernstein & Van Wie, 1995) Encryption is available via triple
DES or RSA algorithms. For creating Digiboxes, InterTrust sells several products
(http://www.intertrust.com/main/products/) with a variety of features. Of particular
interest for digital library administrators are two products: DocBox, a tool for secure
publishing using PDF format; and Flying Media, a suite of tools for delivering
multimedia content. Both DocBox and Flying Media run under 32−bit Windows. They
require Intel architecture. Since their recent agreement with Adobe Systems, InterTrust’s
Digibox software is also available to users of Adobe Acrobat. Content publishers can
create secure PDF files using Acrobat. And end−users can use Acrobat Reader to access
Digibox protected content through the MetaTrust system.

27

6.2.1 Architecture

6.2.1.1 The MetaTrust Utility

Digiboxes are delivered within the larger framework that comprises InterTrust’s
MetaTrust utility. Designed to be a trusted platform on which business can reliably
conduct information commerce, MetaTrust consists of a network of "InterTrust points."
An InterTrust point is a computer system running one of the InterTrust products. Thus
content creators use MetaTrust−compliant authoring software to create Digiboxes. Next,
distributors aggregate Digiboxes and disseminate them. Using MetaTrust viewers and
players, customers can choose to acquire Digibox content by agreeing to the creator’s
and distributor’s terms and conditions. Users may also forward Digiboxes to other users,
who will be automatically subject to the requisite terms and conditions of use, due to the
integrity of the Digibox. At periodic intervals each end−user’s MetaTrust client
communicates with an available MetaTrust clearinghouse, transmitting his or her recent
MetaTrust transactions for processing. Finally, the clearinghouses process user
transactions and deliver output (such as payment or user data) to the appropriate parties,
including InterTrust itself.

Each party in this process−creators, distributors, users, and clearinghouses−uses
InterTrust software. Together they comprise the MetaTrust utility, a network of so−
called InterTrust points.

Points in the MetaTrust architecture communicate one another in a peer−to−peer
relationship. For instance, if user A forwards Digibox D to user B, user B does not need
to communicate with any third party to gain access to D (provided he already has
Digibox−compliant viewing software). If user B fulfills the terms and conditions of D,

the record of his having done so will be transmitted to another InterTrust point in a batch
process at a later date. Thus the fulfillment of terms and conditions, and the user’s access
to digital content are handled in a completely automatic fashion, with no intermediaries.

6.2.1.2 Digibox Structure

Each Digibox contains 0 or more of the following:

o Content Properties. A Digibox may contain content in a variety of formats
(e.g. PDF, HTML, OLE). However, due to the opacity of the Digibox
container these content element are useless without the user’s system being
told explicitly how to access them. To gain such access, the user must
comply with the Digibox creator’s terms and conditions.

o Controls. Controls express terms and conditions of use in a machine−
readable format. They may refer to content properties contained within a
shared Digibox, or they may refer to content located in another Digibox.

Controls provide flexible control over digital content. They may express a wide variety
of necessary conditions of use, or they may define detailed types of use that correspond

28

to the fulfillment of conditions. Likewise, they are flexible with regard to scope.
Digibox controls may govern aggregated content of various media. On the other hand,
they may control portions of a single file (Digibox controls can specify directives at the
byte−level).

Because controls dictate which content properties a client sees, and in what manner they
see it, owners of content can distribute information freely, charging for or otherwise
restricting only the rights to use the information.

6.2.1.3 Protected Local Storage

Although not strictly part of the Digibox itself, each machine capable of viewing
cryptolopes must run InterTrust software in an area of "protected local storage." This is
an opaque application that negotiates the transactions initiated by the user’s interaction
with Digibox controls. The protected local storage unit contains a variety of
cryptographic keys that are used to decrypt data and metadata according to the directives
specified by the control directives (see discussion of cryptographic protection below).

Because protected local storage contains the keys necessary to gain access to Digibox
content, it is emphasized that Digibox security is "only as strong as the tamper−resistance
of the local processing environment" (Sibert, Bernstein & Van Wie, 1995). For highly
valuable content, where the risk and cost of theft or fraud is high, InterTrust recommends
that the software be run on secure hardware (a secure processing unit, or SPU).
However, for settings where the aim of encryption is deterrence of fraud rather than
categorical prevention, a traditional CPU may suffice.

6.2.1.4 Cryptographic Protection

Depending on the level of security desired by its creators any combination of a Digibox’s
content properties and controls can be encrypted. For those delivering highly valuable
content, perhaps all Digibox components merit protection. Other applications might call
for more modest, lightweight encryption. But regardless of additional protection, each
Digibox is relatively secure by virtue of its high−level information, which is encrypted.
Part of the Digibox’s organizational header, all of the Digibox controls, and any "content
keys" needed to decrypt encrypted content properties are delivered in encrypted form.
This encrypted information is unlocked by means of a "transport key block," which is
derived by a combination of keys stored in the Digibox itself and in the local machine’s
protected storage area. Thus all access to a Digibox takes place in communication with
the InterTrust protected software.

While this architecture provides robust enforcement of publisher’s terms and conditions
of use, it also prevents the delivery of altered or otherwise inauthentic content. In
addition to supervising decryption of controls and content, a Digibox’s encrypted high−
level information includes checksums used to verify the integrity of content. Thus
purchasers of Digibox information can be assured of the provenance of their information.

29

6.2.2 Sample Operation

To test the Digibox system, we purchased an article from an online publisher that uses
InterTrust to deliver protected information. The American Journal of Archaeology
(http://www.ajaonline.org) sells access to its publications using InterTrust software.
Users may purchase PDF versions of recent AJA articles through PublishOne
(http://www.publishone.com), a subsidiary of InterTrust. Once he or she has created a
PubishOne account, users may easily purchase, view, and print articles using Adobe
Acrobat Reader (version 4.05). AJA articles cost $0.15 per page. This purchase entitles
the customer to view an article on three different workstations. Customers who wish to
email an article to colleagues are free to do so. When recipients attempt to read an
attached Digibox, they will be prompted to purchase appropriate viewing rights. The
policies derive from AJA, not PublishOne. They are described at
http://www.ajaonline.org/shared/s_info_ecommerce.html. Figures 6.1 and 6.2 show
steps in the process of purchasing an article from the AJA website.

30

Figure 6.1. Attempting to open a Digibox PDF file.

31

Figure 6.2. The protected PDF file downloaded to the personal computer.

6.3 Summary

6.3.1 Strengths

Protecting objects at the document level, rather than at the channel level, affords a great
deal of flexibility in the delivery of digital content. This flexibility is enhanced by the
adjustable granularity of Digibox controls. Rights management directives in a Digibox
may apply to groups of content properties, or to individual bytes within a single property.

32

Also attractive is InterTrust’s successful integration of Digibox software into mainstream
software such as Adobe Acrobat. By reducing dependence on proprietary software,
InterTrust has provided a flexible, convenient way to manage digital content for
superdistribution.

6.3.2 Weaknesses

While avoiding proprietary viewing/playing applications (such as those used in
Cryptolopes) increases the chance of market acceptance, creating PDFs, MPEGs and
other file with built−in protections raises serious issues regarding the long−term
preservation of documents. The preservation of the AJA articles, for example, is now
fundamentally bound to the economic well−being of InterTrust.

6.3.3 Future Directions

With a variety of business partners and alliances and frequent activity on their website
(http://www.intertrust.com/), InterTrust appears committed to the continued development
of their Digibox technologies.

7.0 Document Management Alliance

7.1 Overview

The Document Management Alliance (DMA) is a coalition of users and developers of
document management (DM) software. Organized by the Association for Information
and Image Management (AIIM), DMA’s goal is to improve interoperability between DM
systems. Towards this, DMA members defined DMA specification 1.0 (DMA Technical
Committee, 2001), a standard API for document management. With its roots in issues of
workflow management, DMA 1.0 aims to permit easy integration of DM systems,
allowing distributed collaboration, cross−repository search and retrieval of documents,
and complex document protection. In addition to enabling DM software interoperability,
DMA 1.0 comprises a flexible, rich document model.

DMA is similar to other projects, notably ODMA and WebDAV. The Open Document
Management API (ODMA) is the outcome of another AIIM task force. ODMA is
similar to DMA insofar as it enables some interoperability between document
management software. However, the reach of ODMA is more modest than that proposed
by DMA. Web Distributed Authoring and Versioning (WebDAV) is an ongoing project
from the IETF WebDAV working group (http://www.webdav.org). WebDAV is an
extension to HTTP that permits collaboration and versioning of documents via web
servers.

33

7.1.1 Developers

AIIM (http://www.aiim.org) is a trade organization in the document management and
workflow systems industry. The DMA is an AIIM task force. This task force is
composed of DM software users and developers, whose motivations represent a wide
variety of document management tasks. A sampling of DMA member organizations
includes IBM, Xerox, Novell, Documentum, Interleaf, Oracle and many other significant
companies with an interest in DM systems.

7.1.2 Motivation

According to the DMA 1.0 specification, the goals of DMA are:

o Uniform access to any document, anywhere in an enterprise
o Self−describing systems and documents for ease of setup and configuration
o Scalable document management solutions from legacy systems to fully−

 featured, state of the art document management systems
o Expanded collaboration opportunities
o High−level integration of services and applications

Many organizations use a variety of document management software. The DMA authors
argue that in these circumstances, incompatibility between DM systems results in an
"islands of information" problem; information in one document repository is not visible
or accessible to users of another repository. DMA−compliant software would address
this problem by defining self−describing objects. Such objects−documents, services,
systems, etc.−would allow diverse DM systems to exchange information easily. Also
crucial for modern DM software is the ability to manage collaboration in document
editing. The DMA specification aims to improve not only inter−repository search and
retrieval, but also supports locking and versioning across document spaces. Because
document management software is used in a wide variety of settings, the DMA model is
intended to be scalable: adhering to the specification would help systems address the
needs of small organizations or large government agencies.

