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ABSTRACT
The portfolio optimization problem has become a standard
financial engineering problem since the pioneering work of
Markowitz on Modern Portfolio Theory. It aims to find an
optimal allocation of capital among a set of assets by simul-
taneously minimizing the risk and maximizing the return of
the investment. In the theoretical case of linear constraints,
this problem is basically solved by quadratic programming.
However, real-life financial market imposes some nonlinear
constraints such as cardinality constraints, which limit the
number of assets held in the portfolio, minimum transaction
lots constraints, which require holding discrete units in as-
sets, multiples of minimum lots, e.g., 100 or 200 shares, or
transaction costs, which tend to eliminate small holdings. If
we take into account these constraints, our problem becomes
computationally intractable in theoretical sense, e.g., NP-
hard. GA, genetic algorithm, is a collective term describing
family of stochastic algorithms based on the natural selec-
tion principle – survival of the fittest, and is widely adopted
in many fields. In fact, many empirical studies have reported
that GA can find good approximate solutions for NP-hard
problems. Already various GA-based approaches have been
proposed to solve portfolio optimization problems. We sur-
vey more than 10 state-of-the-art approaches on the topic,
categorize them, compare their computational results and
provide brief descriptions of the techniques involved. The
aim of this paper is to provide a good guide to the applica-
tion of GA to portfolio optimization.

Keywords
Genetic algorithms, Portfolio optimization

1. INTRODUCTION
The portfolio optimization problem, POP for short, aims to
find an optimal allocation of financial capital among a set of
available assets. Markowitz [35], the creator ofModern Port-
folio Theory, was the first one who proposed a model based
on the trade-o↵ between the risk and the expected return
for choosing the optimal portfolio via the Mean-Variance,
M-V, framework. This model wherein investors tend si-
multaneously to maximize the mean of asset returns and
to minimize the variance, as a measure of risk, is now quite
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widespread in modern finance. Without taking into account
some constraints that can occur in real-life financial mar-
ket, the M-V model is solved by quadratic programming.
The frameworks proposed after attempt essentially to find
an adequate measure of risk. Actually, the financial risk is a
subjective notion, several investors assess the risk in several
manners. One way to quantify the risk is to measure the
uncertainty of the underlying portfolio’s assets. The uncer-
tainty of an asset can be related on how much the returns
deviate from the mean in a symmetric way, i.e., without dis-
tinction between above and below deviations, as the variance
or the standard deviation in the M-V model. Konno [24] pro-
posed another dispersion-based risk, the absolute deviation.
Using Mean-Absolute Deviation model, MAD for short, the
portfolio allocation problem becomes a linear programming
problem, the computation is thus simplified and can han-
dle large-scale portfolios. Konno and Yamazaki [26] showed
that MAD generates an optimal portfolio altogether similar
to the one based on Markowitz model. They based their
empirical experiments on historical data of 224 stocks of the
Nikkei 255 index. The risk can be also quantified, accord-
ing to the conventional perception of investors, as the likeli-
hood of losing parts of the investment’s worth or its entirety.
This risk is referred as a downside risk. A downside risk is
an asymmetric measure that calculates the probability that
the portfolio’s return is above a certain level by estimating
the maximum lost amount of the investment. Nowadays,
the downside risks are very popular among portfolio invest-
ment institutions, specially the Value-at-Risk, VaR. Never-
theless, the first downside risk incorporated into the POP is
the semivariance, proposed by Markowitz himself [37] as a
correction of the variance in downside risk. Yet, the Mean-
semivariance is still similar to the M-V model, apart from
the fact that the return fluctuations above the mean are dis-
missed.

The original Markowitz portfolio optimization problem is
solved using a convex quadratic programming procedure.
However, real-life financial market imposes some nonlinear
constraints such as cardinality constraints, which limit the
number of assets held in the portfolio, minimum transaction
lots constraints, which require holding discrete units in as-
sets, multiples of minimum lots, e.g., 100 or 200 shares, or
transaction costs, which tend to eliminate small holding. If
we take into account these constraints, the POP becomes
computationally intractable in theoretical sense, e.g., NP-
hard.

Since the portfolio optimization problem may be computa-
tionally time consuming, heuristic searches are more suitable
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solving tools. The current paper focuses exclusively on Ge-
netic Algorithms, GAs, as an optimization tool. Initially
conceived by Holland [23], GAs have been remarkably and
widely adopted, in the recent years, to solve optimization
problems in various domains [38], in particular those com-
putationally intractable in theoretical sense. In fact, many
empirical studies have reported that GAs can find good ap-
proximate solutions for NP-hard optimization problems. A
new field has emerged known as Evolutionary optimization.
GA is, in fact, a collective term describing family of stochas-
tic heuristic algorithms based on the natural selection prin-
ciple – survival of the fittest. The main concept behind
these algorithms is to keep evolving a population of can-
didate solutions one generation after another to hopefully
find a global optimum or a suboptimal solution in the worst
case. In comparison with other heuristics, GAs have several
advantages. Firstly, they are less problem-dependent in the
sense that no more assumptions are made on the points of
the problem. Secondly, they are performed in a representa-
tion rather than in the search space of the problem directly.
Nevertheless, the first version of GAs, Holland’s version, was
restrictively associated to binary encodings. Afterwards, re-
searchers adopted di↵erent encodings adequate to the prob-
lem, because, the binary strings do not always give a good
representation for optimization problems. The reader can
refer to Michalewicz [38], who applied di↵erent sorts of en-
codings to GAs to solve numerical optimization problems.
In brief, GAs are currently seen as a powerful optimization
tool balancing between exploration and examination; explo-
ration of the search space and examination of fitter solutions.
More information on this field can be found in Golberg [20],
who describes the current shape of GAs.

Already various GA-based approaches have been proposed
to solve POPs. Most of these approaches have emerged in
the current decade, which indicates an increased interest in
the subject. The problem can be formulated as a multi-
objective optimization problem, in this case a Multiobjective
Evolutionary Algorithm, MOEA, is applied. MOEAs are de-
fined as variants of GAs handling multiobjective optimiza-
tion problems. Schlottmann and Seese [43] and Castillo and
Coello [8] presented two comprehensive surveys of MOEA in
Economics and Finance, and the larger part of their appli-
cations, concerns the matter of portfolio optimization. This
paper is (hopefully) intended to be a continuation of their
work, but adding into account Single Objective Genetic Al-
gorithm, SOGA, applications to POPs. SOGA refers to a
standard GA where only one objective is considered in the
underlying optimization problem. Our goal, beyond describ-
ing the state-of-art applications, is to focus on the compu-
tational results obtained by the di↵erent approaches.

