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ABSTRACT Computer architecture simulators play an important role in advancing computer architecture

research. With wider research directions and the increased number of simulators that have been developed,

it becomes harder to choose a particular simulator to use. This paper reviews the fundamentals of different

computer architecture simulation techniques. It also surveys many computer architecture simulators and

classifies them into different groups based on their simulation models. Comparing computer architecture

simulators with each other and validating their accuracy have been demanding tasks for architects. In addition

to providing a survey of computer architecture simulation tools, we measured the experimental error of six

contemporary computer architecture simulators: gem5,MARSSx86,Multi2Sim, PTLsim, Sniper, and ZSim.

We also performed a detailed comparison of these simulators based on other features such as flexibility

and micro-architectural details. We believe that this paper will be a very useful resource for the computer

architecture community especially for early-stage computer architecture and systems researchers to gain

exposure to the existing architecture simulation options.

INDEX TERMS Computer architecture simulators, simulation techniques, validation, x86 simulators,

simulators evaluation.

I. INTRODUCTION

Computer architects use simulation to assess different design

options, test new research ideas and analyze the perfor-

mance/power consumption of different processor models.

Analytical models are not suitable for evaluating architec-

tural/microarchitectural designs and design variations as they

produce inaccurate results because of the huge amount of

configurations and small details that can cause small vari-

ations in performance. Simulation is considered to be the

standard performance modeling method [1]. The majority of

published research is based on the use of simulators to ana-

lyze the performance of new ideas. Many computer architec-

ture simulators support various instruction set architectures

(ISAs), microarchitectures and are based on different sim-

ulation models ranging from trace-based to cycle-accurate.

It can be a daunting task for new researchers in the area of

computer architecture and systems, to choose one simulator
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and start their research. In addition, in order to have a trust

in simulation studies, simulation results need to be validated.

This can be challenging, especially when there is not enough

documentation about simulators. There is little work that

evaluates current computer architecture simulators, performs

a comparison among them, and/or compares their accuracy

to contemporary processors. Our major contributions in this

paper are:

• Providing an up-to-date survey of computer architecture

simulation techniques and simulators.

• Categorizing, analyzing and comparing various

computer architecture simulators, which can help the

community to understand the use-cases of different

simulation tools.

• Providing detailed characteristics and experimen-

tal error comparison of six modern x86 computer

architecture simulators: gem5 [2], Multi2sim [3],

MARSSx86 [4], PTLsim [5], Sniper [6], and ZSim [7].

• Reviewing the most important challenges for architec-

ture simulators and the solutions that have been pro-

posed to resolve those issues.
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FIGURE 1. Simulator running on a host machine.

In computer architecture, the main goal of simulation is

to model new research ideas for parts of a computer system

(e.g. microprocessor, memory, IO devices) or a complete

computer system and estimate the performance improve-

ments and/or power consumption. Simulators also help com-

puter architects in evaluating, debugging and understanding

the behavior of existing systems. In simulation terminology,

a computer system that is being simulated is called a target,

and the system where the simulation is run is called a host.

Workloads that run on simulators can be standard test pro-

grams, known as benchmarks, which are run to assess the per-

formance of a processor or a computer. The workload being

simulated can also be an operating system (OS), sometimes

referred as a guest OS. The interaction between a simulator

and a host system is shown in Figure 1. This survey is a more

comprehensive and an updated survey compared to previous

existing surveys, which either focused on teaching related

simulators [8]–[11], memory simulators [12], [13] or were

not much detailed. Nikolic et al. [10] have surveyed many

computer architecture simulators suitable for teaching com-

puter architecture courses. They evaluated various simulators

based on the criteria of topics covered in the class-

room, and simulation features. Uhlig and Mudge [12] and

Holliday [13] discussed different memory simulation tech-

niques, which use reference address traces. Urden [14]

compared and evaluated the performance results of three

different computer architecture simulators against each other.

However, his study did not compare the simulators with

real hardware runs. In this survey, we compare the sim-

ulators’ results with that of real hardware experiments to

measure their inaccuracies. Nowatzki et al. [15] discussed

various pitfalls associated with the usage of architectural

simulators. They have also discussed the errors they observed

in four performance and power simulators: gem5 [2],

GPGPUSim [16], McPAT [17] and GPUWattch [18]. Val-

idation efforts for various simulators (e.g. SimpleScalar,

SMARTS, Microlib, gem5, Sniper, SiNUCA, Ramulator)

have also been published [19]–[25]. These papers focus only

on one simulator that is being validated and usually do not

include comparisons with related tools. This survey is up-to-

date, which includes newer processor architecture simulators,

and it is more detailed compared to previous surveys. The sur-

vey also compares and contrasts several modern simulators.

In order to accelerate the process of simulation, researchers

often rely on sampling techniques. The paper also discusses

few of the commonly used sampling methods associated

with simulating computer architecture components. Simi-

larly, the accuracy of simulation results is always a concern

for architects. We briefly explore different existing simulator

validation approaches. Furthermore, this work compares the

experimental error of six x86 simulators with hardware runs

and provides the relative performance of the simulators when

changing somemicroarchitectural configurations. Finally, we

pinpoint some causes of inaccuracies in the simulation results

that we observed.

Scope of the paper: Because computer architecture

research covers a wide range of architectures, from processor

microarchitectures to special purpose architectures and accel-

erators, which use different types of simulators, we limit the

scope of the paper to review in details computer architectural

and microarchitectural simulators and simulation models of

processors. The paper mentions some uncore and accelerator

simulators. It does not survey in details standalone special-

ized simulators for mircorachictectrual structures or uncore

components; however, it does mention detailed microar-

chitectural or uncore simulations as features of those full

computer architectural/microarchitectural simulators. It also

discusses those full simulators that can also simulate acceler-

ators or can be attached to accelerator simulators. The paper

does not cover systems on chip (SoC) simulators, although

many of the simulators that are discussed are capable of

simulating embedded processors. The paper also dis-

cusses different simulation methodologies, categorizes them,

and compares and contrast those techniques. In addition,

the paper discusses the challenges associated with simulation

and their possible solutions, and discusses simulation evalu-

ation techniques. However, to limit the scope, the paper does

not cover in details specific implementation limitations, such

as handling target multi-threading.

The organization of the rest of the paper is as follows:

Section II classifies simulators into different categories

and discusses these categories in details. Section IV

summarizes the different existing computer architectural/

microarchitectural simulators. Section V explores the chal-

lenges faced in computer architecture simulation and their

solutions. Section VI briefly discusses the validation of

simulators. Section VII describes in details six modern

x86 simulators that we have chosen for detailed evalua-

tion. Section VIII discusses the methodology used to mea-

sure the experimental error of simulators and their relative

performance. Section IX shows the evaluation results

of the x86 simulators. Finally, we conclude the paper

in section X.

II. CLASSIFICATION OF SIMULATORS

Simulators can be classified into various groups on the basis

of three most important factors: detail of simulation, scope of

the target and input to the simulator. This section discusses in

details the aforementioned classification taxonomy. It should

be noted that this classification is not mutually exclusive and

one simulator can belong to more than one class. In addition,
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FIGURE 2. Simulators based on simulation details (adapted from [26],
p. 492, Figure 9.2). (a) Functional Simulator. (b) Timing Simulator.

some simulators are classified based on certain aspects or spe-

cializations, which is also discussed in this section.

A. CLASSIFYING SIMULATORS BASED ON THE DETAIL

OF SIMULATION

An important factor to classify simulators is the level of detail

that any simulator implements in its design. The main classes

of simulators based on simulation detail are functional, timing

and functional/timing simulators.

1) FUNCTIONAL SIMULATORS

A functional simulator implements the architecture only and

focuses on achieving the same functionality of the modeled

architecture. In other words, functional simulators behave

like emulators (emulate the behavior of target’s instruction

set architecture (ISA)). They are usually faster than the other

types of simulators, but they cannot keep track of detailed

microarchitectural parameters, as a program runs on the sim-

ulator, because they do not implement the microarchitecture.

While developing new instruction sets, functional simula-

tors can be used for testing purposes. Moreover, functional

simulators can help in identifying architectural features of a

program’s execution, for instance, the total number of dif-

ferent types of instructions in a program, memory access

locality, etc. Figure 2(a) shows a block diagram of a func-

tional simulator.

SimpleScalar simulator [27] has been used for teaching and

research purposes. SimpleScalar is a comprehensive toolset.

It has various simulation models, out of which sim-safe is

an example of a functional simulation model. It is a minimal

SimpleScalar simulator that only simulates the ISA. A speed-

optimized version of sim-safe is named as sim-fast [27].

Simics [28] is another functional simulator, which has a

unique ability of executing a program in forward or back-

ward directions. SimCore [29] is a functional simulator for

Alpha processors. It is claimed to be 19% faster than sim-

fast of SimpleScalar toolset [29]. EduMIPS64 [30], a visual

functional simulator written in java for MIPS, was designed

to be used in classrooms for teaching computer architecture

courses. HASE [31] is a tool for high-level simulation and

visualization of computer architectures. It was developed in

the 90’s using object oriented simulation languages. HASE

project provides many computer architecture models tar-

getting teaching concepts related to computer architecture.

