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Abstract

More than fifty years of research in molecular biology have demonstrated that the ability of

small and large molecules to interact with one another and propagate the cellular processes in the

living cell lies in the ability of these molecules to assume and switch between specific structures

under physiological conditions. Elucidating biomolecular structure and dynamics at equilibrium

is therefore fundamental to furthering our understanding of biological function, molecular mech-

anisms in the cell, our own biology, disease, and disease treatments. By now, there is a wealth

of methods designed to elucidate biomolecular structure and dynamics contributed from diverse

scientific communities. In this survey, we focus on recent methods contributed from the Robotics

community that promise to address outstanding challenges regarding the disparate length and time

scales that characterize dynamic molecular processes in the cell. In particular, we survey robotics-

inspired methods designed to obtain efficient representations of structure spaces of molecules in iso-

lation or in assemblies for the purpose of characterizing equilibrium structure and dynamics. While

an exhaustive review is an impossible endeavor, this survey balances the description of important

algorithmic contributions with a critical discussion of outstanding computational challenges. The

objective is to spur further research to address outstanding challenges in modeling equilibrium

biomolecular structure and dynamics.

1. Introduction

“The way in which the chain of amino acid units in a protein molecule is coiled and folded in space

has been worked out for the first time. The protein is myoglobin, the molecule of which contains

2,600 atoms.” This is how John Kendrew began his feature article in Scientific American in 1961,

reporting what was the first atomistic model of a protein structure1 obtained via X-ray crystallogra-

phy (Kendrew, Dickerson, Strandberg, Hart, Davies, Phillips, & Shore, 1960). This model is drawn

in various graphical representations in Figure 1. For the pioneering work on resolving structures of

globular proteins, Kendrew and Perutz were awarded the Nobel Prize in chemistry in 1962. This was

the very same year Watson, Crick, and Wilkins shared the Nobel Prize in physiology or medicine

for using X-ray crystallography data to determine the helical structure of DNA.

1. For the purpose of this survey, we will distinguish between structure and conformation. Structure will refer to a

specific placement of the atoms that comprise a biomolecule in R
3. The concept of conformation is defined in

Section 2.

c©2016 AI Access Foundation. All rights reserved.
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(a) X-ray model of myoglobin and heme group (b) Model in atomistic detail (no heme group)

(c) Various models of myoglobin and heme group

Figure 1: (a) The X-ray model of myoglobin and the heme group bound to it determined by Kendrew are

drawn here with the Visual Molecular Dynamics (VMD) software (Humphrey et al., 1996). The model can be

found in the Protein Data Bank (PDB) (Berman et al., 2003), which is a repository of known protein structures,

under PDB entry 1MBN. Drawing the surface of this protein facilitates visually locating the cavity where the

heme group, which helps myoglobin to carry off oxygen to tissue, binds. The heme group is drawn in a

ball-and-stick representation in red. (b) All heavy atoms that comprise the 153-amino acid long myoglobin

chain are drawn in a ball-and-stick representation, color-coded by the amino acid to which they belong. The

backbone that connects atoms of consecutive amino acids in the chain is drawn in white in the NewCartoon

representation in VMD. (c) The X-ray model of myoglobin under PDB entry 1MBN is superimposed over the 12

models obtained for the same protein and the bound heme group from Nuclear Magnetic Resonance (NMR),

deposited in the PDB under PDB entry 1MYF.

The ability to visualize structures of biomolecules in atomistic detail was a shot in the arm to

molecular biology and marked the beginning of a revolution in molecular structural biology; a race

soon ensued across wet laboratories to determine three-dimensional (3d) structures assumed by pro-

teins and other biomolecules under physiological conditions. Since those early days, the set of pro-

tein structures resolved in the wet-laboratory, beginning with myoglobin and lysozyme (Kendrew,

Bodo, Dintzis, Parrish, Wyckoff, & Phillips, 1958; Kendrew et al., 1960; Phillips, 1967), has grown
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to over a hundred thousand, now freely available for anyone to download from the PDB (Berman

et al., 2003).

Further pioneering work by Anfinsen, which earned him the Nobel Prize in Chemistry in 1973,

demonstrated that the ability of a protein to carry out its biological function is dependent on its

ability to fold onto a specific 3d structure reversibly (Anfinsen, 1973). The Anfinsen experiments

led to the view that a folded structure corresponds to the global minimum of an underlying energy

surface. They also showed that the information needed for a protein to assume its 3d, biologically-

active structure is largely encoded in its amino-acid sequence. Since then, any study of biomolecular

function has to consider the role of both sequence and structure (Fersht, 1999).

Figure 1(a), which shows the surface of the biologically-active structure of the myoglobin pro-

tein, exposes a central cavity that allows binding of the heme group to myoglobin. Figure 1(b)

traces the amino-acid chain that makes up myoglobin and additionally draws the heavy atoms con-

stituting each amino acid in this protein. These simple images illustrate two important points: first,

that structure plays a central role in function (specifically, complementary geometric and physico-

chemical features of 3d structures of molecules are key to stable molecular interactions) (Boehr &

Wright, 2008); second, that the ability of the amino-acid chain to fold onto itself makes protein

structures complex. Understanding how and what biologically-active structure a biomolecule as-

sumes in the cell is key not only to elucidating molecular mechanisms in the healthy and diseased

cell, but also determining how to address the abnormal role of a biomolecule in such mechanisms

in order to treat disease. In particular, research has shown that many abnormalities involve pro-

teins with aberrant biological function (Soto, 2008; Uversky, 2009; Fernández-Medarde & Santos,

2011; Neudecker, Robustelli, Cavalli, Walsh, Lundstrm, Zarrine-Afsar, Sharpe, Vendruscolo, &

Kay, 2012) due to external and internal perturbations (e.g., DNA mutations, copying errors) af-

fecting the ability of these molecules to assume specific structures (Onuchic, Luthey-Schulten, &

Wolynes, 1997; Ozenne, Schneider, Yao, Huang, Salmon, Zweckstetter, Jensen, & Blackledge,

2012; Levy, Jortner, & Becker, 2001; Miao, Sinko, Pierce, Bucher, Walker, & McCammon, 2014;

Gorfe, Grant, & McCammon, 2008; Grant, Gorfe, & McCammon, 2009).

Any treatment of the relationship between structure and function would be incomplete if the

“dynamic personality” of biomolecules is not taken into account (Jenzler-Wildman & Kern, 2007).

While X-ray models of biomolecular structures seem to suggest rigid molecules with atoms frozen

in space, an increasing number of wet-laboratory, theoretical, and computational studies have shown

that biomolecules are systems of particles in perpetual motion. Indeed, Feynman taught early about

the jiggling and wiggling of atoms (Feynman, Leighton, & Sands, 1963). Cooper and others later

posited that the inherent dynamics of biomolecules could be explained under a general, theoretical

treatment of molecules as thermodynamic systems striving towards their equilibrium, lowest free-

energy state (Cooper, 1984). Thus, the inherent dynamics of biomolecules could be explained

using fundamental physics principles; a statistical mechanics formulation also revealed the inherent

uncertainty at any given time about the particular state of a molecule (Cooper, 1984).

The dynamics of molecular systems was investigated around the same time the first experimental

models of protein structures were emerging. In 1967, Verlet simulated the dynamics of argon and

demonstrated that such simulations were able to reproduce equilibrium properties (Verlet, 1967).

Application of the Verlet algorithm for simulating protein dynamics would have to wait for one

more decade. In 1977, McCammon and Karplus reported on a 9.2 picosecond-long trajectory show-

ing in-vacuum, atomistic fluctuations of the bovine pancreatic trypsin inhibitor around its folded,

active structure (the latter had already been obtained via wet-laboratory techniques) (McCammon,
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Gelin, & Karplus, 1977). Advancements in wet-laboratory techniques, which had spewed about

a dozen models of biologically-active protein structures by the late 70s, facilitated a revolution in

computational structural biology. The pioneering algorithmic work of Verlet, Karplus, McCammon,

Levitt, Warshel, and Lifson (for which Karplus, Levitt, and Warshel shared the 2013 Nobel Prize

in chemistry) provided the earliest frameworks for computational treatments of biomolecules as a

means to investigate equilibrium structure and dynamics (Fersht, 2013).

Since those early days, advances in wet-laboratory techniques have proceeded hand in hand with

advancements in computational techniques, often feeding off each-other. The advent of NMR for

structure determination provided evidence of the ability of biomolecules to fluctuate between dif-

ferent structures even at equilibrium (Kay, 1998, 2005). Figure 1(c) shows, in addition to the X-ray

structure of myoglobin and its bound heme group, twelve models obtained via NMR, showcasing

the intrinsic flexibility of this important biomolecule and its molecular partner in the cell. Nowa-

days, wet-laboratory techniques, such as NMR and cryo-Electron Microscopy (cryo-EM) can re-

solve equilibrium structures and quantify equilibrium dynamics. For example, NMR has been used

to identify well-populated intermediate structures along a transition (Ådén & Wolf-Watz, 2007).

Hybrid techniques that combine NMR relaxation measurements with X-ray models derived from

room-temperature crystallographic, single-molecule spectroscopy techniques that tune optical radi-

ation to observe one molecule, and others can now elucidate fast and slow dynamic processes lasting

from a few picoseconds to a few milliseconds (Torella, Holden, Santoso, Hohlbein, & Kapanidis,

2011; Fenwick, van den Bedem, Fraser, & Wright, 2014; Karam, Powdrill, Liu, Vasquez, Mah,

Bernatchez, Götte, & Cosa, 2014; Moerner & Fromm, 2003; Greenleaf, Woodside, & Block, 2007;

Michalet, Weiss, & Jäger, 2006; Diekmann & Hoischen, 2014; Hohlbein, Craggs, & Cordes, 2014;

Schlau-Cohen, Wang, Southall, Cogdell, & Moerner, 2013; Moffat, 2003; Schotte, Lim, Jackson,

Smirnov, Soman, Olson, Phillips, Wulff, & Anfinrud, 2003; Roy, Hohng, & Ha, 2008; Fenwick

et al., 2014; Hohlbein et al., 2014; Lee, M., Kim, & Suh, 2013; Socher & Imperiali, 2013; Gall,

Ilioaia, Krüger, Novoderezhkin, Robert, & van Grondelle, 2015).

In particular, wet-laboratory techniques that employ fluorescence-based sensors, can provide

information on dynamic, biological events by effectively monitoring changes in the signals of

strategically-placed fluorophores (Socher & Imperiali, 2013). Depending on the placement of the

fluorophores, the binding of two molecular partners or the switch/transition of one molecule be-

tween different structures can be monitored in real time. While such techniques are very promising

and rapidly being adopted to study specific biological systems of interest, the reliance on fluo-

rophores limits the generality of these techniques, as well as the structural detail that can be ob-

tained. At the moment, wet-laboratory techniques obtain an incomplete view of equilibrium dy-

namics, as they are generally unable to span all the disparate length and time scales involved in

a structural transition of a molecule (Maximova, Moffatt, Ma, Nussinov, & Shehu, 2016); While

atomic motions occur on the picosecond scale, side-chain motions can take a few nanoseconds,

and concerted motions among groups of atoms facilitating structural rearrangements for molecu-

lar recognition events can take anywhere from a few microseconds to a few milliseconds (Shaw,

Maragakis, Lindorff-Larsen, Piana, Dror, Eastwood, Bank, Jumper, Salmon, Shan, & Wriggers,

2010; Lindorff-Larsen, Piana, Dror, & Shaw, 2011; Zagrovic, Snow, Shirts, & Pande, 2002; Pi-

ana, Lindorff-Larsen, & Shaw, 2012b); in extreme cases, binding of natural and drug molecules to

proteins occurs on the hours scale (Hoelder, Clarke, & Workman, 2012).

Computational treatments of biomolecules are driven by the promise of complementing wet-

laboratory treatments in obtaining a comprehensive and detailed characterization of equilibrium

512



COMPUTATIONAL TREATMENTS OF BIOMOLECULES BY ROBOTICS-INSPIRED METHODS

dynamics. The current most well-known frameworks employed in silico are Molecular Dynamics

(MD) (Verlet, 1967; McCammon et al., 1977) and Monte Carlo (MC) (Hastings, 1970; Metropolis,

Rosenbluth, Rosenbluth, Teller, & Teller, 1953). In principle, the entire equilibrium dynamics of

a molecule can be simulated by simply following the motions of the constitutive atoms along the

physical forces that atoms impose on one another. This is the foundation of the MD framework. In

contrast, in the MC framework, structural perturbation moves applied to atoms or bonds connecting

atoms are not the result of physical forces but instead design decisions. Different local search

strategies can be formulated to make use of such moves and iteratively explore neighborhoods in

the structure space of a biomolecule.

The scope and capabilities of MD- and MC-based treatments of biomolecules have been sig-

nificantly increased due to improvements in hardware and parallel computation strategies. Special-

ized architectures, such as Anton, a supercomputer designed for MD simulations, (Piana, Lindorff-

Larsen, Dirks, Salmon, Dror, & Shaw, 2012a; Piana et al., 2012b; Lindorff-Larsen et al., 2011),

GPUs (Stone, Phillips, Freddolino, Hardy, Trabuco, & Schulten, 2007; Harvey, Giupponi, & de

Fabritiis, 2009; Tanner, Phillips, & Schulten, 2012; Götz, Williamson, Xu, Poole, Le Grand, &

Walker, 2012), and petascale national supercomputers, such as BlueWaters, Titan, Mira, and Stam-

pede (Dubrow, 2015; Zhao, Perilla, Yufenyuy, Meng, Chen, Ning, Ahn, Gronenborn, Schulten,

Aiken, & Zhang, 2013) have allowed characterizing biomolecular structure and dynamics up to the

microsecond time scale. Algorithmic improvements in dynamic load balancing (Fattebert, Richards,

& Glosli, 2012), neighbor searches (Proctor, Lipscomb, Zou, Anderson, & Cho, 2012), and opti-

mal force splitting (Batcho, Case, & Schlick, 2001) allow effectively distributing the simulation of

the dynamics of molecular systems comprised of billions of particles (Perilla, Goh, Cassidy, Liu,

Bernardi, Rudack, Yu, Wu, & Schulten, 2015).

In principle, a full account of the equilibrium dynamics of a biomolecule requires a comprehen-

sive characterization of both the structure space available to the biomolecule at equilibrium as well

as the underlying energy surface that governs accessibility of structures and transitions between

structures at equilibrium. This remains challenging to do via MD and MC-based frameworks, and

algorithmic enhancements of the classic MD and MC frameworks essentially aim to enhance their

sampling of the structure space of a biomolecule. A review of state-of-the-art enhancements can be

found in the work of Maximova et al. (2016).

In this survey paper, we focus instead on emerging contributions from the Robotics community

on how to enhance sampling with complementary algorithmic strategies. Specifically, we review

robotics-inspired methods designed to model structural excursions of a biomolecule at equilibrium

by building conceptually over techniques designed originally for robot motion planning. These

methods have now reached a crucial stage. They have been shown applicable to characterization of

diverse molecular mechanisms in computational structural biology, such as protein-ligand binding,

folding and unfolding of peptides, proteins, and RNA molecules, and transitions of small peptides

and large proteins between thermodynamically-stable and semi-stable structural states. As this sur-

vey shows, these methods are capable of addressing challenging computational issues posed in each

of these application settings, but they have yet to be widely adopted by the computational biology

community at large. For various reasons, some of which are discussed in this survey, these methods

are seen as providing an efficient but less detailed and less accurate characterization of biomolecu-

lar equilibrium structure and dynamics. This survey provides a critical review of robotics-inspired

methods and lays out outstanding issues that need to be addressed for these methods to be consid-

ered reliable tools and be widely adopted for modeling biomolecular structure and dynamics.
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This survey is organized as follows. A background of models of biomolecular energetics and

geometry is provided in Section 2. Section 3 then introduces the main classes of problems in

biomolecular modeling addressed with robotics-inspired methods, summarizes the robot motion

planning frameworks over which such methods build, and concludes with a brief description of

challenges faced by robotics-inspired methods in the context of biomolecular modeling. Section 4

provides examples of design decisions that address such challenges through a comprehensive and

detailed review of robotics-inspired methods for modeling biomolecular structure and dynamics.

Section 5 concludes this survey with a critical summary of remaining challenges and a discussion

of several prospects for future research.

2. Background

The structural excursions that regulate the recognition events in which a biomolecule participates in

the cell can be understood via a theoretical treatment of biomolecules as thermodynamic systems

hopping between energetic states. These hops are fundamentally the result of concerted motions

of the atoms that make up a biomolecule; in any physical system, constitutive particles are in a

state of perpetual motion, fuelled by thermal excitation, all the while subjecting one another to

physical forces (Cooper, 1984). These forces cumulatively drive a molecular system toward lower-

energy states, while thermal excitations kick them off locally-optimal states, providing sufficient

randomness to allow the entire system undergo a biased exploration of its structure space.