Outline. In the remainder of the paper we describe, in Sec-
tion 2, two widely used portfolio models, namely M-V and
M-VaR models and specify a number of portfolio constraints
often used in practice. A brief presentation of GAs is pro-
vided in Section 3. Applications of MOEA are reviewed in
Section 4, while Section 5 deals with SOGA. Section 6 dis-
cusses the computational results of the regarded approaches.
Finally, some prospected research directions are explored in
Section 7 and we conclude in Section 8.

2. PORTFOLIO OPTIMIZATION MODELS
2.1 Mean-Variance model
The M-V portfolio model, created by Markowitz, is the first
framework for optimal asset allocation. It can be formalized
as an optimization problem where the inputs are the returns
of N risky assets, assumed to be multivariate normally dis-
tributed, and the output is an N -dimensional real vector
w = (w1, w2, ..., wN

)T where each weight (0  w
i

 1) is
the fraction held in the ith asset:

M-V model - General Formulation
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w
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where µ
i

and �
ij

are respectively the expected return of
the ith asset, and the covariance of returns between the ith
and jth assets, such that �

ij

= �2
i

is the variance of the ith
asset. (C1) expresses the budget constraint, i.e., the entire
budget is invested. The M-V model can be considered a
Multiobjective optimization problem, since the objective is
simultaneously maximizing the portfolio mean µ

p

, and min-
imizing the portfolio variance �2

p

. All feasible solutions of
this problem describe a curve in the plane (�

p

, µ
p

) called
e�cient frontier. There also exist alternative formulations
that eventually lead to the same e�cient frontier. An in-
vestor can target, under a certain level of expected return
µ0, to minimize �2

p

or to maximize µ
p

given a certain level
of risk �2

0 . The variation of µ0 or �2
0 leads to the same

e�cient frontier. A scalarization in the same objective func-
tion of µ

p

and �2
p

provides another formulation of the M-V
model. The scaling parameter � is used as an indication
the risk-aversion, the smaller � is, the more the investor is
risk averse. Stein et al. [47] solved e�ciently this problem
by parametric quadratic programming for all the values of �.

M-V model - Risk-aversion Formulation

Maximize
w

� µ
p

(w)� (1� �) �2
p

(w) (3)

s.t.(C1) + (C2)

Adding a risk-free asset in the Markowitz model, Tobin [52]
proved to have a more e�cient portfolios set, in form of line
so-called Capital Market Line (CML).

Figure 1: The e�cient frontier and the CML.
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2.2 Mean-Value-at-Risk model
Certainly the most popular downside risk measure, Value-at-
Risk, introduced by J.P. Morgan research center [21], allows
to calculate the maximum anticipated loss of the portfolio
value under a certain level of confidence 0  ↵  1 over
a specified time horizon. If r

i

is a random variable of the
ith asset return and P the probability function, the formal
mathematical expression of V aR is given by:

V aR
↵

(w) = min{R|P (�
NX

i=0

w
i

r
i

� R)  ↵},

Three approaches are commonly used to compute V aR, the
parametric approach, the historical simulation and the Monte
Carlo simulation. Nowadays, even non-financial institutions
use V aR to manage their internal risks. However, V aR
su↵ers from some inconvenient mathematical properties [1]
such as non-convexity, which makes the optimization of M-
VaR model computationally expensive, and also subadditiv-
ity, i.e., the risk of a portfolio can be greater than the sum
of the assets’ risks calculated separately, which is opposite
to the principle of diversification in the portfolio theory.

Mean-VaR model

Minimize
w

V aR
↵

(4)

s.t.
NX

i=1

w
i

µ
i

(w) = µ0 and (C1) + (C2)

2.3 Real-life portfolio constraints
Real-life financial market imposes some additional constraints
to POP. Portfolio managers usually use these constraints
to e�ciently handle their investment. A distinction can be
made between soft constraints which are mainly linear as
holding weights constraints, turnover constraints and risk
factor constraints and hard constraints which are gener-
ally integer and combinatorial in nature as cardinality con-
straints, buy-in thresholds constraints, minimum transaction
lots constraints and transaction costs. Hard constraints lead
to a non-convex search space and the POP is transformed,
depending on the cases, to a mixed-integer programming
problem or integer programming problem.

Holding weights constraints (HWC)
In the perspective to control diversification in the portfolio,
the maximum and minimum holding per asset is limited,
such that l

i

and u
i

are respectively the lower and the upper
bound on the ith weight:

l
i

 w
i

 u
i

, (C3)

By taking l
i

= 0 short-selling is not permitted in the portfo-
lio. And similarly to (C3), it is possible to argue about the
whole holding (L 

P
N

i=1 wi

 U) and limit the exposure of
the portfolio, or on a classes of assets , e.g., oil stocks, energy
stocks etc, such that the invested capital is concentrated in
specified groups.

Minimum Transaction Lots constraints (MTL)
These constraints, called also roundlots constraints, require
holding discrete units multiples of a minimum lot for each
asset. For example, if 100-share is the minimum lot for asset
A, the amounts purchased must be in 100, 200, 300, etc,

trading units. Mansini and Speranza [34] demonstrated that
POP constrained to MTL is NP-hard, independently of the
risk function. If we denote by C the total capital invested
and by T

i

the MTL of ith asset, the corresponding weight is
then:

w
i

=
x
i

T
i

C
s.t. x

i

2 Z and C =
NX

j=1

x
j

T
j

. (C4)

Cardinality constraints (CC)
Cardinality constraints limit the number of assets held in a
portfolio, such that:

NX

i=1

⇢
i

= K, (C5)

where K is a pre-specified positive integer number, (0 
K  N) and ⇢

i

is a binary function that indicates whether
the ith asset is included in the portfolio, ⇢

i

2 {0, 1}. These
constraints can be generalized in the form

P
N

i=1 ⇢i  K.

Buy-in thresholds constraints (BT)
With regard to reducing transaction costs, if an asset is held
in the portfolio at least some proportion l of it is purchased:

|w
i

| � l ⇢
i

, (C6)

These constraints reduce visibly small holdings.

Transaction costs (TC)
Trading in financial markets is accompanied with costs. Two
kinds of costs can be found in the literature; the fixed costs,
which are independent of the volume of transactions, and the
proportional costs. Usually, these costs are incorporated as a
penalty function in the objective function of POP. However,
they involve complicated nonlinear functions, a proper mod-
eling is then necessary. For example, the fixed transaction
costs function have been modeled as a V-shaped function by
Yoshimoto [55] and as picewise constant function by Konno
and Wijayanayake [25].