7.2 Analysis

Section 2.4.1 of DMA 1.0 defines a three−tiered architecture for DMA−compliant
systems. These systems include:

� Client Applications
� DMA Middleware
� DMA Service Providers

Using client applications end−users create and edit documents, search document
repositories, organize document collections, etc. DMA service providers are DMA−
compliant document management servers. These systems provide a variety of

34

functionality, such as file−system operations. The DMA specification likens each DMA
service provider to a single library in a larger library system. That is, each service
provider−or "document space"−handles access to its own materials. Finally, the DMA
middleware negotiates between applications and document spaces. For instance, the
middleware provides search and retrieval services across multiple document spaces.
Thus the DMA authors compare the middleware to the administration of a library system.

Communication between DMA clients, middleware, and service providers is enabled by
the DMA API, which is based on several data abstractions defined in DMA 1.0 section 3.
These abstractions are:

� DMA object model
� DMA interface and process model
� DMA integration model
� DMA distribution model
� DMA query model
� DMA containment model
� DMA content model
� DMA versioning model
� DMA internationalization and localization model

The DMA object model provides uniform access to data and services in DM systems.
Exposing data and services via standard methods, the object model shields users and
system designers from implementation details of individual DM systems. DMA’s
interface is "a strict, portable subset of Microsoft’s COM (Component Object Model)"
[DMA 1.0 3.2.1], which lends the system its encapsulation of objects. According to
section 3.3.1, the "Integration Model defines how DMA components are assembled."
Queries across document spaces are handled by the DMA query model. This component
of the DMA system allows administrators of individual document spaces to define the
data and methods of search available for their collection. The DMA Content Model
allows compliant applications to access and modify document content. Particularly
important to the Content Model is DMA’s ability to support complex documents. These
are documents composed of multiple versions or "renditions." The DMA Content Model
allows DM software to manage collaborative editing and display of evolving or
otherwise multifaceted documents. Documents that are being revised constitute a special
class of complex documents. The management of these documents is supported by the
DMA Versioning Model, which supports so−called "linear versioning." Thus a
conceptual entity, the Document, is assumed to be represented by a consecutive series of
individual document renditions.

7.2.1 DMA Classes
The DMA object model enables communication between document spaces of a DMA
system by imposing a unified structured on the system’s data and services. Described at
length in DMA 1.0, Section 3.1, the majority of data in a DMA object is stored as a
series of properties. DMA classes expose their current state through a variety of getProp

methods. Likewise, they permit manipulation through putProp methods. These

35

properties may be of standard data−types, such as integers, floating point numbers, or
strings. Or they may be object−valued, pointing to another DMA object. In the interest
of creating self−describing objects, DMA classes contain recursive metadata structures
that allow other DMA classes to probe their structure and functionality. This relationship
is illustrated in Figure 7.1.

Figure 7.1. DMA Object Hierarchy

Figure 7.1 depicts an imaginary DMA class, Document. The document class has three
properties: title, author, and classdescription. Title and author are both string−valued
properties. However, classDescription is object−valued. Its value is itself an object of
type classDescription. All objects in the DMA class hierarchy contain a classDescription
property, which points to a classDescription object. This provides the requisite
information for DMA objects to identify their own properties. Self−identification occurs
by a recursive traversal of the object’s classDescription property hierarchy. Thus in the
example shown in Figure 7.1, by querying the document’s classDescription property, the

36

DMA system can learn that the document object contains 3 properties. It can learn the
datatype of each property and its cardinality. Note that the classDescription object does
itself contain a classDescription property. However, the classDescription object pointed
to by another classDescription has a NULL−valued classDescription property, thus
averting an infinite recursion.

7.3 Summary

7.3.1 Strengths

Users of document management software incur many benefits under a DMA−compliant
document management system. Most obviously, the ability to search across document
spaces and the prospect of robust collaboration and versioning tools argue for the
importance of DMA to document management and workflow management tasks. More
generally, the document model defined in the DMA specification is flexible and precise.
DMA’s ability to manage complex documents (documents consisting of multiple
versions) is particularly useful. For purposes of document editing, complex document
support is an obvious boon. But complex documents are also useful in the common
challenge of distributing a document in multiple formats (e.g. HTML, PDF, ASCII).

7.3.2 Weaknesses

Document management software vendors have little incentive to comply with the DMA
specification. The proprietary protocols and formats that DMA views as a liability often
secure the influence of a software vendor in an organization. As a consequence,
implementation of DMA−compliant DM systems has been slow. According to the DMA
website (as of 20 April 2001), "There are no commercial, fully−compliant products that
can be assessed and with which interoperability can be verified"
(http://www.infonuovo.com/NuovoDoc/analysis/DMA−adoption−risk.htm).

7.3.3 Future Directions

DMA Specification 1.0, Section 1.4 lists three future goals for the task force:

o Interoperability with other proposed standards (e.g. ODMA, wfMC,
WebDAV)

o Additional work on DMA/Internet interoperability (e.g. Java)
o Additional support for compound documents, content−based search,

security, directory service integration, transactions, and/or audit trails.

The website can be accessed at http://www.infonuovo.com/dma/.

37

8.0 Flexible and Extensible Digital Object and Repository Architecture

(FEDORA)

8.1 Overview

The Flexible and Extensible Digital Object and Repository Architecture (FEDORA) can
be defined as a new model of repository service able to store and make accessible
distributed digital information of a complex, heterogeneous, and evolving nature (Payette
& Lagoze, 1998; Payette & Lagoze, 2000a; Payette & Lagoze, 2000b). FEDORA is
meant to serve as a fundamental component within a broader design of an open and
flexible digital library architecture. The architecture model of FEDORA provides an
effective mechanism for uniform access to digital objects distributed between multiple
repositories. It also allows association of external rights management services with the
object content. The key concepts in FEDORA represent an evolution from those in the
Kahn−Wilensky Framework and the Warwick Framework (Table 8.1). It is also based
on the Distributed Active Relationship (DAR) mechanism (Daniel & Lagoze,1997a;
Daniel & Lagoze, 1997b; Daniel, Lagoze & Payette, 1998).

Kahn Wilensky Framework Extended Warwick

Framework

FEDORA

Data & metadata Package DataStream

Digital Object Container DigitalObject

Dissemination DAR Interface

Terms & Conditions DAR Enforcer

Repository Container Repository

Table 8.1. Evolution of Concepts to FEDORA (from Daniel & Lagoze (1997b)).

8.1.1 Developers

FEDORA is a DARPA funded project jointly developed by the Digital Library Research
Group at Cornell University and the Corporation for National Research Initiatives
(CNRI), and later with collaborators at Los Alamos National Laboratory and University
of Virginia.

8.1.2 Motivation

The FEDORA project addressed the need for an advanced repository module intended to
provide a reliable system for depositing, storing, and accessing digital objects. The
concept of a digital object is continuously evolving toward multiple and dynamic formats
and requires suitable digital library infrastructures for its management. The repository
forms only the basic layer of a digital library model described as a multi−layered
structure supporting a number of other services, including information searching and
discovery, registration, user interface, and rights management services.

38

8.2 Analysis

To understand FEDORA, one must first understand the Repository Access Protocol
(RAP). RAP was first defined in the Kahn−Wilensky Framework (Kahn & Wilensky,
1995), and then later refined and developed through a series of publications (Lagoze &
Ely, 1995; Lagoze et al., 1995) and software implementations. FEDORA was built from
the lessons learned from previous implementations and prototype deployments of
systems that implemented RAP for the Library of Congress (Arms, Blanchi & Overly,
1997). It is important to note that non−FEDORA implementations of RAP are possible.
CNRI distributes their own RAP−compliant software package (Digital Object Store,
2001) and interoperability between the two implementations was verified by CNRI and
Cornell staff members (Payette et al., 1999).

The architecture model in FEDORA performs a series of repository functions for a
digital object type. The developers of the project intend for FEDORA to provide uniform
access to digital content regardless of the data format, the underlying structure, and the
physical distribution of the object. Digital Objects and Repositories are the key
components of the project. The Digital Objects managed in FEDORA have dynamic
characteristics. They are the result of an aggregation of "multiple and compound" digital
content. FEDORA is also expected to accommodate both current complex digital objects,
such as multimedia objects, as well as future emerging object types.

8.2.1 Architecture

The basic architectural components of FEDORA are DigitalObjects, Disseminators, and
Repositories. Extending the basic concepts of "content" and "package" from the
Warwick Framework, the DigitalObject is defined as a "container abstraction" that
encapsulates multiple content in packages called DataStreams. Figure 8.1 illustrates a
simple DigitalObject with an access control list (ACL), MARC metadata, and a
PostScript data component. The DataStreams are composed of MIME−type sequences of
bytes (e.g., digital images, metadata , XML files) and operate as the basic elements of a
content aggregation process. The DigitalStreams can be physically associated with the
DigitalObject or they can be logically associated but stored in another DigitalObject. The
DigitalObject is the result of distributed content. The mechanism that provides access to
DigitalStreams is a set of service requests called PrimitiveDisseminators, identified by
unique names, e.g., URN. The PrimitiveDisseminator is logically associated with every
DigitalObjects and provides an interaction with the DigitalObject at the internal structural
level. Other types of Disseminators, specifying behaviors for particular types of content,
can be associated with DigitalObjects. They are designed for user interaction, providing
recognizable views of content formats such as books, journals, or videos as a result of the
client request. Figure 8.2 illustrates content−specific Disseminators for the metadata
(MARC, Dublin Core derived from the MARC, and per−chapter access to the PostScript
file).