In the following we first summarize current knowledge on atomic forces and biomolecular en-

ergy functions that are employed in computational treatments of biomolecular structure and dynam-

ics. The rest of this Section provides details on biomolecular geometry, showing how biomolecules

can be treated mechanistically as modular systems composed of numerous, heterogeneous compo-

nents for the purpose of characterizing their equilibrium structure and dynamics in silico.

2.1 Biomolecular Energetics: Molecular Mechanics

The physical interactions among the particles that make up a molecular system can in principle be

measured via quantum mechanics (QM) methods. QM methods can carry out detailed and accurate

electronic structure calculations but are currently limited in their applicability to molecular systems

composed of no more than a few hundred atoms (Khaliullin, VandeVondele, & Hutter, 2013). In-

stead, molecular mechanics (MM) methods are now the methods of choice to evaluate structures

of macromolecules, such as proteins, RNA, DNA, and other large molecular systems comprised of

several molecules.

Though it was long known that atoms in a molecule subject one another to physical forces, such

as Coulomb forces and others, it was the work of Levitt and Warshel in the Lifson laboratory at the

Weizmann Institute of Science that propelled the design of consistent (now known as MM) energy

functions for molecules. Lifson argued that it should be possible to come up with a small number of

consistent, transferable parameters that do not depend on the local environment of an atom and allow

analyzing the energetics of small crystalline molecules (Lifson & Warshel, 1968). Kendrew realized

that such consistent energy functions could be used to conduct energetic evaluations on different

placements (that is, structures) of the atoms comprising proteins and nucleic acids. Levitt and

Lifson operationalized this realization to conduct energy refinements of protein structures (Levitt &

Lifson, 1969).
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MM energy functions have now become more detailed and accurate, but they are still estimates

of the true potential energy of a molecule, summing up the possible, physical interactions between

atoms in a molecule. Research on designing MM energy functions is active, and there are now many

different functions offered from different computational chemistry labs across the world. These

functions largely follow a common functional form, and categorize pairwise atomic interactions

into local and non-local interactions; it should be noted that more accurate energy functions are

available that consider n-particle interactions, but these are more computationally expensive and

not widely adopted (Clementi, 2008). Local interactions concern modeling forces due to bonds,

bond angles, and the periodicity of dihedral/torsion angles. Non-local interactions are divided into

electrostatic (measured through the Coulomb potential) and van der Waals (measured through the

Lennard-Jones – LJ – potential) interactions. These different types of interactions are typically

linearly combined together, each with its own weight, to associate a potential energy value with a

particular placement of atoms in a given molecular structure.

The following equation provides an example of the popular CHARMM energy function (Brooks,

Bruccoleri, Olafson, States, Swaminathan, & Karplus, 1983) that is integrated in the NAMD soft-

ware package for simulation of biomolecular dynamics (Phillips, Braun, Wang, Gumbart, Tajkhor-

shid, Villa, Chipot, Skeel, Kalé, & Schulten, 2005).

ECHARMM =
∑

bonds

kb · (b− b0)
2 +

∑

UB

kUB · (S − S0)
2 +

∑

valence angles

kα(α− α0)
2 +

∑

dihedral angles

kθ · (1 + cos(nθ − δ)) +

∑

improper dihedral angles

kimp(θ − θ0)
2 +

∑

non−bonded atoms i, j

ǫij

[

(Rminij
rij

)12
− 2

(Rminij
rij

)6
]

+

∑

non−bonded atomsi, j

qi · qj
ǫ · rij

The k weights are constants, and the 0 subscript indicates equilibrium, ideal values of distances

and angles. The first term effectively penalizes deviations of bond lengths from equilibrium values

with a quadratic potential. The second term, also referred to as the Urey Bradley (UB) or the

1,3 term, introduces a similar penalty for pairs of atoms separated by two covalent bonds, with the

distance between two atoms involved in a 1,3 interaction denoted by S. The third term is a quadratic

potential for valence angles (between two consecutive bonds), denoted by α. The fourth term is a

potential calculated over dihedral/torsion angles θ and models the presence of steric barriers between

atoms separated by three covalent bonds. In this term, the n and δ variables are the multiplicity and

the phase angles, respectively. In CHARMM, improper dihedral angles are specially penalized, as

in the fifth term. The sixth term shows the LJ potential in CHARMM. In the LJ term summing up
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van der Waals interactions between non-bonded atoms, rij measures the Euclidean distance between

two non-bonded atoms (that are not covered by the UB term), and Rminij = (Rmini+Rminj)/2
is the minimum interaction radius between the atoms, measured as half the sum of the known van

der Waals radii Rmini and Rminj (ǫij is a weight specific to the types of atoms i and j). The LJ

term sums up a weak attraction at long distances and strong repulsion at short distances. The LJ

term in CHARMM has a 12−6 functional form, with an exponent of 12 for the repulsive sub-term

and an exponent of 6 for the attractive sub-term. The last term in the CHARMM function measures

electrostatic interactions via the Coulomb potential: qi and qj are the known partial charges of atoms

i and j, rij measures the Euclidean distance between atoms i and j, and ǫ is the dielectric constant

encoding the type of environment in which a biomolecule is (vacuum or different types of solvent

environments).

Differences between available potential energy functions are due to different weights, different

exponents used to measure the repulsion versus attraction terms in the van der Waals interaction,

explicit estimation of hydrogen-bonding interactions outside the umbrella of van der Waals interac-

tions, and more (Hornak, Abel, Okur, Strockbine, Roitberg, & Simmerling, 2006). The Amber suite

of energy functions, integrated in the Amber MD simulation package (Case, Darden, Cheatham,

Simmerling, Wang, Duke, Luo, Merz, Pearlman, Crowley, Walker, Zhang, Wang, Hayik, Roitberg,

Seabra, Wong, Paesani, Wu, Brozell, Tsui, Gohlke, Yang, Tan, Mongan, et al., 2014), OPLS (Jor-

gensen, Maxwell, & Tirado-Reves, 1988), and CHARMM follow a similar functional form. Other

similar functions are CEDAR (Hermans, Berendsen, van Gunsteren, & Postma, 1984) and GRO-

MOS (van Gunsteren, Billeter, Eising, Hünenberger, Krüger, Mark, Scott, & Tironi, 1996), now in-

corporated in the GROMACS simulation package (Van Der Spoel, Lindahl, Hess, Groenhof, Mark,

& Berendsen, 2005), and others. A review of these functions, known as physics-based function,

can be found in the work of Ponder and Case (2003). Other functions, known as knowledge-based

function, include additional terms derived from conducting statistics over known active structures of

proteins in the PDB. Such functions are best suited for specific applications, such as rapid modeling

of equilibrium structures. Rosetta (Leaver-Fay, Tyka, Lewis, Lange, Thompson, Jacak, Kaufman,

Renfrew, Smith, Sheffler, Davis, Cooper, Treuille, Mandell, Richter, Ban, Fleishman, Corn, Kim,

Lyskov, Berrondo, Mentzer, Popovi, & et. al., 2011) and Quark (Xu & Zhang, 2012) are recent

examples of knowledge-based functions.

Whether physics-based or knowledge-based (or hybrid), all current molecular energy functions

are models and, as such, they contain inherent errors that need to be taken into account when mod-

eling biomolecular structure and dynamics (Hornak et al., 2006). In addition, in all such func-

tions, despite the specific functional form, the most computationally expensive terms are the LJ

and Coulomb terms due to the summation over pairs of atoms. These terms are also the ones that

are most sensitive to small atomic motions. In particular, the 12-6 functional form of the LJ term

provides great complexity and non-linearity to the energy surface that one can associate with the

structure space of a biomolecule. It is quite common to reduce the total energy of a structure by

a few hundred calories solely due to improvements in the LJ term from imperceptible changes in

atomic positions. Moreover, small atomic displacements can lower the value of one term while

increasing that of another in the energy function. From an optimization point of view, the terms that

are linearly combined in an energy function are essentially conflicting optimization objectives. In

computational biology, this issue is known as “frustration” and results in rugged or rough energy

surfaces (that is, rich in local minima). In the broader AI community, such surfaces would be re-

ferred to as multi-modal. While true biomolecular energy surfaces are not overly rugged (known
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as the principle of minimal frustration) (Clementi, 2008; Nevo, Brumfeld, Kapon, Hinterdorfer, &

Reich, 2005), the modeled energy surfaces that one can probe in silico with the current energy func-

tions have been shown exceptionally rugged (Olson & Shehu, 2012; Molloy, Saleh, & Shehu, 2013;

Lois, Blawzdziewicz, & O’Hern, 2010).

2.2 The Biomolecular Energy Surface

Equilibrium biomolecular dynamics can be visualized as structural excursions on the energy sur-

face. The picture that emerges for proteins is that of a funnel-like, multidimensional energy sur-

face (Onuchic et al., 1997; Dill & Chan, 1997). Projecting the surface onto few coordinates that

capture relevant features of the different structures would allow summarizing and thus visualizing

the energy surface in terms of a landscape (Onuchic & Wolynes, 2004).

The energy landscape shown in two different camera views in Figure 2 illustrates protein energy

landscapes expected to be reconstructed in silico. Horizontal cross-sections of the landscape every

dE units apart correspond to the different energetic states. The cross-sections go down in width as

energy decreases; there are fewer options to place atoms in a molecule as potential energy gets lower

without incurring energetic costs greater than dE. The width of a cross-section, or the structural

diversity of an energetic state, is captured in the notion of entropy. Thermodynamically-stable states

are those with low free energy F , measured as F = 〈E〉 − T ·S, where 〈E〉 is the average potential

energy over structures grouped together in the state, T is temperature, and S is entropy.

The first visual illustration, proposed by Dill and Chan (1997), highlighted the main features

expected of true protein energy landscapes, a single, deep and wide basin corresponding to the

thermodynamically-stable state and few other shallower, narrower basins corresponding to meta-

stable states serving as possible kinetic traps. The landscape shown in Figure 2(a) is a synthetic

one that is closer to the landscapes corresponding to existing MM energy functions; the landscape

is not smooth but rather rich in local minima; in other words, the landscape is highly rugged or

rough. A different camera view in Figure 2(b) emphasizes the presence of multiple, similarly-deep

and wide basins among which current energy functions cannot further distinguish for the purpose of

predicting the most stable state via energetic-based arguments; given the inherent errors, structure-

function arguments cannot depend on small energetic differences.

The energy landscape view was instrumental in linking molecular structure, dynamics, and func-

tion. Viewing proteins and other biomolecules in terms of their energy landscapes gave rise to better

understanding folding and binding as diffusion-like processes and not as a series of sequential, deter-

ministic events. Under the new, landscape view (Baldwin, 1995), biomolecules can reach their most

stable state at equilibrium by tumbling down the energy landscape along multiple routes (Bryngel-

son & Wolynes, 1987; Bryngelson, Onuchic, Socci, & Wolynes, 1995; Onuchic & Wolynes, 2004).

In light of the new view, the intermediate, meta-stable states in which proteins would sometimes be

found in the wet laboratory before transitioning to their most stable state correspond to other wide

basins in the landscape. An illustration of this is provided in Figure 2(b).

The new view inspired a new understanding of dynamic molecular processes, known as confor-

mational selection or population shift (Ma, Kumar, Tsai, & Nussinov, 1999; Tsai, Ma, & Nussinov,

1999b; Tsai, Kumar, Ma, & Nussinov, 1999a). Conformational selection refers to the idea that all

states of an unbound molecular unit are present and accessible by the bound unit. For many un-

bound/uncomplexed biomolecules, there may be many semi-stable states at equilibrium. The prox-

imity of a ligand or another molecular partner shifts the equilibrium (and thus the probability distri-
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(a) Illustration of a complex energy landscape

(b) Tilted camera view highlights the presence of multiple energy basins

Figure 2: (a) The shown landscape illustrates what is often reconstructed in silico, rough landscapes rich

in local minima. (b) The tilted camera view emphasizes the presence of multiple energetic basins. A basin

is defined as the neighborhood of a local minimum in a fitness landscape. The interested reader is encour-

aged to learn more about features of landscapes that arise in optimization problems in Stadler’s seminal

review (Stadler, 2002). Given the high dimensionality of the structure space, many methods that probe energy

landscapes cannot guarantee that a particular, sought stable or meta-stable state will be captured among the

probed basins, or that none of the probed basins are artifacts of the energy function employed.

bution over possible states in which a system is found at equilibrium) towards one of the states that

are close to optimal at equilibrium in the unbound/uncomplexed molecule. In other words, the pres-

ence of a binding partner can be considered an external perturbation to the unbound/uncomplexed

energy landscape. Internal perturbations refer to changes in a biomolecule’s composition itself due

to changes to DNA, copy read errors, and other post-translation modifications that can occur. In

many aberrant versions of a biomolecule, energy barriers between stable and semi-stable states can
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drastically change and modify the underlying detailed structural mechanism regulating function,

resulting in dysfunction or even loss of function (Clausen, Ma, Nussinov, & Shehu, 2015).

The principle of conformational selection allows employing analysis of energy landscapes of

unbound molecules to identify structural states of interest for complexation events. The latter can

be found among the meta-stable and stable states of the uncomplexed molecule and can thus be

identified via modeling and simulation of the uncomplexed molecule.

2.3 Computing Structures and Structural Transitions

The two main problems that can be addressed in silico to elucidate biomolecular equilibrium struc-

ture and dynamics concern (i) computing the ensemble of structures constituting the stable and

meta-stable states relevant for biological function and (ii) computing the detailed structural transi-

tions between such structures. The first problem is amenable to stochastic optimization, as it fun-

damentally involves locating deep and wide basins/minima in a nonlinear and multimodal energy

surface. The second problem entails elucidating the different routes employed by a biomolecule as it

switches between two structures. This survey focuses primarily on the second problem, that of com-

puting structural transitions in bound and unbound biomolecules. Specifically, the survey reviews

methods that employ robotics analogies to address this problem. While, in principle, robotics-

inspired methods can also provide information on the structure space available to a biomolecule at

equilibrium, other, more powerful stochastic optimization algorithms now exist for this purpose. We

refer interested readers to the review by Shehu (2013), which surveys state-of-the-art evolutionary

algorithms (EAs) capable of extracting efficient, discrete representations of protein energy surfaces.

At a minimum, all algorithms aiming to model biomolecular structures are comprised of three

functional units: (i) a way to represent/model a biomolecular structure; (ii) a way to modify such

models in order to obtain new structures; (iii) and a way to evaluate the energetics of such structures.

The existing MM energy functions summarized above in the context of biomolecular energetics

provide a way to evaluate models of biomolecular structures explored in silico. The functional units

(i) and (iii) are related, as the model chosen for a protein structure determines to a great extent

what moves or perturbation operators can be designed to efficiently and effectively explore the

structure space. Below, we summarize models that are now popular among the different algorithms

employed to model equilibrium structures and dynamics of biomolecules. Details regarding the

moves or perturbation operators designed to interface with such models are provided later in this

survey when reviewing robotics-inspired methods.

2.4 Molecular Models: Selecting Variables of Interest

Covalent bonds link atoms together in a molecule. In protein molecules, atoms are organized into

amino acids, which come in twenty different types in nature. All amino acids contain a common

core of heavy atoms that make up its backbone and a unique set of heavy atoms that make up its

side chain (hydrogen/light atoms are found both in the backbone and side-chain groups). The twenty

naturally-occurring amino acids only differ in their side chain. Figure 3(a) shows the N, CA, C, and

O heavy-atoms that comprise the backbone of an amino acid and further illustrates how amino acids

are connected via covalent, peptide bonds in a serial fashion to form a (polypeptide) chain. What is

referred to as a protein is often just one polypeptide chain; in protein-protein binding polypeptide

chains stay together via non-covalent, weak interactions.
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(a)

(b)

Figure 3: (a) In this chain of six amino acids, backbone atoms are N (gray), CA (black), C (gray), and O

(silver). A peptide bond Ni-Ci+1 links two amino acids (i proceeds from N- to C-terminus, which refer to

backbone N and C atoms not in peptide bonds). Circled atoms comprise the side chain of each shown amino

acid. (b) The three types of internal coordinates are shown here, the bond length di, the valence angle αi

between two consecutive angles, and the torsion or dihedral angle θi defined by three consecutive bonds. The

dihedral angle is the angle between the two normals corresponding to each of the planes that can be defined

by consecutive bonds j and j + 1 and consecutive bonds j + 1 and j + 2. Depending on which backbone

bonds they are defined, the θi dihedral angles are referred to as either φ or ψ, and annotated with the position

of the amino acid on which they are defined (in the direction of the N- to the C-terminus). For instance, φi

refers to the dihedral angle on the bond connecting the backbone N to the backbone CA atom of amino acid

i, and ψi refers to the dihedral angle defined on the bond connecting the backbone CA to the backbone C

atom of amino acid i. Characteristic values are observed for the φ, psi angles among equilibrium protein

structures (Ramachandran et al., 1963).
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Figure 3(a) illustrates that side chains dangle off the backbone of a polypeptide chain. Treating

a protein molecule as a model where atoms are represented as balls and bonds between them as

sticks exposes interesting questions regarding how to perform deformations of the model without

breaking covalent bonds. This question is in essence what structure modeling researchers have

to answer when defining variables to represent a molecule so as to be able to capture its intrinsic

flexibility at equilibrium.