3. OPTIMIZATION TECHNIQUES: GA
3.1 Basic Description
GAs di↵er from other metaheuristics by starting with a ran-
dom set of candidate solutions, denoted P (0) and called pop-
ulation. A population is a constant-size set of individuals
called chromosomes evolving through successive iterations,
called generations. Each chromosome is a representation of
a possible solution, and it is created by choosing an appro-
priate encoding. During each generation, new chromosomes
are generated, the o↵spring, by selecting potential parents
which are merged by pairs via the crossover operator and
slightly changed via the mutation operator. Thereafter, the
o↵spring replace their parents to keep the population size
constant. A fitness function is formed to assess the quality
of each chromosome. The termination criterion for itera-
tions, can be either reaching a pre-specified maximum num-
ber of generations, or detecting that the best fitness of the
population, does not change significantly during successive
generations.
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Representation scheme
The first step of applying GAs on a problem is to find a
suitable encoding of chromosomes which can store the prob-
lem specific information. This may be a conventional rep-
resentation as binary encodings, real-valued encodings, or
more complex data structures, e.g., graphs. A string chro-
mosome is commonly composed by a series of units called
genes, which are the smallest elements manipulated. Each
gene belongs to a set of symbols, termed the alphabet. In
binary encodings, the alphabet is {0,1}. All the elements,
the chromosome length, the alphabet and the encoding, are
called the representation scheme. The following genetic op-
erators depend strongly on this representation.

Selection scheme
The selection is the operation of selecting the best-quality
chromosomes to ”evolve” to the next generation. The result
of the selection scheme is called the mating pool, M(t), a set
of chromosomes with a constant size equal to the popula-
tion size, N . The best-known selection schemes are tourna-
ment scheme and roulette-wheel scheme. The roulette-wheel
scheme consists firstly of constructing a roulette-wheel of
chromosomes where the number of slots assigned to a chro-
mosome is proportional to it fitness. After, the choice of
M(t) is performed by N stochastic separate selections on the
roulette wheel. While, the concept of tournament scheme in-
volves selecting successively N times 2 random chromosomes
from P (t) and putting the fitter of the two into M(t).

Figure 2: The roulette-wheel scheme

Crossover operator
The crossover takes a pair of parent chromosomes from the
mating pool with a probability p

c

(for each chromosome),
and generates a pair of o↵spring chromosomes by combining
the features of parents, e.g., exchanging substrings. Many
types of crossover operators have been introduced [18], such
as one-point crossover, multi-point crossover and order
crossover. One-point crossover, the simplest crossover oper-
ator, involves merely exchanging substrings from a random
site of the parents, called one-cut point.

Figure 3: The one-point crossover

Mutation operation
Mutation is seen as a background operator relative to the
crossover. The purpose of the operator is to maintain some
degree of diversity in the population, and thereby avoid stag-
nation at a local optimum. The mutation operator takes
each chromosome from the mating pool, and alters one or
more genes (symbols) with a probability p

m

, usually fairly
low, e.g., 0.01. Many types of mutation operators have been
introduced [18], such as flip-bit mutation, insertion mutation
and inversion mutation. The flip-bit mutation reverses the
value of a randomly selected gene as follows.

Figure 4: The flip-bit mutation

Genetic drift
The main issue of GAs is known as Genetic drift, where
individuals lose their genetic diversity and the population
ends up quickly with several similar chromosomes which may
represent a local optimum of the problem. Mutation and
random initialization are not enough to avoid the lack of
diversity. In fact, if p

m

is set to high value, GAs will turn
on a primitive random search.
The basic steps of GAs can be summarized as follows:

Algorithm 1 Algorithmic description of GA

maxGen: maximum number of generations,
popSize: population size, p

c

: crossover probability,
p
m

: mutation probability

1: Set t:=0, initialize (popSize) the population P (0);
2: Evaluate P (t);
3: If termination criterion fulfilled (maxGen) then DONE;
4: Select the mating poolM(t) from P (t), M(t) := s(P (t));
5: Apply the crossover operator M(t) := c(M(t), p

c

);
6: Apply the mutation operator M(t) := m(M(t), p

m

);
7: Form P (t+ 1) := M(t)
8: Set t := t+ 1; go to step 2

The operations s, c and m denote respectively the selection,
crossover and mutation operators, where t represents the
generation number and P (t) the population at generation t.
In order to reinforce the performance of GAs, some authors
add a genetic operator called elitism strategy. This strategy
consists simply of copying integrally the fittest chromosome
of the current population into the following one. Some em-
pirical results show that elitism has a considerable impact
on the performance of GAs [41]. It specially ensures that the
best fitness of the population can never be reduced through-
out generations.

3.2 Multiobjective Evolutionary Algorithms
Since GAs are population-based algorithms, several solu-
tions can be kept simultaneously throughout all the process.
Consequently, GAs are capable to handle multiobjective op-
timization problems, where di↵erent solutions can be found
based on the notion of non-dominance. A solution is called
non-dominated if it is not dominated by any other solution
(see below the definition). In this context, GAs are called
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Multiobjective Evolutionary Algorithms, MOEAs. The main
advantage of MOEAs is the ability to construct in only one
single run the set of Pareto-optimal solutions, which is the
set of all feasible non-dominated solutions. This set corre-
sponds indeed, in the case of the POP, to the e�cient fron-
tier. The di↵erence that can be highlighted between GAs
and MOEAs concerns the ranking of chromosomes. While in
MOEAs a ranking based on non-dominance is used, single-
objective GAs just return the fitter chromosome without
any ranking (the objective function is as well as the the
fitness function). In addition, MOEAs must maintain a de-
gree of diversity among chromosomes. The NSGA-II, one of
the-state-of-the-art MOEAs, have enjoyed considerable at-
tention. A presentation of it is provided in the following
part.

Definition 1. Definition of domination

Given a problem of the type [mini/max
x

f1(x), ..., fN (x)],
such that N is the number of objectives and F is the set of
feasible solutions. Without loss of generality, we assume that
the problem is a minimizing problem (max f

k

is equivalent
to min (�1⇥ f

k

)) and N=2. We say that x 2 F dominates
y ( 6= x) 2 F (denoted x � y) if

�
f1(x) < f1(y) ^

f2(x)  f2(y)
�
_
�
f1(x)  f1(y) ^ f2(x) < f2(y)

�

NSGA and NSGA-II
The Non-dominated Sorting Genetic Algorithm, NSGA, has
been proposed by Deb et al.[46]. The only di↵erence be-
tween a GA and a NSGA is the redefinition of the selection
operator. In fact, two steps have been established on this
operator. The first one starts by pulling the non-dominated
chromosomes in a front and crediting them the same fitness
value (fictitious) which is inherently high. Thereafter an op-
eration, called sharing by the authors, redefines the fitness
of each chromosome according to his neighborhood. Indeed,
a neighborhood is defined by specifying the sharing parame-
ter which is the maximum distance between two individuals
in the same neighborhood. This step is repeated until all
the population is classified in several fronts. Noting that
the fictitious fitness value given to the first front is larger
than the second and so on. The computational cost of all
previous step is O(MN3) where M is the number of ob-
jective functions and N is the population size. The second
step is a stochastic selection operator that will construct the
mating pool such that the chromosomes with larger fitness
value have more chance to be picked.