Barra [32] is a functional simulator for GPGPU (general

purpose graphics processing units). It supports simulation

of CUDA applications. Another example of functional sim-

ulators is the ‘AtomicSimple’ CPU model of gem5. One

alternative to creating a functional simulator is to instrument a

program’s binary with a code that is responsible for collecting

the required information when the program executes on a real

hardware [33]. Such tools are called dynamic binary instru-

mentation tools, for example, Pin tools [34]. There are many

simulators (e.g. CMP$im [35], Sniper [6]), which also rely on

instrumentation tools to perform functional simulation.

2) TIMING SIMULATORS

Timing simulators, also known as performance sim-

ulators, simulate the microarchitecture of processors

(Figure 2(b)). They produce detailed statistics about the

timing/performance of a target system [26]. For instance,

in case of the simulation of a processor, this information

might comprise statistics like instructions per cycle (IPC),

program run time, performance of a memory system and

other detailed microarchitecture-related statistics. It is not

required for a timing/performance simulator to emulate the

functionality of a target. Timing simulators have different

subtypes, depending on the degree of details included in

the simulator: cycle-level simulators, event-driven simulators

and interval simulators.

Cycle-level Simulators: Cycle-level simulators simulate an

architecture by imitating the operation of the simulated pro-

cessor for each cycle. In contrast to cycle-accurate simula-

tors that simulate accurately what happens on each cycle

using RTL implementation [36], cycle-level simulators do not

model the hardware with minute details. Cycle-level simula-

tors are slow and utilize a considerable amount of memory

compared to functional and other timing/performance

simulators.

For instance, sim-fast (the fastest functional simulator for

SimpleScalar) can simulate instructions 25 times faster than

the detailed cycle-level simulation model of SimpleScalar.

The cycle-level performance model of SimpleScalar is called

sim-outorder, which is a detailed microarchitectural timing

model. It implements an out-of-order superscalar processor

that supports speculation. Most of the design parameters are
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configurable by users, for example, the number and latency

of functional units, instruction queue and reorder window

sizes, memory latency, etc. Another example of cycle-level

simulators is MSim [37], which is a multi-threaded microar-

chitectural simulation environment for Alpha processors that

simulates major pipeline components. MSim is based on

SimpleScalar.

Event-driven Simulators: An event-driven simulator simu-

lates a target based on events instead of cycles. Usually, they

make use of event queues. Simulation jumps to the time when

an event is scheduled, based on the event queues, instead of

going through all cycles. That way, simulators can save time

by not simulating the cycles for which there are no scheduled

events [38]. Often, some parts of a simulator are modeled

on a cycle-level, while others are event-driven. For example,

the work done by Reilly and Edmondson [39] to simulate

the performance of Alpha microprocessors. An important

point to note here is that often literature does not distinguish

between cycle-level and event-driven simulators.

SESC [40], a relatively fast simulator is an example of

an event-driven timing simulator that supports MIPS ISA.

SESC supports various simulation models such as sin-

gle processors, chip multiprocessors (CMPs), processor in

memory (PIM). RSim [42] is another example of event-

driven timing/performance simulators. It was developed in

the 1990’s and focused on both instruction-level parallelism

(ILP) and shared memory multiprocessors. Detailed accuracy

in RSim is achieved at the cost of a slow speed [42]. Sampling

microarchitecture simulation (SMARTS) [20] framework and

Flexus (Simics) [43] form the basis of a cycle-level timing

simulator SimFlex [44]. Some of the components of this

simulator are event-driven internally. SimFlex can perform

fast simulation of uniprocessor and multiprocessor systems.

It supports various memory models, but implements a simple

in-order CPU model.

Interval Simulators: With the diversion of research focus

towards multi-core and many-core systems, researchers have

been looking for new simulation techniques that balance

simulation accuracy and speed as alternatives for cycle-level

and event-driven only simulators. For instance, interval sim-

ulation [45] is one of such recently proposed techniques. This

technique makes use of the fact that regular instruction flow

through the pipeline can be broken down into sets of inter-

vals based on miss events (cache misses, branch mispredic-

tions). Special purpose portions of architectural simulators,

like branch predictors and memory system, can be used to

simulate the miss events and find their exact timings. Then,

these timings along with an analytical model are used to

estimate the duration for every interval of instructions.

3) INTEGRATED TIMING AND FUNCTIONAL SIMULATORS

Functional simulators are often integrated with timing sim-

ulators to achieve a more flexible and accurate simulation

model. The two types of simulators might or might not

be coupled together. The technique of coupling the simula-

tors, in which instructions execute at the execute stage of

FIGURE 3. Three types of integrated timing and functional simulators.
(a) Timing-directed Simulator. (b) Functional-first Simulator.
(c) Timing-first Simulator.

the modeled pipeline, is known as execute-in-execute. This

makes execute-in-execute a relatively complicated technique

as compared to decoupling. On the other hand, it can increase

the accuracy of the modeled timing-dependent instructions

like synchronization and IO operations [46]. gem5 [2] is an

example of a simulator that uses this technique. To simplify

the development and reduce its complexity, often simulators

decouple functional and timing (performance) simulation.

Usually, some third party software is used for functional

simulation. For example, Simics [28] is used by both Sim-

Flex [44] and GEMS [38] for functional simulation, and

Pin [34] is used by both Graphite [47] and Sniper [6] (based

on Graphite) for functional simulation. For decoupling, there

are three practical types [33]: timing-directed, functional-

first and timing-first. In case of a timing-directed simulator,

the timing model leads the simulation and gives directions

to a functional model to execute instructions. This makes it

possible for timing directed simulators to model speculative

paths. Functional-first simulators use functional models to

generate instruction traces which are fed to a timing model to

derive detailed simulation. Since the functional models only

executed instructions on the correct-path, it is hard to model

speculative paths with this kind of simulators. In the case

of timing-first simulators, the timing-simulator also executes

instructions and uses a separate functional model to verify

its execution. Figures 3(a), 3(b) and 3(c) illustrate these three

types.

VOLUME 7, 2019 78123



A. Akram, L. Sawalha: Survey of Computer Architecture Simulation Techniques and Tools

Timing-directed Simulators: In this category, a functional

simulator records the architectural state (e.g. register and

memory values) of the processor being simulated. The timing

simulator, which has no idea of data values on its own,

takes and uses these values from the functional simulator to

perform a specific task when required [33]. The functional

model and the timing models interact heavily in this type of

simulators as the timing model directs the functional model

and the functional model feeds values to the timing model.

This interaction makes this simulation model suitable for

modeling architectures with dynamically changing functional

behavior, such as multicore architectures [48]. For example,

for a load instruction the functional model computes the

instruction’s effective address, and the timing model uses this

address to determine if the load is causing a cache miss. The

returned value from the cache or the memory, will eventually

be read by the functional simulator. Asim [49] is an example

of this category of simulators.

Functional-First Simulators: In this simulation model,

the functional simulator runs prior to the timing simulator

and generates an instruction trace (a stream of instructions)

that feeds the timing simulator at runtime. In the case of

conditional branches, the functional simulator always fol-

lows the correct path and it cannot simulate the behavior

of branch predictors [50]. If there is a mispredicted branch

in the timing simulator’s pipeline, the functional simulator

restores its previous state before the branch and continues

along the mispredicted path. Later, the pipeline has to be

flushed due to this mispredicted branch. Since the timing

simulator always lags behind the functional simulator, there

can be ordering problems while simulating more than one

thread [50]. For instance, the time at which the functional

model reads a memory value in case of a load instruction can

be different from the time when the timing model requests the

same value, and this can result in reading different values.

This problem can be resolved by a speculative functional-

first simulation [33]. In this technique, whenever a timing

model detects that the data it reads is different from the data

that the functional model has read, it asks the functional

model to restore the processor’s state to the state before the

load instruction and then it executes the load instruction with

the correct data. As, timing and functional models run in

parallel, there is an opportunity to exploit this parallelism for

better performance of the simulator. This type of simulators

has much better performance as compared to timing-directed

simulators, because it is not required for the timing model to

direct the functional model at every instruction or cycle as in

timing directed simulators. SimWattch [51] is an example of

functional first simulators. SimWattch integrates Simics with

Wattch [52]. Wattch is based on SimpleScalar and simulates

both power and performance.

Timing-First Simulators: In this approach, timing simu-

lators run ahead of functional simulators [50]. Timing sim-

ulators simulate the microarchitecture of a target processor

at the cycle-level. Timing simulators usually use functional

simulators for verification of functional execution of

FIGURE 4. Simulators based on scope of target (adapted from [26],
p. 491, Figure 9.1). (a) Full System Simulator. (b) User Mode Simulator.

all instructions. The instruction is retired in case of a match

between the architectural state of both the functional and the

timing simulators. In case of amismatch, the timing simulator

recovers by flushing the pipeline and restarting the instruction

fetch following the problematic instruction. As such, the tim-

ing simulator makes forward progress. If these recoveries

happen frequently, they can impact the simulated system’s

timing, and thus accuracy, depending on the depth of the sim-

ulated pipeline [50]. GEMS [38], FeS2 [53] andMulti2sim [3]

are some examples of timing first simulators.

B. CLASSIFYING SIMULATORS BASED ON THE

SCOPE OF THE TARGET

Another factor to consider while categorizing simulators is

the scope of the target system that is being simulated. Simu-

lators can be classified into two types based on scope:

1) FULL-SYSTEM SIMULATOR

Given any supported operating system (OS) binary, a full

system simulator is able to completely boot that OS and

run application benchmarks on that OS as they would run

normally on a real target machine. Figure 4(a) shows the

basic functionality of a full system simulator. A full-system

simulator simulates all needed I/O devices, memory and

network connections that are required to boot and run any

system. Applications that run on a simulated target system

execute their system calls directly on the target system [26].