2.4.1 CARTESIAN COORDINATE-BASED MODELS

In the most intuitive model of a molecular structure, each Cartesian coordinate of each atom is

selected as a variable. The Cartesian coordinate-based model is the preferred one by MD algo-

rithms, which move individual atoms in a molecule according to the cumulative force that sums

up interactions of an atom with all others in a molecule. However, this model is not ideal. First,

it is redundant, demanding 3N variables for a molecule of N atoms. In small peptide and drug

molecules, the number of atoms may be in the dozens, but even in small proteins, the number of

atoms can easily surpass a hundred; as a result, the variable space has hundreds of dimensions.

Many strategies have been offered to reduce the number of variables by essentially removing

certain atoms from modeling. For example, side-chain atoms are the first to be sacrificed in protein

structure modeling, since it has been demonstrated that the main features of equilibrium protein

structures are captured by the backbone (Rose, Fleming, Banavar, & Maritan, 2006). Once such

reduced structures are modeled, side chains can be modeled via side-chain packing algorithms. In

other studies focusing on modeling molecular interactions, only atoms that comprise the interaction

site are explicitly modeled. These decisions effectively result in reduced models (and thus fewer di-

mensions of the selected variable space), ranging from CA traces, where only the central CA atom

is modeled in each amino acid, to backbone models, where only the backbone chain is tracked in

3d space (Papoian, Ulander, Eastwood, Luthey-Schulten, & Wolynes, 2004; Matysiak & Clementi,

2004; Das, Matysiak, & Clementi, 2005; Matysiak & Clementi, 2006; Hoang, Trovato, Seno, Ba-

navar, & Maritan, 2007; Rose et al., 2006). There is now a rich literature on reduced models and the

energy functions designed to interface with these models (Clementi, 2008).

Representing a molecular structure in terms of the Cartesian coordinates of all (or a subset of)

the constitutive atoms is appealing, as any new instantiation in the variable space can be readily

evaluated in terms of its energetics. We recall that the central LJ and electrostatic/Coulomb terms

in the energy functions that are now widely adopted in biomolecular structure and dynamics mod-

eling operate over 3d coordinates of atoms. However, the Cartesian coordinate-based model is both

redundant and ineffective. First, the model results in an excessive number of variables, which poses

great challenges for any sampling-based method aimed at probing the structure space one sample at

a time. Second, it is ineffective, as it does not encode in it any of the explicit and implicit geometric

constraints present in molecular structures.

Many efforts in the computational biophysics community target the reduction of coordinates.

The resulting models are referred to as coarse-grained models or representations. The first such

model, employed in an MC simulation of the folding of the bovine pancreatic trypsin inhibitor,

represented each amino-acid residue with one pseudo-atom (Levitt & Warshel, 1975). Work on

coarse-grained and multiscale models (in the latter, different parts of the structure are represented

at different levels of detail/resolution at different time and length scales) has been key to extend

the spatio-temporal reach of MD and MC simulations of biomolecular dynamics. Such work has
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the additional onerous task of designing accompanying energy functions that reproduce known

thermodynamic properties even at lower or mixed structural resolution. Indeed, the 2013 Nobel

Prize to Warshel recognized seminal work by him in multiscale models built with the QM/MM

method (Warshel & Levitt, 1976; Warshel, 2003; Kamerlin, Haranczyk, & Warshel, 2009; Mukher-

jee & Warshel, 2011, 2012; Dryga, Chakrabarty, Vicatos, & Warshel, 2011; Rychkova, Mukherjee,

Bora, & Warshel, 2013; Mukherjee & Warshel, 2013). The interested reader is directed to the review

by Clementi (2008) on coarse-grained models. The review by Zhou (2014) focuses on multiscale

models.

2.4.2 ENCODING VARIABLE DEPENDENCIES IN CARTESIAN COORDINATE-BASED MODELS

Outside of the realm of modeling chemical reaction processes, such as bond formation and breaking,

when modeling biomolecular equilibrium structures and dynamics, other application setups require

preserving certain structural features that can be formulated as local and non-local constraints. Some

constraints, such as keeping bonded atoms at a distance no more than the ideal/equilibrium length of

their bond, are known as explicit, local constraints. They are trivially extracted from specification of

the chemical composition of a molecule, as they involve neighboring atoms. Equilibrium conditions

place additional, implicit constraints on biomolecular structures. The need to preserve favorable

Lennard-Jones interactions, for instance, places (non-local/long-range) constraints over non-bonded

atoms. Such long-range constraints cannot be effectively captured by a model where there is a

variable for each Cartesian coordinate of each atom. Any perturbation operator that interfaces with

such a model and modifies such variables has no information on invalid or energetically-unfavorable

assignments to subsets of variables, as variable dependencies are not captured in the model. An

external energy model is crucial here in the form of an energy function to evaluate the results of the

perturbation operator and detect variable instantiations resulting in violations.

The Cartesian coordinate-based model can encode variable dependencies. The latter can be

extracted via several techniques, including multivariate analysis techniques that analyze known

equilibrium structures of a biomolecule to identify subsets of atoms that exhibit simultaneous dis-

placements; that is, move in concert. The essential premise of such techniques is that such known

structures are good examples of solutions or near-solutions of the energy function, and that analysis

of such examples will expose variable dependencies. These dependencies can then be employed

to design reduced Cartesian coordinate-based models that readily encode in them the energetic

constraints satisfied by the provided examples (solution or near-solution structures) and effective

perturbation operators that readily yield new near-solution instantiations in the reduced variable

space (Clausen & Shehu, 2015).

Multivariate Analysis Techniques to Obtain Collective Variables The sub-field of statistical

techniques for the identification of collective motions, which are also referred to as collective coor-

dinates or collective variables is rich, and a review is not the subject of our survey. Instead, we point

to recent work in the narrow context of biomolecular modeling, where variance-maximizing tech-

niques, such as Principal Component Analysis (PCA) (Shlens, 2003), Isomap (Tenenbaum, de Silva,

& Langford, 2000), Locally Linear Embedding (Roweis & Saul, 2000), Diffusion Maps (Coifman,

Lafon, Lee, Maggioni, Nadler, Warner, & Zucker, 2005), and others (van der Maaten, Postma, & van

den Herik, 2009) have been employed to analyze biomolecular structures and dynamics (Teodoro,

Phillips, & Kavraki, 2003; Das, Moll, Stamati, Kavraki, & Clementi, 2006; Plaku, Stamati, Clementi,

& Kavraki, 2007; Gorfe et al., 2008; Grant et al., 2009; Hori, Chikenji, & Takada, 2009; Maisuradze,
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Liwo, & Scheraga, 2009; Rohrdanz, Zheng, Maggioni, & Clementi, 2011; Zheng, Rohrdanz, Mag-

gioni, & Clementi, 2011) and, more importantly, identify variables that represent collective motions

of atoms (Zheng, Rohrdanz, & Clementi, 2013; Clausen & Shehu, 2015; Clausen et al., 2015; Mol-

loy, Clausen, & Shehu, 2016; Maximova, Plaku, & Shehu, 2015). In addition to these methods,

other ones such as Normal Mode Analysis (NMA) (Ciu & Bahar, 2005) also have a rich history

in computational structural biology (Atilgan, Durell, Jernigan, Demirel, Keskin, & Bahar, 2001;

Delarue & Sanejouand, 2002; Kim, Chirikjian, & Jernigan, 2002b; Zheng & Doniach, 2003; Tama,

Valle, Frank, & Brooks, 2003; Bahar & Rader, 2005; Maragakis & Karplus, 2005; Zheng & Brooks,

2005; Zheng, Brooks, & Hummer, 2007; Yang, Song, Carriquiry, & Jernigan, 2008; Yang, Mâjek,

& Bahar, 2009; Das, Gur, Cheng, Jo, Bahar, & Roux, 2014). The normal modes extracted from

NMA are also often employed as as effective perturbation operators in robotics-inspired meth-

ods (Tama & Sanejouand, 2001; Kim, Jernigan, & Chirikjian, 2002a; Kirillova, Cortés, Stefaniu, &

Siméon, 2008; Schuyler, Jernigan, Wasba, Ramakrishnan, & Chirikjian, 2009; Teknipar & Zheng,

2010; Baron, 2013; Al-Bluwi, Vaisset, Siméon, & Cortés, 2013). Our summary and highlights of

robotics-inspired methods later in this survey describe in greater detail collective variables and their

employment in effective perturbation operators.

2.5 Internal Coordinate- and Angular-Based Models

The internal coordinate model has been offered as an effective alternative to the Cartesian coordinate-

based model (Burgess & Scheraga, 1975). In the internal-coordinate model, the only variables

selected are bond lengths, angles between two consecutive bonds, and torsion or dihedral angles

between three consecutive bonds. Figure 3(b) provides an illustration. This model allows for fast

forward kinematics, as changes to Cartesian coordinates as a result of changes to the values of these

variables can be efficiently calculated via accumulation of rigid-body transformations (Craig, 1989;

Zhang & Kavraki, 2002a).

Internal coordinate-based models are now the norm in non-MD based molecular structure mod-

eling. An additional simplification is made for equilibrium protein structures. Analysis of deposited

equilibrium structures of proteins reveals that bond lengths and bond angles are constrained to char-

acteristic values (Engh & Huber, 1991). This is a consequence of the energetic constraints placed

on structures at equilibrium and is exploited to idealize protein geometry in modeling by effectively

removing bond lengths and bond angles from the list of variables in the model. This leaves only

dihedral angles defined over three consecutive bonds as variables (φ, ψ backbone angles and at

most four dihedral side-chain angles per amino acid, as shown in Figure 3(a)) and is computation-

ally appealing, as the number of dihedral angles for a polypeptide chain of N atoms is on average

3N/7 (Abayagan, Totrov, & Kuznetsov, 1994). It is worth noting that bond lengths and bond an-

gles do change even at equilibrium, but at a faster pace than other motions. Employing idealized

geometry allows devoting computation to obtaining the slower fluctuations first. Once structures

representative of a molecule’s equilibrium dynamics are obtained, deviations of bond lengths and

bond angles can be introduced and studied via more detailed models.

2.5.1 BIOMOLECULES AS KINEMATIC CHAINS WITH REVOLUTE JOINTS

Idealizing protein geometry reveals mechanistic analogies with kinematic chains with revolute

joints. Similarly to how a joint rotation changes positions of following links, so does rotation

by a dihedral angle change positions of following atoms (Craig, 1989). These analogies have been
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employed by robotics researchers to apply algorithms that plan motions for kinematic chains with

revolute joints to the study of protein conformations (Manocha & Zhu, 1994; Singh, Latombe, &

Brutlag, 1999; Apaydin, Singh, Brutlag, & Latombe, 2001; Amato, Dill, & Song, 2003; Apaydin,

Brutlag, Guestrin, Hsu, & Latombe, 2003; Song & Amato, 2004; Cortés, Siméon, & Tran, 2004;

Cortés, Siméon, Guieysse, Remaud-Siméon, & Tran, 2005; Lee, Streinu, & Brock, 2005; Kim

et al., 2002a; Chiang, Apaydin, Brutlag, Hsu, & Latombe, 2007; Shehu & Olson, 2010; Molloy

et al., 2013; Molloy & Shehu, 2013; Haspel, Moll, Baker, Chiu, & E., 2010; Shehu, Clementi, &

Kavraki, 2006). Unlike typical articulated robotic mechanisms, protein chains pose hundreds rather

than a dozen variables (a short backbone of 50 amino acids poses 100 dihedral angles as variables).

The analogies between protein chains and kinematic chains with revolute joints are popular

among robotics researchers proposing robotics-inspired methods for modeling biomolecular struc-

ture and dynamics. For instance, torsional angles were employed early to model protein ligand

binding (Singh et al., 1999) and remain popular in modeling the kinetics of folding in small protein

and RNA molecules (Han & Amato, 2001; Amato et al., 2003; Song & Amato, 2004; Thomas,

Song, & Amato, 2005; Thomas, Tang, Tapia, & Amato, 2007; Tang, Thomas, Tapia, Giedroc, &

Amato, 2008; Tapia, Thomas, & Amato, 2010). Such angles have also proved popular in computing

functionally-relevant structures of peptides and proteins (Haspel, Tsai, Wolfson, & Nussinov, 2003;

Shehu et al., 2006; Shehu, Clementi, & Kavraki, 2007; Shehu, Kavraki, & Clementi, 2007, 2008;

Cortés et al., 2004; Shehu, Kavraki, & Clementi, 2009; Shehu, 2009; Shehu & Olson, 2010; Molloy

et al., 2013), as well as in modeling peptides and proteins switching between different functionally-

relevant structures (Cortés et al., 2005; Jaillet, Cortés, & Siméon, 2008; Haspel et al., 2010; Jaillet,

Corcho, Perez, & Cortés, 2011; Molloy et al., 2016; Molloy & Shehu, 2013, 2015; Devaurs, Molloy,

Vaisset, Shehu, Cortés, & Siméon, 2015; Molloy & Shehu, 2016).

Techniques to Obtain Reduced Angular-based Models The number of variables in angular-

based models can be reduced further via various techniques. For instance, consecutive dihedral

angles can be bundled together into fragments to capture variable dependencies. This technique,

known as molecular fragment replacement and introduced in the context of MC-based methods for

de novo protein structure prediction (Bradley, Misura, & Baker, 2005), allows operationalizing on

the observation that a limited number of configurations are observed for k-bundles of consecutive

dihedral angles among stable protein structures at equilibrium (Han & Baker, 1996). This tech-

nique has been incorporated in robotics-inspired methods for modeling equilibrium protein struc-

ture and dynamics (Shehu & Olson, 2010; Molloy et al., 2013; Molloy & Shehu, 2013, 2016). Other

application-specific techniques analyze structures to reduce or prioritize the number of dihedral an-

gles for manipulation by a perturbation operator. Rigidity-based techniques, for instance, analyze a

given structure to detect least-constrained regions and suggest an order for which dihedral angles to

modify first or more often in order to focus computational resources to computing the large struc-

tural deformations first (Thorpe & Ming, 2004; Wells, Menor, Hespenheide, & Thorpe, 2005; Fox

& Streinu, 2013). Rigidity-based analysis has been incorporated in robotics-inspired methods for

modeling protein dynamics (Thomas et al., 2007). Other techniques are aimed specifically at mod-

eling structural transitions in large proteins (Raveh, Enosh, Furman-Schueler, & Halperin, 2009;

Haspel et al., 2010). In these, a comparison of the two structures for which a transition is sought

identifies the differently-valued dihedral angles. In a similar fashion as in rigidity-based analysis,

these angles are prioritized and modified more often by perturbation operators in order to capture

possibly large structural deformations in a reasonable amount of time. All these techniques make
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several assumptions about which variables participate in the process of interest, and we highlight

such assumptions and their implications later in this survey.

Biomolecular Structure versus Biomolecular Conformation In light of the various models that

can be employed to represent biomolecular structure, a distinction needs to be made between the

terms structure and conformation. The term structure is meant to refer to the specification of the

Cartesian coordinates of the atoms that comprise a molecule (even if not all atoms are explicitly

modeled, as in a backbone or reduced structure). The term conformation is meant to be more gen-

eral and refer to the specification of the values of variables selected in the model of a structure; that

is, a conformation is a particular instantiation in the employed variable space. For instance, a confor-

mation is the instantiation of angles if an angular-based model is employed, and forward kinematics

allows obtaining the structure encoded by such a conformation. It is worth noting that the terms

conformation and structure are often used interchangeably and in a slight abuse of terminology

in biomolecular modeling literature. For instance, many algorithms that explicitly modify struc-

tures via Cartesian coordinate-based models are referred to as conformational search algorithms;

of course, when such models are employed, a structure can be extracted trivially from a conforma-

tion. In this survey, the distinction made above will be observed when referring to structures and

conformations.

In the specific domain of robotics-inspired methods, the term (molecular) conformation is equiv-

alent to (robot) configuration. However, in keeping with the broader computational biology liter-

ature, we will employ the term conformation when referring to macromolecules, such as proteins,

RNA, and DNA, reserving the term configuration for small molecules (also referred to as ligands)

that bind to macromolecules. In addition, while the term variable is often referred to as parame-

ter in the broader computational biology and biophysics literature and degree of freedom (dof) in

robotics and AI literature, we will employ the more general, non-domain specific term of variable

and variable space. That is, a (molecular) conformation is an instantiation in the space of selected

variables. Depending on the number of variables selected to model the molecule under investiga-

tion, the variable space may be high-dimensional. Mapping a conformation to its corresponding

structure allows associating a structure space to the employed variable space. Moreover, energy

functions allow associating an energy surface to the structure space, and interesting observations

regarding stable and semi-stable structural states and excursions among such states can be made by

analyzing the structure space and low-dimensional projections/embeddings of its underlying energy

surface, hence the energy landscape.