Seven years after Deb et al.[12] introduced a new version:
NSGA-II, where the convergence and the spread of the so-
lutions are improved. The adjustments are: designing a
new algorithm of creating fronts with a better computational
complexityO(MN2), adding an elitism approach and chang-
ing the process of diversification. Henceforth, the maintain-
ing of diversity relies on a new operator without any input
parameter called the crowded-comparison. Hence, the chro-
mosomes are classified by favoring those of the first fronts
and in the same front, the more isolated ones, i.e., with a less
crowded distance. In the case of two objectives, the crowding
distance of a chromosome is the perimeter of the rectangle
bordered by the nearest right and left neighbors. At the end
of the evolution operators, the o↵spring are added to their
parents, thereafter the whole population of 2N individu-
als are ranked according to fronts repartition and crowded-
comparison. The new population is created from the N first

ranked chromosomes (the elitism approach). The authors
validate their algorithm using nine test problems. The re-
sults shows that NSGA-II presents better results and diver-
sity support compared with two other elitist MOEAs, PAES
and SPEA. Lastly, NSGA-II was simulated with two di↵er-
ent encodings; binary and real-valued.

4. MULTIOBJECTIVE EA
To categorize approaches using MOEA for solving POP, we
propose to rely on the nature of portfolio models, substan-
tially on hard constraints which make the optimization com-
putationally hard. Notice that M-VaR is a category apart.

MOEA

MTL+TC

CC+MTL+BT

M-VaR

CC+5-10-40

CC

Fieldsend et
al. (2004)

Branke et
al. (2009)

Streichert et
al. (2004)

Lin et al.
(2001)

Tsao and
Liu (2006)

Subbu et
al. (2005)

Figure 5: Classification of approaches using MOEA

Lin, D., Wang, S., and Yan, H. (2001)
Lin et al. [33] considered a M-V portfolio model with MTL,
fixed transaction costs (TC) and linear constraints on capi-
tal invested similar to the holding weights constraints. A
NSGA-II based algorithm is proposed to solve this con-
strained problem. Instead of a real-valued encoding, the
authors adopted an integer encoding. As a consequence, the
genetic operators used in NSGA-II are, in order to respect
this encoding, altered largely by using the truncation func-
tion. The altered operators are the tournament selection,
Simulated Binary Crossover, SBX [11] and Parameter based
Mutation [12]. However, the persistent issue is the feasibil-
ity of chromosomes with respect to the constraints, i.e., the
evolution operators can not guarantee the feasibility of o↵-
spring even the parents are completely feasible. The authors
chose a single objective GA called Genetic for Numerical
Optimization of Constrained Problems, GENOCOP [38] to
handle the constraints. However, GENOCOP necessitates
the feasibility of all initial individuals. Therefore, in the
initialization step of the overall algorithm, an initial feasible
population is constructed by using NSGA-II based algorithm
on an optimization problem minimizing the violation of the
constraints. In addition, two typical chromosomes are added
to the initial population (by replacing two randomly chosen
individuals). The idea is to inject the better variance and
the better expected return into the population to reduce the
range-dependency [6] between the non-dominated solutions.
This phase is called by authors the Fitness Scaling. For clar-
ity, we remind the structure of the main hybrid algorithm:
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Algorithm 2 Hybrid Algorithm of Lin et al.

1: Construct an initial feasible population by using the
NSGA-II algorithm with integer encoding and compute
the fitness scaling;

2: Evolve the population with SBX crossover and PM mu-
tation with the use of GENOCOP ideas;

3: Evaluate the population;
4: Select chromosomes with the tournament selection

scheme and apply the elitism strategy established in
NSGA-II;

5: If the number of generations is less than the maximum
pre-specified number of iterations, go to step 2, else
DONE.

Fieldsend, J. E., Matatko, J., and Peng, M. (2004)
Fieldsend et al. [17] chose a cardinality constrained port-
folio optimization with the M-V model. Normally in order
to achieve some diversification, the number of assets tends
to vary inversely with the correlation between asset returns,
i.e., the more asset returns are independent, the greater the
number of assets is required to lead to a better portfolio.
With CC, the cardinality is usually specified in advance.
However, because an accurate assets number leading the in-
vestors to a better portfolio is not originally known, the
authors cover in their model all possible cardinalities. Thus,
the cardinality of portfolios is considered as a third objective
to be minimized. The reason behind this choice is back to
the possibility to find for a greater cardinality an equivalent
portfolio with a lower cardinality. Actually, portfolios with
higher cardinality might include a considerable group of as-
sets zero-weighted according to the finance theory. Though
this technique works only if no other constraints than CC
are taken into account. Further, solving each cardinality
range and gathering the results (e�cient frontiers) after is
certainly more computationally expensive. A heuristic based
on the MOEA (1+1)-evolution strategy [16] is used to solve
this computationally hard problem.

The used algorithm depends on m parallel heuristic searches
related to each other, where m is the higher portfolio car-
dinality (an input of the algorithm). Concretely, the algo-
rithm makes evolve throughout generations a container set
of m size, where each element is a set H

k

of non-dominated
solutions given a certain cardinality 1  k  m. During
each iteration, a cardinality k is chosen uniformly at ran-
dom, thereafter, a portfolio is selected from H

k

. The follow-
ing operations perform on a copy of this portfolio, starting
with the significant adjustment operator. Adjusting a port-
folio takes two forms: rebalancing of the nonzero weights,
or changing the cardinality plus the rebalancing. Both sit-
uations relate to the Dirichlet distribution, since this distri-
bution guarantees the budget constraints (the weights add
up to one). Before starting a new iteration, the portfolio
result, whether it keeps the same cardinality l = k or not
l = k0, is evaluated (calculating r

p

and �
p

) and compared to
the elements of H

l

, to check if it is non-dominated to keep
it in H

l

, or otherwise to remove it.

Streichert, F., Ulmer, H., and Zell, A. (2004)
Streichert et al. [48] dealt with a M-V portfolio model,
constrained to cardinality, buy-in thresholds and MTL con-
straints. For the resolution algorithm, they used the NSGA
[46] heuristic with real-valued encoding and binary encod-

ings. For binary strings, both natural binary and gray cod-
ings are considered. The genetic operators used are tourna-
ment selection, discrete 3-point crossover, one-point muta-
tion and bit-flip mutation for binary encodings. By noticing
in their preliminary experiments that the e�cient frontier of
the POP is generally composed of a restrictive number of the
initial available assets (particularly in the case of CC), the
authors outline the analogy with the one-dimensional binary
knapsack problem. Thereafter, a new hybrid representation
based on the binary knapsack problem is proposed, since
this problem is already approached by GAs. In the new rep-
resentation a chromosome is expressed with two vectors of
the same size, namely the real-valued vector of weights W
and a binary vector B where each bit indicates if the cor-
responding asset is used or not in the portfolio. Hence, the
advantage is to make adding/removing assets in the port-
folio much simpler for GA, by using bit-flips. During the
evolution process, the elements of the knapsack represen-
tation (W and B) are a↵ected separately by mutation and
crossover.