As a result, this form of simulation is complicated and time

consuming. Ideally the OS should not be modified, but some-

times binaries of the OS are customized to make the process

of OS booting less resource consuming.

Full-system simulators may or may not be timing sim-

ulators. For instance, gem5 [2] is an example of a full-

system timing simulator, while SimOS [54] is a full-system
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functional simulator. gem5 has the ability to boot Linux,

Solaris and Android operating systems on specific hard-

ware that it supports. SimOS developed in the late 90’s,

was one of the first full-system simulators (not currently

active). Sunflower [55] suite includes a full-system sim-

ulator with microarchitecture and IO modeling. Simics is

able to boot unmodified OS. SimFlex [44], ML-RSim [56],

MARSSx86 [4] and PTLsim [5] are other examples of this

type of simulators.

2) APPLICATION LEVEL/USER MODE SIMULATOR

These simulators run only target applications instead of

simulating a complete OS. They simulate microprocessor

and limited peripherals. In this kind of simulators, system

calls are usually bypassed by the simulator and are ser-

viced by the underlying host operating system, as shown

in Figure 4(b). It might not be a problem to simulate only user-

mode code for benchmarks that execute system-level code

for a short duration (e.g. compute intensive benchmarks as

SPEC CPU2006 and CPU2017) [33]. However, for bench-

marks that spend a significant time to execute system-mode

code, user mode simulation is not enough–(e.g. server related

benchmarks such as Web-Bench and NetBench, real world

performance benchmarks for example SYSMARK, and

transaction processing and database benchmarks such as

TPC-C). For multithreaded workloads, OS scheduling should

be taken into account as it affects workload performance.

Thus, it is necessary to simulate OS-level effects to get

a better estimation of performance. On the other hand,

application-level simulators are usually less complex and

fast as compared to full system simulators. SimpleScalar

is the most known example of application-level simulators.

SESC [40], Sniper [6], and RSim [42] are other examples of

application only simulators.

C. CLASSIFYING SIMULATORS BASED ON THE INPUT

TO THE SIMULATOR

We can categorize simulators into two categories based on the

input to the simulator itself, traces or executables.

1) TRACE-DRIVEN SIMULATORS

Trace files are used as inputs to trace-driven simulators. These

trace files are prerecorded streams of instructions executed by

benchmarks with some fixed inputs. As benchmarks execute

on real machines statistics including instruction opcodes,

data addresses, branch target addresses, etc are recorded in

a trace file. Trace-driven model makes the implementation of

the simulator simple. Trace-driven simulators can be easily

debugged because experimental results can be reproduced.

The size of trace files can be huge, which poses limits on the

total instruction count in each trace file and/or the number of

trace files used at once, and may lead to a slower simulation

time [33], [57]. Different trace sampling and trace reduction

techniques [58], are used to resolve the problem of large size

of trace files. Apart from this, these simulators usually do

not model execution of mispeculated code, which can affect

performance estimation results of structures such as branch

predictors. To solve the problem of branch mispredictions,

techniques like reconstruction of mispredicted path [59] are

used.

Trace-driven models do not include the run-time changes

in behavior ofmulti-threaded applications [60]. This becomes

a more visible problem if trace-driven simulation is run for

a simulated multiprocessor system that is different from the

one that was used to collect the trace. Trace-driven simulation

should be avoided for parallel and timing-dependent systems

as emphasized by Goldschmidt et al. [61].

Shade [62] is a trace-driven instruction set simulator,

supporting SPARC and MIPS systems. Shade is also used

to generate traces. Simplescalar also has the capability

to run simulations from trace files. Cheetah [63] is a

trace-driven simulator that simulates different cache con-

figurations. MASE [64] is another example of this type of

simulators. It is very hard for trace driven simulators to model

the run-time changes in the behavior of multi-threaded appli-

cations [60], [61]. However, lately, few research works have

been put forward to efficiently use trace-driven simulators for

multi-threaded workloads, [65], [66].

2) EXECUTION-DRIVEN SIMULATORS

Execution-driven simulators do not use trace files. Instead,

these simulators use binaries or executables of benchmarks

for simulated target machines directly. These simulators can

simulate misspeculated instructions unlike trace-driven sim-

ulators. However, they are complicated as compared to trace-

driven simulators. SimpleScalar [27] falls into this category

of simulators. Rsim [42], a discrete event-driven simulator

based on YACSIM library [67], also interprets application

executables rather than trace files. SESC and ESESC [68] are

other examples of this type of simulators.

Often, users are interested in the performance of selected

regions of code instead of entire benchmarks. The technique

of direct/native execution can help in this respect. In direct

execution, simulators only simulate particular portions of

code (or regions of interest) of an application and execute

the rest of the application directly on the host machine [57].

In this case, both the target and the host systems should

have same instruction set architecture (ISA) to perform native

execution. This technique is also referred as co-simulation.

PTLsim [5] makes use of this method to speed up simulation.

Tang [69], Proteus [70] and FAST [36] use this approach as

well.

D. OTHER SIMULATOR CATEGORIES

Apart from the aforementioned classifications of simu-

lators, simulators can also be classified based on other

aspects or their specializations as follows:

1) MULTIPROCESSOR/MULTICORE SIMULATORS

Recently, multiprocessor/multicore systems have become

ubiquitous.Multiprocessor simulators are more complex than

uniprocessor ones as they have to cope with the challenges of
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keeping the critical regions of applications consistent for all

processors/cores and scheduling of processes [26]. Simula-

tors with a modular design are better able to simulate mul-

tiprocessor systems, as they can easily instantiate different

processors and corresponding modules to simulate a multi-

core system. There are two main approaches for simulating

parallel targets: sequential simulation and parallel simulation.

In case of sequential simulation, there is only one simulator

thread to simulate all target cores. Simulators in this case

simulate cores in a round robin fashion [26]. In case of

parallel simulation methodology, different simulator threads

are used to simulate different cores. This method speeds up

simulation, but it is difficult to implement due to general

challenges of multithreaded software development.

SimOS [54] and Simics [28] both support multiprocessor

simulation. SimCA [71] is a simulator which is no longer

maintained but was developed on top of SimpleScalar’s out-

of-order model. It focused on multithreaded processor archi-

tecture. MINT [41] is a software package that was designed

to build event-driven memory hierarchy simulators for mul-

tiprocessors. It only runs on MIPS based machines and sup-

ports simulation of MIPS. PTLsim supports multithreading

and multiprocessor simulation. Augmint [72] is a publicly

available execution driven multiprocessor simulation envi-

ronment for Intel x86 architectures. MINT forms the basis

of Augmint, however; Augmint adapts Tango Lite’s [73]

augmentation technique as well. In this augmentation

approach, the application is augmented with instrumen-

tation code at compile time. This instrumentation code

updates simulation clock and generates events for simula-

tion. ZSim [7], ESESC [68], SESC [40] and SimCore [29]

are other examples of simulators that support multicore

simulations.

2) ENERGY AND POWER SIMULATORS

With the pressing need of building energy efficient processors

and computer systems, the significance of energy and power

simulators is increasing. There are many examples of such

simulators in present days. Wattch [52] is widely used to

simulate consumed power. It is based on Simplescalar and

designed to examine and optimize power dissipation and

energy consumption of Alpha microarchitecture. It can also

be merged with other simulators. For example, SimWattch

integrates Simics and Wattch. CACTI [74] is another exam-

ple that simulates power and area for cache like structures.

McPAT [17] can simulate timing, area and power of multicore

processors. Some other examples are Powertimer [75], Pow-

erAnalyzer [76] and SimplePower [77]. SESCTherm [78] and

Hotspot [79] are two other examples of this category of simu-

lators which model thermal effects at the micro-architectural

level. Power Blurring [80] is another temperature calculating

model, which is developed based on a matrix convolution

approach, to reduce computation time. Ziabari et al. [81] have

compared Power Blurring with HotSpot and SESCTherm.

Their experiments have shown that the Power Blurring tech-

nique can achieve better accuracy to generate temperature

TABLE 1. Existing specialized/accelerator simulators.

profiles in less amount of time. ESESC [68] uses modified

McPAT and Hotspot for energy simulations.

3) SPECIALIZED/ACCELERATOR SIMULATORS

Many specialized simulators that are capable of simulating

parts of a processor’s architecture/microarchitecture exist.

Among those, memory and network on chip (NoC) simulators

are most common. Specialized simulators are only capable of

executing certain types of instructions and usually use traces

of specific instructions of executed programs/benchmarks

as their inputs. They are easier to develop and can give a

good idea about the behavior of specific parts of a processor;

however, they are less accurate as they do not simulate the

entire processor and the interaction with the other parts of

the processor. They usually do not simulate ‘off-path’ instruc-

tions in case of mispredicted branches for example, in branch

prediction simulators.