Educational Resources The purpose of the material related above is to provide enough detail on

biomolecular geometry to allow seeing how biomolecules can be treated mechanistically as mod-

ular systems composed of numerous, heterogeneous components for the purpose of characterizing

them in silico. Further information for readers of varying levels of background or interest can be

found in online, educational learning modules designed to introduce computer scientists to compu-

tational structural biology. One such set of modules, publicly accessible under the cnx project and

highly popular with students and researchers, can be found at http://cnx.org/contents/

9cMfjngH@6.3:ppj-3H2A@14/Structural-Computational-Biolo. In these mod-

ules, for instance, interested readers can learn about protein architecture in greater detail. Other

modules mirror the material summarized here on representations and energy functions, and yet oth-

ers introduce readers to forward and inverse kinematics for modular mechanical systems, making

these modules a good supplement to the survey of robotics-inspired methods presented here.
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3. Summary of Biomolecular Modeling Problems and Robot Motion Planning

Frameworks

We introduce the main classes of problems in biomolecular modeling that are addressed with

robotics-inspired methods. The robot motion planning frameworks over which these methods build

are summarized next. The section concludes with a summary of challenges faced by algorithmic re-

alizations of such frameworks for modeling biomolecular structure and dynamics. These challenges

are a preview of important design decisions that are detailed in Section 4 in the context of reviewing

representative methods.

3.1 Representative Problems in Biomolecular Modeling

Two main classes of molecular mechanisms are studied by robotics-inspired methods, those that

involve more than one molecule associating/complexating with or disassociating from one another,

and those that involve a dynamic, uncomplexated molecule. As application setups, both concern

informing our understanding of dynamic events involving dynamic molecules.

In the first application setup, robotics-inspired methods aim to model and understand protein-

ligand binding events. Provided unbound structures of the protein receptor and a small ligand

molecule, the objective is to elucidate how the ligand approaches and then binds the protein re-

ceptor. In a related problem, the reverse process is addressed. The ligand is bound to the receptor,

and the goal is to determine motions of the ligand and the protein receptor that allow disassociation.

Modeling protein-ligand binding is important not only for a general understanding of our biology

but also for computation-aided drug discovery. While other molecular recognition events such as

protein-protein, protein-DNA, protein-RNA, and protein-membrane binding conceptually fall in the

same category as protein-ligand binding, they are more challenging due to the higher number of

variables needed to model the association or complexation event and are currently beyond the do-

main of applicability of robotics-inspired methods.

The second application setup concerns modeling and understanding the dynamics of molecules.

Almost exclusively, the focus of robotics-inspired techniques in this category are uncomplexed pro-

tein and RNA molecules. The goal is to elucidate the structural deformations or motions that allow

a protein or an RNA molecule to transition between two structural states of interest. These states

can be the unfolded and folded state, in which case the goal is to highlight folding and unfolding

paths, or they can both be stable or semi-stable structures employed by the molecule to recognize

and lock onto different molecules, in which case the goal is to formulate hypothesis regarding the

impact of structure in molecular recognitions in the healthy and diseased cell.

Figures 4-5 illustrates these problems. In Figure 4, a robotics-inspired method can highlight how

the ligand approaches the protein receptor, as well as where it binds onto the receptor and into what

configuration. The variables of interest need at a minimum to include the translational and rotational

variables of the ligand, as well as internal coordinates to capture the potential structural flexibility

of the ligand. The receptor can be considered frozen in 3d space. A more accurate setup would

also consider internal coordinates of the receptor in order to model its possible structural flexibility

upon ligand binding. However, the resulting number of variables would be too large. A robotics-

inspired method can not only elucidate the bound ligand configuration and its bound placement

relative to the receptor, but also the possible routes of successive configurations and placements

that the ligand may follow to approach the binding site(s). In addition, as Figure 5(a) illustrates,

a robotics-inspired method can show the possible routes of successive structures employed by a
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Figure 4: (a) Where and how does the ligand bind to the protein receptor? Many methods are designed to

elucidate the step-by-step process of how a ligand approaches a protein molecule, where it binds, and with

what configuration.

protein to fold, thus shedding light into the process of protein folding and unfolding. Similar setups

consider RNA molecules. Figure 5(b) illustrates that often robotics-inspired methods are employed

to reveal not only folding or unfolding routes of a protein, but also structural transitions between any

two structures of interest; knowledge of the most probable routes that carry out the transition allows

understanding at a structural level the mechanism by which a biomolecule regulates its biological

activity in the cell.

3.2 Foundations of Robotics-inspired Treatments of Biomolecules

The fundamental assumption of robotics-inspired treatments of biomolecules is that mechanistic

analogies between molecular chains and robot chains allow putting together efficient algorithms for

rapid exploration of molecular structure spaces and modeling of excursions of molecules on such

spaces (Manocha & Zhu, 1994; Singh et al., 1999; Apaydin et al., 2001; Amato et al., 2003; Apaydin

et al., 2003; Song & Amato, 2004; Cortés et al., 2005; Kim et al., 2002a; Chiang et al., 2007;

Kirillova et al., 2008). That is, instead of simulating how a molecule navigates its energy surface

via gradient-based and other local search techniques, more powerful techniques can be put together

by building on algorithms demonstrated to have high exploration capability on robot configuration

spaces. Robotics-inspired treatments of biomolecules draw from techniques for fast forward and
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(a) Protein folding

(b) Structural Transitions

Figure 5: (a) How do proteins fold? Shedding light into the process of protein folding is an important goal,

and many robotics-inspired methods are devoted to elucidating this process step by step by computing the

most probable succession of structures assumed by a protein navigating from the unfolded to the folded state.

(b) How do proteins transition between the diverse structures they use for interacting with different partners in

the cell? Robotics-inspired methods seek to elucidate structural transitions between meta-stable and stable

structural states of a protein.

inverse kinematics and, more importantly, sampling-based algorithms developed in the algorithmic

robotics community to address the robot motion-planning problem (Choset & et al., 2005).
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The objective in robot motion planning is to obtain paths that take a robot from a given, start

configuration to a given, goal configuration. The robot motion planning problem bears mechanistic

analogies to the problem of computing conformations along a transition trajectory of a biomolecule;

in both problems, the driving objective is to uncover what of the underlying (molecular) conforma-

tion or (robot) configuration space is employed in motions of an articulated system from a start to a

goal conformation or configuration. Analogies between molecular bonds and robot links and molec-

ular atoms and robot joints help to draw from techniques that perform fast kinematics for kinematic

linkages (Manocha, Zhu, & Wright, 1995; Zhang & Kavraki, 2002b); that is, specifying values for

the variables selected to represent a molecular conformation, rapidly update Cartesian coordinates

of the corresponding structure (Zhang & Kavraki, 2002b). In the inverse kinematics setting, these

techniques allow rapidly obtaining values to underlying variables consistent with Cartesian-based

constraints (Chirikjian, 1993; Manocha & Canny, 1994; Zhang & Kavraki, 2002a; Kolodny, Guibas,

Levitt, & Koehl, 2005).

At a higher level, robotics-inspired methods operationalize on two key observations. The first

observation, originally made for robot configuration spaces, is that solution-containing regions of

a high-dimensional and non-linear variable space can only be found by heuristic rather than exact

approaches; stochastic, or sampling-based techniques can construct the distribution of constraint-

satisfying instantiations in a two-stage manner; an initial distribution is first constructed via sam-

pling of the unconstrained variable space. Instantiations are then evaluated through external (en-

ergetic) models capable of capturing inter-variable dependencies and penalizing violations of con-

straints. Violating samples are either removed or down-weighted so the initial, uninformed distribu-

tion gradually converges to that containing solutions. The second observation is that transitions of

a system between two given solutions can be modeled via discrete, kinetic models that essentially

embed solutions in graph-like structures amenable to rapid, shortest, or lowest-cost path queries,

provided that lengths or other cost metrics can be associated with a given series of configurations in

a path. Methods that embed solutions in a tree are referred to as tree-based methods, and those that

embed solutions in a graph are referred to as roadmap-based methods.

3.3 The Motion Planning Framework: Tree- and Roadmap-Based Methods

In the context of molecular modeling, tree-based methods grow a tree in conformation space from

a given, start to a given, goal conformation representing the structures bridged by the sought transi-

tion. The tree is incrementally extended, with every iteration adding a new conformation node and

a new branch to the tree. Depending on whether the tree is pulled towards configurations sampled

at random over the configuration space or pushed from leaves towards new regions of the configu-

ration space, the method is known as Rapidly Random Exploring Tree (RRT) (LaValle & Kuffner,

2001), or Expansive Spaces Tree (EST) (Hsu, Kindel, Latombe, & Rock, 2002), accordingly. It is

important to note here that the sampling and connectivity go hand in hand, as every sampled con-

formation is added to the growing tree. The growth of the tree is biased so the goal conformation

can be reached in a reasonable computational time. As a result, tree-based methods are efficient but

limited in their sampling. They are known as single-query methods, as they can only answer one

start-to-goal query at a time; that is, only one path of consecutive conformations that connect the

start to the goal can be extracted. Running them multiple times to sample an ensemble of confor-

mation paths for the same query results in an ensemble with high inter-path correlations due to the

biasing of the conformation tree.
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Roadmap-based methods adapt the Probabilistic Road Map (PRM) framework

(Kavraki, Švestka, Latombe, & Overmars, 1996). Rather than grow a tree in conformation space,

these methods detach the sampling of conformations from the connectivity model that encodes

neighborhood relationships among conformations in the conformation space. Typically, a sampling

stage first provides a discrete representation of the conformation space of interest, with conforma-

tions satisfying explicit or implicit geometric and energetic constraints, and then a roadmap building

stage embeds the sampled conformations in a graph/roadmap by connecting each one to its near-

est neighbors. Roadmap-based methods can provide richer information regarding a dynamic event,

as multiple paths may exist in the roadmap connecting two structures of interest. Moreover, these

methods support multiple queries, as in principle the same graph can be used to extract paths con-

necting different given structures. These structures can be specified as conformations and connected

to nearest neighbors in the graph, and then the graph can be queried for optimal paths. In practice,

it is difficult to obtain broad and dense sampling of sufficient regions in the conformation space of

a molecule so as to elucidate diverse excursions between structures of interest.

Below we provide further detail on tree-based and roadmap-based methods in robotics to famil-

iarize the reader with the diverse design decisions employed and even adapted by robotics-inspired

methods for biomolecular modeling.

3.3.1 NON-HIERARCHICAL TREE-BASED ROBOT MOTION PLANNING METHODS

Tree-based methods can be categorized broadly based on the strategies employed to select the vertex

from which to expand the tree. Non-hierarchical strategies consider all the vertices as possible

candidates. Hierarchical strategies place the tree vertices at a bottom layer and introduce additional

high-level layers that group similar vertices together, proceeding from the top to the bottom layer

during the selection process.

RRT is one of the most widely used non-hierarchical tree-based motion planning methods. In

RRT (LaValle & Kuffner, 2001), at each iteration, the tree is expanded towards a randomly-sampled

configuration qrand. The nearest vertex, qnear, in the tree to qrand is determined according to a dis-

tance metric. A local planner attempts to connect qnear to qrand. Often the local planner interpolates

over the underlying variables to generate intermediate configurations. In the basic version of RRT,

the iteration stops after one interpolation step. In the connect version, the expansion continues until

qrand is reached or the interpolation results in an invalid configuration, e.g., collision with obstacles.

This process of sampling a configuration and expanding from the nearest neighbor in the tree is re-

peated until the goal is reached. Figure 6 shows such a tree. By using random sampling and nearest

neighbors, RRT exhibits a Voronoi bias which enables the expansion of the tree toward unexplored

regions. To also bias the search towards the goal, qrand is often selected with probability b (often set

to 0.05) as the goal configuration and with probability 1− b uniformly at random.

Over the years, different RRT variants have been developed in order to improve the exploration.

The adaptive dynamic domain RRT (ADDRRT) (Jaillet, Yershova, LaValle, & Siméon, 2005) as-

sociates a sampling radius with each tree vertex and dynamically adjusts the radius based on the

success of the local planner. The reachability-guided RRT (RGRRT) (Shkolnik, Walter, & Tedrake,

2009) relies on the notion of reachable sets to increase the likelihood of successful tree expan-

sions. The obstacle-based RRT (OBRRT) (Rodriguez, Tang, Lien, & Amato, 2006b) increases

sampling near obstacles, PCARRT (Dalibard & Laumond, 2009) relies on PCA, and The selective

retraction-based RRT (SRRRT) (Lee, Kwon, Zhang, & Yoon, 2014) uses bridge sampling and se-
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Figure 6: The tree built by RRT is shown here on a simplistic environment.

lective retraction in order to facilitate expansions inside narrow passages. The utility-guided RRT

(UGRRT) (Burns & Brock, 2007) associates a utility measure with each vertex and uses it to pro-

mote expansions that increase the utility. RRT-Blossom (Kalisiak & van de Panne, 2006) creates

a flood-fill behavior to locally explore the area surrounding each vertex. Machine learning has also

been used to derive a distance metric that captures the cost-to-go in order to improve the exploration

in RRT (Palmieri & Arras, 2015). The reachable volume RRT (RVRRT) (McMahon, Thomas, &

Amato, 2015) relies on the notion of reachable volumes in order to restrict sampling to feasible

regions and improve the performance of RRT on highly-constrained problems. The abstraction-

guided RRT (fRRT) (Kiesel, Burns, & Ruml, 2012) uses A* search on a grid-based decomposition

to bias RRT sampling towards low-cost regions. RRT* (Karaman & Frazzoli, 2011) rewires the

branches in RRT to find optimal solutions with respect to a given cost function.

EST (Hsu et al., 2002) takes a different approach from RRT by pushing the frontier of the

tree towards unexplored areas. Instead of relying on expansions from the nearest neighbor, EST

maintains a probability distribution over the tree vertices. At each iteration, a vertex v is selected

with probability inversely proportional to the density of a small neighborhood around v. This allows

EST to push the tree towards less-explored regions of the configuration space.

3.3.2 HIERARCHICAL TREE-BASED MOTION PLANNING METHODS

Hierarchical tree-based methods rely on a scheme which first selects a region and then a vertex from

which to expand the tree. Regions are often defined based on a decomposition of a low-dimensional

projection of the configuration space. The rationale is that, by grouping similar vertices, better

selections can be made at the region level to effectively guide the tree exploration. For instance,

the single-query, bidirectional, lazy collision-checking (SBL) method (Sánchez & Latombe, 2002)

pushes the tree toward sparse regions by using a grid-based decomposition and uniform probabil-

ity distributions to select non-empty grid cells. The kinodynamic planning by interior-exterior cell

exploration) (KPIECE) method (Sucan & Kavraki, 2012) relies on a multi-level grid decomposi-

tion constructed over user-defined or random linear projections. The synergistic combination of

layers of planning (SyCLoP) method (Plaku, Kavraki, & Vardi, 2010) uses discrete search over a
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low-dimensional triangular or grid decomposition to guide the tree exploration along short region

paths to the goal. The guided sampling tree (GUST) method (Plaku, 2015) partitions the motion

tree into equivalence classes and relies on multi-objective criteria based on shortest-path distances,

selection penalties, and progress made to determine equivalence classes which could result in rapid

expansions toward the goal.

The path-directed subdivision tree (PDST) method (Ladd & Kavraki, 2004, 2005) relies on

a grid subdivision of the configuration space. Each cell in the decomposition keeps track of the

tree branches that fall into it. Initially, the tree has only the root vertex and there is only one cell

corresponding to the minimum and maximum values for each variable. At each iteration, a tree

branch is selected for expansion. The cell c that contains the selected tree branch is divided into

two cells, c1 and c2, along the largest dimension. The tree branches in c are also split according

to the boundaries between c1 and c2. This ensures the invariant that a tree branch is contained

entirely in one cell. The selected tree branch b is expanded by picking a configuration q along b and

using propagation to add a new branch starting at q. Propagation is problem-dependent and could

correspond to moving in a random direction.

The propagation continues until a collision is found or a maximum number of steps is reached.

The branch is split when it exits the cell boundaries. A key component of the PDST is the weighting

scheme associated with each cell based on its volume, number of branches, and number of previous

selections. When selecting a tree branch, in order to increase the coverage, priority is given to cells

that have large volumes but have not been well-explored. After each iteration, the selected cell

c is penalized in order to ensure that other cells will eventually be selected for expansion. This is

necessary to avoid oversampling and guarantee probabilistic completeness (Ladd & Kavraki, 2005).

PDST has also been combined with artificial potential fields in order to expand the tree from the

region with the lowest potential (Bekris & Kavraki, 2007).

