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Conservation of energy has been a major concern for Wireless Sensor Networks (WSNs) and IoT applications. Several strategies
were devised, aimed at optimizing energy consumption in these applications, based on: (a) use of low-powered hardware devices,
(b) deploying mobile/relay agents for data collection, (c) clustering, and (d) data aggregation. Amongst these, data aggregation is
widely acknowledged as an important tool to conserve energy in WSN and IoTs. The paper provides a comprehensive survey of
various data aggregation strategies, discusses the efficacy of these strategies in handling issues that are typical to WSN and IoT
applications. These issues severely impact the performance metrics such as: energy efficiency, latency, fault-tolerance, network
throughput, and network lifetime. Therefore, to optimize the data aggregation approach, an application developer needs to
arrive at optimal tradeoffs between these parameters. A major contribution of the paper is to present a holistic review of data
aggregation approaches emphasizing the effect of topology, security, mobility, interference, and fault-tolerance in WSN and
IoTs. Based on gap areas in literature, we throw open few challenges and present them as “posers”, and put-forth suggestions
for further research.

1. Introduction

The emergence of low-powered wireless embedded sensors
has brought to fore their utility for remote data capture
and sensing applications. This has greatly contributed to
the proliferation of Internet of Things (IoT) in applications
such as: smart cities, defense, surveillance, healthcare, agri-
culture, power grids, etc. Central to this development is a
battery-powered embedded wireless sensor that typically
comprises a transceiver, antenna, microcontroller, and the
sensing mechanism. The wireless sensors are endowed with
the ability aggregate, process, compute, communicate, and
network with external agents like other wireless sensors,
actuators, and IoT devices. Considering the limitless number
of IoT devices that can potentially be networked through
WSNs, the mechanisms to (a) regulate the bidirectional flow
of data between the wireless sensors and IoT devices, (b)
maintain the integrity, correctness, freshness, and temporal
relations of the data flow, and (c) handle large chunks of

data from various devices; become imperative. Data aggrega-
tion has emerged as an effective mechanism to address the
above issues. In data aggregation, a group of nodes desig-
nated as data aggregators, perform aggregation on the data
received from their subsidiary nodes, and relay only an
aggregate to a high-end computational platform, either
through a local Base Station (BS) or through an internet
cloud, or a combination of both.

The physically dispersed sensor nodes in a WSN are usu-
ally independent, but collaboratively cooperate to drive an
application. The stand-alone nature of the sensor nodes
and IoT devices in a resource constrained environment,
throws open a plethora of challenges, primarily aimed at
developing energy-efficient, reliable, and robust data aggre-
gation mechanisms. Due to the heterogeneous and mobile
nature of various sensors, actuators, and IoT devices; net-
work topology plays a significant role in dictating the data
aggregation strategies in WSN and IoTs. Further, due to
the dense deployment of these devices, the signals
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transmitted by them on wireless medium are susceptible to
interference. Another challenge encountered by the sensor
nodes and IoT devices, stems from the fact that these devices
carry limited battery power and hence are prone to energy
drain-outs, which results in faults due to node failures.
Amidst the presence of different networks, protocols, topol-
ogies, and large user base in WSN and IoT applications,
security and privacy are major challenges that demand spe-
cial focus. With the advent of new technologies like edge
computing, AI and ML, deep learning, bioinspired learning,
and advanced network services and infrastructure like
cloud and 5G networks; new approaches for data aggrega-
tion are receiving the attention of researchers. The paper
discusses these technologies and issues related to their use
in data aggregation.

While there have been quite a few contributions that sur-
veyed data aggregation, most of these surveys broadly cover
approaches that are specific either to WSN or IoT applica-
tions [1–6]. Abdulzahra et al. [7] provided a comprehensive
survey of data aggregation methods and protocols in WSNs
for IoT applications. They discussed the application of per-
formance metrics such as resource (data and energy) effi-
ciency, network topology (cluster, tree, chain and grid),
and network lifetime in evaluating various data aggregation
approaches in WSNs. Ali et al. [8], have carried out a
detailed analysis of data aggregation techniques aimed at
reducing power consumption and network traffic. In IoT
applications, issues related to network heterogeneity and
node mobility need to be factored into the data aggregation
schemes. Saeedi et al. [9] analyzed the performance of these
schemes.