Since hard constraints are adopted, handling o↵spring chro-
mosomes (generated by evolution operators) which violate
these constraints is crucial. The authors propose a repair
algorithm to deal with these infeasible individuals. The first
step is to satisfy CC and buy-in threshold constraints. The
(N �K) smallest weights of the infeasible chromosome and
weights that do not meet the buy-in threshold are set to zero,
with N and K are respectively the total number of assets
and the specified cardinality. After, the weights are normal-
ized. The following step rounds the remaining weights to
satisfy MTL constraints. This repair mechanism is deter-
ministic. To examine its e�ciency, the authors run the GA
with and without Lamarckism. The Lamarckian strategy
assumes that the improvements of an individual during its
lifetime can alter the way in which it is encoded (genotype).
Hence, in the experiment where the Lamarckism is adopted,
the authors keep the repaired solution in the population.

Subbu, R., Bonissone, P. P., Eklund, N. H. W., Bol-
lapragada, S., and Chalermkraivuth, K. C. (2005)
Subbu et al.[51] introduced an hybrid evolutionary multi-
objective optimization approach allying linear programming
and evolutionary computation (generic term referring to GAs).
They also introduced a new model where di↵erent measures
of risk are considered in order to capture di↵erent aspects
of portfolio risks, in particular from the point of view of the
asset-liability management, ALM. Thereby, surplus variance
is added to VaR as a second measure of risk. Whereas in
ALM approach the investor have to match portfolio assets
with the liabilities which are influenced by several risk fac-
tors, further linear constraints are added. These constraints
serve to limit Duration mismatch and Convexity mismatch;
financial accounting variables which can be easily linearized.
The used model is as follows:

Maximize µ
p

(Portfolio Expected Return)

Minimize V aR
p

Minimize Surplus V ariance
p

subject to Duration mismatch < l1

and Convexity mismatch < l2

and linear portfolio investment constraints
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The hybrid used algorithm relies on Pareto Sorting Evo-
lutionary Algorithm, PSEA, to handle the non-dominated
chromosomes. This algorithm keeps the non-dominated so-
lutions found throughout generations in an archive, though
the population is supposed to have a small size. To further
preserve the diversity during the search, the authors added
three mechanisms to the algorithm: a new crossover opera-
tor, inclusion of a new randomly generated solutions in each
iteration and addition of a non-crowding filter to have more
dispatched solutions. PSEA is initialized using Random Lin-
ear Programming, RLP algorithm. The aim of using RLP
is to provide initial solutions which are likely to meet the
problem constraints (which are linear). By solving multiple
linear programs and gathering them with randomly gener-
ated weights, RLP can give extreme limits sampled from
the search space. The authors used also a Fast Dominance
Filter, FDF, which is a method that splits the dominated
and non-dominated chromosomes of a population. Accord-
ing to them, FDF improves the overall computational com-
plexity. Actually, FDF decomposes the set of solutions into
smaller subsets before comparing elements inside each sub-
set. In brief, PSEA manipulates the non-dominated solu-
tions. However, the factual search is done by Target Objec-
tive Genetic Algorithm, TOGA [15]. TOGA is a non-Pareto,
non-aggregating algorithm which drives the global search to-
ward the nearest chromosomes according to a pre-specified
target. A graphical tool allowing the projections of e�cient
frontiers is used during the run of the hybrid algorithm. The
decision maker can hence incorporate its preferences during
the process of optimization by downselecting assets.

Tsao, C., and Liu, C. (2006)
The paper of Tsao and Liu [53] relates to the application
of NSGA-II [12] to the Mean-VaR portfolio framework (de-
scribed in section 2.2). Only the budget constraint is con-
sidered in the model. However, due to the non-convexity of
the VaR function in two of its calculation methods, i.e., the
historical simulation and the Monte Carlo simulation, the
optimization becomes computationally expensive in terms
of time. Thus, the standard mathematical techniques can
not be applied in this case. The authors have brought some
changes to the NSGA-II, though the binary encoding is kept.
In fact, the random initialization is modified by adding a
threshold U 2 [0, 1] to the value randomly generated. If the
value uniformly generated from [0, 1] is greater than U , 0
is chosen, otherwise it is maintained. The second alteration
concerns the method to spot the non-dominated solution
set given a population of chromosomes. Three approaches
are known; naive and slow approach, continuously updated
approach and Kung et al.’s e�cient method [27]. The last
method is computationally e�cient with a small number of
objective functions, therefore it was chosen by the authors.
Kung et al’s e�cient method starts by dividing the popu-
lation in half, the top part T and the bottom part B, after
sorting individuals according to the first objective. Directly
afterward, the method is recursively applied to both T and
B. In each call of the function, iteratively all individuals
of B are compared to those of T . If an individual of B is
not dominated by any other of T , it is stored in a set M .
At the end the function return T [M which represents the
non-dominated solutions.

Branke, Scheckenbach, Stein, Deb and Schmeck (2009)
Branke et al. [7] have proposed to solve a M-V portfolio
optimization with CC and 5-10-40 constraints. The latter
constraint is a rule from the German investment law which
stipulates that the share of each asset is not superior than
10% of the net asset value of the fund and the total hold-
ings exceeding 5% are less than 40% (of the net asset value
of the fund). Plus, asset shares of the same issuer are no
more than 5% (of the net asset value of the fund). The 5-
10-40 rule is a hard constraint, i.e., leading to a non-convex
search space. The authors’ approach, called envelope-based
MOEA (E-MOEA), incorporates critical line algorithm into
a MOEA based on NSGA-II. The major point here is that
E-MOEA is not point-based where each point is a portfo-
lio solution, but rather handles continuous fronts as indi-
viduals. The concept is to confer the managing of hard
constraints to the MOEA in the sense that chromosomes
represent problems with convex constraints. In instance for
CC, portfolio solutions are repaired (some weighs are forced
to zero) and the convex corresponding problems are simply
problems where the total number of assets matches assets of
non-zero weights. Each convex problem is solved by critical
line algorithm, which is no more than the algorithm used by
Markowitz for computing the whole e�cient frontier [36].