Memory simulators simulate data and instruction accesses

to memory. Most of the existing memory simulators are

trace-driven in nature, where trace files contain streams of

memory accesses only. For example, DRAMSim is a timing

simulator that can simulate different kinds of memories like

DDR, SDRAM, DRDRAM etc. [83]. DRAMSim can also

be integrated with other simulators. Cachesim5 [85] and

Dinero IV [84] are examples of simulators that simulate

only cache accesses. Network on chip simulators simulate

the communication infrastructure of a processor. Emerging

many-core processors design calls for a faster/less congested

networks on a chip. As such, NoC simulator’s have been

increasingly built and used. They are capable of simulating

different types of networks on chips, topologies, routing

policies, etc.

Accelerator simulators have been used to simulate the

behavior of programs or program portions accelerated using

a graphical processing unit (GPU), an application specific

integrated circuit (ASIC), a digital signal processor (DSP),

a field programmable gate array (FPGA), near-data and in-

memory processing, etc. Accelerators have been recently

integrated with processors on the same chip or on a system-

on-chip (SoC). In addition, they have been proposed to be

tightly coupled with processors. The simulation of accel-

erators in addition to processors give a complete view of

the performance of benchmarks. Table 1 shows different

existing types of specialized and accelerator simulators with
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TABLE 2. Comparison of different categories of simulation techniques in terms of accuracy, performance, level of details and easiness of development.

some examples. The interaction of accelerators and proces-

sors is also important to simulate, some computer architec-

ture simulator’s include (or can be integrated to) accelerator

simulators such as gem5 [2] and Multi2Sim [3].

4) MODULAR SIMULATORS

Modular simulators, instead of having a monolithic design,

contain independent modules for different portions of the

processor that can be initialized and linked to other blocks

of the simulated system. These simulators can be debugged

easier and better suit complex designs than non-modular

simulators. This modularity makes simulators more manage-

able. Liberty Simulation Environment (LSE) [107] is one

example of modular simulators. LSE uses a single software

function for each hardware component, and the designer can

use those components connected in an hierarchy to construct

any complex system. Asim [49] is another example of this

type of simulators. It is a user-mode simulator that extends

SimpleScalar to modular components within the simulator

itself. MicroLib [21], M5 [46], Soonergy [108], [109] and

gem5 are some other examples of modular simulators, which

provide the ability to reuse modules of a certain processor

component in a new computer system.

III. EVALUATION OF SIMULATORS

The evaluation of simulators is challenging because

of the contradicting metrics that should be considered.

Eeckhout [33] represented simulation trade-offs as a dia-

mond with contradicting factors: accuracy, evaluation time,

development time and coverage. In this paper, we consider

six trade-off metrics that can be used to evaluate simulators:

accuracy, performance, level of details, easiness of develop-

ment, flexibility and user friendliness.

The accuracy of a simulator refers to the performance

accuracy of the simulated target compared to real hardware.

The performance of a simulator refers to how fast or slow

the simulator can run while simulating the target architec-

ture. The level of details represent the amount and level of

details that a simulator includes while representing a target

architecture. It is not easy to achieve the best results in all

of these trade-offs as most of them are contradicting metrics.

Flexibility refers to both the configurability of the simulator

and how flexible the simulator is to modify (or add new)

structures. User friendliness refers to how easy it is for users

to learn how to use a simulator, modify it, and run different

experiments. Table 2 compares the first four tradeoffs for the

different categories of simulation models described earlier

in section II. Flexibility and user friendliness are affected

more by the simulation implementation than the category of

simulators and thus excluded from the comparison.

IV. SUMMARY OF EXISTING PROCESSOR SIMULATORS

There exist several processor architecture simulators.

Table 3 below summarizes existing computer architecture/

microarchitectural simulators; all simulators are open source

except Simics. It summarizes different aspects of the simu-

lators including supported hosts and targets, etc. In addition,

it characterizes simulators based on the classification taxon-

omy described in section II above.

V. CHALLENGES OF SIMULATION

The main challenges in simulation are related to simulator’s

performance and accuracy [121]. This section describes these

challenges and proposes strategies to tackle them.

A. SLOW SIMULATION

Computer architects and system designers rely on simulations

with accurate timings for proper design decisions. Simulating

a single application only can take a long time– from few hours

to days. The primary reasons for long simulation time is the

complexity of modern microarchitectures that are simulated

and the length of today’s programs, consisting of billions and

trillions of instructions. With the advent of multiprocessor

and multicore systems, simulators have to keep track of

shared resources and deal with synchronization, which is

resource consuming. Benchmarks have also become more

complex than they were in the past [33]. For example, SPEC

CPU benchmarks have become more complex overtime. The

dynamic instruction count per benchmark was 2.5 billion

on average in CPU89, it increased to 230 billion instruc-

tions in CPU2000 [122] and to 2.5 trillion instructions in

CPU2006 [123]. CPU2017 has on average 10X higher

dynamic instruction count compared to CPU2006 [124].

Today, applications are becoming increasingly multi-

threaded to utilize multicore processors efficiently, and

VOLUME 7, 2019 78127



A. Akram, L. Sawalha: Survey of Computer Architecture Simulation Techniques and Tools

TABLE 3. Simulators summary table.
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TABLE 3. (Continued.) Simulators summary table.
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TABLE 3. (Continued.) Simulators summary table.
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simulating multicore processorsf consumes more resources

and time than single-core processors. Many techniques and

innovative strategies have been proposed for accelerating the

speed of simulation. Some of them are discussed below:

1) SAMPLED SIMULATION

One of the mostly used techniques to accelerate simula-

tion is Sampling. In sampled simulation, instead of simulat-

ing the entire benchmark only a small number of samples

are simulated. These samples are groups of instructions,

which are considered to represent the entire benchmark. The

selection of the sampling points can be done in two ways:

(1) statistical sampling and (2) targeted sampling. One

approach for statistical sampling is to randomly pick sam-

ples from the entire instruction stream to acquire unbiased

samples. The other statistical sampling approach is to go for

periodic sampling which selects sampling units at regular

intervals across the entire program. For example, periodic

sampling is used by SMARTS [20] and Flexus [43].

Targeted sampling picks sampling points after analyzing

program’s behavior. Single sampling points/units are selected

from each phase (a phase is a group of a large number of

consecutive instructions that have a similar behavior). The

weights of phases are usually calculated and considered in

choosing sampling points. Since target sampling uses pro-

gram behavior to pick sampling points, it is possible that the

targeted sampling may result in less number of total samples

compared to statistical sampling. However, target sampling

cannot provide a confidence bound on performance esti-

mates [33]. SimPoint [125] is a tool that follows the targeted

sampling approach and uses basic blocks to detect program

phases. SimPoint combines basic blocks into intervals, then

uses Manhattan distance to find the similarities among differ-

ent intervals to locate program phases; each phase contains

many intervals [126]. Intervals from each phase are chosen

as a sampling point for simulation to represent a complete

picture of program execution. Each sampling point is referred

as a simulation point or sometimes a SimPoint. Yi et al. [127]

performed a comparison of Simpoint and SMARTS. Their

study indicated that SMARTS is more accurate but slower

than SimPoint.

There are two challenges associated with sampled simu-

lation techniques [33], [128]. The first challenge is to accu-

rately provide a sampling point with its architectural state’s

starting image (ASSI). Functional simulators require ASSI,

the processor’s architectural state (register and memory con-

tents), for each sampling point to achieve a correct output.

In addition, timing (performance) simulators useASSI check-

points for accurate timing simulation, i.e., the ASSI should

be as close as possible to the program’s architectural state

at the beginning of the simulation point to achieve accurate

simulation results. Many simulators have a fast forwarding

feature that uses a quick functional simulator to construct

the ASSI [33], [128]. Timing simulators use detailed simula-

tion for the entire sampling point, but switches to functional

simulation at the end of each sampling point until it reaches

the next one. Fast forwarding can consume a considerable

amount of time when the sampling units are located far from

the start of the program and far from each other in the dynamic

instruction execution [33]. In addition, using fast forwarding

and detailed simulation intervals serializes the simulation for

all the sampling points. This means, to construct the ASSI

for the next sampling unit, one needs to simulate all previous

sampling units and fast forward between the sampling units.

One technique that can be used to speed up fast forwarding

is direct execution as implemented in PTLsim [5], where the

program is executed on native hardware directly instead of

functional simulation. Checkpointing [129] is another tech-

nique that can be used to solve this problem of initiating

an architectural state [33]. Checkpointing stores the ASSI

up until a sampling point. This checkpoint is then loaded

from a disk during sampled simulation. Checkpointing also

allows parallel simulation as opposed to fast forwarding [33].

However, the space required to store large checkpoint files on

disk is a drawback associated with checkpointing.

To achieve high accuracy, sampled simulation also requires

an accurate starting image for microarchitectural state that

contains the state of branch predictors, caches, etc. Various

strategies for cache state warmup are used [33], such as: con-

tinuous warmup, cache miss rate estimation, self monitored

adaptive warmup, boundary line reuse latency, and check-

pointing. A processor’s core structures such as functional

units, reservation station, reorder buffer, etc. also need to

be warmed up to achieve highest accuracy [33]. For large

sampling units, this is not a crucial problem as a processor’s

core does not keep long history of events as branch predictors

and caches do. However, for short sampling points, it can be

important to accurately warmup these structures.

One of the problems associated with the sampling tech-

niques is their inability to work with multi-threaded appli-

cations. Tools like Simpoint [125] and SMARTS [20] do

not support multi-threaded workloads. However, recently

some research have attempted to resolve this problem for

specific classes of multithreaded applications. For example,

BarrierPoint [130] leverages the synchronization barriers in

multithreaded applications to sample a number of iterations

in a workload between two barriers.