The contributions of these surveys are summarized in
Table 1. In comparison to these surveys, the focus of our
paper is on providing an in-depth review of various data
aggregation schemes, that address (a) topology, (b) mobility,
(c) interference, (d) fault-tolerance, and (e) security issues;
in the context of their applicability to both WSN and IoT
applications. In addition, the purpose of our work is to high-
light the trade-off issues that are necessary to bring about
optimization in terms of energy efficiency, latency, interfer-
ence, etc. in both WSN and IoT applications.

The main contribution of the paper is to provide:

(i) A holistic review of data aggregation approaches for
WSNs and IoTs, with particular emphasis on topol-
ogy, mobility, interference, fault-tolerance, and secu-
rity issues.

(ii) Articulate different data aggregation schemes and
highlight the gap areas, to throw open few research
challenges as "posers" for further research.

2. Brief Overview of WSN, IoT,
Data Aggregation

WSNs and IoTs have drawn considerable research interest
due to their far reaching impact in applications related to
monitoring of environment, habitat, agriculture, healthcare,
hazardous, and disaster-prone regions. Due to the ease of

installation at unmanned, harsh terrains and also due to
their versatility in monitoring remote locations, WSNs are
increasingly being used for ubiquitous sensing, communica-
tion, computation, and control. WSNs find ready applica-
tions in aerospace, target tracking, military reconnaissance
and surveillance, infiltration detection and assessment,
ubiquitous computing and smart cities, health monitoring
etc. [1, 10].

As the name suggests, WSNs comprise a network of
wireless sensors often referred to as nodes, deployed at stra-
tegic locations to remotely sense and monitor a phenome-
non (or phenomena) of interest in the deployment region.
A wireless sensor node comprises small low-powered and
cost-effective sensing devices equipped with radio trans-
ceivers for wireless communication. Due to their miniatur-
ized size, the wireless nodes do not require energy intensive
infrastructure for collecting data. Unlike wireless adhoc net-
works, where two or more nodes can communicate without
any central command, the nodes in WSNs owe their alle-
giance to the BS, to which they route all their sensed data.
The BS analyses the data received from the nodes and
draws inference on the phenomena being monitored by
the WSN. To uphold this characteristic, the nodes exploit
the inherent features of WSN, like flexible topology and
self-organizing capability, to successfully route their sensed
data to BS, even in the presence of node/link failures,
packet drop, radio interference etc. Some of the key features
of WSN illustrated in Figure 1.

As WSN and internet became popular, the concept of
multiple smart devices connected to the internet has started
gaining ground. By late 1990s, it became imminent that any-
thing and everything would eventually be connected to the
internet. The idea of internet of things (IoT), which origi-
nated from this concept was developed in parallel to WSN
during its formative stage. However, it is the advances in
WSN technology, that fueled the growth of IoT, as the
advances in WSN were readily assimilated into IoT technol-
ogies [11]. IoTs have evolved as a network of physical and
virtual things supported by a strong internet cloud backbone,
to facilitate sensing and actuation, communication and com-
putation, and storage and retrieval of anything and every-
thing. A typical IoT application comprises a set WSNs and
IoT devices networked together through an internet cloud
as shown in Figure 2. The basic differences between the
characteristics of WSN and IOT are presented in Table 2.