39

The project developers use the metaphor of the cell to describe the structure of a
DigitalObject. The core is composed of a nucleus containing data packages, surrounded
by an interface layer containing sets of behaviors that transform the row data into
information entities as requested by the user.

Figure 8.1 A simple DigitalObject (from Payette & Lagoze (1998)).

The Repository provides deposit, storing and access services to these DigitalObjects.
These containers are opaque entities for the Repository that has no knowledge about their
internal structure and content and manage them only through the unique identifiers
(URNs) of the DigitalObjects. Each DigitalObject has a set of "native operations" to
access and manipulate the content. They are defined by the Distributed Active
Relationship (DAR). DAR provides an open interface that enables the functions of
listing, accessing, deleting and creating DataStreams. DARs are the means for
implementing components called "Interfaces" and "Enforcers" that are linked to
DigitalObjects. "Interfaces" define behaviors to enable DigitalObjects to produce
"disseminations" of their content. "Enforcers" are special types of interfaces that provide
a mechanism for protecting intellectual content. The rights management security is
directly applied to the DigitalObject behaviors instead of to the content, since the
content, such as the internal structure, are opaque to the repository. As noted before, the
DigitalObjects are identifiable only by their URNs.

40

Figure 8.2. A DigitalObject with three content−specific Disseminators (from Payette &
Lagoze (1998)).

8.2.2 System Requirements

The RAP protocol is defined using the Interface Description Language (IDL), a
technology −independent definition language. Although non−CORBA versions of RAP
have been developed, FEDORA is being implemented using Iona’s OrbisWeb for Java
and Visigenic’s VisiBroker.

8.3 Summary

8.3.1 Strengths

FEDORA has provided valuable contributions to achieve interoperability and
extensibility in digital libraries. At the structural level, the aggregation of "distributed
and heterogeneous digital content" to compound complex objects is an important aspect
of interoperability. At the architectural level, the DAR abstraction provides an effective
tool for a uniform access to objects distributed among multiple repositories. The
extensibility is ensured by the separation of the digital object structure from both the
interfaces and the related mechanisms. The way of accessing the complex objects
through open interfaces producing multiple outputs of content promotes both
interoperability and extensibility.

The flexibility and modularity of the FEDORA architecture has been proved to be
suitable to handle a variety of complex multi−level objects. In particular, FEDORA has
been implemented and customized by the library research and development group at the
University of Virginia for supporting the specific functionalities required by the
electronic text collections of the UVa electronic text center (Staples & Wayland, 2000).

41

8.3.2 Weaknesses

While providing great power and flexibility, the acceptance of deploying CORBA for DL
projects remains unknown. It is worth noting that the UVa implementation of FEDORA
uses a relational database management system, and not CORBA.

8.3.3 Future Directions

FEDORA can be considered a key phase toward the development of open architecture
digital libraries. Current research by Cornell/CNRI is focused on integrating Cornell’s
FEDORA with CNRI’s DigitalObject and Repository Architecture in order to define a
more powerful infrastructure able to achieve a higher level of interoperability and
extensibility. Another area of further research is the security and access management.
FEDORA has been recently chosen as "mediation architecture" for supporting "Value−
Added Surrogates" for distributed content within Prism, a research project at Cornell
University focused on developing access control and preservation mechanisms for
distributed information systems (Payette & Lagoze, 2000b). The latest version of the
RAP IDL can be found at: http://www.cs.cornell.edu/cdlrg/fedora/IDL/.

9.0 Kahn−Wilensky Framework Digital Objects

9.1 Overview

The Khan−Wilensky Framework is a theoretical infrastructure that defines a set of
elements and requirements for supporting a variety of distributed information services
(Kahn & Wilensky, 1995). This framework defines a few basic abstractions for an open
and universal information system that have strongly influenced the development of
subsequent information architectures. Kahn−Wilensky Framework addresses only
structural aspects of the system, in order to avoid constraints to a future technological
evolution and to insure the full interoperability of the services.

9.1.1 Developers

The Kahn−Wilensky Framework was developed in 1995 by Robert Kahn from the
Corporation for National Research Initiatives (CNRI) and Robert Wilensky from the
University of California at Berkeley. Their research was supported by the Advanced
Research Projects Agency (ARPA) for use in the Computer Science Technical Report
Project (CSTR). The initial architecture they provided was fleshed out in Arms (1995),
and then partially implemented in Lagoze & Ely (1995) and Lagoze et al. (1995).

9.1.2 Motivation

Robert Kahn and Robert Wilensky addressed the need generalized system for managing a
wide and extensible class of distributed information services, of which DLs represented
only an example of these services. They provided the theoretical foundation of a new

42

model of information architecture described in A Framework for Distributed Digital

Objects Services, which became a milestone reference in the DL literature.

9.2 Analysis & Architecture

The Kahn−Wilensky framework does not provide a defined, structured architecture, but a
more general, conceptual infrastructure for managing complex digital objects. They made
no assumptions about implementation details. Kahn and Wilensky founded their
information model on three essential components: Digital Objects, Handles and the
Repository Access Protocol (RAP). All other notions are derived from these three. The
Digital Object (DO) is a structured instance of an abstract data type made up of two
components: data and key−metadata. The key−metadata includes the Handle, which is a
mandatory and primary global identifier for the Digital Object. RAP is a technology that
must be supported by all the repositories in order to accomplish the deposit and access
processes of the Digital Objects. This relationship is illustrated in Figure 9.1.

The system provides a strategy for registering, depositing and accessing Digital Objects.
A Digital Object is made available to the System by an Originator, individual or
organization, which can deposit or access it. Every Digital Object has an Originator that
defines also the terms and conditions for its use. In the registration process, the
Originator requests the Handle from an authorized Handle generator. Then the Originator
deposits the Digital Object in one or more Repositories. The Repositories too have
unique names assigned through specific naming conventions.

Upon depositing, the Handle and the Repository name or IP address are registered with a
globally available system of handle servers. Each Repository keeps a properties record
for each Digital Object stored. The properties records include all the metadata of the
Digital Object. RAP enables the processes of accessing and depositing Digital Objects
within Repositories. Access to a Digital Object is achieved by specifying the Handle and
a service request type. The data output of the access service request is a "dissemination".
Although RAP is now more fully developed and expressed in an IDL (see section 8), the
high−level operations of RAP, as expressed in Arms, Blanchi & Overly, are listed in
Table 9.1.

43

RAP Commands Description

VerifyHandle Confirm that a handle has been registered in the handle
system

AccessRepoMeta Access the repository metadata

Verify_DO Confirm that a repository stores a digital object with a
specified handle

AccessMeta Access the metadata for a specified digital object

Access_DO Access the digital object

Deposit_DO Deposit a digital object in a repository

Delete_DO Deletes a digital object from a repository

MutateMeta Edit the metadata for a digital object

Mutate_DO Edit a digital object

Table 9.1. RAP commands, as listed in Arms, Blanchi & Overly (1997).

Figure 9.1. Highlights of the Kahn−Wilensky Framework.

44

Originator

Digital Object

Data

Handle

Repository

Repository

Access

Protocol

(RAP)

Handle

Server

makes a

which consists of

which comes

from a handle

generator
which can go in a

which is accessed by which registers the DOs handle with a

at which point the DO becomes

a registered DO

9.3 Summary

The Kahn−Wilensky Framework was never directly implemented, so the normal
assessment of "strengths" and "weaknesses" does not seem applicable. However, it
provided a new vision of a distributed information system and revised the fundamental
concepts of "digital object" and "repository" in a way that strongly influenced subsequent
digital libraries−related projects. Many of the projects discussed in this paper are either
direct or indirect descendants of this architecture.

10.0 Metadata Encoding & Transmission Standard

10.1 Overview

The Metadata Encoding and Transmission Standard (METS) is project based on for
encoding descriptive, administrative, and structural metadata regarding objects within a
DL. The design of METS is heavily influenced by the participants in the Library of
Congress’ Making of America 2 (MOA2) project.

10.1.1 Developers

The development is sponsored Library of Congress (LOC) and Digital Library
Federation (DLF), although the actual participants also include members of several
universities.

10.1.2 Motivation

A workshop report (McDonough, Myrick & Stedfeld, 2001) documents the motivation
for what would become known as METS, based on experiences with MOA2, anticipated
requirements for MOA3, and evaluation of other technologies such as Resource
Description Format (RDF) (Miller, 1998), MPEG−7 (Day & Martinez, 2001) and
Synchronized Multimedia Integration Language (SMIL) (SMIL, 2001), as well as
suitability for Open Archival Information Systems (OAIS) reference model (CCSDS,
2001).

10.2 Analysis

10.2.1 Architecture

A METS document consists of 4 sections:

� Descriptive metadata −bibliographic metadata, either encoded internally (textually or
binary), links to external descriptive metadata, or both internal and external metadata.

� Administrative metadata − metadata concerning how the object was created, the terms
& conditions for its use, translation / transformation history, etc. Administrative

45

metadata can also be internal, external or a combination.
� File Groups − a manifesto of all digital non−metadata content that comprises the

digital object.
� Structural Map − provides the hierarchical structure of the digital object, as well as

linking in the metadata and data as appropriate.

10.2.2 Example Applications

A full sample METS file can be found at http://www.loc.gov/standards/mets/sfquad.xml.
METS documents are not difficult, but they can be lengthy, so we will examine only
some smaller pieces drawn from
http://www.loc.gov/standards/mets/METSOverview.html below. Figure 10.1 shows both
external and internal Dublin Core and binary (Base64 encoded) descriptive metadata.