2) STATISTICAL SIMULATION

Statistical simulation [131] combines detailed and analyti-

cal simulation. First of all, a statistical profile containing

important program characteristics is computed using simple

trace-based tools. The statistical profile is used to create an

instruction trace that can be fed to a trace driven simulator.

These synthetic traces are very small in size and simula-

tion process can proceed quickly. Because statistical simu-

lation may not be accurate enough for architects to make

design decisions, it cannot replace detailed simulation [132].

However, it is useful to recognize interesting regions in

programs for additional analysis. Using statistical simula-

tion, an average error in IPC values can range from 10%

(for simple cores) to 15% (for aggressive cores) [131].
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However, for design space exploration, a performance

model’s relative accuracy (relative accuracy refers to the

accuracy in observed performance changes obtained by

changing microarchitectural parameters) can be more impor-

tant than its absolute accuracy because often we are only

interested in knowing the performance impact of a change

in a particular parameter. Eeckhout et al. [131] have tested

statistical simulation using SPECint95 benchmarks. Their

results show that the relative IPC error is below 0.9% for

various cases. Statistical simulation has also been applied to

power modeling and system evaluation, for example as in

Wattch.

3) PARALLEL SIMULATION

Parallelizing simulators can significantly reduce the simu-

lation time for each run. If checkpointing is employed in

sampled simulation, parallelism can be applied to simulate

multiple sampling points at the same time; this is called

parallel sampled simulation [33]. Secondly, to make use of

ubiquitous multicore processors, it seems tempting to come

up with simulators that are multithreaded and can make use

of parallel processors. The simulator’s code can be divided

into different threads, where each thread can be mapped to

each target core in case of simulating multicore architectures.

One issue with parallel simulation is the balancing of speed

vs accuracy [33]. For cycle-level simulators, threads would

need to synchronize after every cycle, which can poten-

tially be a barrier in performance gain expected by using

parallelism. As a solution, the condition of cycle-by-cycle

synchronization can be relaxed to more than one cycle as a

tradeoff between accuracy and simulation speed [33], [133].

BigSim [134] uses parallel simulation, to simulate machines

with a large number of processors. Sniper [6], Graphite [47],

Barra [32] and ZSim [7] are other examples of parallel

simulators.

4) FPGA ACCELERATED SIMULATION

To speed up the process of simulation, parts of simulators

can be implemented on a Field Programmable Gate Array

(FPGA). Simulators can leverage the fine grained parallelism

available on FPGAs to achieve higher simulation speeds

compared to pure software simulators [36]. However,

the development time of an FPGA-based simulator can be

large compared to software simulators, as FPGA acceler-

ated simulators have to be written in hardware description

languages (HDL). They are also not as parametrizable as

software simulators. HAsim [111] is a timing-directed

execution-driven simulator, which implements both func-

tional and timing models on an FPGA. Another example

is FAST [36]; it is based on the functional-first simula-

tion strategy. FAST’s functional simulator is implemented

in software, while its timing simulator is a hardware based

simulators and run on FPGAs. Recently, there has been a

RISC-V Chisel-to-Verilog simulator converter that converts

a simulator written in a new hardware construction language

developed by UC Berkeley, Chisel, to Verilog HDL [135].

Then processor simulation can be run directly on FPGAs.

Writing Chisel code can be less time consuming than writing

a Verilog code; however, it requires learning a new lan-

guage. Similarly, Fabscalar is an x86 simulator, written in

a HDL/C++, which allows users to work with synthesiz-

able parameterized register-transfer-level (RTL) to simulate

x86 designs using FPGAs [136]. However, the simulator is

not very configurable as it only allows the user to choose

among different structures and supported parameters that are

already implemented in HDL.

B. POOR ACCURACY

Fidelity of simulation should be a serious concern, consid-

ering the reliance of major design decisions on simulation

results. First, simulator developers have to make sure that

simulators are functionally correct, if they are simulating

a target’s functionality. Second, the performance statistics

should indicate the target’s actual performance. Unfortu-

nately, simulators are not always accurate and can exhibit

various errors. Potentially, there can be three different types

of errors in simulators [137]: Modeling errors, specification

errors and abstraction errors.

Modeling errors occur when the desired functionality is

not properly implemented or modeled in the simulator. One

example of modeling errors is when instructions are con-

figured to take different latencies than the modeled target.

Another example can be issuing instructions to reservation

stations in an out-of-order manner. Modeling errors can be

reduced by carefully designing and testing the modeled struc-

tures. Errors can be further reduced using proper design

strategies and software engineering principles.

Second, specification errors result from to the lack of

knowledge about the correct functionality of the target. Spec-

ification errors can only be decreased if the target’s specifica-

tions documentation is accessible. If certain specifications of

the real hardware are not known, writing microbenchmarks

can help estimating some specifications. For example, one

can estimate the size of the reservation station by writing and

running a microbenchmark for different cases.

Third, abstraction errors occur when developers implement

their design at a higher level of abstraction to tradeoff design

details for a better speed, or to simplify their simulator’s

implementation. To reduce abstraction errors, developers usu-

ally tradeoff speed; simulator writers can reduce abstraction

errors by including more details in their simulation models.

Today’s new technologies with faster hardware enable further

reduction of abstraction errors. Cain et al. [138] discuss some

sources of abstraction errors that affect simulation accuracy.

First, they conclude that OS effects are important, thus, going

for full-system simulation can make simulation more accu-

rate and representative of true behavior of the target, and

reduce abstraction errors. They also found that the simulator’s

accuracy can be affected by simulating the I/O behavior

even for uniprocessors. Another example of an abstraction

error is not simulating incorrect speculative paths, which can

reduce the accuracy of the simulator. However, for certain
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commercial applications and SEPCCPU integer benchmarks,

it was shown that simulating these incorrect paths affected

performance by only 2% [138].

VI. VALIDATION OF SIMULATORS

Simulator validation refers to the process of validating that

a simulator accurately represents a target hardware. Simu-

lator validation is important to ensure that a simulator does

not include modeling, specification or abstraction errors.

Validating simulators usually incorporates modeling a real

hardware and comparing the simulators results to those of

the real hardware, then calculating the experimental error.

If the experimental error is high, then first the types and

sources of errors should be identified. After that the simu-

lator should be modified to correct those errors. This pro-

cess can be repeated until an acceptable experimental error

is reached. Validated simulators give confidence to users

in their results and is important for result reproducibility.

Gibson et al. [139] and Black and Shen [137] recommended

that simulation studies should be compared against a refer-

ence hardware platform or an already validated simulator.

A recent study [140], which calibrates MARSSx86 simulator

for a particular target heterogeneous processor, concludes that

an unvalidated/uncalibrated simulator can lead to consider-

able differences between simulation results and real architec-

ture performance statistics.

While validation of simulators is important before rely-

ing on their results, some researchers view that rigorous

validations are not always possible and unvalidated simula-

tors can still give deep insights into design decisions [42].

Hughes et al. [42] argue that validating simulators can be

impractical for research and many unvalidated simulators

can prove useful and valuable in studying architectural phe-

nomenon and relative performance. It can be a tedious job

to validate a simulator due to: (1) the lack of certain details

about modern processors where it becomes almost impos-

sible to implement those systems precisely in simulators;

(2) implementing some details of a modern processor, even

when known, can be time consuming and can result in a

slower simulation time; (3) modeling a target system that is

just a a research idea, thus it is hard to validate. In such cases,

it becomes impossible to validate simulators [33].

We can find many validation efforts for various simula-

tors in the literature [14], [19]–[24], [60], [68], [140]–[144].

These validation efforts differ in the strategies they used.

Mostly, computer architects compare the results of their sim-

ulators with the performance behavior of benchmarks on the

real machine that is being simulated. Sometimes, they also

rely on published results for a particular hardware instead of

running experiments on the real system. Desikan et al. [19]

tried to validate SimpleScalar’s out-of-order model against

Alpha 21264 processor model. The mean experimental error

in microbenchmark simulation was reduced from 19.5% for

sim-outorder, to 2% after validating sim-outorder for an

Alpha processor (Sim-alpha). Sim-alpha [145] is based on

SimpleScalar simulator and uses code from sim-outorder, but

almost all of the timing simulation model is written from

scratch. For macro-benchmark validation (benchmarks are

taken from SPEC-CPU2000 [146] suite), the sim-outorder

resulted in an average experimental error of 36.7% com-

pared to DS-10L (alpha processor based machine) [19].

ESESC [68], which is an extension of SESC [40] simu-

lator, is validated against Samsung Chromebook (contains

ARM A15) using SPEC CPU benchmarks. They used perf

utility [147] on Chromebook with performance counters

enabled, to collect statistics on the real system. Their results

show 21% IPC (instruction per cycle) error on average.

Perez et al. [21] compared performance estimation of vari-

ous modules of MicroLib simulation environment with Sim-

pleScalar to validate them. Walker et al. [144] proposed a

new method to find sources of inaccuracies in simulators

and validate them using clustering, correlation analysis and

regression. Our previous work [148] compared the exper-

imental error of few computer architecture simulators to

an Intel’s Core-i7 microarchitecture. A recent work by Jo

et al. [149] introducedDiagSim to detect the hidden details

in three simulators (gem5, Multi2Sim, MARSSx86) that can

impact simulation results significantly. In addition to the

simulators survey part, this paper discusses more examples

of validation efforts for recent simulators in Section VII and

further compares their absolute and relative performance

in Section IX.