3.4 Roadmap-Based Robot Motion Planning Methods

The introduction of PRM (Kavraki et al., 1996) shifted the focus from complete to probabilistically-

complete motion-planning algorithms, which guarantee to find a solution, when it exists, with prob-

ability approaching one as time tends to infinity. While complete algorithms were limited to simple

problems with 2−3 variables, PRM made it possible to efficiently solve high-dimensional prob-

lems. The underlying idea in PRM is to construct a roadmap which captures the connectivity

of the (obstacle-)free configuration space. The roadmap is populated by generating a number of

collision-free configurations. Each configuration is generated by sampling values for the variables

uniformly at random. The configuration is discarded, if it results in collision. Otherwise, it is added

to the roadmap. To capture the connectivity, neighboring roadmap configurations are connected

with collision-free paths. Figure 7 provides an illustration of a roadmap created by PRM. A com-

mon approach is to compute for each roadmap configuration its k-nearest neighbors according to a

distance metric. A path between two configurations is often obtained by linear interpolation. If the

path is collision free, it is added as an edge to the roadmap graph. A path from a given start to a

goal configuration is found by first connecting the start and the goal configurations to the roadmap

and then searching the roadmap graph. A* is often used to efficiently compute the shortest roadmap

path. Additional sampling may be required when the initial roadmap does not contain a path from

the start to the goal.
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Figure 7: An illustration of a roadmap that can be used to answer start-to-goal queries.

Over the years, numerous strategies have been proposed to enhance the sampling in PRM.

Obstacle-based PRM (OBPRM) (Amato, Bayazit, Dale, Jones, & Vallejo, 1998) seeks to increase

sampling near obstacles in order to improve the connectivity inside narrow passages. BridgePRM

(Sun, Hsu, Jiang, Kurniawati, & Reif, 2005) has a similar objective but uses a bridge test to generate

samples halfway between two obstacles. Machine learning has also been used in conjunction with

a portfolio of samplers to enhance sampling in narrow passages (Hsu, Sánchez-Ante, & Sun, 2005).

The region-sensitive adaptive PRM (RESAMPL) (Rodriguez, Thomas, Pearce, & Amato, 2006a)

uses the notion of entropy to identify regions that can enhance sampling. TogglePRM (Denny &

Amato, 2013) switches between the free configuration space and the obstacle space in order to fa-

cilitate connections in narrow passages. ANC-Spatial (Ekenna, Thomas, & Amato, 2016) uses a

spatial-learning approach to enhance the roadmap connectivity by determining appropriate connec-

tion methods for each roadmap vertex. PRM* (Karaman & Frazzoli, 2011) is a variant of PRM that

leads to optimal solutions with respect to a given cost function. The modification is surprisingly

simple, as it requires only using a variable number of nearest neighbors instead of a fixed k.

3.5 Biomolecular Modeling Challenges for Tree- and Roadmap-Based Methods

Both tree- and roadmap-based methods experience the curse of dimensionality in several ways. A

central issue concerns the breadth of sampling in possibly high-dimensional and complex variable

spaces. In particular, in the context of biomolecular modeling, the decision of which variables to

represent is key, as it determines the dimensionality and complexity of the variable/conformation

space. This decision is tightly tied with the application setting or the class of biomolecular systems

considered. As reviewed in Section 2, while in many adaptations the selected variables are all or a

subset of the backbone dihedral angles (Han & Amato, 2001; Amato et al., 2003; Song & Amato,

2004; Thomas et al., 2005, 2007; Jaillet et al., 2008; Tang et al., 2008; Tapia, Tang, Thomas, &

Amato, 2007; Tapia et al., 2010; Jaillet et al., 2011; Shehu & Olson, 2010; Molloy et al., 2013;

Molloy & Shehu, 2013), in others the selected variables capture collective motions of atoms in the

3d Cartesian space (Kim et al., 2002b, 2002a; Kirillova et al., 2008; Schuyler et al., 2009; Al-Bluwi

et al., 2013; Maximova et al., 2015). Whether values for variables are sampled individually or in
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tandem from a-priori compiled databases of “good moves” (Shehu & Olson, 2010; Molloy et al.,

2013; Molloy & Shehu, 2013), or whether diverse perturbation/sampling operators are employed

that make use of different sets of variables (Gipson, Moll, & Kavraki, 2013; Molloy & Shehu, 2016),

the dimensionality and size of the variable space remains a key challenge for tree- and roadmap-

based treatments of biomolecules.

The choice of variables is key to the design of effective sampling or perturbation operators for

generating conformations that satisfy a set of desired geometric and/or energetic constraints for the

biomolecular modeling problem at hand. Samples obtained uniformly at random have very low

probability of being low-energy or in the region of interest for a sought structural transition. In

particular, for long protein chains with hundreds or more backbone dihedral angles, a conformation

sampled at random is highly unlikely to be physically-realistic.

Biased sampling techniques can be used to remedy this issue (Amato et al., 2003; Song &

Amato, 2004), but it is hard to know a priori which perturbation operators will be effective. Re-

cent work recognizes this issue and addresses it by offering diverse sampling operators on possibly

diverse sets of variables (Raveh et al., 2009; Gipson et al., 2013; Molloy & Shehu, 2016). In partic-

ular, the work of Molloy and Shehu (2016) implements a probabilistic scheme that selects among a

rich menu of operators making use of angular or Cartesian variables.

It is worth noting that sampling operators may generate samples not in a vacuum but by in-

cremental modifications of existing samples. While earlier generations of tree- and roadmap-

based methods typically obtained new conformations by sampling values over the selected vari-

ables (Singh et al., 1999), recent methods generate samples in neighborhoods of existing “parent”

samples (Shehu & Olson, 2010; Molloy & Shehu, 2013; Maximova et al., 2016) (hence, the often

used term perturbation operator). This later strategy has a higher chance of yielding physically-

realistic conformations, as perturbation operators that perturb a selected sample to obtain a new one

tend to preserve some good structural features in the new sample while introducing enough change

to explore new regions of the variable space (Olson, Hashmi, Molloy, & Shehu, 2012). In the context

of perturbation operators, selection schemes are critical to control sampling. A recent phenomenon

in robotics-inspired methods has been the recognition that selection schemes, which are central to

hierarchical tree-based robot motion planning (as reviewed above), can also be employed in both

tree- and roadmap-based methods to steer biomolecular sampling to regions of interest (Shehu &

Olson, 2010; Molloy & Shehu, 2013; Maximova et al., 2016).

An additional challenge with ensuring high sampling capability is that biomolecules have un-

derlying complex energy surfaces that encode energetic constraints. Therefore, the criterion for

accepting a sampled conformation and adding it to the vertex list of the tree or roadmap needs to ei-

ther rely on an a-priori set energy threshold or be probabilistic in nature. The latter setting provides

a balance between obtaining low-energy conformations while allowing a particular algorithm to go

over high-energy barriers as needed to sample more of the conformation space (Jaillet et al., 2008,

2011; Molloy & Shehu, 2013; Devaurs et al., 2015; Molloy & Shehu, 2016).

Both roadmap- and tree-based methods rely on local planners or local deformation techniques

to connect neighboring conformations. In tree-based methods that push the tree out in the variable

space by generating child conformations from selected parent conformations via perturbation oper-

ators, the child becomes a neighbor of the selected parent; the neighborhood function does not rely

on the notion of a distance in the variable space but is instead tied to the parent-child relationship.

In other methods, a sampled conformation needs to be connected to one or more nearest neigh-

bors. Nearest-neighbor calculations need specification of a distance function between conforma-
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tions, which is non-trivial in high-dimensional spaces. Most adaptations employ least Root-Mean-

Squared-Deviation (lRMSD), which is a modification of Euclidean distance after differences due to

rigid-body motions have been removed through optimal superimposition of the protein conforma-

tions under comparison (McLachlan, 1972). lRMSD is carried out over Cartesian coordinate-based

instantiations. Other distance functions use L1 or related variants defined over dihedral angles.

It is generally challenging to find computationally-efficient and dynamics-integrating local plan-

ners for biomolecular conformations. If conformations q1 and q2 are nearby in variable or structure

space, the local path that is encoded with an edge in the tree or roadmap should encode the process

of diffusion. The local path should provide evidence of the diffusion of the biomolecule from q1 to

q2 in the presence of thermal vibrations. It is not readily obvious how to use dynamics to steer a

biomolecule from q1 to q2. While in principle MD simulations can be employed in search of such

paths, there is no guarantee that these simulations will reach q2. While biased MD simulations can

be employed to reach q2, such simulations modify the energy surface and do not model the actual

dynamics (Ma & Karplus, 1997). Moreover, any corrections to biased MD simulations to model the

actual dynamics prove computationally expensive (Ovchinnikov & Karplus, 2012) in the context of

robotics-inspired methods that evaluate thousands of edges.

As a result, the majority of robotics-inspired methods for biomolecular modeling employ local

planners that carry out linear interpolations over the variables of the conformations that need to be

connected via a tree branch or roadmap edge. Such planners produce unrealistic conformations, and

significant time can be spent correcting geometry and other ensuing energetic violations via energy

minimization. Recent work proposes complex, local planners that are not based on interpolation

but are instead re-formulations of the motion computation problem; that is, the local planners them-

selves are tree- or roadmap-based methods (Molloy & Shehu, 2016). The latter idea is borrowed

from the similarly challenging setting of motion planning for manipulators, where linear interpola-

tion is also not effective (Nielsen & Kavraki, 2000). When making use of complex local planners,

a prioritized path sampling scheme is needed to prioritize the application of these computationally-

demanding planners on the most promising paths in order to control computational cost (Nielsen &

Kavraki, 2000). The work of Molloy and Shehu (2016) provides an implementation of prioritized

path sampling for biomolecular modeling.

4. Robotics-Inspired Methods for Equilibrium Biomolecular Structure and

Dynamics

Table 1 categorizes different robotics-inspired methods by the robot motion planning frameworks

they adapt and the application setups they address. The table is not comprehensive by any means,

but it may be useful to readers selecting to focus on specific applications. In the rest of this Section

we describe these methods in greater detail, paying particular attention to recent, state-of-the-art

methods that showcase the current capabilities of robotics-inspired treatments of biomolecules.

4.1 Tree-Based Methods for Modeling Equilibrium Biomolecular Structure and Dynamics

Tree-based methods have been employed to model biomolecular flexibility and compute confor-

mation paths connecting given structures (Cortés et al., 2005; Shehu, 2009; Shehu & Olson, 2010;

Jaillet et al., 2011; Haspel et al., 2010). Some tree-based methods address decoy sampling for the de

novo protein structure prediction problem (Shehu & Olson, 2010; Olson, Molloy, Hendi, & Shehu,

2012; Molloy et al., 2013) and map the entire energy landscape and pathways connecting stable
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states in molecular loops, peptides, and proteins (Porta, Thomas, Corcho, Canto, & Perez, 2007;

Jaillet et al., 2011; Porta & Jaillet, 2013; Devaurs et al., 2015; Molloy et al., 2016). Others have

focused on specific flexible sub-chains, such as loops, rather than entire protein chains (Cortés et al.,

2004, 2005; Yao, Dhanik, Marz, Propper, Kou, Liu, van den Bedem, Latombe, Halperin-Landsberg,

& Altman, 2008; Barbe, Cortés, Siméon, Monsan, Remaud-Siméon, & Andre, 2011).

Table 1: Categorization of of Tree- and Roadmap-based Methods by Application Setting

Application Tree-based Methods Roadmap-based Methods

Protein Loop

Motions

RLG-RRT (Cortés et al., 2005; Cortés,

Jaillet, & Siméon, 2007), ML-RRT (Barbe

et al., 2011)

LoopTK (Yao et al., 2008)

Protein-Ligand

Binding

ML-RRT (Cortés et al., 2007) PCR (Singh et al., 1999; Apaydin

et al., 2001), SRS (Apaydin et al.,

2003)

Protein Structure

Prediction

FeLTr (Shehu & Olson, 2010; Molloy

et al., 2013)

Protein and RNA

(Un)Folding

SRS (Apaydin et al., 2003), PRM-

FP (Amato et al., 2003; Song &

Amato, 2004; Tang, Kirkpatrick,

Thomas, Song, & Amato, 2005;

Thomas et al., 2005, 2007; Tapia

et al., 2007; Tang et al., 2008; Tapia

et al., 2010), MaxFlux-PRM (Yang,

Wu, Li, Han, & Huo, 2007; Li, Yang,

Han, & Huo, 2008)

Peptide and Pro-

tein Structural

Transitions

NMA-RRT (Kirillova et al., 2008; Al-

Bluwi et al., 2013), PathRover (Enosh,

Raveh, Furman-Schueler, Halperin, &

Ben-Tal, 2008; Raveh et al., 2009), T-

RRT (Jaillet et al., 2011), PDST (Haspel

et al., 2010), Sprint (Molloy & Shehu,

2013), Multi-T-RRT (Devaurs et al., 2015)

SRS (Molloy et al., 2016), Spi-

ral (Molloy & Shehu, 2016), So-

PRIM (Maximova et al., 2015)

Peptide and Pro-

tein Energy land-

scape Mapping

T-RRT (Jaillet et al., 2011), Multi-T-

RRT (Devaurs et al., 2015)

SoPRIM (Maximova et al., 2015)

4.1.1 MODELING PROTEIN LOOP MOTIONS AND PROTEIN-LIGAND DISASSOCIATION

Early adaptations of the RRT algorithm for biomolecules focused on modeling the equilibrium dy-

namics of protein loops (Cortés et al., 2005) and protein-ligand interactions (Cortés et al., 2004).

For instance, the method presented in the work of Cortés et al. (2005) proceeds in two stages to

model large-amplitude structural changes in a protein loop at equilibrium. The first stage obtains an

ensemble of collision-free conformations of a loop in a protein structure. This is achieved through

the Random Loop Generator RRT (RLG-RRT) algorithm, which effectively samples the loop con-

formation space that satisfies kinematic closure constraints. The loop is divided into an active and a

passive part. The passive part is selected to contain 6 variables, whereas the active part contains the

rest of the angular variables selected to represent a loop conformation. The RLG-RRT algorithm
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directly samples values for the variables in the active part via a scheme that increases the probability

of obtaining a conformation that satisfies loop closure. Once the active part of a loop conformation

has been obtained, an exact 6R inverse kinematics technique is applied to solve for the passive vari-

ables under the loop closure constraints. Closed loop conformations are added to the tree if they

are collision-free. The tree is run for a fixed amount of time, and a goal region is defined around

the given goal conformation in order to extract many paths from one execution of the RLG-RRT

algorithm. Conformations in extracted paths are then subjected to short energetic minimizations in

order to elucidate energetically-feasible, large-amplitude motions of the loop under investigation.

Analysis of extracted loop motions in the work of Cortés et al. (2004) reveals that results are

comparable with classic molecular modeling methods while obtained with a performance gain of

several orders of magnitude. The work of Cortés et al. (2004) demonstrates the efficacy of the two-

stage approach for studying the activity-regulating mobility of the 17-residue long loop 7 in the

amylosucrase enzyme from Neisseria polysaccharea.

Ideas similar to RLG-RRT are employed in the LoopTK (toolkit) algorithm (Yao et al., 2008)

to explore the closed, collision-free conformations of flexible loops ranging in length for 5 to 25
amino acids. The algorithm relies on an interplay of sampling and deformation to obtain loops that

satisfy the kinematic closure constraints and are collision-free. The sampling procedure focuses on

obtaining geometrically-diverse, closed loops. The deformation procedure is based on earlier related

work on loop modeling (Lotan, van den Bedem, Deacon, & Latombe, 2004; van den Bedem, Lotan,

Latombe, & Deacon, 2005). The procedure makes use of the null space technique to explore the

self-motion manifold (the constrained, closure space) around a closed loop to resolve steric clashes

while not violating the closure constraints. LoopTK is shown to efficiently handle long loops up

to 25 amino acids and even generate biologically-interesting, calcium-binding conformations. The

toolkit is available at https://simtk.org/home/looptk.

The time demands of RRT-RLG on problems with hundreds of variables are addressed by Cortés

et al. (2007) by proposing the Manhattan-like RRT (ML-RRT) algorithm to efficiently compute

paths for a small protein-bound ligand to exit the protein active site. ML-RRT borrows ideas from

mechanical disassembly and divides the variables into two groups, active and passive. In particular,

the variables that model the internal and rigid-body motions of the ligand are designated as active,

and the subspace of these active variables is sampled as in the RLG-RRT algorithm. The variables

that model the internal motions of amino acids on the protein receptor’s active site are designated

as passive, and they are slightly perturbed if they hinder motions of the ligand. This decoupling

proves effective, as it allows for possible ensuing collisions between the ligand and the protein to be

addressed in a domino-like scheme, as illustrated in Figure 8.

ML-RRT has been shown to efficiently model motions of small ligands, side chains, loops, and

backbone (Cortés, Le, Lehl, & Siméon, 2010; Barbe et al., 2011). The work of Cortés et al. (2010)

subjects paths extracted from executions of the ML-RRT algorithm to a randomized path smoothing

post-processing technique. The technique is carried out in the composite space of all the parameters

resulting in simultaneous motions of the ligand and the protein in the final path. The work of Barbe

et al. (2011) subjects loop conformations in paths extracted from ML-RRT to minimization of an

MM energy function so as to reveal critical, physically-realistic intermediate conformations and

bottlenecks along the open-to-closed loop motion of the Burkholderia cepacia lipase lid domain.