<dmdSec ID="dmd001">
<mdRef LOCTYPE="URN" MIMETYPE="application/xml" MDTYPE="EAD"

 LABEL="Berol Collection Finding Aid">urn:x−nyu:fales1735</mdRef>

</dmdSec>

<dmdSec ID="dmd002">
<mdWrap MIMETYPE="text/xml" MDTYPE="DC" LABEL="Dublin Core

Metadata">
<dc:title>Alice’s Adventures in Wonderland</dc:title>

 <dc:creator>Lewis Carroll</dc:creator>
 <dc:date>between 1872 and 1890</dc:date>
 <dc:publisher>McCloughlin Brothers</dc:publisher>
 <dc:type>text</dc:type>
 </mdWrap>
</dmdSec>

<dmdSec ID="dmd003">
<mdWrap MIMETYPE="application/marc" MDTYPE="MARC" LABEL="OPAC

Record">
 <binData>MDI0ODdjam0gIDIyMDA1ODkgYSA0NU0wMDAxMDA...(etc.)

</binData>
</mdWrap>

</dmdSec>

Figure 10.1 External and internal descriptive metadata in METS.

Figure 10.2 illustrates the administrative metadata and filegroup concepts, and the
linkage between the two.

46

<amdSec ID="AMD001">
<mdWrap MIMETYPE="text/xml" MDTYPE="NISOIMG" LABEL="NISO Img.

Data">
<niso:MIMEtype>image/tiff</niso:MIMEtype>
<niso:Compression>LZW</niso:Compression>
<niso:PhotometricInterpretation>8</niso:PhotometricInterpret

ation>
<niso:Orientation>1</niso:Orientation>
<niso:ScanningAgency>NYU Press</niso:ScanningAgency>

</mdWrap>
</amdSec>

<fileGrp>
<fileGrp ID="FG001">

<file ID="FILE001" ADMID="AMD001">
 <FLocat LOCTYPE="URL">http://dlib.nyu.edu/press/testimg.tif

</FLocat>
</file>
<file ID="FILE002" ADMID="AMD001">

 <FLocat LOCTYPE="URL">http://dlib.nyu.edu/press/test2.tif
</FLocat>
</file>

</fileGrp>
</fileGrp>

Figure 10.2. Administrative metadata and filegroups.

10.3 Summary

10.3.1 Strengths

The experience base behind MOA2 is significant. METS through the filegroup
mechanism, has the advantage of containing links to the content itself and not being a
metadata−only project. It enjoys the advantage of perspective and experience, but METS
appears more ambitious than the Warwick Framework, and perhaps less so than VERS.

10.3.2 Weaknesses

Perhaps the biggest weakness associated with METS is its relatively new status. It is too
soon to tell if tools will become available to support creation and management of METS
files. It is also too soon to know if METS will be embraced over similar standards.

10.3.3 Future Directions

The METS project has just begun, so there is a great deal of activity still occurring. At
the time of the writing, documents describing registries, extension schemas and tools &
utilities are promised but not yet linked. The activity can be followed at
http://www.loc.gov/standards/mets/.

47

11.0 Multivalent Documents

11.1 Overview

Multivalent documents are designed to be "anytime, anywhere, any type, every way
user−improvable digital documents and systems" (Phelps, 1998). Multivalent documents
are constructed as layers, allowing heterogeneous file types to be brought together into
one semantically connected document. Basic document operations are defined as a set of
protocols to allow functionality components, called behaviors, to act as a seamless unit
even if they have been authored independently. The idea is not to create a new document
format that incorporates all of the myriad file types, but rather to create a small core that
can associate pieces of content with different file types with one another semantically,
and that can call upon specific behaviors dynamically in order to manipulate those pieces
of content while maintaining their place within the document as a whole.

11.1.1 Developers

Multivalent documents are being developed by Thomas Phelps, Robert Wilensky, and
others in the Division of Computer Science at the University of California at Berkeley.
The first references to multivalent documents appeared in 1996 (Phelps & Wilensky,
1996) and they remain in active development (Phelps & Wilensky, 1997; Phelps &
Wilensky, 2000).

11.1.2 Motivation

Perhaps the greatest motivation behind the development of multivalent documents was
the sheer diversity of document format types that existed in the mid−1990s, and the
almost complete inability to combine those different format types into a coherent,
semantically related whole. Because of the way different systems for document
manipulation evolved over time, the user was forced to treat the various components of a
complex digital document completely independently, and had to use different software
applications in order to be able to view or edit these components.

Another problem that is an outgrowth of the document diversity problem is that both the
documents created and the systems used to create them are not easily adaptable as user
requirements for document capabilities change over time.

11.2 Analysis

The multivalent documents described here are part of the Multivalent Browser
Developers Release 1. The Multivalent Browser is currently written in Java 2.0.

48

11.2.1 Architecture

The architecture is centered around the document as the core unit. So all of the
functionality built into the system either serves to build documents or to support them in
some way.

The primary data structure for multivalent documents is the document tree. Each
document consists of a document class, which is a tree node. All document content is
also constructed from tree nodes, so that documents and their contents can be nested
inside one another. In addition, the document can contain behavior layers, implemented
as document−specific Java classes, a style sheet, and the URL for its underlying data.
The graphical user interface is implemented at the document’s top level as nodes that
implement interface features such as buttons and menus, and each document has a root
that communicates events and coordinates screen redrawing with the browser window,
which is defined to the operating system as the container for a document, its graphical
user interface, and any documents that may be nested within it.

The leaf nodes of the document tree are responsible for displaying content of some
recognized type, such as images, text strings in UNICODE format, or Java applets. While
documents in HTML or plain text might not require document−specific leaf nodes, other
kinds of documents will define their own leaf types. An example of this would be a
scanned paper image that defines a hybrid image−OCR text type.

11.2.2 API

The API, along with other developer resources, is available for download at
http://http.cs.berkeley.edu/~phelps/Multivalent/download.html.

11.2.3 System Requirements

The Multivalent Browser requires Java 2 v1.3 running under Solaris, Linux, Macintosh
OS X, or Windows.

11.2.4 Sample Operation

The screenshots below show a sample document from the UC−Berkeley Digital Library
(images are from
http://http.cs.berkeley.edu/~phelps/Multivalent/doc/berkeley/adaptor/Xdoc.html). The
document has been scanned using OCR, and then ScanSoft XDOC was used to align the
OCR text with the page images (Figure 11.1). The grey highlighted area on the page
image shows a segment of text whose OCR text can be cut and pasted into another
document. The words that are highlighted are search results.

49

Figure 11.1. Performing text−based operations on a scanned document.

Figure 11.2 shows the same page image, this time with some annotations. Note that the
REPLACE WITH annotation has actually altered the page image by creating more space
between lines for the annotation. The yellow pop−up annotation is a window that can be
moved around the screen (or closed), and it can also be annotated.

50

Figure 11.2 Annotating the scanned document.

Figure 11.3 shows some of the lenses in operation on the same page. Here, a lens shows
the OCR text that is linked to the page image, and there is also see a magnification lens.
This lens magnifies whatever appears behind it, so notice that it magnifies not only the
page image, but also the contents of the OCR scanned text lens.

51

Figure 11.3 An OCR and magnification lens on the document.

11.3 Summary

11.3.1 Strengths

Multivalent documents are well suited for use in situations where the documents lend
themselves to having multiple semantic layers. This includes scanned documents
(images + OCR text), language translations (e.g., English & French), annotations (cf.
ComMentor), and geospatial data (maps with geographic and political layers). Having
the system constructed in Java provides some platform independence, and since the
emphasis has been on building an architecture that could support and relate existing file
formats, it does not require conversion of existing documents into a new format. It is a
relatively compact system, with a small core that loads individual behaviors on demand,
so it does not incur a large amount of overhead on documents.

52

11.3.2 Weaknesses

Multivalent documents are not designed with any native security functionality (such as
terms and conditions or authentication). The researchers emphasize that since much of
the emphasis has been on creating a generalized framework that can accept modular
pieces of software to handle particular behaviors for particular objects, that security is a
place where functionality could be implemented through third party modules. The high
functionality that multivalent documents provide comes at the expense of complexity in
creation. However, there are significant developer resources and documentation
available for those who wish to use multivalent documents.

11.3.3 Future Directions

Multivalent documents and the multivalent browser are under active development. In
future versions, the researchers hope to improve the handling of distributed annotations,
incorporate new media formats (the complete specification for HTML 4.0, CSS1,
QuickTime, Flash, MP3, PDF, SVG, etc.), incorporate native XML display along with
style sheets, and provide full−text searching of all document types. The project website
is at http://http.cs.berkeley.edu/~phelps/Multivalent/.

12.0 Open eBook

12.1 Overview

The Open eBook (OEB) initiative defines a structure and terminology for the
interoperation of "electronic books". In an attempt to tame the proliferation of terms to
describe e−books, the OEB offers the following definitions (OEBPS, 2001): an OEB

document is an XML document that conforms to the OEB specification; a reader is
person that reads an OEB; a reading device is the hardware/software combination for
rendering publications; and a reading system is a hardware/software combination for
"accepting OEB documents, and directly or indirectly making them available to readers"
(potentially allowing reading systems to convert OEBs into something that a reading
device can natively understand).

12.1.1 Developers

Over 80 eBook, document, and e−commerce related companies are involved
(http://www.openebook.org/who.asp has a full list), and the main contributors include
Adobe, InterTrust and Microsoft. The initiative was first announced in 1998, with the
first specification released in 1999.

53

12.1.2 Motivation

There has been considerable speculation as to the future of the "book" in a digital
environment, and despite the publicity surrounding "electronic books", it has yet to
materialize into a profitable market (Lynch, 2001). The various companies have an
interest in defining some level of interoperability between the various encodings,
software and hardware to accelerate the development of this market.