VII. COMPARISON OF RECENT X86 SIMULATORS

We selected six simulators: gem5 [2], MARSSx86 [4],

Multi2Sim [3], Sniper [6], PTLsim [5] and ZSim [7] for a

comprehensive study due to following reasons:
• These simulators have different simulation models, but

all of them fall into the category of timing simulators.

• These are modern simulators with active development,

except PTLsim. PTLsim is not in active development,

but it is still used today.

• All these simulators support x86 and other major archi-

tectures. They also have the ability to perform detailed

simulation on selected parts of any benchmark.

A. gem5

gem5 [2] is an event-driven full-system simulation tool,

which is extensively used in both academia and industry.

Although gem5 is an event driven simulator, it can keep

track of events on a cycle-by-cycle basis, which makes its

accuracy comparable to a cycle-level simulator. It supports

many ISAs: ARM, x86, MIPS, SPARC, ALPHA, Power

and RISCV. It uses CPU models from M5 [46] and mem-

ory system models from GEMS [38]. There are mainly

four CPUmodels in gem5: ‘AtomicSimple’, ‘TimingSimple’,

‘Minor’ (in-order) and ‘O3’ (out-of-order). The first two

models (AtomicSimple and TimingSimple) are single-cycle

processor models without any pipelined structures. Atom-

icSimple models the timing of memory accesses but Tim-

ingSimple does not. Minor and O3 are ‘execute-in-execute’

pipelined models. These models allow for configuring
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multiple pipeline stages and their widths, functional units,

and other pipeline structures. The ‘O3’ model supports simul-

taneousmultithreading (SMT). Recently, kernel-based virtual

machine CPU (KVM-CPU) model was also introduced in

gem5 that allows the simulated code in full-system to run on

the actual hardware, thus increasing the simulation speed sig-

nificantly. This CPU can be used for fast-forwarding through

the non-important parts of the simulated code.

Gutierrez et al. [22] and Butko et al. [141] evalu-

ated gem5’s accuracy to model actual processors based

on ARM ISA (Cortex A15 and A9 microarchitectures).

Gutierrez et al.’s experiments showed an average inac-

curacy of 13% for SPEC CPU2006 benchmarks [22].

Butko et al. [141] studied gem5’s accuracy for multicore

embedded target’s simulation. Tanimoto et al. [150] also

pointed some of the issues with the out-of-order implementa-

tion of gem5. Walker et al. validated gem5 against two ARM

microarchitectures [144]. The inaccuracy varied from 1.39%

to 17.94% based on their experiments. Akram and Sawalha

calculated the experimental error for gem5 with x86 ISA and

pointed out some sources of inaccuracy [148]. However, there

is no full validation effort for x86 ISA.

B. MARSSx86

MARSSx86 is an x86 full-system simulator [4] that is

modeled at the cycle-level. The detailed pipeline model of

MARSSx86 is based on PTLsim [5]. In addition, various opti-

mizations for better performance and flexibility were added.

MARSSx86 uses QEMU [151] based full-system emulation

environment to perform full-system simulation of unmodified

operating systems. It supports both out-of-order and in-order

(IO) pipeline models. MARSSx86 allows for the simulation

of heterogeneous configurations. It also supports real time

input/output devices’ simulation.

Asri et al. [140] calibrated MARSSx86 to simulate an

Intel Core i7 machine, with a focus on high performance

computing applications. Their study exposed certain issues

(e.g. overestimated number ofµ-ops, when decoding instruc-

tions to µ-ops) with the simulator. The final calibrated

MARSSx86 simulator is shown to have less than 10% error

on average for SPEC and PARSEC benchmarks.

C. Multi2Sim

Multi2Sim is a simulator that mainly targets GPUs and sim-

ulates CPU-GPU architectures [3]. It supports many ISAs

for example, x86, MIPS, ARM and AMD Evergreen ISA.

Multi2Sim mainly consists of three different simulation

blocks: a functional simulation engine, a detailed simula-

tor, and an event-driven module. The detailed simulator and

the event-driven module together perform timing simulation.

It supports multi-threaded or single-threaded processor cores

with an out-of-order (OoO) pipeline. It does not model

IO pipelines. Memory and interconnection networks can

be configured with good flexibility. Multi2Sim follows the

design philosophy of Simplescalar [27] for some of its mod-

ules. Moreover, it is a timing first simulator like GEMS [38].

Multi2Sim does not support simulation of an entire operating

system, but it can use dynamic threads to simulate parallel

programs.

Multi2Sim’s validation for GPUs has been done by

Ubal et al. [142]. They used AMD Radeon 5870 as a target

GPU model and AMD OpenCL SDK [152] applications for

benchmarking. The results verified the functional correctness

in addition to measuring the average percentage error in

execution time (5% to 30%). To the best of our knowledge,

there are no validation efforts for x86 CPUs for this simulator.

D. PTLsim

PTLsim [5] is a cycle-level simulator that has the abil-

ity to simulate complete OS using Xen hypervisor [153].

It makes use of co-simulation or a direct execution technique,

which has been discussed previously. It is capable of mod-

eling a superscalar OoO core. It does not model a detailed

IO pipeline. PTLsim’s default core model (OoO superscalar)

is based on characteristics of different real systems like Intel’s

P4 and Core 2 processors and AMD’s K8 processor.

Yourst [5] has evaluated the accuracy of PTLsim. He used

a real machine with 2.2 GHz AMD Athlon 64 processor as a

reference. He used rsync [154], which is a client server appli-

cation, as a test benchmark. The results show that PTLsim’s

inaccuracy in many cases is less than 5%.

E. SNIPER

Sniper [6] is a fast parallel simulator that uses the interval

simulation method discussed earlier [45]. Sniper is based

on Graphite [47], which supports various one-IPC mod-

els. Sniper supports both OoO and IO pipeline simula-

tion. Carlson et al. [6] validated Sniper using Intel Xeon

X7460 machine. They showed an inaccuracy average less

than 25% for SPLASH-2 benchmark suite. Later, to fur-

ther improve the accuracy of sniper, Carlson et al. [23]

implemented an instruction-window based model in Sniper.

The improved simulator exhibited a single-core inaccuracy

of 11.1% compared to an Intel’s Nehalem based target

system. Originally, Sniper supported x86 only, however,

recently a support for RISC-V ISA has been added to the

simulator [155].

F. ZSim

ZSim [7] is a parallel application-level timing simulator

for x86-64 architectures. It was initially written to model

ZCache [156], but has grown into a more resourceful sim-

ulator. It focuses more on simulating memory hierarchies

and many core heterogeneous (single-ISA) systems. It sup-

ports modeling both OoO and IO pipelines. Extensive use

of dynamic binary translation allows it to achieve very high

simulation speeds. ZSim’s validation [143] using an Intel

Westmere core showed an error of 10% on average. Average

absolute error for multi-threaded workloads is 11.2%. Dif-

ferent microbenchmarks, single threaded (SPECCPU2006)

and multi threaded (PARSEC, SPLASH2) benchmarks were

used for the validation effort. The validation study shows that
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TABLE 4. Feature comparison (updated version from [148]).

the main sources of errors in the simulator are the idealized

branch target buffer and the inability to model translation

lookaside buffers (inaccuracies in the front end model of the

pipeline).

G. FEATURE COMPARISON OF SELECTED SIMULATORS

In our previous work [148], we compared the features of

some x86 simulators discussed above. In this paper, we add

one more simulator to our detailed comparison, MARSSx86,

as shown in Table 4. gem5 can run on the highest num-

ber of OS’s (e.g. Linux, MacOS X, Solaris, OpenBSD) and

architectures (e.g. x86, x86-64, ARM, SPARC, Alpha and

PPC) in comparison to the other simulators. Multi2Sim sup-

ports Linux, MacOS X machine with x86. Sniper, PTLsim,

MARSSx86 and ZSim run on a Linux based x86 machines.

All these simulators support fast-forwarding and cache

warmup except PTLsim. Sniper is not capable of creating

checkpoints by itself but makes use of Pin [34] and Sim-

point tools for checkpoints creation. All these simulators can

create execution traces during simulation. Complex out-of-

order pipeline simulation in detailed mode is supported by

all simulators, but IO pipeline is not supported by all of

them such as Multi2Sim and PTLsim. gem5 produces very

detailed simulated performance statistics (e.g. block and idle

cycles of all pipeline stages, squashed instructions at different

stages due to branch mispredictions and memory order vio-

lations). Multi2Sim, PTLsim and MARSSx86 also produce

detailed statistics but the details are less than those produced

by gem5.