Adaptations of robot motion planning frameworks to model loop structures and motions repre-

sent only a fraction of diverse methods designed for loop modeling. Interested readers are referred

to a survey in the work of Shehu and Kavraki (2012).
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Figure 8: This figure is reproduced from the work of Al-Bluwi et al. (2012). The left panel illustrates the dis-

assembly planning problem for two articulated objects. The ML-RRT algorithm proposed in the work of Cortés

et al. (2007) problem models the escape of a ligand from a protein’s binding site as disassembly problem. The

red H-shaped object on the left image can be considered as the ligand in the right image, and the blue sticks

in the left image can be considered as the flexible side chains on the binding site of the receptor protein in the

right image. The figure is reproduced with permission of the Computer Science Review Journal.

4.1.2 MODELING PEPTIDE AND PROTEIN STRUCTURAL TRANSITIONS AND MAPPING

PEPTIDE ENERGY LANDSCAPES

The RLG-RRT algorithm is modified in the work of Enosh et al. (2008) to model structural transi-

tions in proteins and, in particular, model open and close motions in potassium channels. The main

modification to the RLG-RRT algorithm by Enosh et al. concerns the addition of an energetic test

to the collision-free test performed before deciding whether a generated conformation should be

added to the tree. Several novel analysis techniques are introduced. Clustering is conducted over

many paths obtained from several executions of the algorithm in order to identify common inter-

mediate conformations in the paths connecting given start and goal conformations. Path alignment

is employed to obtain the most energetically-favored path among all those computed. A schematic

of the method proposed by Enosh et al. and a visualization of the most energetically-favored path

obtained on the KscA protein are shown in Figure 9.

Another extension of the RRT-based algorithm in the work of Enosh et al. (2008) is presented

by Raveh et al. (2009); the more efficient PathRover algorithm is proposed for modeling structural

transitions on many proteins. PathRover achieves its computational efficiency in two main ways.

First, its application on many proteins is made possible by restricting the number of dihedral angles

used as variables. Three strategies are used to identify a subset of dihedral angles to define the

variable space: careful inspection of structures, relevant literature, computational tools for detecting

hinge regions like NMA, and comparison of structural changes in alternative (native or homologue)

structures. In particular, the FlexProt alignment algorithm (Shatsky, Nussinov, & Wolfson, 2002)

is used to compare start and goal structures and reveal structurally-different regions. Variables are

manually restricted to dihedral angles in such regions. Second, PathRover limits the exploration to
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Figure 9: This figure is reproduced from the work of Enosh et al. (2008). The schematic of the method is

shown in (a). The PathRover algorithm is executed multiple times to extract 100 plausible paths connecting

the given open and closed conformations. The paths are clustered and aligned to reveal a path cluster with

minimal energy barrier. This cluster is visualized for the KscA protein in (b), which shows a putative three-

phase motion between the close and open conformations. This figure is reproduced with permission of the

Biophysical Journal.
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regions of the space consistent with available wet-laboratory data. Branch termination criteria are

employed to stop the tree from being pulled towards regions that do not improve agreement with

wet-laboratory data. The integration of wet-laboratory data aims to circumvent known inaccuracies

of modern biomolecular energy functions.

The RRT-based algorithms summarized above demonstrate the utility of RRT for modeling

structural transitions in proteins. In particular, the PathRover algorithm utilized several schemes

to reduce the number of variables in order to make the problem of modeling structural transitions

tractable (Raveh et al., 2009). The work of Haspel et al. (2010) continued in this spirit via clever,

reduced representations of large proteins. In contrast, work in the Simeon and Cortes labs credited

with introducing RRT-based algorithms to biomolecular modeling focused instead on techniques to

enhance sampling. The Transition-RRT (T-RRT) algorithm proposed by Jaillet et al. (2008) was

shown particularly effective in this regard.

T-RRT and its bi- and multi-tree variants have been recently proposed to explore and obtain com-

prehensive maps of energy landscapes of small peptides, such as dialanine and Met-Enkephalin (Jail-

let et al., 2011; Devaurs et al., 2015). The main modification to the baseline RRT algorithm in

T-RRT concerns the introduction in the acceptance criterion of a state transition test based on the

Metropolis criterion. New conformations are added to the tree if they pass the transition test (hence

the name, T-RRT). The goal in T-RRT is to steer the tree towards exploration of low-energy regions

in order to map energy minima in the potential energy surface while relaxing the transition test as

needed to cross energy barriers that may trap the exploration to a particular local minimum.

The dynamic modification of the state transition test makes use of a reactive temperature scheme.

In the Metropolis criterion, an effective temperature effectively controls the height of energy barri-

ers that can be crossed by two consecutive conformations. In T-RRT, this temperature is increased

when the number of attempts to pull the tree towards low-energy regions reaches a user-specified

threshold; that is, the number of failures to grow the tree is taken as an indication of the presence of

an energy barrier, and the effective temperature is increased in order to relax the state transition test.

As soon as a successful edge is added to the tree, the temperature is then lowered by a pre-specified

factor in order to resume the overall bias of pulling the tree towards local minima. The effect of

this reactive temperature scheme is that the search is balanced between unexplored regions and low-

energy regions of the variable space. Application of T-RRT in the work of Jaillet et al. (2011) shows

that the algorithm can map the entire known energy landscape of the dialanine peptide when run in

an exploration mode. Another setting, where T-RRT is used to obtain paths that connect discovered

minima, also shows that recovered transitions between known stable states of dialanine are in strong

agreement with transitions known from experiment and affirmed in other simulation studies.

Further work addresses the issue of limited sampling when the goal is to obtain accurate repre-

sentations of energy landscapes of longer peptides, such as Met-Enkephalin (Devaurs et al., 2015).

The T-RRT algorithm is used by Devaurs et al. only to reveal conformation paths connecting

already-identified meta-stable states. These states are identified by an EA known as Basin Hop-

ping (BH), which has been shown to effectively sample local minima of the energy surfaces of

biomolecules (Olson et al., 2012). In the work of Devaurs et al., BH operates over dihedral angles

and provides a sample-based, discrete representation of the energy surface of a peptide. The local

minima are clustered to reveal wide basins corresponding to meta-stable states.

A variant of the T-RRT algorithm, referred to as Multi-T-RRT, is also proposed by Devaurs et al.

to connect all identified states. The algorithm builds n single trees, each rooted at a conformation

representative of a unique meta-stable state. The algorithm proceeds in iterations, at each iteration
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Figure 10: In this figure, reproduced from the work of Devaurs et al. (2015), the graph obtained from a single

run of multi-T-RRT with cycles is projected over key dihedral angles in the top panel. The algorithm is seeded

with four meta-stable states of the Met-Enkephalin peptide, drawn as pink triangles, squares, or circles. The

states capture the unfolded state, the folded state, and two intermediates (shown in the bottom panel). Costs

of various paths are shown in the table on the bottom panel. This figure is reproduced with permission of IEEE

Trans Nano BioScience 2015.

randomly selecting one of the n trees for expansion with a conformation q. The conformation

nearest to q in any of the other n − 1 trees is identified, and if it is within an extension step-size,

q merges two trees. Iterations continue until all trees are merged in a graph. The graph is queried

for minimum-cost paths connecting any states of interest. The identified meta-stable states and the

minimum-cost paths connecting these states are found to be comparable to those reported by other

studies that employ more computationally-demanding exploration strategies (Devaurs et al., 2015).

A representative result of the information that can be extracted from this combination of BH and

Multi-T-RRT is shown in Figure 10.

One limitation of readily applying T-RRT and its variants to obtain similar, detailed characteri-

zation for proteins rather than short peptides is the dimensionality of the conformation space. In the

work of Jaillet et al. (2011), this space has few dimensions due to the limited number of dihedral

angles in small peptides, such as dialanine and Met-Enkephalin. Detail, while desired and possible

on characterizations of short peptides, needs to be sacrificed in order to model large-scale struc-

tural transitions in proteins. NMA-RRT (Kirillova et al., 2008), PDST (Haspel et al., 2010), and

Sprint (Molloy & Shehu, 2013) present three different algorithms that make use of representations

of reduced detail to model large-scale structural transitions in proteins.

Normal Mode Analysis (NMA) is used to obtain larger-scale moves (low-frequency modes re-

vealed by the NMA on a conformation) (Kirillova et al., 2008). These moves are then employed to

generate new conformations in the RRT framework. The NMA-RRT algorithm proposed by Kir-

illova et al. (2008) essentially conducts the RRT search over a low-dimensional variable space of
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the low-frequency modes. Since the normal modes provided by the NMA on a conformation only

allow to get out of the local minimum represented by a conformation, NMA needs to be repeated

regularly during the RRT search in order to explore the breadth of the conformation space. This can

be computationally demanding, and application of NMA-RRT is limited to extraction of minimum-

cost paths connecting two conformations of interest rather than a comprehensive map of the energy

landscape and its connectivity in proteins. The work of Kirillova et al. shows that precious infor-

mation can be extracted regarding structural transitions in proteins, such as adenylate kinase, even

when focusing on motions largely driven by normal modes. A complementary study of minimal

energy paths in adenylate kinase via NMA (Maragakis & Karplus, 2005) shows that the modes are

sufficient to capture the structural transition between the open and closed structures in this pro-

tein; all known wet-lab structures are found to be within 3.0Åof these mode-based minimal energy

pathways (Maragakis & Karplus, 2005).

A recent extension of NMA-RRT aims to reduce the computational demands of the algorithm.

The extension employs a further reduced representation of a protein chain based on tripeptides and

employs NMA on conformations of such reduced representations. The reactive temperature scheme

in T-RRT is employed to broaden sampling and capture large-scale motions connecting significantly

different structural states in large proteins of several hundred amino acids (Al-Bluwi et al., 2013).

Employing reduced representations has expanded the applicability of tree-based algorithms for

treating large biomolecules. The PDST algorithm is adapted by Haspel et al. (2010) to model a

transition between two structures of interest in large proteins of more than 200 amino acids. The

assumption is made that secondary structures do not unfold in the sought transition, which is largely

valid when modeling domain motions in proteins. Under this assumption, only backbone dihedral

angles on loops connecting secondary structures are selected as variables.

In the work of Haspel et al. (2010), a bias scheme is used on 10% of the iterations to steer

the tree towards the goal conformation. The bias scheme employs a Euclidean distance between

feature vector representations of conformations in the tree. Given a conformation, its corresponding

feature vector contains Euclidean distances between centers of mass of its secondary structure units.

Conformations are evaluated through a detailed coarse-grained energy function that combines terms

from the energy function used in the work of Shehu et al. (2009) and the Amber ff03 energy function.

If a sampled conformation is evaluated to have energy above a set threshold of 100 kcal/mol more

of the energy of the start conformation, the conformation is subjected to 20 steps of steepest descent

and retained only if its energy decreases below this threshold. This is a rather coarse energetic

constraint, but paths collected from 100 runs of the algorithm not only reach the goal conformation

in less time than methods based on Simulated Annealing, but also reveal credible motions consistent

with experimental data on large, well-characterized proteins such as GroEL (Haspel et al., 2010).

The Sprint algorithm proposed by Molloy and Shehu (2013) uses a complementary approach to

simplifying the search space explored for paths connecting given structures of medium-size proteins.

Sprint addresses the issue of sampling in high-dimensional variable spaces by employing a popular

idea from de novo structure prediction. The fragment replacement technique is used to divide a

protein chain into bundles of consecutive dihedral angles, and values for a bundle or fragment are

sampled from an a-priori constructed database of fragment configurations on known, native protein

structures. The fragment replacement technique is used to expand the tree at every iteration.

While the work of Molloy and Shehu (2013) adapts the EST framework via this expansion

procedure to model structural transitions in small- and medium-size proteins, the Fragment Monte

Carlo Tree Exploration (FeLTr) algorithm proposed by Shehu and Olson (2010) uses related con-
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cepts to sample the space of near-native protein conformations for the purpose of de novo structure

prediction in small proteins.

In both Sprint and FeLTr, a state-transition test is used to steer the tree towards low-energy con-

formations over time; that is, a probabilistic, Metropolis-like criterion is used to determine whether

a child conformation should be added to the tree. While in FeLTr (Shehu & Olson, 2010) a fixed

scaling parameter (analogous to a fixed effective temperature) is used in the Metropolis-like cri-

terion, Sprint (Molloy & Shehu, 2013) integrates a reactive temperature scheme in order to allow

the tree to go over high-energy regions when no low-energy routes can be found and thus expand

exploration capability. The reactive temperature scheme in Sprint is slightly different from that in

T-RRT (Jaillet et al., 2008). While in T-RRT the effective temperature is increased or decreased by

fixed amounts, Sprint moves temperature along a proportional cooling scheme often employed in

Simulated Annealing Monte Carlo methods (Shehu et al., 2009). Upon failures to expand the tree,

temperature moves up to the next value in the cooling scheme; upon successes, temperature goes

down to the next value in this scheme.

Both FeLTr and Sprint operationalize on the idea that it is easier to push rather than pull

the tree in conformation space when good moves are available or compiled a priori to generate

energetically-feasible child conformations from selected parent conformations in the tree. While

in the work of Molloy and Shehu (2013) the tree is rooted at a given start conformation and the

goal is to get within a tolerance region of the given goal conformation, in the work of Shehu and

Olson (2010) the tree is rooted at an extended conformation, and the termination criterion is a com-

promise between a desired number of low-energy conformations and running time.

A central idea in both Sprint and FeLTr is that the growth of the tree can be controlled via a

selection mechanism; at each iteration, a conformation in the tree is selected for expansion. The

selection penalizes the tree from growing towards regions of the conformation space that have been

oversampled, thus resulting in enhanced sampling of the conformation space. Two discretization

layers are employed. In FeLTr, the first layer maps conformations in the tree on a 1d grid whose

cells are energy levels of width 2 kcal/mol. In Sprint, the first layer maps conformations on a 1d

grid based on their lRMSD from the goal conformation. The second layer in both algorithms maps

conformations over a geometric projection. The second layer is a 3d grid, where conformations are

associated with 3 shape-based global coordinates (Shehu & Olson, 2010).

The selection mechanism uses both discretization layers. First, it selects an energy level accord-

ing to a probability distribution function. The latter is defined over weights associated with energy

levels according to some weighting function. Different weighting functions are analyzed for how

strong a global energetic bias needs to be in order to reproduce the native structure (Molloy et al.,

2013). Once an energy level is selected, cells of the geometric projection grid that belong to confor-

mations in the selected energy level are analyzed. A second weighting function over cells of the grid

biases against selecting a cell that has been selected many times before and/or already has many con-

formations in it. Once a cell is selected, any conformation in it is selected for expansion uniformly

at random, since conformations in a cell are energetically- and geometrically-indistinguishable.

Extensions of FeLTr have explored both the effect of different weighting functions over the

discretization layers and the employment of different projection coordinates (Molloy et al., 2013;

Olson et al., 2012). Different coarse-grained energy functions that are considered state-of-the-art

in de novo structure prediction, including the Rosetta suite of energy functions, are employed in

the framework and directly compared for how they steer the search towards near-native confor-

mations (Molloy et al., 2013). Molloy and Shehu (2013) also investigate the impact of different
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projection schemes and selection mechanisms on both the diversity and energetic profiles of Sprint-

extracted paths in the context of computing structural transitions.

Applications of Sprint on different start and goal structure pairs of the calmodulin and adenylate

kinase proteins show that the algorithm is able to find paths that reach the goal conformation (Molloy

& Shehu, 2013). Soft global biasing schemes are found to provide the right compromise between

tree depth (that is, lower energies) and diversity of paths (that is, geometrically-diverse conforma-

tions). Detailed energetic and structural analysis on computed paths for two hallmark proteins,

such as calmodulin and adenylate kinase, reveals that Sprint yields accurate characterizations of

structural transitions in these proteins. Energetic profiles of extracted paths indicate the presence

of high-energy regions that need to be crossed on specific transitions in calmodulin, in agreement

with wet-laboratory characterizations. Analysis on adenylate kinase shows that known intermediate

structures of this protein are present in the the conformation paths computed by Sprint (Molloy &

Shehu, 2013).

4.2 Roadmap-Based Methods for Modeling Equilibrium Biomolecular Structure and

Dynamics

Roadmap-based methods have been employed to model protein-ligand binding (Singh et al., 1999),

protein and RNA folding and unfolding (Song & Amato, 2004; Chiang et al., 2007; Chiang, Hsu, &

C., 2010), and protein structural transitions (Molloy & Shehu, 2016; Maximova et al., 2015).