12.2 Analysis

The OEB Publication Structure (OEBPS) is the union of a number of other web−based
technologies, including: XML, HTML, Cascading Style Sheets (CSS), JPEG, Portable
Network Graphics (PNG), Dublin Core, Unicode, MIME, etc. Key, related concepts in
the OEBPS include extensibility and fallback. Extensibility allows OEB document
creators to extend the functionality of their documents with arbitrary media types.
However, the fallback mechanism holds that anything in the OEB document that is not
XML, CSS, JPEG or PNG needs to have a fallback version of the non−supported media
type in one of the 4 supported media types (XML, CSS, JPEG, PNG). This allows an
OEB document to take advantage of advanced media types when possible, while still
allowing for interoperability through a "lowest common denominator" media type. The
fallback mechanism is analogous to the "dumb−down principle" of Dublin Core
qualifiers (DCMI, 2000).

12.2.1 Architecture

An OEB document is an XML file that conforms to the OEBPS specification. The OEB
document contains exactly one OEB package file. The package file ends in ".opf" and
has a MIME type of "text/xml". The package file contains:

� Package Identity − a URI for the OEB document.
� Metadata − Dublin Core metadata, with possible extensions.
� Manifest − a list of files (documents, images, style sheets, etc.) that comprise the OEB

document. The manifest also includes fallback declarations to handle files not
supported by OEBPS 1.0.1.

� Spine − an arrangement of items providing a linear reading order of the OEB
document.

� Tours − a set of alternate reading sequences through the OEB document. This could
include different tours for different reading purposes, reader expertise levels, etc.

� Guide − a set of references to fundamental structural features of the publication, such
as table of contents, foreword, bibliography, index, acknowledgments, etc.

12.2.2 Example Applications

Drawing from some of the examples in OEBPS (2001), Figure 12.1 shows a package file
with a unique id, Dublin Core metadata (with attributes defined by the OEBPS).

54

<package unique−identifier="xyz">
<metadata>

 <dc−metadata xmlns:dc="http://purl.org/dc/elements/1.0/"
xmlns:oebpackage="http://openebook.org/namespaces/oeb−package/1.0/">

<dc:Title>Alice in Wonderland</dc:Title>
<dc:Type>Novel</dc:Type>
<dc:Identifier id="xyz"
scheme="ISBN">123456789X</dc:Identifier>

 <dc:Creator role="aut">Lewis Carroll</dc:Creator>
</dc−metadata>

</metadata>
...

</package>

Figure 12.1. An OEB package file.

Figure 12.2 illustrates a manifest with several items, including a fall back for reading
systems that do not support MPEGs, as well as a spine.

<manifest>
<item id="toc" href="contents.html" media−type="text/x−oeb1−

document"/>
<item id="c1" href="chap1.html" media−type="text/x−oeb1−

document"/>
<item id="c2" href="chap2.html" media−type="text/x−oeb1−

document"/>
<item id="c3" href="chap3.html" media−type="text/x−oeb1−

document"/>
<item id="results" href="results.mpeg" media−type="video/mpeg"

fallback= "results−simple"/>
<item id="results−simple" href="results.jpg" media−

type="image/jpeg"/>
<item id="f1" href="fig1.jpg" media−type="image/jpeg"/>
<item id="f2" href="fig2.jpg" media−type="image/jpeg"/>
<item id="f3" href="fig3.jpg" media−type="image/jpeg"/>

</manifest>

<spine>
<itemref idref="toc"/>
<itemref idref="c1"/>
<itemref idref="c2"/>
<itemref idref="c3"/>

</spine>

Figure 12.2. An OEB manifest & spine.

Figure 12.3 includes both a list of tours appropriate for the culinary preferences of the
readers, as well as a guide listing the pertinent parts of the OEB document.

55

<tours>
<tour id="tour1" title="Chicken Recipes">

<site title="Chicken Fingers" href="appetizers.html#r3" />
<site title="Chicken a la King" href="entrees.html#r5" />

</tour>
<tour id="tour2" title="Vegan Recipes">

<site title="Hummus" href ="appetizer.html#r6" />
<site title="Lentil Casserole" href="lentils.html" />

</tour>
</tours>

<guide>
<reference type="toc" title="Table of Contents" href="toc.html" />
<reference type="loi" title="List Of Illustrations"

href="toc.html#figures" />
<reference type="other.intro" title="Introduction"

href="intro.html" />
</guide>

Figure 12.3. An OEB tour & guide.

12.3 Summary

12.3.1 Strengths

The low level of base interoperability is a significant advantage and the Dublin Core−like
"fallback" rules are a good method of maintaining interoperability while allowing
extended OEB documents. The composite technologies of OEB are solid and being
driven by other communities. The OEB Forum promises backward compatibility
between OEBPS versions.

12.3.2 Weaknesses

The OEB Publication Structure 1.0.1 currently does not address digital rights
management, though this on the agenda and could be addressed in version 2.0. However,
it remains to be seen how rights management and other social expectations for electronic
books (Lynch, 2001) impact the OEB.

12.3.3 Future Directions

The OEB Forum has many significant commercial partners. The OEB Publication
structure 1.0.1 came out in 2001, and a 2.0 version is currently being developed. The
status can be monitored at http://www.openebook.org/.

56

13.0 VERS Encapsulated Objects

13.1 Overview

The Victorian Electronic Records Strategy (VERS) is a project developed to ensure a
long−term preservation to the electronic records produced by the government agencies of
the state of Victoria in Australia (Waugh et al., 2000). VERS is focused on the
construction of a system able to capture records from common desktop applications and
to convert them into a preservation format that ensures a long−term access and
readability. Following a background investigation (1995−6) and a prototype
implementation (1998), it is now in its third stage (1999−2001), which focuses on the
implementation of the system on every desktop within the Victoria Government
Department of Infrastructure and on testing the economic feasibility (Heazelewood, et
al., 1999).

13.1.1 Developers

VERS was funded by Victorian State Government (Australia) where it is currently tested.
It is sponsored and run by the Public Record Office Victoria (PROV), the state’s archival
authority that publishes standards for the management of public records, in conjunction
with the Australian Commonwealth Scientific and Industrial Research Organization
(CSIRO), and Ernst & Young.

13.1.2 Motivation

As a result of unsuccessful investigations on available systems for permanent
preservation, the VERS project was intended to find a solution for preserving electronic
government records produced by Victorian government agencies for the indefinite future.

13.2 Analysis

Among several possible approaches to digital preservation, VERS adopted the
encapsulation strategy because it was considered the most technically appropriate to
address the preservation needs of a government organization. Such an organization
requires the information that is preserved also be continually used and updated with
further inclusions.

Preservation by encapsulation consists on wrapping the information to be preserved
within a human readable wrapper that contains information. This information is metadata
that provides documentation about the preserved information and enables them to be
identified and decoded in future. The metadata describes also the format of the
encapsulation itself. This means that the preserved record is self−documented and self−
sufficient, non depending on systems, data or documentation.

57

13.2.1 Architecture

The basic element of the VERS architecture is the VERS Encapsulated Object (VEO).
VEO is the result of the conversion of document and metadata into a unit meant to be
visible indefinitely. VEO can contain any type of object including images and
audio/video files. The VEOs have a common record structure to allow a common
management of all types of records.

The structure of a VERS Encapsulated Object is composed of four layers: VEO Object,

Content, Document, and Encoding (Figure 13.1). It is called an Onion model in which
the information contained in the record maintains its integrity without dispersion across
systems. Each layer contains metadata with descriptive information about the specific
layer. Metadata and content embedded in each VEO, instead of in different databases,
makes the VEO self−sufficient. The VERS record also includes authentication
information and digital signature technology that validates the object (Figure 13.2).

Changes to the record may be made, without interfering with the status of the record, by
wrapping a new layer of encoding around the existing VEO. This process, called the
Onion record approach, allows storing the record’s history within the record itself and
preserves its integrity.

Figure 13.1. VEO structure (from http://www.prov.vic.gov.au/vers/standard/99−7−
1s5.htm).

58

The VERS Final Report proposes the VERS Demonstrator System, a prototype of an
electronic archive system within Victorian government agencies. This implementation is
considered only a demonstrative architectural solution. The VERS Demonstrator System
consists of three major components: Record capture for capturing records and converting
then into a long−term format, Repository for managing the archival functions, and
Record Discovery for searching and displaying archived records. These three components
can be modeled in different ways. The archiving process can be synthesized through the
following phases: records are captured from a range of diverse applications and in a
variety of formats. A record encapsulation module converts records and their associated
metadata into the long life electronic record format. The records are locked to avoid
undetectable modifications and passed to the Repository that stores the archived record.
Upon registering new records, the Repository sends a copy of the record to the Discovery

system where it is indexed and cached. The Discovery system provides the interface for
locating and retrieving the records.

Figure 13.2. Generic VERS record (from http://www.prov.vic.gov.au/vers/standard/99−
7−1s5.htm).

13.2.2 System Requirements

Extensible Markup Language (XML) is the long−term format recommended within the
VERS project for encoding metadata wrapped around the record content. XML is
preferred to a binary data format because XML does not depend upon the program that
interprets the binary data to extract the content. The project has defined Standard
encodings of three types of documents: documents, database tables, and records and has
developed an XML DTD. For encoding the record content, VERS recommends the use
of Adobe Portable Document Format (PDF) as the best, widely published, long−term
format currently available.

59

13.3 Summary

13.3.1 Strengths

Instead of being only theoretical, as most work on digital preservation, VERS adopts a
practical approach aimed to build actual systems where to test and implement its
technology. The strategy proposed by VERS is developed from experimentation. The
approach is basically data−driven in order to maintain independence from system
constraints.