The solved convex problems correspond henceforth to con-
tinuous fronts so-called envelopes. The authors adapt NSGA-
II to handle these envelopes by adjusting the non-dominated
sorting and the crowding distance calculation. As an en-
velope scarcely dominates completely other envelopes, ag-
gregated fronts are introduced. These fronts are defined as
union of the non-dominated parts of all envelopes. And the
crowding distance is substituted by the calculation of the
contribution of an envelope to the aggregated front (length of
the segment). Hence, it is possible to maintain a ranking of
individuals. Concerning the genetic operations, permutation
encoding is adopted and the uniform order based crossover
and swap mutation are used to evolve the population. To
test E-MOEA, the authors chose the point-based approach
of Streichert et al. [50] [48] [49] as a reference. They made
however some adaptations of the approach of Streichert et
al. by considering 5-10-40 constraint and abandoning MTL
constraints (just by adjusting the repair algorithm).

5. SINGLE OBJECTIVE GAS
Similarly to MOEA, Single Objective GAs applications of
POP are categorized according to the hard constraints.

Eddelbüttel, D. (1996)
Eddelbüttel [14] formulated an index-tracking problem which
is a particular form of passive management. The purpose of
this problem is to duplicate within a target portfolio the
behavior of a stock market index chosen as a benchmark.
A formulation as an optimization problem consists in mini-
mizing the tracking error variance, i.e., the variance of the
di↵erences in terms of return between the market index and
its tracking portfolio. However, the expected return di↵er-
ence between the market index and the tracking portfolio,
defined as expected tracking error, is specified in advance. By
constraining the portfolio solution to a fewer stocks, the au-
thor applied implicitly the cardinality constraints. Thus, the
problem is henceforth computationally hard, which drives
the author to use a hybrid GA. Actually, during each gen-
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Figure 6: Classification of approaches using SOGA

eration two steps are performed. First, using the global
search of GA to select assets to include into the portfolio.
Thereafter, a quadratic programming solver is run to assign
optimal weights for the tracking portfolio stocks. For the
encoding, a binary vector of length 5k is used to represent
a possible chromosome. The empirical experiments of the
author simulated the DAX (Deutscher Aktien IndeX) track-
ing portfolio using one year of daily closing prices. These
simulations show promising results on portfolios with signif-
icant size, by comparing with the canonical GA previously
presented by the author [13].

Chang, Meade, Beasley and Sharaiha (2000)
Chang et al. [9] chose to solve a M-V portfolio optimiza-
tion including cardinality constraints and holding weights
constraints. The considered model corresponds to the risk-
aversion formulation (see Section 2.1). The main purpose
of the paper is to find and analyze the e�cient frontier of
this hard constrained optimization using three heuristic al-
gorithms; GA, tabu search (TS) and simulated annealing
(SA). At first, the authors showed that the e�cient frontier
in the presence of CC becomes discontinuous, by a small ex-
ample problem; four assets of FTSE index with a cardinality
fixed to two. In fact, all the combinations of this smooth
example problem can be listed and the constrained e�cient
frontier is obtained by gathering unconstrained cases (solved
via mathematical programming). Although this approach is
correct, it may hide, according to the authors, invisible por-
tions of the constained e�cient frontier. The exact approach
is hence to solve the problem once, using weighting. On the
other side, the three heuristics construct all the parts of
the constrained e�cient frontier (hidden or not). A com-
putational comparison is done between the heuristics using
computer time and di↵erent percentage errors. For uncon-
strained POP, GA gives the best approximation with an
almost zero mean percentage error. SA is in the second po-
sition followed by TS. For cardinality constrained POP, no
heuristic is uniformly superior, i.e., in the sense that the per-
centage errors vary indi↵erently from a case to another and
no algorithm emerges as winner. The authors simulate also
a tradeo↵ experience by pooling the result of each heuristic.
In this case, GA performs better by contributing the most

to the final e�cient frontier.

Ruiz-Torrubiano, R., and Suárez, A. (2007)
Ruiz-Torrubiano and Suárez [42] have targeted to solve the
standard M-V model with cardinality constraints and hold-
ing weights constraints (on each asset and/or groups of as-
sets). They used for this purpose a hybrid algorithm pool-
ing Evolutionary Algorithms (EA), Quadratic Programming
(QP) and a pruning heuristic. In their approach, finding the
optimal subset of assets to be held in the portfolio is han-
dled by EAs, separately than solving the optimal weights
which is achieved by a standard quadratic solver. In fact,
the quadratic solver used relies on the so-called inertia-
controlling methods [19], while for EAs two distinct instances
are used and compared. The first instance, named RAR-GA,
is a GA employing set representation and suitable evolu-
tion operators. Actually, these operators are specially con-
ceived to maintain the cardinality of individuals. They are
Random Assortment Recombination, RAR, [54] for crossover
and for mutation an operator exchanging an asset belong-
ing to the portfolio with another one outside the selection.
On the other hand, the second instance is an implementa-
tion of Estimation of Distribution Algorithms, EDAs [28].
EDAs are evolutionary algorithms where the evolution op-
erators are replaced by sampling a probability distribution
which is estimated for each generation from the previous
population. Di↵erent techniques are used by the authors for
the estimation process, e.g., Univariate Marginal Distribu-
tion Algorithm, UMDA [39], Probability-Based Incremental
Learning, PBIL [4], and Estimation of Gaussian Networks
Algorithm, EMNA [29]. Regarding Pruning heuristic, it is a
technique intended to reduce the number of assets included
in chromosomes (portfolios), and hence to reduce the com-
putational cost of the overall hybrid algorithm. Its method
is to solve the corresponding unconstrained POP and then
remove from the constrained optimization problem, assets
assigned zero or negligibly small weight. The experiments
conducted by the authors show that without using pruning
heuristic, EDAs are more time consuming than RAR-GA.
And pruning heuristic generally improves the execution time
for both EDAs and RAR-GA and the accuracy in the case
of EDAs.

Lin, C., and Liu, Y. (2007)
Lin and Liu [32] examined the extension of Markowitz’ model
to integrate the MTL constraints. Actually, their approach
appears to be one of the firsts allying M-V model and MTL,
since these constraints have been in previous studies spe-
cially considered with MAD model. As the POP is funda-
mentally a Multi-Objective Decision-Making (MODM) prob-
lem, where two conflicting criteria are needed in making de-
cisions, solving tools as goal programming [30] and fuzzy
programming are used by the authors. In fact, three possi-
ble models are considered. Starting by the first one which is
simply an adaptation of the M-V model to the MTL. This
model is formulated as a single-objective problem minimiz-
ing the portfolio risk given a rate of return r, besides that,
the decision variables are integers. However, the target port-
folio defined as (r,�) may be unattainable using integer so-
lutions, with � is the corresponding risk of r from the un-
constrained e�cient frontier. As a consequence, the authors
proposed another model which belongs to the category of
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goal programming problem. The aim of this second model is
to minimize the distance between the target portfolio (r,�)
and the portfolio result of the optimization (r

p

,�
p

). Nev-
ertheless, this model may increase the computational time
due to the prerequisite drawing of the unconstrained e�-
cient frontier. In addition, a proper choice of an instance of
r, which reflects accurately the degree of risk/return prefer-
ence of the Decision Maker (DM) or the investor, is delicate.
A third model relying on the fuzzy programming approach
is hence proposed. The advantages of this model is to con-
sider the DM preferences without any pre-specified inputs
and discard the incommensurability between the objectives
and di↵erent distance metrics (an issue of the second model).
Thus, The authors adjust the weighted max-min model for
fuzzy MODM proposed by Lin [31] to the POP.