In gem5, MARSSx86, PTLsim and ZSim, the penalty

of branch mispredictions can be changed by changing the

pipeline depth. On the other hand, changing the penalty of

branch mispredictions in Sniper and Multi2Sim can be done

by directly specifying misprediction penalty and instruction

latencies. Sniper and gem5 support dynamic voltage and

frequency scaling (DVFS) to study runtime effects on energy

efficiency. Statistics from all these simulators can be used

to derive power/energy models like McPAT [17]. In terms

of heterogeneous multicore (HMP) simulation support, ZSim

and Sniper support simulation of HMP systems with only

a single ISA, where the HMP processor can have different

core parameters like execution models, frequency, dispatch

widths, window sizes, etc. gem5 has been currently integrated

with GPUsim to model CPU-GPU heterogeneous simula-

tions [157]. Moreover, gem5’s code can be slightly changed

to support the simulation of multi-ISA HMP. Multi2Sim

integrates CPU and different GPU architectures that can be

used for CPU-GPU simulation. In terms of community and

support forums, Sniper and gem5 have decent sized support

groups. Multi2Sim, ZSim and MARSSx86 also have such

forums; however, the support forum for PTLsim is no longer

continued.

VIII. METHODOLOGY AND EXPERIMENTS

This section discusses in details the experimentation method-

ology adopted to compare the results of the six selected

simulators with that of real hardware results, and find the

experimental errors.

A. THE TARGET SYSTEM

The target system used for our experiments is based on an

Intel’s Haswell microarchitecture (core i7-4770). While all

configuration parameters are not published by Intel for this

system, we had to rely on other sources to configure the

simulators to match this target. We used both Intel docu-

mentation [158] and some other resources [159]–[161] to

configure the simulators to model Haswell. We used the same

features of the target as our prior work [148], see Table 5.

It should be noted that these simulators do not support micro-

operation (µ-op) fusion, so the width of pipeline stages is

set to a comparable number of simple µ-ops (for example an
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TABLE 5. Target configuration.

issue width that is four fused operations, is set as six simple

operations for our experiments).

We configured the simulators to match the chosen refer-

ence system to the best of our knowledge. We also made

sure that the configurations across the simulators are similar

to each other, with only minimal changes to the code of

simulators, so that a fair comparison can be made based on

simulation results. The purpose of this study is to compare

the simulators’ absolute and relative accuracy to each other,

not to validate simulators. Thus, we did not try to implement

new hardware structures or optimizations that certain sim-

ulators do not support. Table 6 describes few configuration

parameters, which are not same across all simulators or are

different from Haswell configuration due to limitations of

simulators’ support [162]. For example, the specifications

of Haswell branch predictor are unknown and the supported

branch predictors in the studied simulators are not exactly

the same. As shown in Table 6, we configured branch pre-

dictors as close to each other as possible. gem5’s tournament

branch predictor is based on Alpha 21264 machine [163] and

uses a local and a global history tables along with a choice

predictor. Sniper uses a branch predictor that is modeled

after Intel Pentium M’s branch prediction unit. This predic-

tor is identical to McFarling’s serial BLG predictor [164]

and uses loop, bimodal and global predictors as well [165].

To support this we changed some hardcoded configura-

tions in Sniper. Sniper also contains a 256-entries indirect

branch target buffer (iBTB) [165]. PTLsim has many options

related to branch predictor configuration. A hybrid bimodal

and G-share predictor is configured for these experiments.

The same branch predictor is used for MARSSx86 as well.

A tournament branch predictor containing a bimodal and a

two level predictor, is configured for Multi2sim. The sizes of

individual predictors are shown in Table 6. PTLsim supports

both partitioned and shared instruction issue queues [148].

PTLsim does not allow for modeling of shared instruction

queues and clusters at the same time. Therefore, following

the example of [166], we configured partitioned instruction

queues in PTLsim with extra entries to account for any per-

formance loss caused by partitioned queues. The details of

cache prefetching structures are not known for Haswell, so we

deactivated prefetching on real hardware and also did not

configure them on the simulators. The details of all of the used

configurations for all simulators can be found in our technical

report [162].

B. EXPERIMENTAL WORKLOADS AND PERFORMANCE

MEASUREMENT ON REAL HARDWARE

We used SPEC-CPU2006 [167] and a subset of

MiBench [168] embedded benchmarks. The embedded

benchmarks can complete their execution in a realistic

time on the simulated system, but a complete execution

of SPEC benchmarks can take a very long time. Thus,

we ran each SPEC benchmark for 500 million x86 instruc-

tions. These instructions were chosen from a represen-

tative segment of the program using Simpoint [125].

Also, a warmup period of 100 million instructions was

used.

On the real hardware, we used PAPI [169] to measure

instructions per cycle (IPC), cache misses, branch mispre-

dictions values for the entire execution of embedded bench-

marks. For SPEC-CPU2006 benchmarks we measured the

same parameters for the same 500 million simulated instruc-

tions. In order to eliminate the effect of system perturbations

on the real hardware event measurements, we ran the bench-

marks multiple times in a non-continuous manner and then

calculated the average of all runs. The standard deviation in

IPC results for all runs is on average 0.02265. We used gcc

4.4.7 compiler to compile the different benchmarks. We gen-

erated both 32-bit and 64-bit binaries of the benchmarks for

our experiments (depending on what each simulator sup-

ports). Specifically, we used 32-bit binaries for Multi2Sim,

PTLsim and Sniper (also used 64 bit binaries with Sniper),

while we used 64-bit binaries for the rest of the simulators.

The same binaries were used for the simulators and the real

hardware runs. The host operating systems used for building

and running of workloads are Scientific Linux 2.6.32 (32 bit)

and Ubuntu 14.04 (64 bit) for 32-bit and 64-bit binaries

respectively. The reference hardware’s performance counter

values were calculated on both hosts. This work uses gem5’s
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TABLE 6. Differences in simulator configurations.

FIGURE 5. Percentage error in IPC values for 32-bit binaries.

FIGURE 6. Percentage error in IPC values for 64-bit binaries.

stable version of September 2015, MARSSx86 version 0.4,

Multi2Sim version 5.0, Sniper version 6.0, ZSim’s stable

version of April 2016 and PTLsim version available at [170]

for all experiments.

IX. RESULTS

We simulated previously mentioned benchmarks on the six

different simulators and compared their simulation results

with the real target hardware results. We calculated the exper-

imental error of the simulators against real hardware runs.

We also performed a sensitivity tests to find the effect of

changing certain configurational parameters of each simula-

tor compared to other simulators.

A. ERROR ANALYSIS

Figure 5 and Figure 6 show the percentage error in IPC

values for all benchmarks on all simulators when compared to

IPC values of benchmarks from the reference hardware runs.

The mean absolute percentage error (MAPE) in IPC values is

the lowest for Sniper for all categories of benchmarks.

To study the sources of errors that cause the observed

inaccuracy in IPC values, we looked into cache misses and
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FIGURE 7. Percentage error in L1 DCache misses for 32-bit binaries.

FIGURE 8. Percentage error in L1 DCache misses for 64-bit binaries.

branch mispredictions for SPEC benchmarks on these simu-

lators. Figures 7 and 8 show the percentage error in L1 data

cache misses, Figures 9 and 10 show the percentage error in

L3 cache misses and Figures 11 and 12 show the percentage

error in the number of mispredicted conditional branches

shown by the different simulators. The percentage error in

these statistics is very high for some benchmarks (much

higher than 100%) as shown in the figures. On average,

FP-SPEC benchmarks show higher error rate in cache misses

compared to INT-SPEC benchmarks as they consist of larger

numbers of memory instructions, and INT-SPEC benchmarks

show higher error rate in branch prediction accuracy as they

consist of larger numbers of branch instructions.

PTLsim showed a high inaccuracy in the floating point

benchmarks; several benchmarks showed an inaccuracy

above 50%. The main reason we found for this high

underestimation of IPC in PTLsim is related to decoding

x86 instructions into µ-ops. The benchmarks which show

highly inaccurate IPC values, exhibit high ratio of µ-ops to

x86 instructions for PTLsim compared to the other simula-

tors. For instance, this ratio for gemsFDTD, gamess, povray

and soplex is 9, 6.07, 5.43 and 4.2 respectively on PTLSim.

On gem5 and Multi2Sim, the observed µ-ops to x86 instruc-

tions ratio for the same benchmarks is always less than 2.30.

Since, pipelinewidth in these simulators is defined by number

ofµ-ops, high values ofµ-ops to x86 instructions ratios affect

the performance of the pipeline.

There are many examples in Figures 7 and 12, which

indicate more than 100% inaccuracy in L1 data cache misses

and branch misprediction respectively. These figures assist

in understanding negative errors in IPC numbers for few

applications. For instance, many of the benchmarks run on

gem5 (gobmk , gcc_200, h264ref , perlbench, povray, namd)

exhibit overestimated branch misprediction rate and data

cache misses in comparison to the reference target architec-

ture. For these benchmarks, the simulator’s branch predictor

FIGURE 9. Percentage error in L3 cache misses for 32-bit binaries.

FIGURE 10. Percentage error in L3 cache misses for 64-bit binaries.

FIGURE 11. Percentage error in branch mispredictions for 32-bit binaries.

FIGURE 12. Percentage error in branch mispredictions for 64-bit binaries.

does not emulate the behavior of the actual core’s branch

predictor, which results in a higher inaccuracy. When the

benchmarks with a very high number of branch predictor

misses are compared to the benchmarks with a lower number

of branch predictor misses, it is observed that they contain a

much higher number of branch instructions (20% or more of

the overall instruction mix). This high count reveals the inad-

equacy of simulator’s branch predictor to model the target’s

(Haswell) branch predictor for those benchmarks.

gem5’s way of decoding and implementing some of

the x86 instructions can explain some IPC inaccuracies.