4.2.1 MODELING PROTEIN-LIGAND BINDING

The adaptation of the roadmap-based motion planning framework for protein-ligand binding by

Singh et al. (1999) is the first occurrence of robotics-inspired treatments of biomolecular structure

and dynamics. The adaptation was simplistic but provided key design issues that were then repli-

cated and extended by many robotics researchers. One of the key simplifications is that the protein

receptor is kept rigid, and the only variables of interest are those allowing to model rigid-body

motions of the ligand around the receptor and internal motions of the ligand. Small ligands are

considered, so that the 6 + p variables to allow modeling of such motions do not go above a dozen.

Sampling proceeds uniformly at random over the 6 + p variables, but ligand configurations added

to the roadmap pass a geometric and energetic criterion. The geometric criterion ensures that ligand

configurations are within some predefined distance of the center of mass of the receptor.

The energetic criterion is probabilistic: two dynamically-updated thresholds, Emin and Emax

values, corresponding to minimum and maximum energy values over sampled configurations, are

recorded. Ligand configurations with energy higher than Emax are rejected. Other configurations

are retained with probability (Emax − E(q))/(Emax − Emin). The energy function incorporates

both terms to evaluate the internal energy of a ligand configuration as well as terms evaluating

interactions between a ligand configuration and the rigid protein receptor.

Retained ligand configurations are embedded in a nearest-neighbor graph, using lRMSD to mea-

sure the distance between two ligand configurations and a user-set parameter, k, for the number of

nearest neighbors. A simple local planner interpolating over all p+ 6 variables of two neighboring

configurations is used to estimate the feasibility of q ← q′ and q′ ← q edges by generating consecu-

tive configurations. Consecutive configurations qi are generated by the linear interpolation planner

to connect q and q′ until the distance between two consecutive configurations in the generated se-

ries is no higher than 1Å. The q → q′ and q′ → q edges are added to the roadmap only if all qi
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configurations have energies below Emax. Weights are added to retained edges as follows:

w(q → q
′

) = −
s−1
∑

i=0

log[P (qi → qi+1)]

where

P (qi → qi+1) =
e(Ei+1−Ei)/(KBT )

(e(Ei+1−Ei)/(KBT ) + e(Ei−1−Ei)/(KBT ))

In the above equations, qi−1, qi, qi+1 are three consecutive configurations with corresponding

energies Ei−1, Ei, Ei+1, KB is the Boltzmann constant, and T is the effective temperature. The

weight of a path qstart  qgoal, which connects a start configuration to a goal configuration, is

then the sum of the weights of the edges in it. The weight of a path initiated at an unbound con-

figuration and terminating in a bound configuration estimates the association rate (the cost of the

ligand approaching and binding to the protein receptor). The weight of the reverse path estimates

the disassociation rate (the cost of the ligand leaving the binding site and diffusing in space).

The resulting roadmap represents a distribution of energetically-credible paths of the ligand ap-

proaching and then binding the receptor. In the work of Singh et al. (1999), the bound configuration

of the ligand in the p+6 variable space is presumed not to be known, and RMSD-based clustering of

sampled lowest-energy ligand configurations is employed to reveal a few likely bound candidates.

Analysis reveals that the true bound configuration is indeed present in the top-populated clusters;

however, many false positives are reported, as well. Weights of paths terminating in and initiated

from the lowest-energy ligand configurations are analyzed in order to determine what other charac-

teristics can be used to discriminate between true and false positives. Paths terminating at the true,

bound configurations are found to have high association rates; the reverse paths are found to have

high disassociation rates. This important result elucidates that effective binders are not only those

that allow the ligand to reach the lowest interaction energy but also trap it at the binding site via

high-energy barriers.

4.2.2 MODELING PROTEIN AND RNA (UN)FOLDING

Singh et al. (1999) provided a much needed template and has served as the foundation for many

robotics-inspired treatments of biomolecules. In particular, a suite of roadmap-based algorithms

and extensions were designed in the Amato lab to model unfolding of small proteins. A review

of roadmap-based methods to study molecular motions in the Amato lab is available in the work

of Tapia et al. (2010), whereas a review of roadmap-based methods for the specific protein folding

problem is presented in the work of Moll, Schwartz, and Kavraki (2008). A seminal contribution in

this category is the Probabilistic Conformation Roadmap (PCR) algorithm (Apaydin et al., 2001),

which builds upon the template presented by Singh et al. (1999) to study protein folding.

PCR addresses a complex application domain, as the number of variables needed to model the

intrinsic flexibility of protein chains can easily reach 100 or more. In PCR and other extensions that

followed, most notably in the Amato lab, the variables employed are all or a subset of the backbone

dihedral angles of a protein chain (Amato et al., 2003; Song & Amato, 2004; Tang et al., 2005;

Thomas et al., 2005, 2007; Tapia et al., 2007; Tang et al., 2008; Tapia et al., 2010). In such variable

spaces, uniform random sampling is ineffective and likely to result in conformations with severe

internal collisions. For this reason, work in the Amato lab on PCR-based algorithms has gradually
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shifted to sampling strategies based on incremental perturbations of a given native/folded conforma-

tion until memory of the folded conformation has been lost. Specifically, backbone dihedral angles

of the folded conformation are perturbed by small amounts by use of a Gaussian distribution until

a minimum number of conformations is obtained for each category (0 to 100% in 10% increments)

of the percentage of native contacts. The lower the number of native contacts is in a conformation,

the more likely that conformation is to belong to the unfolded state. While the acceptance criterion

for sampled conformations is as in the work of Singh et al. (1999), the energy function is different,

as it measures the internal energy of a protein chain. The function contains terms favoring hydrogen

bonds, disulfide bonds, and hydrophobic interactions.

The sampled conformations that pass the energetic/acceptance criterion are embedded in a

nearest-neighbor graph, with the number of nearest neighbor conformation k specified by the user.

In contrast to the original PCR algorithm, directed (u, v) edges in the graph are weighted based on

the Boltzmann-related Metropolis criterionas in: P(u,v) = e
E(u)−E(v)

KB ·T , where E(.) is the energy of a

conformation, KB is the Boltzmann constant, and T is an a-priori set temperature determining the

height of energy barriers crossed by an edge. In this early formulation of edge weights, no reactive

temperature schemes are employed as in the later tree- and roadmap-based algorithms for structural

transitions. Instead, T is a user-controlled parameter that determines to a great extent the ability of

the algorithm to navigate the underlying energy surface.

In the works of Song and Amato (2004) and Thomas et al. (2005), allN best paths that end at the

folded conformation and start at conformations with 0 native contacts are extracted and analyzed.

Analysis of such paths has shown that, despite several design decisions intended to simplify the

protein folding problem, PCR-based algorithms can predict the order of secondary structure forma-

tion. Agreement with wet-laboratory data has validated the general usage of PCR-based algorithms

to provide a coarse-grained treatment of folding and unfolding pathways for protein chains. Other

works by Amato and collaborators also show the applicability of PCR-based algorithms to study

RNA folding and unfolding (Tapia et al., 2007; Tang et al., 2008; Tapia et al., 2010) .

The sampling strategy of incremental perturbations is effective on protein chains of no more than

60 amino acids (Song & Amato, 2004) but scales poorly on longer chains (Thomas et al., 2005).

Ensuing work improves sampling for protein chains up to 110 amino acids by further reducing the

number of variables modeled to represent conformations (Thomas et al., 2007). Specifically, rigid-

ity analysis is employed to detect least-constrained regions in a given structure. The dihedral angles

belonging to such regions are selected more often for perturbation in the sampling stage. This mod-

ification is shown effective in revealing subtle folding differences between protein G and two of its

sequence variants. In particular, the modification is also shown to be promising for capturing other

dynamic events in proteins beyond folding to study large-scale conformational changes involved

in structural transitions of the calmodulin protein. Related ideas have been employed by other re-

searchers to compute temperature-dependent optimal folding paths in peptides and proteins (Yang

et al., 2007; Li et al., 2008). The MaxFlux-PRM algorithm proposed by Yang et al. (2007) to

study structural transitions in the dialanine peptide and folding of a β-hairpin is then shown by Li

et al. (2008) to be capable of predicting folding pathways of the engrailed homeodomain protein.

Further work in the Amato lab has focused on exploiting the conformation roadmap to extract

quantities summarizing folding kinetics in protein and RNA molecules. Tapia et al. (2007) introduce

two new analysis techniques, the Map-based Master Equation (MME) and Map-based MC (MMC)

technique. This work shows that treating the roadmap as a map of the folding landscape can be
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exploited to estimate kinetic metrics that are typically only extracted from MD simulation studies.

Metropolis MC simulations can be conducted over the roadmap, moving between roadmap vertices

observing the edge probabilities in the roadmap. Different statistics can then be calculated over the

MMC walks, including folding rates and population kinetics. Tang et al. (2008) show that statistics

summarizing RNA folding predict well the same relative gene expression rate for wild-type MS2

phage RNA and three of its mutants, in good agreement with wet-laboratory data.

4.2.3 STOCHASTIC ROADMAP SIMULATION AND MARKOV STATE MODELS FOR MODELING

PROTEIN AND RNA (UN)FOLDING AND PROTEIN STRUCTURAL TRANSITIONS

The idea that reliable statistics can be extracted from molecular conformation roadmaps was pre-

sented earlier by Latombe and colleagues (Apaydin et al., 2003). The stochastic roadmap simula-

tion (SRS) framework is formalized in relation to a key analogy between a roadmap and a Markov

state model (MSM); the concept of a stochastic roadmap with probabilistic edges was presented

earlier (Song & Amato, 2000), but the analogy with an MSM went missing till the 2003 formal-

ization by Latombe and colleagues (Apaydin et al., 2003). The latter laid bare the analogies be-

tween a stochastic roadmap and what would later be referred to as a point-based MSM. In such an

MSM, states of the MSM are the single-conformation vertices of the stochastic roadmap, and the

probabilistically-weighted edges connecting vertices in the roadmap are the state-to-state transitions

in the MSM. The analogy brought to focus that a stochastic roadmap better encodes the stochas-

tic nature of biomolecular motions, and the analogy with an MSM could even be used to extract

interesting summary statistics regarding physics-driven stochastic processes.

In addition to recognizing that biased random walks can be carried out over the roadmap and

employed to extract statistics of interest (Tapia et al., 2007), the SRS-MSM analogy highlights that

effective, algebra-based techniques from (Markov chain) transition state theory can be employed to

extract average statistics without launching a single simulation (or random walk over the roadmap).

Folding rates, pfold values, φ values, and other estimates of kinetics, such as transition rates, can be

obtained without needing to perform many random walks but by in-order propagation of transition

probabilities. The analogy between a stochastic roadmap and a point-based MSM is shown to result

in correctly-predicted pfold values on small proteins modeled at the secondary structure level with

6−12 variables (Apaydin, Brutlag, Hsu, & Latombe, 2002; Apaydin et al., 2003). Further work

demonstrated that the transition state ensemble (the set of conformations with pfold=0.5), folding

rates, and φ values could be predicted on 16 different proteins but at a fraction of the computational

time that would be needed by a framework launching numerous MC simulations (Chiang, Apaydin,

Brutlag, Hsu, & Latombe, 2006; Chiang et al., 2007) .

While the SRS-MSM analogy permits interesting mathematics, practical issues such as how to

ensure that the transition matrix is not prohibitive in size to allow solving of linear algebra equations

have to be addressed on a case-by-case basis. The formalization presented by Apaydin et al. (2003)

did not discuss practical design decisions such as how to group conformations into states and how

to estimate transition probabilities between two sub-ensembles, but rather on the mathematics that

would be possible by the analogy between a stochastic roadmap and an MSM. Analogies with cell-

based MSMs, where states are homogeneous sub-ensembles of conformations rather than single

conformations need addressing practical issues regarding how to organize conformations into states

and how to associate transition probabilities between states.
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Since the seminal work of Apaydin et al. (2003), analogies between SRS and cell-based MSMs

have been largely limited, partly due to the lack of clear objectives in design decisions that are

general in their ability to transform a roadmap into an MSM of manageable size. For instance, the

fundamental assumption was that if conformations were obtained via an MD simulation at some

temperature T , then the probability of an edge representing a transition from a vertex u to a vertex v
could be measured via the Boltzmann-related Metropolis criterion e−(E(v)−E(u))/(KB ·T ). This real-

ization allowed Apaydin, Latombe, and colleagues to see the clear connection between the stochas-

tic (probabilistic) roadmap of structures and a point-based MSM, with vertices seen as states of the

MSM and edges between vertices in the roadmap as transitions between states in the MSM. How-

ever, practical considerations as to how to convert these single conformation vertex probabilities

into state-state transition probabilities were not discussed.

The issue of how to associate probabilities in the first place to conformations sampled via other

non-MD algorithms was also not discussed. Two groups of researchers have started operationalizing

on the seminal ideas presented by Apaydin et al. (2003). Work by Latombe and colleagues has fo-

cused either on point-based MSMs or on summarizing and uncovering the MD-simulated dynamics

of synthetic and small peptides via cell-based MSMs (Chiang et al., 2007, 2010). Complemen-

tary work in the Shehu lab has focused on non-MD approaches and extracting average statistics

to model and compare transitions in healthy and aberrant forms of disease-participating, small- to

medium-size proteins (Molloy et al., 2016).

Chiang et al. (2010) offer a novel representation of states not as individual conformations (Apay-

din et al., 2003; Singhal, Snow, & Pande, 2004) or even disjoint regions of conformation space

(Ozkan, Dill, & Bahar, 2002; Chodera, Singhal, Pande, Dill, & Swope, 2007) (as in cell-based

MSMs) but instead as overlapping probabilistic distributions over the conformation space. This

distribution relies on the key recognition that a single conformation does not contain enough in-

formation to be uniquely mapped to a state and leads to the presence of hidden states in what is

referred to as a Markov Dynamics Model (MDM) rather than an MSM (Chiang et al., 2010). In

the MDM, emission probabilities of hidden states measure the probability with which a conforma-

tion belongs to a state. Both transition and emission probabilities are estimated over trajectories of

conformations obtained from many MD simulation trajectories. A principled criterion based on the

ability of a model to predict long-timescale kinetics allows discriminating between possible MDMs

and selecting an optimal one. The MDM embedded over conformations obtained from MD trajec-

tories simulating folding of the fast-folding villin headpiece subdomain (HP-35 NleNle) is shown

in Figure 11. The MDM presents a highly-interpretable discrete kinetic model of the folding of this

small sub-domain, built over more than 400 MD trajectories, each 1µs long. Figure 11 shows that

a few states, 7, 12, 13, 15 and 18, are the most frequently-visited states that significantly influence

the long-term dynamics.

Molloy et al. (2016) present strategies to embed conformations sampled via a non-MD method

in a cell-based MSM. The ability to formulate a cell-based MSM relies on dense sampling of the

conformation space of interest. The latter provides significantly challenging to do in the MD setting

or even in the robotics-inspired setting. Instead, complementary work in the Shehu lab on EAs is

used to obtain a rich ensemble of local minima conformations in healthy and variant sequences of

a given protein (Clausen & Shehu, 2015; Clausen et al., 2015). These conformations are organized

into states via a simple lRMSD-based clustering scheme. A nearest-neighbor graph is then imposed

over the states, but an additional lRMSD constraint is imposed so as to connect only nearby states

via an edge. The assumption is made that transitions are possible between nearby states, and prob-
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Figure 11: In this figure, reproduced from the work of Chiang et al. (2010), (a) shows the MSM connecting

twenty identified states of the villin headpiece peptide. The size of each node in the MSM is proportional to

the probability of the corresponding state in the stationary distribution. The width of each edge is proportional

to the transition probability between corresponding states. States with probability < 0.01 in the stationary

distribution, self-transitions, and edges with transition probability < 0.002 are not drawn to avoid cluttering.

The initial conformations are most likely to belong to state 12, and the native conformation is most likely

to belong to state 15. (b) Representative conformations are shown from states 7, 12, 13, 15, and 18. The

residues forming the important helix 1 in the villin headpiece peptide are drawn in red. (c) The most likely state

transition sequences from states 12 to 15 are shown here. This figure is reproduced under the Bioinformatics

Journal’s terms of the Creative Commons Attribution Non-Commercial License.

abilities of such transitions can be estimated via a Boltzmann-like probability. The latter makes use

of the concept of the energy of a state. Several schemes are employed to determine the energy of a

state, ranging from the minimum to the average value over energies of conformations grouped in a

state.
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Figure 12: This figure is reproduced from the work of Molloy et al. (2016). Panel (a) shows two wet-laboratory

structures representative of the ON and OFF structural states of the H-Ras catalytic domain. H-Ras switches

between these two states to regulate its biological activity in the cell. The loop regions where the change is

localized are shown in red and blue. The reactant (GTP) and product (GDP) are also drawn where they bind

H-Ras. Panel (b) shows two-dimensional projections of the probed energy surface of the H-Ras wildtype (WT)

and the oncogenic Q61L variant. Sampled conformations are projected on the top two principal components

(PC) obtained via Principal Component Analysis of sampled conformations. The color-coding follows the

Amber ff12SB internal energy values of the all-atom structure corresponding to each sampled conformation.