13.3.2 Weaknesses

At present it is still not clear how to best deal with objects more complex than flat files.
Possible options are to "flatten" the objects and make them simple or to choose a data
format that supports complex object and linking. VERS is proclaimed as the "100 year
experiment" (Francis et al., 1998). It will be a number of years before the effectiveness
of the preservation proposed by VERS be tested.

13.3.3 Future Directions

Australian government continues to fund the VERS project for an implementation at the
Department of Infrastructure. It is under way the expansion of VERS to other Australian
agencies with the inclusion of elements of VERS within their new systems. The project
web page is at http://www.prov.vic.gov.au/vers/.

14.0 Warwick Framework

14.1 Overview

Diverse communities of users and stakeholders create and maintain metadata schemas for
addressing different applications, domains, and functional needs. Different metadata
models are related in many ways, with various levels of interaction, often overlapping
and competing. The Warwick Framework (WF) offers a conceptual foundation for a
high−level infrastructure for aggregation and exchange of metadata from multiple
schemas associated with a common resource (Lagoze, Lynch & Daniel, 1996; Lagoze,
1996).

14.1.1 Developers

Among the many present at the initial workshop, the core developers of the WF concept
were Carl Lagoze (Cornell University), Ron Daniel Jr. (Los Alamos National
Laboratory) and Clifford Lynch (University of California − Office of the President).

60

14.1.2 Motivation

During the 2nd Dublin Core Metadata Workshop, held at Warwick University in April
1996 (Dempsey & Weibel, 1996), the representatives of several groups of metadata
developers expressed the need for an integration of metadata from different schemas into
a common information architecture, able to ensure interoperability among metadata of
different types. The meeting also addressed the need to insure compatibility with further
developments and extensions of the metadata schemas, and attempted to build on the
success of the first meeting, which produced Dublin Core (Weibel, 1995). Consensus was
reached on the idea of a container architecture for interchanging multiple metadata
packages. The Warwick Framework was the first practical approach that provides the
effective integration of metadata into a comprehensive information infrastructure.

14.2 Analysis & Architecture

The Warwick Framework is founded on a container−package approach where discrete
packages of metadata can be aggregated by users or software agents in conceptual
containers. The architecture of the Warwick Framework is essentially based on two main
components: the container and the metadata package (Figure 14.1). A container is
responsible for shipping metadata among repositories, clients, and agents. The container
can be considered a first−class object and can be managed as any other resource, stored
in servers and accessed using a URI.

The package contains actual metadata sets such as Dublin Core records, MARC records,
encoded terms and conditions, etc. The metadata package can be physically included in
the container, but can also be logically contained and accessed by references such as
URLs. A container itself may be a package and can be embedded in another container.
Both package and container have identifiers for cross−reference one another.

Figure 14.1 A simple Warwick Framework container (from Daniel & Lagoze (1997a)).

61

As a result of further research following the first phase of definition of the model, the
Warwick Framework was extended to address issues concerning the relationships
between the packages. Upon access a container of related packages, there was not an
explicit understanding of the relationships between the data types of the packages. A
mechanism called Warwick Framework Catalog (WFC) was defined in order to express
these relationships. The WFC is a method for naming relationships between metadata
packages and defining the semantics. WFC provides a list of simple names identifying
the relationships. The names might be listed in a Registry or be simply URIs. This
abstraction makes the relationships be considered first−class object, so that they can be
retrieved and executed. A mechanism called Distributed Active Relationships (DAR)
provides a method for explicitly expressing the relationships and allow them to be
dynamically downloaded and executed. Through these abstractions, the Warwick
Framework becomes a more general architecture and the container can be considered
itself a framework for aggregating distinct datasets.

14.3 Summary

14.3.1 Strengths

The Warwick Framework’s distributed architecture insures interoperability across
resources and consistency in the aggregation and exchange of metadata. Its modular
design supports the extensibility of the metadata, without overlapping and redundancy.
The simplicity of the design enables the Warwick Framework to be expressed in the
context of the current Web infrastructure. Some possible implementations proposed
include MIME, SGML, CORBA, and HTML. MIME, in particular, seems to be suitable
for implementing the framework since it is already a well−established protocol for
transmitting and storing multiple object documents on the Internet and may support the
container−package functionality.

14.3.2 Weaknesses

The primary shortcoming of the Warwick Framework could be considered its focus only
on metadata, and not data itself. This was addressed as the Warwick Framework evolved
into FEDORA.

14.3.3 Future Directions

Although a MIME−based implementation was prototyped (Knight & Hamilton, 1996),
the Warwick Framework was never actually implemented. A combination of new
technologies (e.g., XML) and the evolution of new projects caused the Warwick
Framework to be overcome by events. However, the models served as a foundation for
subsequent information system projects that incorporated some of its concepts and
components. FEDORA generalized the containers to include data and services, and the
Resource Description Framework (RDF) for integrating disparate metadata descriptions
was greatly influenced by the design of the Warwick Framework (Daniel & Lagoze,
1997a; Miller, 1998).

62

15.0 Conclusions

We have introduced a number of technologies that address the need for complex objects
in web−based DLs. It is important to note that the various projects were designed to
address a number of different requirements, including aggregation of metadata, content
& services, e−commerce and security, annotation & collaboration, and digital
preservation. While we did not evaluate the technologies against the requirements of a
specific deployment profile, we hope that we have provided enough information to allow
the readers to judge applicability to their specific scenarios (Table 15.1).

While we have tried to focus on current technologies, we theoretical and historical
projects that had significant influence on other current projects. While we have strived to
be accurate and fair, we accept responsibility for any errors or inaccuracies that may be
present. We welcome comments and corrections about these and other complex object
technologies.

Acknowledgments

The majority of this work was performed while the first author was visiting at the School
of Information and Library Science, University of North Carolina at Chapel Hill. We
thank Cristophe Blanchi (CNRI) for his comments on FEDORA and RAP.

63

Technology Approximate

Active Dates

Creators &

Collaborators

Focus Synopsis

Aurora 1997−1999 University of Crete Aggregation CORBA / Java
based aggregation
of content and
services

Buckets 1997 − present NASA LaRC & Old
Dominion University

Aggregation Independent,
mobile Perl data
objects

ComMentor 1994−1995 Stanford University Annotation Modified http
server and client
records, presents
annotations

Cryptolopes 1995 − present IBM e−commerce Superdistribution
with opaque data
objects

Digibox 1995 − present Electronic Publishing
Resources &
InterTrust

e−commerce Superdistribution
with enhanced
PDFs, MPEGs, etc.

DMA 1997 − present Association for
Information & Image
Management

Document
management
systems

Middleware for
interoperability
between DM
systems

FEDORA 1997 − present Cornell University,
Los Alamos National
Laboratory,
University of Virginia

Aggregation CORBA based
aggregation of
content and services

Kahn−Wilensky
Framework

1995 CNRI & University of
California − Berkeley

Distributed digital
object definitions

An unimplemented
framework that
influenced the
design of many DL
projects

METS 2001 − present Library of Congress,
Digital Library
Federation

Metadata
aggregation

XML schema for
aggregating
descriptive,
administrative and
structural metadata

Multivalent
Documents

1996 − present University of
California − Berkeley

Annotation &
collaboration

Java based tools for
reading MVD files.

Open eBooks 1998 − present Open eBook Forum Electronic books XML structure
interoperability and
extensibility in e−
books

VEOs 1995 − present Victorian State
Government
(Australia)

Digital preservation XML files
encapsulating
metadata, data and
formatting rules.

Warwick
Framework

1996 − 1997 Cornell University &
Los Alamos National
Laboratory

Metadata
aggregation

Framework that
influenced
FEDORA and RDF

Table 15.1. Summary of findings.

64

References

Arms, W. Y. (1995). Key Concepts in the Architecture of the Digital Library. D−Lib
Magazine, 1(1). Available at: http://www.dlib.org/dlib/July95/07arms.html

Arms, W. Y., Blanchi, C. & Overly, E. A. (1997). An Architecture for Information in
Digital Libraries. D−Lib Magazine, 3(2). Available at:
http://www.dlib.org/dlib/february97/cnri/02arms1.html

Bowman, C. M., Dharap, C., Baruah, M., Camargo, B. & Potti, S. (1994). A File
System for Information Management. Proceedings of the Conference on
Intelligent Information Management Systems. Available at:
http://citeseer.nj.nec.com/bowman94file.html

Bowman, M. & Camargo, B. (1998). Digital Libraries: The Next Generation in File
System Technology. D−Lib Magazine, 4(2). Available at:
http://www.dlib.org/dlib/february98/bowman/02bowman.html

Browne, S., Dongarra, J., Grosse, E. & Rowan, T. (1995). The Netlib Mathematical
Software Repository. D−Lib Magazine, 1(3). Available at:
http://www.dlib.org/dlib/september95/netlib/09browne.html

CCSDS (2001). Reference Model for an Open Archival Information System (OAIS).
Available at: http://www.ccsds.org/documents/pdf/CCSDS−650.0−R−2.pdf

Daniel, R. Jr., & Lagoze, C. (1997a). Extending the Warwick Framework From
Metadata Containers to Active Digital Objects. D−Lib Magazine, 3(11).
Available at: http://www.dlib.org/dlib/november97/daniel/11daniel.html

Daniel, R. Jr. & Lagoze, C. (1997b). Distributed Active Relationships in the Warwick
Framework. Proceedings of the Second IEEE Metadata Workshop. Available at:
http://computer.org/conferen/proceed/meta97/papers/rdaniel/rdaniel.pdf

Daniel, R. Jr., Lagoze, C., & Payette, S. (1998). A Metadata Architecture for Digital
Libraries. Proceedings of the IEEE Advances in Digital Libraries (pp. 276−288).
Available at: http://www.cs.cornell.edu/lagoze/papers/ADL98/dar−adl.html

Day, N. & Martinez, J. M. (2001). Introduction to MPEG−7 (v3.0). Available at:
http://www.darmstadt.gmd.de/mobile/MPEG7/Documents/W4325%20M7%20Int
ro.htm

Davis, J. R. & Lagoze, C. (2000). NCSTRL: Design and Deployment of a Globally
Distributed Digital Library. Journal of the American Society for Information
Science, 51(3), 273−280.