A GA is used to solve the 3 optimization problems. In this
algorithm, the o↵spring does not replace directly the parent.
It replaces instead a randomly selected chromosome (except
the best one), only if is fitter than the worst chromosome of
the population. To maintain the feasibility of individuals,
the authors used both the penalty strategies and modifying
genetic operators. Hence, the budget constraints are han-
dled with an appropriate encoding/decoding from real to
integer values while the constraints of respecting the rate of
return of the portfolio r is handled as a penalty function.
The empirical simulations consolidate the e�ciency of GA
in terms of time and the solution quality for all the mod-
els considered, knowing that the results of models 2 and 3
seems more e↵ective. However, the authors recommended
the fuzzy approach because the simplicity and the adapt-
ability of dealing with investor preferences.

Aranha, C., and Iba, H (2007)
Unlike the other applications of this survey, Aranha and Iba
[3] discussed the POP in terms of multi-state continuous
optimization over time, where the objective, plus increasing
the return and decreasing the risk, is to minimize transac-
tion costs. More specifically, costs are minimized between
each two consecutive time periods. The authors used an in-
direct approach for modeling costs as Euclidean distance of
the weight vectors of the current position (time t � 1) and
the desired position (time t). In other terms, transaction
costs are associated to the amounts bought or sold of assets
between two time positions. The GA-based technique used
to solve this problem represents each chromosome by two
arrays: a binary array which indicate if an asset is present
in the portfolio and a real-valued array of weights. For the
evolution operators, the authors used tournament selection,
simple linear crossover, bit-flip mutation, mutation by per-
turbation and elitism strategy. On the other side, two ge-
netic techniques are introduced; first the seeding technique
which improves handling POP over time by coping some
individuals from the current (time t�1) to the next popula-
tion (time t), and second, the objective sharing which com-
pute the Euclidian distances. The empirical experiments are
based on monthly historical returns from the NIKKEI and
the NASDAQ indexes. They show that the implemented
GA ends up by dominating the simple GA (without seeding
and objective sharing) in terms of sharpe ratio (the chosen
fitness function), cumulative returns and average distances.

Hochreiter, R. (2008)
Hochreiter [22] used the stochastic programming in order
to incorporate directly in the portfolio model the underly-
ing uncertainty. Hence, the uncertainty that can occur in
estimating correct expected returns and variance matrix is
handled by generating scenarios of possible realizations for
asset returns (a probability is a↵ected to each scenario). By
considering a scenario-based risk-return approach, the do-
main of portfolio risk is extended to contain di↵erent mea-
sures. Indeed, the adopted portfolio risk measure is based
on a general discrete loss distribution regardless its exact
underlying structure. In fact, this distribution is the cross
product of the regarded portfolio and the matrix of the set
of scenarios. For empirical simulations, four structures of
risk measure are applied: standard deviation, mean abso-
lute downside semi deviation, VaR, expected shortfall. The
author considered also some real-life constraints, namely the
cardinality constraints and the holding weights constraints
(upper and lower limits on asset weights). In the end, the
resolution method relies on a evolutionary approach based
on a GA using real-valued genes with N-point crossover,
intermediate/blend crossover and mutate by factor. The
numerical results are based on weekly historical data of 14
selected assets of Dow Jones Index.

Chang, T., Yang, S., and Chang, K (2009)
Chang et al. [10] considered the POP constrained to cardi-
nality and linear holding weights constraints (HWC), within
the risk-aversion formulation. Three di↵erent risk measures
in addition to the variance are adopted, namely mean ab-
solute deviation, semivariance and variance with skewness.
The two latter risk measures are improvement of the vari-
ance; by taken into account only the returns below the mean
for semivariance and by including skewness for variance with
skewness. A GA is proposed to solve this problem with uni-
form crossover, binary tournament selection and a replace-
ment strategy where instead of replacing the parents, the
o↵spring chromosomes replace the worst fitter individuals
in the population. To ensure the feasibility of chromosomes
to HWC, a specific iterative procedure is established based
on splitting the chromosomes on two parts; the minimum
proportion part plus a complementary share. The empirical
simulations of the authors show that the computation time
increases with the growth of the cardinality and that e�-
cient frontiers of higher cardinality are dominated by those
of lower cardinality. Hence, according to the authors, an
investor, in order to expect an e↵ective portfolio, should not
consider a cardinality greater than one-third of the total as-
sets. Finally, because the risk measures illustrate di↵erent
incompatible risks, the risk models are not directly com-
pared. However, this application asserts the flexibility and
the e�ciency of GA to handle di↵erent risk models within
the same framework.

Soleimani, H., Golmakani, H., and Salimi, M.(2009)
Soleimani et al .[45] suggested to solve a M-V portfolio op-
timization, where CC, MTL and constraints on sector capi-
talization are taken into account. The sector capitalization
constraints suppose that some assets belong to sectors (sets
of assets) and state that the capital invested in sector 1 is
greater than the one invested in sector 2 and so on. The ad-
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vantage of these constraints is let investors to invest in some
sectors with high-value in a manner to reduce the overall
risk. Regarding the formalization, it involves inequalities
on the asset weights belonging to the sectors. However, the
use of binary functions (if an asset is held or not) makes
these constraints hard (combinatorial). To solve this mixed-
integer programming problem, the authors used a GA with
the RAR crossover operator [40] and a selection operator
wherein half of the population is conducted to the follow-
ing generation by choosing the fitter chromosomes, and the
other half is composed of o↵spring chromosomes. The em-
pirical experiments start by comparing the results of GA
on a small assets problem with those of LINGO, which is
an optimization modeling software. The error di↵erences of
both approaches are minimal (no more than 3%), however
GA is undoubtedly superior in terms of computational time.
The other experiments involve 2000 assets and show the ef-
ficiency of GA: computational time around 7min with 3.5%
of risk error.