The ON → OFF minimum-cost paths obtained by querying the stochastic roadmap constructed over sampled

conformations are shown, as well. The costs of these paths are shown in the table in panel (c). The average

number of edges over all possible ON → OFF paths are obtained by treating the roadmap as an MSM. The

actual energy profiles of the minimum-cost paths obtained for the WT and Q61L variant are shown in panel

(d). This figure is reproduced with permission of Robotica 2016.

The result of this process is a stochastic roadmap that can be used to answer lowest-cost path

queries, as traditionally the case in roadmap-based methods, as well as yield average statistics, such

as the average number of edges in a transition, via the analogy of the stochastic roadmap with an

MSM. A path smoothing algorithm based on the conjugate peak refinement technique (Fischer &

Karplus, 1992) provides more detail with state-state paths and improves their energetic profile. The

average statistics, while not direct measurements of transition rates due to the lack of timescale in-

formation from non-MD methods, allow conducting comparisons between wildtype (WT) and vari-

ant (mutated) sequences of proteins of interest. In the work of Molloy et al. (2016), such statistics

are employed to obtain a structural explanation for the role of specific mutations on the biological

activity in two proteins implicated in human disorders. Figure 12 showcases some representative

results from application of the SRS-based approach in the work of Molloy et al. to the WT and

Q61L variant of the H-Ras protein. Ras sequence mutations have been implicated in various human

cancers (Karnoub & Weinberg, 2008).
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Comparison of the energy landscapes, costs of the minimum-cost paths, energy profiles of these

paths, and the expected number in edges over all paths in each H-Ras sequence in Figure 12 pro-

vides a structural explanation for the impact of the Q61L mutation on the biological activity of this

enzyme. The mutation introduces an energy barrier between the ON and OFF states, and this barrier

increases both the cost of the minimum cost path and the number of expected edges in transition

paths. Taken together, these results suggest that the Q61L mutation, while preserving the stability

of the ON and OFF states, cannot form the transition state mimic, in agreement with wet-laboratory

studies (Gremer, Gilsbach, Ahmadian, & Wittinghofer, 2008; Gibbs, Schaber, Allard, Sigal, & Scol-

nick, 1988).

4.2.4 ADDRESSING LIMITED SAMPLING IN ROADMAP-BASED METHODS FOR MODELING

PROTEIN STRUCTURAL TRANSITIONS

Sampling remains a key issue in adaptations of roadmap-based methods for biomolecular modeling.

While generally the focus of robotics-inspired methods has been on demonstrating their ability to

reproduce experimental knowledge qualitatively or even quantitatively on specific systems under

investigation, their general applicability has been largely sacrificed. For instance, the roadmap-

based methods applied to model the discrete secondary structure formation events in protein folding

and unfolding are largely not applicable to model folding or other transition events in proteins

more than 150 amino acids where the states sought to the bridged by the transition may be farther

than 10Å away from each-other. Strategies to reduce the number of variables so as to control

the dimensionality of the variable space have important ramifications. For instance, rigidity-based

techniques base their conclusions of where the most flexible regions are on analysis of a specific

structure. NMA techniques suffer from a similar issue, and regular application of NMA on sampled

conformations adds to the computational time demands of an algorithm. Other techniques that make

assumptions on which regions do or do not participate in a particular transition event rule out the

possibility of potentially complex, cooperative events. Others that bundle variables together and

obtain values for them from pre-compiled databases make similar assumptions on what types of

structural changes facilitate a transition.

Sampling will remain a challenge, but two complementary directions are being explored. The

first direction values broad applicability over specific improvements. Molloy and Shehu (2016)

propose that the community needs a benchmark testing dataset and a baseline approach against

which specific improvements and extensions can be evaluated. In particular, this work ignores

system-specific insights into which variable and which sampling schemes can be more effective

over others but instead compiles a broad set of variables and sampling/perturbation operators that

can be selected via a probabilistic scheme. Different schemes can be employed at different stages

of a roadmap-based method based on the distance of the conformations that need to be connected

and the size of the biomolecule under investigation. A general baseline implementation shows

comparable performance to system-specific methods and promises that further improvements can

guarantee a baseline performance over a broad set of biomolecules and problem instances. Related

ideas building on the concept of a move selector are presented by Gipson et al. (2013).

The second direction sacrifices broad applicability in the interest of improving the predictive

capability of roadmap-based methods to the point that reliable hypotheses can be formulated to fur-

ther guide wet-laboratory experimentation. Maximova et al. (2015) recognize that roadmap-based

methods do not have to operate in a de novo setting but instead exploit the rich set of wet-laboratory
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Figure 13: This figure is reproduced from the work of Maximova et al. (2015). The left panel shows a

schematic that summarizes all paths within a small energetic threshold of the minimum-cost path connecting

structure pairs of interest in calmodulin. Analysis of these paths reveals that known, wet-laboratory structures

mediate transitions of interest. The PDB ids of these mediating structures are shown along each of the paths.

The right panel shows successive structures in the minimum-cost paths found for transitions of calmodulin

from structure with PDB id 1CLL to that with PDB id 2F3Y and then from structure with PDB id 1CLL to that

with PDB id 1NWD. Numbers indicate model number within an NMR entry. This figure is reproduced with

permission of IEEE Society 2015.

structures to determine the variable space of interest. In particular, the SoPRIM algorithm proposed

by Maximova et al. subjects wet-laboratory structures of different sequences of a protein to a statisti-

cal multivariate analysis to determine variables that represent collective motions of atoms. Sampling

focuses on this space of variables and a multiscaling technique converts samples to all-atom struc-

tures that are local minima of the Amber ff14SB energy function. The samples are embedded in a

roadmap, and distance constraints ensure that edges are only placed between neighboring samples.

Edges are weighted based on the concept of minimum cost, recording only energetic increases.

In an additional contrast to existing roadmap-based treatments, the work of Maximova et al.

(2015) yields not only the minimum-cost path connecting a given start to a given goal structure, but

allows extracting additional paths with similar costs. The concept of tours is employed, based on

related work in robotics. The tours allow to investigate specific hypotheses regarding the participa-

tion of known meta-stable structures in a transition. A set of such structures can be specified, and

all minimum-cost tours that consider all subsets and orders of such structures are reported. Analysis

of tours with costs no higher than a specific threshold over the minimum-cost path reveals precious

information regarding important function-regulation transitions in several proteins, including Ras

and calmodulin. A summary result is shown in Figure 13.

Figure 13 extracts several energetically-credible paths representing the various, equiprobable

routes of transitions of calmodulin from its open, unbound state (represented by structure with PDB

id 1CLL) to two different, closed peptide and protein-bound states (represented by structures with

PDB id 2F3Y and 1NWD). The schematic summary of these paths in Figure 13 highlights that

these open-to-closed transitions in calmodulin may not make use of the calcium-bound structure

(PDB id 1CFD). Indeed, paths that go through this structure have higher energetic cost. A different

intermediate structure emerges from the analysis of paths. This structure (under PDB id 2K0E)

also binds calcium but is slightly different for that under PDB id 1CFD. The succession of struc-

tures shown in 13 makes clear that the domain collapse, re-arrangement, and partial unfolding of

the helix that links the N- and C-terminal domains in calmodulin are gradual, as captured in var-

ious structures in the NMR ensemble with PDB id 2K0E. This result is in good agreement with
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the wet-laboratory study in the work of Gsponer, Christodoulou, Cavalli, Bui, Richter, Dobson,

and Vendruscolo (2008), which, in addition to contributing the NMR entry under PDB id 2K0E to

the Protein Data Bank, also concludes that correlated motions within the 2K0E Ca(2+)-CaM state

direct the structural fluctuations toward complex-like substates (Gsponer et al., 2008). While the

wet-laboratory study by Gsponer et al. (2008) was restricted to MLCK binding of CaM, the results

obtained by the SoPRIM algorithm (Maximova et al., 2015) suggest that the same mechanism ob-

served by Gsponer et al. (2008) prepares CaM for binding to other peptides (the C-terminal Domain

of Petunia Glutamate Decarboxylase in 1NWD and the IQ domain in 2F3Y). The work of Max-

imova et al. (2015) points to a general mechanism for the apo-to-closed/complexed dynamics of

calmodulin, where correlated motions within the calcium-bound state direct the fluctuations and

population shift of this protein to its peptide-bound states.

5. Outstanding Challenges and Directions of Research

Robotics-inspired methods are becoming more powerful and diverse in their algorithmic strategies

and the problems they address in biomolecular modeling. While this survey has focused on tree-

and roadmap-based methods for modeling protein-ligand binding, protein de novo structure predic-

tion, protein and RNA folding and unfolding, structural transitions in peptides and proteins, and

energy landscape mapping, other methods are building on related ideas to efficiently map ligand

migration channel networks in dynamic proteins (Lin & Song, 2011; Na & Song, 2015) or even

model antibody aggregation processes (Hoard, Jacobson, Manavi, & Tapia, 2016). While we have

attempted to provide a broad and deep survey of robotics-inspired methods for biomolecular model-

ing, an exhaustive survey is not possible. This particular sub-domain at the interface of Robotics and

computational structural biology is rapidly progressing, as demonstrated by the increasing number

of adaptations and applications showcased in this survey over earlier, related reviews of robotics-

inspired methods (Al-Bluwi et al., 2012; Gipson, Hsu, Kavraki, & Latombe, 2012). As this survey

showcases, several algorithmic challenges remain. Below we provide a partial list of these chal-

lenges and prospects for future research.

5.1 Problem-Specific versus General Treatments

There is a pressing need in the community for benchmarks. While work has been largely driven by

specific biological systems and problems of interest, such data-driven research has often resulted

in specific design decisions that are not easily transferable to other systems and other problems.

For instance, key decisions on how to reduce dimensionality of the variable space and design com-

pliant sampling strategies and perturbation operators on a specific problem instance may not be

applicable to another problem. A realization of the need for baseline, general treatments and bench-

marks is leading researchers towards non-specific treatments to establish benchmarks and baseline

performance. Better sharing of problem instances, metrics, and algorithms with known baseline

performance will also be key to allow researchers to build on existing work and expedite progress.

5.2 Sampling

There is a growing realization that sampling will remain a central issue, despite clever reduced repre-

sentations and sampling strategies. While the community of researchers adapting robot motion plan-

ning treatments for biomolecular modeling has been successful at integrating important knowledge
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about biomolecules in model selection, sampling strategies, and energetic evaluations, this commu-

nity has largely remained isolated from complementary work in AI on stochastic optimization of

continuous, non-linear variable spaces. In particular, there is a growing body of work in the evolu-

tionary computation community on optimization of complex fitness landscapes. Some ideas from

this community have successfully been employed in de novo structure prediction (Shehu, 2013) and

mapping of protein energy landscapes (Clausen & Shehu, 2015; Clausen et al., 2015; Sapin, Carr,

De Jong, & Shehu, 2016). These ideas are also beginning to be incorporated in robotics-inspired

treatments of biomolecular dynamics (Molloy et al., 2016). Better awareness and integration of

effective practices of other communities dealing with similarly challenging high-dimensional prob-

lems is likely to address issues in sampling and lead to more powerful robotics-inspired treatments.

In this context, we see great opportunity for AI researchers to make contributions in sampling-based

treatments of biomolecular dynamics.

5.3 Decorrelations of Paths

In particular, applications of tree- and roadmap-based methods for modeling structural transitions

of biomolecules, path correlation is an issue. Path correlations can potentially skew any statistics

of interest and even yield to incorrect conclusions about a structural transition. The culprit in tree-

based methods is the bias that is applied to steer the conformation tree to the goal conformation.

Even multiple executions of a tree-based method are likely to result in similar paths. To some

extent, this source of path correlations can be addressed. For instance, Molloy and Shehu (2013)

makes use of an additional projection layer to steer the tree towards under-sampled regions of the

conformation space. This is shown to improve path diversity. Yet another culprit that is shared by

tree- and roadmap-based methods is density of sampling. For instance, undersampling of specific

regions may lead to the conclusion that the region is not energetically favorable for the biomolecule

at hand. Further investigation is needed to quantify and reduce path correlations in robotics-inspired

methods. This direction is also ripe for cross-fertilization of ideas from different sub-communities

in AI.

5.4 Injection of Dynamics

A common criticism of robotics-inspired methods is that they are essentially geometric treatments

of biomolecules. While to some extent geometric treatments are accepted in modeling biomolecu-

lar structure, they are seen as inadequate in modeling biomolecular dynamics. Modeling dynamics

is largely seen as exclusive to MD simulation frameworks. In a somewhat colloquial and simplis-

tic characterization of robotics-inspired methods, “biomolecular dynamics has nothing to do with

robot motion planning.” This characterization can be overcome by pointing out that the superficial

analogies are only used to inspire robotics researchers, but the deeper analogies that are exploited

and shown to have an impact are those on selection of models, variables, fast forward and inverse

kinematics, and effective sampling strategies. It is worth noting that the latter are not exclusively

the domain of robotics-inspired researchers. On the contrary, issues of effective variable selection

or representation, variation operators, employment of such operators in sampling strategies, and

others are of broad interest to AI researchers working on optimization problems as part of modeling

abstract, mechanical, or biological systems.

At various places, this survey has highlighted that robotics-inspired methods are capable not

only of reproducing wet-laboratory knowledge and data but also of providing novel findings to direct
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further experimentation in wet laboratories. Still, a valid criticism of robotics-inspired methods

is that edges in trees or roadmaps do not provide a detailed view of the diffusion between the

two conformations they connect. While the survey points out in Section 4 several challenges with

integrating MD trajectories in robotics-inspired framework, it is important that the community think

of ways to do so effectively. Injection of ideas from the AI community at large may prove beneficial

here. A growing body of work in computational biophysics is pointing to effective frameworks of

biomolecular dynamics that integrate thousands or more short MD trajectories in MSMs to capture

biomolecular dynamics. Cross-fertiziliation of ideas from the AI and biophysics communities is

likely to prove fruitful in explicitly integrating MD in robotics-inspired methods.

5.5 Beyond Path Computations: Roadmaps and MSMs

As this survey highlights in Section 4, MSMs have become very popular in computational bio-

physics literature to organize and extract statistics from many, independent MD simulations of

biomolecular folding or other structural transitions (Jayachandran, Vishal, & Pande, 2006; Chodera

et al., 2007; Noé & Fischer, 2008; Prinz, Keller, & Noé, 2011a; Noé, Doose, Daidone, Löllmann,

Sauer, Chodera, & Smith, 2011; Pérez-Hernández, Paul, Giorgino, De Fabritiis, & Noé, 2013; We-

ber, Jack, & Pande, 2013; Deng, Dai, & Levy, 2013; Chodera & Noé, 2014; Malmstrom, Lee,

Van Wart, & Amaro, 2014; Song & Zhuang, 2014; Shukla, Hernández, Weber, & Pande, 2015).

Several survey articles are dedicated to reviewing MSM-based treatments of biomolecular dynam-

ics (Pande, Beachamp, & Bowman, 2010; Gipson et al., 2012; Maximova et al., 2016) review MSM-

based treatments of biomolecular dynamics. Works by Chiang et al. (2006), Chiang et al. (2007),

Chiang et al. (2010), and Molloy et al. (2016) provide an important first step in the integration of

MSMs in the analysis of conformation spaces probed via robotics-inspired algorithms. While Chi-

ang et al. (2010) and Molloy et al. (2016) address some of the issues on to convert roadmaps into

MSMs, many others remain, including definition of structural states, possible undersampling of spe-

cific states, feedback mechanisms to address undersampling, and rigorous calculation of transition

probabilities. Some of these issues are also contended with in the computational biophysics commu-

nity, and initial treatments have emerged (Singhal et al., 2004; Singhal & Pande, 2005; Prinz, Wu,

Sarich, Keller, Senne, Held, Chodera, Schütte, & Noé, 2011b; Malmstrom et al., 2014; Da, Sheong,

Silva, & Huang, 2014). We see a great opportunity here for AI researchers, particularly those with

expertise in machine learning, to coordinate efforts with computational biophysicists. Such efforts

will undoubtedly lead to richer and more powerful computational treatments of biomolecular dy-

namics.

5.6 Cross-Fertilization of Ideas

As this survey shows, work in modeling biomolecular structure and dynamics is highly interdisci-

plinary, and great progress is achieved when ideas from different communities are combined and

integrated in computational treatments. There is a rich set of scientific questions that can be formu-

lated to understand the role of biomolecular structure and dynamics in human biology and health.

These questions often result in exceptionally challenging computational problems that necessitate

sophisticated algorithmic treatments. Treatments that add to the current knowledge of biomolecular

systems in chemistry, physics, and biophysics are likely to advance not only our modeling capabili-

ties but also make important, general contributions to AI research.
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Jaillet, L., Cortés, J., & Siméon, T. (2008). Transition-based RRT for path planning in continuous

cost spaces. In Intl Conf Intell Robot Sys (IROS), pp. 22–26, Stanford, CA. IEEE/RSJ.

Jaillet, L., Yershova, A., LaValle, S. M., & Siméon, T. (2005). Adaptive tuning of the sampling
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