65

DCMI. (2000). Dublin Core Qualifiers. Available at:
http://www.dublincore.org/documents/dcmes−qualifiers/

Dempsey, L. & Weibel, S. L. (1996). The Warwick Metadata Workshop: A Framework
for the Deployment of Resource Description. D−Lib Magazine, 2(7). Available
at: http://www.dlib.org/dlib/july96/07weibel.html

DMA Technical Committee. (2001). DMA 1.0 Specification. Available at:
http://www.infonuovo.com/dma/dma1.0−7/

Digital Object Store. (2001). Available at:
http://www.cnri.reston.va.us/digital_object_store.html

Erickson, J. S. (2001a). Information Objects and Rights Management: A Mediation−
based Approach to DRM Interoperability. D−Lib Magazine, 7(4). Available at::
http://www.dlib.org/dlib/april01/erickson/04erickson.html

Erickson, J. S. (2001b). A Digital Object Approach to Interoperable Rights
Management: Fine−grained Policy Enforcement Enabled by a Digital Object
Infrastructure. D−Lib Magazine, 7(6). Available at::
http://www.dlib.org/dlib/june01/erickson/06erickson.html

Folk, M. (1998). HDF as an Archive Format: Issues and Recommendations. Available
at: http://hdf.ncsa.uiuc.edu/archive/hdfasarchivefmt.htm

Francis, R., Gibbs, R., Harari, L., Heazlewood, J., Hills, B., Leask, N., Sefton, A.,
Waugh, A. & Wilkinson, R. (1998). Electronic Archiving a 100 Year
Experiment. Proceedings of the Third Document Computing Symposium.
Available at: http://www.prov.vic.gov.au/vers/adcs98.pdf

Gifford, D. K., Jouvelot, P., Sheldon, M. A. & O’Toole, J. W. Jr. (1991). Semantic File
Systems. Proceedings of the 13th ACM Symposium on Operating Systems
Principles. Available at:
http://www.psrg.lcs.mit.edu/publications/Papers/sfsabs.htm

Ginsparg, P. (1994). First Steps Towards Electronic Research Communication.
Computers in Physics, 8, 390−396. Available at:
http://arXiv.org/blurb/blurb.ps.gz

Gladney, H. M. (1997). Safeguarding Digital Library Contents and Users Document
Access Control. D−Lib Magazine, 3(6). Available at:
http://www.dlib.org/dlib/june97/ibm/06gladney.html

Gladney, H. M. & Mintzer, F. & Schiattarella, F. (1997). Safeguarding Digital Library
Contents and Users Digital Images of Treasured Antiquities. D−Lib Magazine,
3(7/8). Available at: http://www.dlib.org/dlib/july97/vatican/07gladney.html

66

Gladney, H. M. & Lotspiech, J. B. (1997). Safeguarding Digital Library Contents and
Users: Assuring Convenient Security and Data Quality. D−Lib Magazine, 3(5).
Available at: http://www.dlib.org/dlib/may97/ibm/05gladney.html

Gladney, H. M. (1998). Safeguarding Digital Library Contents and Users Interim
Retrospect and Prospects. D−Lib Magazine, 4(7). Available at:
http://www.dlib.org/dlib/july98/gladney/07gladney.html

Gladney, H. M. & Lotspiech, J. B. (1998). Safeguarding Digital Library Contents and
Users Storing, Sending, Showing, and Honoring Usage Terms and Conditions.
D−Lib Magazine, 4(5). Available at:
http://www.dlib.org/dlib/may98/gladney/05gladney.html

Grimshaw, A. S. & Loyot, E. C., Jr. (1991). ELFS: Object−Oriented Extensible File
Systems. UVA CS TR CS−91−14. Available at:
ftp://ftp.cs.virginia.edu/pub/techreports/CS−91−14.ps.Z

Haines, M., Mehrotra, P. & Van Rosendale, J. (1995). SmartFiles: An OO Approach to
Data File Interoperability. Proceedings of the 1995 Conference On Object−
Oriented Programming, Systems, Languages and Applications (pp. 453−466).
(Also available as: NASA CR−198187 and ICASE Report No. 95−56).
Available at: ftp://ftp.icase.edu/pub/techreports/95/95−56.pdf

Heazlewood, J., Dell Oro, J., Harari, L., Hills, B., Leask, N., Sefton, A., Waugh, A. &
Wilkinson, R. (1999). Electronic Records: Problem Solved? A Report on the
Public Record Office Victoria’s Electronic Records Strategy. Archives and
Manuscripts: The Journal of the Australian Society of Archivists, 27(1).
Available at: http://www.prov.vic.gov.au/vers/am.pdf

Herzberg, A. (1998). Safeguarding Digital Library Contents: Charging for Online
Content. D−Lib Magazine, 4(1). Available at:
http://www.dlib.org/dlib/january98/ibm/01herzberg.html

Ibrahim, R. (1998). Component−Based Systems: A Formal Approach. Proceedings of
the Component Oriented Software Engineering (COSE’98) Workshop. Available
at: http://www.fit.qut.edu.au/~ibrahim/cosez.ps.Z

Kahn, R. E. & Lyons, P. A. (2001). Representing Value as Digital Objects: A
Discussion of Transferability and Anonymity. D−Lib Magazine, 7(5). Available
at:: http://www.dlib.org/dlib/may01/kahn/05kahn.html

Kahn, R. & Wilensky, R. (1995) A Framework for Distributed Digital Object Services.
cnri.dlib/tn95−01. Available at: http://www.cnri.reston.va.us/home/cstr/arch/k−
w.html.

67

Kang, B. & Wilensky, R. (2001). Toward a Model of Self−Administering Data.
Proceedings of the First ACM/IEEE Joint Conference on Digital Libraries (pp.
322−330). Available at::
http://www.cs.berkeley.edu/~hoon/published/jcdl2001.pdf

Karpovich, J. F., French, J. C. & Grimshaw, A. S. (1994). High Performance Access to
Radio Astronomy Data: A Case Study. UVA CS TR CS−94−25. Available at:
ftp://ftp.cs.virginia.edu/pub/techreports/CS−94−25.ps.Z

Karpovich, J. F., Grimshaw, A. S. & French, J. C. (1994). Extensible File Systems
(ELFS): An Object−Oriented Approach to High Performance File I/O.
Proceedings of the Ninth Annual Conference on Object−Oriented Programming
Systems, Languages and Applications (pp. 191−204). (Also available as UVA
CS Technical Report CS−94−28; ftp://ftp.cs.virginia.edu/pub/techreports/CS−94−
28.ps.Z)

Knight, J. & Hamilton, M. (1996). MIME Implementation for the Warwick
Framework. Available at: http://www.roads.lut.ac.uk/MIME−WF.html

Kohl, U., Lotspiech, J. & Kaplan, M. A. (1997). Safeguarding Digital Library Contents
and Users. D−Lib Magazine, 3(9). Available at:
http://www.dlib.org/dlib/septemeber97/ibm/lotspiech.html

Lagoze, C. & Ely, D. (1995). Implementation Issues in an Open Architectural
Framework for Digital Object Services. Cornell University Computer Science
Technical Report TR95−1540. Available at:
http://ncstrl.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell/TR95−1540.

Lagoze, C., McGrath, R., Overly, E. & Yeager, N. (1995). A Design for Inter−
Operable Secure Object Stores (ISOS). Cornell University Computer Science
Technical Report TR95−1558. Available at: http://cs−
tr.cs.cornell.edu/Dienst/UI/2.0/Describe/ncstrl.cornell/TR95−1558

Lagoze, C. (1996). The Warwick Framework: A Container Architecture for Diverse
Sets of Metadata. D−Lib Magazine, 2(7). Available at:
http://www.dlib.org/dlib/july96/lagoze/07lagoze.html

Lagoze, C., Lynch C. A., & Daniel, R. Jr. (1996). The Warwick Framework: A
Container Architecture for Aggregating Sets of Metadata. Cornell University
Computer Science Technical Report TR96−1593. Available at:
http://ncstrl.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell/TR96−1593

Lawrence, S., Giles, C. L. & Bollacker, K. (1999). Digital Libraries and Autonomous
Citation Indexing. IEEE Computer, 32(6), 67−71. Available at:
http://www.neci.nj.nec.com/homepages/lawrence/papers/aci−computer98/aci−
computer99.html

68

Lynch, C. (2001). The Battle to Define the Future of the Book in the Digital World.
First Monday, 6(6). Available at:
http://www.firstmonday.dk/issues/issue6_6/lynch/

McDonough, J., Myrick, L. & Stedfeld, E. (2001). Report on the Making of America II
DTD Digital Library Federation Workshop. Available at:
http://www.diglib.org/standards/metssum.pdf

Maly, K., Nelson, M. L., & Zubair, M. (1999). Smart Objects, Dumb Archives: A User−
Centric, Layered Digital Library Framework. D−Lib Magazine, 5(3). Available
at: http://www.dlib.org/dlib/march99/maly/03maly.html