An example is an integer divide operation, which is decoded

into many µ-ops, where each µ-op is responsible for calcu-

lating one quotient bit. The hardware division algorithm on

the real system is different from the simulator’s implemen-

tation. Moreover, the mislabeled µ-ops in gem5 cause some
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inaccuracies in the results [15]. Another problem observed

with gem5 is related to the throughput of its fetch stage.

The current implementation of the fetch stage does not allow

initiating new requests when it is waiting for a response, for

example, instruction cache miss. As a result, the fetch unit

does not benefit from non-blocking instruction caches when

instruction cache hit latency is more than one cycle.

Similarly, most of the benchmarks that show high inaccu-

racy on Multi2Sim, for example gcc_200, hmmer , h264ref ,

gemsFDTD, namd , and perlbench. also show high branch

predictor misses. These misses have a significant impact

on the overall performance results. Like gem5, many of

these benchmarks contain a high number of branch opera-

tions (20% or more of the overall instruction mix). Other

simulators also show exaggerated numbers of branch pre-

dictor and cache misses in the case of higher IPC inaccura-

cies for example: h264ref , libquantum, milc and povray on

MARSSx86 and libquantum and mcf on ZSim.

It is noteworthy that the underestimated IPC values are

not always explained by the aforementioned overestimated

branch mispredictions. For instance, although Sniper shows

overestimated branch mispredictions for gromacs, the actual

number of these mispredictions is low and does not have a

significant impact on performance results. The accumulation

of the inaccuracy of upper levels of cache misses into lower-

level cache misses explains higher inaccuracy in the number

of last-level cache misses. Moreover, the inability to simulate

µ-op fusion and µ-op cache (used in Haswell) in the stud-

ied simulators can cause more inaccuracies. Lack of other

micro-architectural details in simulation models and flexible

reconfiguration options in addition to the abstraction level

of some simulators can also produce errors in the simulated

results.

B. SENSITIVITY TESTS

Several existing studies rely on relative performance

improvements informed by simulators to design and compare

new architectures and ideas. To study and compare the rela-

tive performance of simulators, we performed three relative

performance tests: (1) changing the width of pipeline stages

to half of their normal values, (2) reducing the size of all

caches to half of their sizes from Table 5 and (3) configuring a

bimodal branch predictor instead of branch predictor used for

Haswell. Figures 13 - 18 show the changes in IPC values (rel-

ative to the simulated Haswell target IPC) for these runs. It is

hard to judge what the impact on IPC should be relative to the

base configurations, without additional experiments, how-

ever; few observations can be made. For example, memory

intensive benchmarks (likemcf , gemsFDTD, xalancbmk) are

expected to show a bigger change in relative performance

for reduced cache size compared to the other benchmarks.

MARSSx86 and Sniper seem to be the most sensitive sim-

ulators for cache size change. However, MARSSx86 shows

inconsistent behavior for cache size change for other bench-

marks (examples sjeng_ref and namd), compared to the other

simulators. In general, Sniper and gem5 seem to be more

FIGURE 13. Percentage change in IPC values for reduced pipeline width
for 32-bit binaries.

FIGURE 14. Percentage change in IPC values for reduced pipeline width
for 64-bit binaries.

FIGURE 15. Percentage change in IPC values for reduced cache size for
32-bit binaries.

sensitive than other simulators to most of the changes in

most of the cases, depending on benchmarks’ sensitivity to

the mentioned change. Zsim seems to be less affected by

the change of the pipeline width amongst all the simula-

tors. Although it is hard to asses the relative performance

of the simulators and judge their relative accuracy, the fig-

ures clearly show that the relative performance of the simu-

lators differs from each other and that the difference can be

significant for some cases.

In addition to single-core experimental error and relative

performance experiments, we compared the simulators for

multicore experimental errors. Figures 19 and 20 show nor-

malized IPC values for dual core and quad core runs for gem5,

MARSSx86, Sniper (64 bit binaries) and ZSim, to the actual

hardware results. We used multiprogrammed workload from

SPEC CPU2006 benchmarks as inputs to the multicore sim-

ulations. Using multithreaded benchmarks is also interesting,

however; it is not straightforward and it is time consuming

to set up those benchmarks for all simulators. Our dual-

core and quad-core input combinations were selected from

CPU2006 benchmarks using a randomnumber generator. The
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FIGURE 16. Percentage change in IPC values for reduced cache size for
64-bit binaries.

FIGURE 17. Percentage change in IPC values for change in branch
predictor for 32-bit binaries.

FIGURE 18. Percentage change in IPC values for change in branch
predictor for 64-bit binaries.

FIGURE 19. Normalized IPC for dual core runs.

mean average error rate is higher for multicore runs than for

single-core runs. Sniper shows the highest accuracy for the

dual core runs and ZSim shows the highest accuracy for the

quad-core runs.

C. SIMULATION SPEED

Finally, we measured the speed of each simulator and the

time it takes to fast-forward simulations. Table 7 shows the

average simulation time for the simulators for each type of

benchmarks. ZSim is the fastest simulator out of all the stud-

FIGURE 20. Normalized IPC for quad core runs.

TABLE 7. Average simulation time in seconds.

ied simulators. The table also shows the fast forwarding time

by all simulators when simulating SPEC CPU benchmarks.

D. SUMMARY OF OBSERVATIONS

Below is a summary of our main observations based on our

survey of the different simulators and the experimental error

study.

• Experiments point out a strong correlation of a sim-

ulator’s accuracy, compared to real hardware, and

the existence of a validation and a calibration of

simulators for the corresponding target architecture.

For instance, Sniper and ZSim, which show least

error in our experiments, have been validated and

calibrated for Intel Nehalem and Westmere cores

respectively [23], [143].

• The results of uncalibrated/invalidated simulators can

diverge from the reference hardware performance num-

bers significantly. This is also observed by Asri et al.

when calibrated MARSSx86 for a particular target

machine [140].

• Highly inaccurate branch predictor and cache misses,

inaccurate instruction to µ-ops decoding, and the

absence of some Haswell optimization structures in the

studied simulators are the main causes of inaccuracies in

the simulation results.

• The relative accuracy of simulators can vary signifi-

cantly, which can result in inaccurate conclusions.

• A more accurate simulator may still not be able to

fit your needs. For instance, Sniper and ZSim are not

very flexible for modeling new micro-architectural fea-

tures compared to gem5 and MARSSx86, although they
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show greater accuracy. On the other hand, gem5 and

MARSSx86 exhibit more flexibility, which aids testing

new microarchitectural design ideas and studying the

performance of particular micro-architectural blocks.

• Sniper and ZSim are compelling choices to simulate

many-core x86 architectures because they are faster and

produce better accuracy than the other simulators.

• gem5 and MARSSx86 support full-system simulations

and can be used to simulate applications with system

calls, for better accuracy when applications contain

many system calls. They can also be used to study the

effect of OS interaction with hardware on the perfor-

mance of applications. ZSim and Sniper are application-

level simulators.

• MARSSx86’s reasonable accuracy, detailed simulation

model, full system support and good speed makes it

a good option for detailed full system studies espe-

cially for multicore targets. PTLsim can act as a foun-

dation to build more advanced simulators, for example

MARSSx86 [4].

• An important use case of Multi2Sim is CPU-GPU archi-

tecture simulation.

• gem5’s configurability, support of various ISAs, and

support of a complete OS in addition to its active com-

munity of developers, makes it a convincing choice for

running comprehensive experiments on a particular pro-

cessor block or an entire core, to study hardware and

OS interaction or to study heterogeneous systems

(single-ISA, multi-ISA, CPU-GPU, CPU-ASIC).

X. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents a detailed study of computer architec-

tural simulators. We performed a comparative survey of var-

ious simulators and classified them into different categories.

We tested the absolute and relative accuracies of six con-

temporary computer architecture simulators by comparing

their simulation results to those of a real hardware. The

experimental results show that Sniper produces the minimum

absolute error, and that ZSim is the fastest for single-core

simulations. However, picking a simulator to use depends on

the purpose of the study/research and the features of the sim-

ulator. This work also stresses on the importance of validating

simulators and points out some sources of inaccuracies in

computer architecture simulators.

With the emergence of many-core architectures, new

applications, and heterogenous design options, there is a

greater need for new and innovative simulation acceleration

techniques without sacrificing the accuracy of simulators.

In addition, creating modular simulators and having up-

to-date full documentations make simulators more flexible

and easier to use. The integration of more heterogeneous

components within processor architecture simulators enables

new research studies and directions, especially when the

interaction between processor cores and the heterogeneous

components and accelerators is flexibly modeled. Moreover,

as Moore’s law is coming to an end, future architectural

innovations will require optimizations across the entire

software/hardware computing stack. Current architectural

simulators were not designed to study such cross-layered

optimizations. As such, there is an urgent need to come up

with new simulation techniques that will allow researchers to

experiment their ideas across the entire stack.

Finally, simulation validation is very important to ensure

confidence in the produced results and facilitate reproducibil-

ity. Althoughmany studies rely on the relative performance of

simulators, our experiments showed that different simulators

show different relative performance and that the difference

can be significant. Thus, there is a need for new methods to

validate the relative accuracy of simulators. Similarly, there

is a need to validate simulators for multicore processor sim-

ulation, as multicore simulation inaccuracies for simulators

that were validated for single core processors show high error

rates for multicore experiments.
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