6. COMPUTATIONAL ANALYSIS
Genetic Algorithm presents an undeniable computational
advantages. Shoaf and Foster [44] approximate the complex-
ity of GA for the original Markowitz’ POP to O(n log(n)),
with n is the number of assets, which is better than a quadratic
complexity. In this section, we discuss in brief the computa-
tional aspects of the approaches mentioned so far. However,
for almost the techniques and the approaches we reported,
from the published papers, only summaries of computational
results and upper-level descriptions of algorithms are pro-
vided. Generally, these papers do not provide enough in-
formation to reproduce algorithms implementation directly.
In addition, the applications do not share a unique portfolio
model. A shown in Figures 5 and 6, the hard constraints
di↵er for almost all the applications, which makes any fair
computational comparison seemingly impossible. The test
instances are also di↵erent in nature, i.e., asset returns are
compounded depending the application from daily, weekly
or even monthly returns. Despite that, a collection of appli-
cations share the same simulation benchmark from the OR-
library [5], which is a compilation of publicly available test
data sets for range of operation research problems. Those
applications are displayed with dark background on Figures
5 and 6. In our case, this benchmark is the test data used by
Chang et al. [9], which is weekly prices data from March 92
to September 97, of component assets of the indexes: Hang
Seng, Dax100, FTSE100, S&P100 and Nikkei225. For the
above mentioned reasons, we have been limited in our anal-
ysis to a theoretical discussion only, rather than computa-
tional simulations. To structure the discussion after, MOEA
applications are examined separately from the SOGA ones,
since they do not return the same result.

First, MOEA are believed to be more e↵ective in terms of
computational time than SOGA, as Anagnostopoulos and
Mamanis [2] pointed out in their study where they compared
on a cardinality constrained POP five advanced MOEAs,
among them NSGA-II, and a SOGA similar to the one pro-
posed by Chang et al. [9]. In the computational results
revealed by Lin et al. [33] based on the simulation of the
Hang Seng data from the OR-library, the designed algo-
rithm accurately approximates the unconstrained e�cient
frontier when MTL are equal to 1 or 100. However, the lack

of references when fixed transaction costs are added to the
model does not allow them to compare the result. Streichert
et al. [48] examined CC and BT constraints in addition
to the MTL given the same data set. They showed that
their hybrid algorithm has better results when the knap-
sack representation is adopted. More precisely, the hybrid
knapsack-GA with 7bit gray-coding with Lamarckism is the
best in terms of convergence speed and fitness results. In
fact, 7bit coding performs better than the other coding be-
cause the evolution operators appear to be more produc-
tive. The emipirical results of Fieldsend et al. [17] approach,
where a cardinality constrained POP has been targeted, ac-
cord that the computational performance of the constrained
and the unconstrained POP are not considerably di↵erent
in the case of small asset number. Recently Branke et al.
[7] reported better computational results based on their al-
gorithm E-MOEA by comparison to Streichert et al. ap-
proach [48]. The authors explained this by the recourse to
envelopes (continuous fronts) and the critical line algorithm
inside their hybrid algorithm. Tsao and Liu [53], by using
the daily prices of stocks of the TSEC Taiwan 50 index, com-
pared four e�cient frontiers (EF), i.e., the M-V EF and the
M-VaR EFs according to the three calculation methods of
VaR. The experiments of their algorithm based on NSGA-II,
show that the three M-VaR EFs are similar for the levels of
confidence of VaR around 90% and 95%. When the level of
confidence is increased to 99%, the M-V EF does not match
the M-VaR EFs, especially for M-VaR based on historical
simulation method which seemed not quite interlaced.

On the other hand, SOGAs have various applications with
di↵erent goals. For instance, Eddelbüttel [14] constructed
an index-tracking portfolio with CC using an hybrid GA.
His empirical simulations, which are based on Monte Carlo
experiments, show favorable results. More precisely, the hy-
brid GA outperform the canonical GA as long as the CC
increase. In the computational study of Chang et al.[9],
GA approximates better the unconstrained EF compared to
tabu search or simulated annealing, with an average mean
percentage error amounting to 0.0114% on OR-library data.
Per contra, for the cardinality constrained EF no heuristic
seems better than the others. To give an idea of the com-
putational time, the processing of the Nikkei225 data ap-
proaches 33 hours. When the results of heuristics are pooled
into a unique EF, GA in this case contributes the most to
the EF, e.g., 39.5% for the Hang Seng data. In the same
register of cardinality constrained POP, Ruiz-Torrubiano
and Suárez [42] indicate the superiority in performance of
RAR-GA over EDA algorithm. However, the use of pruning
heuristic makes EDA competitive with RAR-GA. Lin and
Liu [32] analyzed the POP with MTL. They obtained near-
optimal results especially for the fuzzy model and the goal
programming model. Taiwanese mutual fund data from 1997
to 2000 are used for this study. Concerning the other SOGA
approaches; Aranha and Iba [3], Hochreiter [22], Chang et al.
[10] and Soleimani et al .[45], the reader may refer to Sec-
tion 5 for further information about the empirical results.
Finally, about the technical characteristics of computers on
which the experiments had been conducted, only some pa-
pers have specified it [7][9][32][45].
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7. DISCUSSION
Almost all applications reviewed in this survey are not time-
dependent but rather single-period investment operations.
Drawing attention to further applications to portfolio man-
agement (over time) with the consideration of hard con-
straints seems quite worthwhile and practical. Some of the
aspects to be explored more in GAs concern the possible
ways to handle the constraints within the algorithm. Besides
adopting penalty strategies and rejecting or repairing the in-
feasible individuals, finding a more appropriate representa-
tion scheme incorporating the problem-specific-knowledge is
more appealing as known. For POP the use of a suitable rep-
resentation beyond the binary or the real-valued encodings
is particularly scarce in MOEA when compared with SOGA
applications. Hence, investigating possible representations
including problem knowledge of POP will certainly improve
the performance and the power of MOEA. Among the mod-
els examined we can notice that the cardinality constrained
POP has raised much attention starting with the work of
Chang et al.[9]. Finally, GAs, besides being a good opti-
mization tools to obtain approximate solutions, improve our
understanding of the nature of the solution space, especially
in the area of finance where the optimization techniques are
widely needed.

8. CONCLUSIONS
In this paper, we have surveyed 14 state-of-the-art approaches
to portfolio optimization problems that use genetic algo-
rithms. For simplicity, we handled only cases where the tar-
get optimization model is theoretically hard, which includes
portfolio models with nonlinear constraints or models involv-
ing non-convex risk measures as Value-at-Risk. As known,
two di↵erent forms of GAs can be clearly categorized: mul-
tiobjective EA and single-objective GA. The classification of
the 14 approaches follows this distinction, since MOEA and
SOGA do not return the same output, that is a single port-
folio for SOGA and the whole e�cient frontier for MOEA.
At the end, computational results of the approaches were
summarized after providing descriptions of the techniques,
models and algorithms involved.
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