Marazakis, M., Papadakis, D. & Nikolaou, C. (1997). Developing Network−Centric
Applications by Dynamic Composition of Components. Institute of Computer
Science, FORTH Technical Report 213. Available at:
http://www.ics.forth.gr/pleiades/projects/Aurora/publications/auroraTR.ps.gz

Marazakis, M., Papadakis, D. & Papadakis, S. A. (1998). A Framework for the
Encapsulation of Value−Added Services in Digital Objects. Proceedings of the
Second European Conference on Research and Advanced Technology for Digital
Libraries − ECDL ’98 (pp. 75−94) Available at:
http://www.ics.forth.gr/pleiades/projects/Aurora/publications/ecdl98−final.ps.gz

Miller, E. (1998). An Introduction to the Resource Description Framework. D−Lib
Magazine, 4(5). Available at:
http://www.dlib.org/dlib/may98/miller/05miller.html

Mori, R. & Kawahara, M. (1990). Superdistribution: The Concept and the Architecture.
Transactions of the IEICE, E73(7). Available at:
http://www.virtualschool.edu/mon/ElectronicProperty/MoriSuperdist.html

Nelson, M. L., Maly, K. & Shen, S. (1997). Buckets, Clusters and Dienst. NASA TM−
112877. Available at:
ftp://techreports.larc.nasa.gov/pub/techreports/larc/1997/tm/NASA−97−
tm112877.ps.Z

Nelson, M. L. (2000). Buckets: Smart Objects for Digital Libraries. PhD Dissertation,
Computer Science Department, Old Dominion University. Available at:
http://mln.larc.nasa.gov/~mln/phd/

Nelson, M. L. & Maly, K. (2001). Smart Objects and Open Archives. D−Lib
Magazine, 7(2). Available at:
http://www.dlib.org/dlib/february01/nelson/02nelson.html

69

Nikolaou, C., Marazakis, M., Papadakis, D., Yeorgiannakis, Y. & Sairamesh, J. (1997).
Towards a Common Infrastructure for Large−scale Distributed Applications.
Proceedings of the 1st European Conference on Digital Libraries (pp. 173−193).
Available at:
http://www.ics.forth.gr/pleiades/projects/Aurora/publications/euroDL97.ps.gz

OEPS. (2001). Open eBook Publication Structure 1.0.1. Available at:
http://www.openebook.org/oebps/oebps1.0.1/download/

Payette, S. & Lagoze, C. (1998). Flexible and Extensible Digital Object and Repository
Architecture (FEDORA). Proceedings of the Second European Conference on
Research and Advanced Technology for Digital Libraries − ECDL ’98 (pp. 41−
60). Available at:
http://www.cs.cornell.edu/payette/papers/ECDL98/FEDORA.html

Payette, S., Blanchi, C., Lagoze, C. & Overly, E. A. (1999). Interoperability for Digital
Objects and Repositories: The Cornell/CNRI Experiments. D−Lib Magazine,
5(5). Available at: http://www.dlib.org/dlib/may99/payette/05payette.html

Payette, S. & Lagoze, C. (2000a). Policy−Carrying, Policy−Enforcing Digital Objects.
Proceedings of the Fourth European Conference on Research and Advanced
Technology for Digital Libraries − ECDL 2000 (pp. 144−157). Available at:
http://www.cs.cornell.edu/payette/papers/ECDL2000/pcpe−draft.ps

Payette, S. & Lagoze, C. (2000b). Value−Added Surrogates for Distributed Content
Establishing a Virtual Control Zone. D−Lib Magazine, 6(6). Available at:
http://www.dlib.org/dlib/june00/payette/06payette.html

Phelps, T. A. (1998). Multivalent Documents: Anytime, Anywhere, Any Type, Every
Way User−Improvable Digital Documents and Systems. PhD Dissertation,
Computer Science Division, University of California − Berkeley. Available at:
http://www.cs.berkeley.edu/~phelps/papers/dissertation−abstract.html

Phelps, T. A. & Wilensky, R. (1996). Multivalent Documents: Inducing Structure and
Behaviors in Online Digital Documents. Proceedings of the First ACM
International Conference on Digital Libraries (pp. 100−108). Available at:
http://www.cs.berkeley.edu/~phelps/papers/dl96−abstract.html

Phelps, T. A. & Wilensky, R. (1997). Multivalent Annotations. Proceedings of the First
European Conference on Research and Advanced Technology for Digital
Libraries − ECDL ’97, (pp. 287 − 303). Available at:
http://www.cs.berkeley.edu/~phelps/papers/edl97−abstract.html

Phelps, T. A. & Wilensky, R. (2000). Multivalent documents. Communications of the
ACM, 43(6), 83−90. Available at:
http://www.acm.org/pubs/citations/journals/cacm/2000−43−6/p82−phelps/

70

Ramanujapuram, A. & Prasad, R. (1998). Digital Content and Intellectual Property
Rights. Dr. Dobbs Journal, 292, 20−27.

Roscheisen, M., Mogensen, C. & Winograd, T. (1997). Shared Web Annotations as a
Platform for Third−Party Value−Added, Information Providers: Architecture,
Protocols, and Usage Examples. Stanford University Technical Report CS−TR−
97−1582. Available at:
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/97/1582/CS−TR−97−1582.pdf

Roscheisen, M., Winograd, T. & Paepcke, A. (1997). Content Ratings, and Other
Third−Party Value−Added Information: Defining an Enabling Platform. Stanford
University Technical Report CS−TN−97−40. Available at:
ftp://reports.stanford.edu/pub/cstr/reports/cs/tn/97/40/CS−TN−97−40.pdf

Shklar, L., Makower, D., Maloney, E. & Gurevich (1998). An Application
Development Framework for the Virtual Web. Proceedings of the Fourth
International Conference on Information Systems, Analysis, and Synthesis,
Orlando, FL. Available at: http://www.cs.rutgers.edu/~shklar/isas98/

Sibert, O., Bernstein, D. & Van Wie, D. (1995). DigiBox: A Self−Protecting Container
for Information Commerce. Proceedings of the First USENIX Workshop on
Electronic Commerce, New York, NY. Available at:
http://www.usenix.org/publications/library/proceedings/ec95/sibert.html

Sibert, O., Horning, J. & Owicki S. (1997). A Massively Distributed Trusted System.
Work−in−Progress Session 16th ACM Symposium on Operating System
Principles. Available at: http://www.star−lab.com/talks/massively−
distributed.html

SMIL (2001). Synchronized Multimedia Integration Language (SMIL 2.0). W3C
Recommendation. Available at: http://www.w3.org/TR/smil20/

Staples, T. & Wayland, R. (2000). Virginia Dons FEDORA: A Prototype for a Digital
Object Repository, D−Lib Magazine, 6(7/8), Available at:
http://www.dlib.org/dlib/july00/staples/07staples.html

Unidata NetCDF (2001). Unidata NetCDF. Available at:
http://www.unidata.ucar.edu/packages/netcdf/

Van Heyningen, M. (1994). The Unified Computer Science Technical Report Index:
Lessons in Indexing Diverse Resources. Proceedings of the Second International
World Wide Web Conference (pp. 535 − 543). Available at:
http://archive.ncsa.uiuc.edu/SDG/IT94/Proceedings/Day/vanheyningen/paper.htm
l

71

Waugh, A., Wilkinson, R., Hills, B., & Dollar, J. (2000). Preserving Digital Information
Forever. Proceedings of the Fifth ACM Conference on Digital Libraries (pp.
175−184). Available at:
http://www.acm.org/pubs/contents/proceedings/dl/336597/

Weibel, S. (1995). Metadata: The Foundations of Resource Description. D−Lib
Magazine, 1(1). Available at: http://www.dlib.org/dlib/July95/07weibel.html

Zand, M., Collins, V. & Caviness, D. (1995). A Survey of Current Object−Oriented
Databases. DATA BASE 26(1), 14−29.

72

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 2001
3. REPORT TYPE AND DATES COVERED

Technical Memorandum

4. TITLE AND SUBTITLE

A Survey of Complex Object Technologies for Digital Libraries
5. FUNDING NUMBERS

6. AUTHOR(S)

Michael L. Nelson, Brad Argue, Miles Efron, Sheila Denn, and Maria
Cristina Pattuelli

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

 L-18146

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/TM-2001-211426

11. SUPPLEMENTARY NOTES

Nelson: Langley Research Center, Hampton, VA; Argue, Efron, Denn, and Pattuelli: University of North
Carolina, Chapel Hill, NC.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 82 Distribution: Standard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Many early web-based digital libraries (DLs) had implicit assumptions reflected in their architecture that the unit
of focus in the DL (frequently "reports" or "e-prints") would only be manifested in a single, or at most a few,
common file formats such as PDF or PostScript. DLs have now matured to the point where their contents are
commonly no longer simple files. Complex objects in DLs have emerged from in response to various
requirements, including: simple aggregation of formats and supporting files, bundling additional information to
aid digital preservation, creating opaque digital objects for e-commerce applications, and the incorporation of
dynamic services with the traditional data files. We examine a representative (but not necessarily exhaustive)
number of current and recent historical web-based complex object technologies and projects that are applicable
to DLs: Aurora, Buckets, ComMentor, Cryptolopes, Digibox, Document Management Alliance, FEDORA,
Kahn-Wilensky Framework Digital Objects, Metadata Encoding & Transmission Standard, Multivalent
Documents, Open eBooks, VERS Encapsulated Objects, and the Warwick Framework.

14. SUBJECT TERMS

Digital Libraries, Digital Objects, Complex Objects
15. NUMBER OF PAGES

77

 16. PRICE CODE

A05
17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT

Unclassified

20. LIMITATION
 OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z-39-18
298-102