2.1. Overview of Data Aggregation. A key strategy to leverage
the low-cost advantage of miniaturized wireless sensors and
devices is to optimize their limited battery energy by mini-
mizing the number of wireless transmissions in the network.
While the number of data packets generated by each node/
device may be relatively small, the quantum of packets gen-
erated collectively by all nodes is significantly large. This
leads to multifold increase in network traffic. Due to limited
storage capacity, a sensor node/device may not have large
enough buffer to accommodate the incoming data, which
leads to packet drop once the buffer is full. In addition to loss
of data, it involves substantial load on network traffic, as
nodes are forced to retransmit the dropped packets. This
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results in faster energy drain-out of nodes/devices besides
leading to undesirable consequences like increased latency.
To get over this problem, data aggregation is usually

employed. Data aggregation involves integration of corre-
lated data at intermediary nodes designated as aggregators.
Depending on application requirement, the aggregator

Table 1: Areas covered in recent surveys on data aggregation.

Survey Areas covered

Jesus et al. [1]
(i) Reviews various distributed data aggregation algorithms.
(ii) Presents a computational taxonomy of existing aggregation techniques based on different types of aggregation

functions.

Rahman et al. [2]

(i) Provides comparative analysis of data aggregation techniques with reference to energy dissipation, network
lifetime, throughput, latency, etc.

(ii) Analyses the performance of LEACH and LEACH-C protocols in IoT in terms of the above performance
metrics.

Salman and Jain, [3]

(i) Surveys communication standards for routing, network and session layer protocols, and the
applicability for IoT.

(ii) Discusses management and security protocols in addition to the current challenges in IoT.
(iii) Presents insight into IoT data link protocols for carrier aggregation.

Lin et al. [4]

(i) Highlights the relationship between cyber-physical systems and IoT in existing architectures
(viz., IoTSDN, SOA, middleware architectures).

(ii) Discusses security and privacy issues in fog/edge computing-based IoT for real-world applications
(smart grid, smart transportation, and smart healthcare).

(iii) Provides an insight to challenges in resource allocation in fog/edge computing-based IoT.

Ray [5]
(i) Presents a survey of IoT architectures to facilitate developer’s requirements and security.
(ii) Compares the existing IoT supported architectural platforms.
(iii) Presents a case study of IoT cloud platform for agricultural, health, and smart society domains.

Dehkordi et al. [6]
(i) Reviews advanced data integration and clustering techniques.
(ii) Highlights the advantages and challenges of structure-based and structure-less data aggregation protocols in

terrestrial, underwater, and underground WSNs, in terms of energy, bandwidth, performance, and delivery ratio.

Abdulzahra et al. [7]
(i) Presents an overview of data aggregation techniques.
(ii) Reviews the existing data aggregation mechanisms in terms of their topology, resource efficiency, network life

time, the approach followed and their objectives.

Ali, et al. [8]

(i) Presents a classification of some of the recent works based on the nature of data and data sets (multimedia, data
packets, encrypted data, etc.).

(ii) Surveys data aggregation techniques in the context of network life-time, network capacity, eliminating data
redundancy, security etc.

(iii) Presents a review of data aggregation techniques of recent works by evaluating the energy consumed by the
nodes.

Saeedi et al. [9]

(i) Highlights the advantages, limitations, and challenges of data aggregation.
(ii) Surveys the data aggregation approaches to bring out the differences between flat and hierarchical networks.
(iii) Presents a survey of recent publications on data aggregation, and a comparative study in terms of network

topology (cluster, tree, and flat), node type (homogeneous/heterogeneous), aggregator type (static/mobile),
centralized/distributed algorithm, application domain, etc.

Self-organizing network with
flexible topology 

Dense deployment and
cooperative nature

Short-range broadcast
and multi-hop routing

Efficient data-delivery models
and addressing schemes

Limitations in energy, memory
and computing power

Features of WSN

Figure 1: Features of wireless sensor networks.
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employs an appropriate aggregation function viz., numeric
or statistical operators such as min, max, sum, average etc.,
on the data it receives from its subsidiary nodes.

Data Aggregation is an essential tool in IoT applications.
To illustrate its use, consider an application where functions
like power generation and distribution, waste management,
surveillance, smart metering etc., need to be monitored in
a smart-city, as shown in Figure 3. Also consider the
smart-city to have a smart WSN-based ubiquitous backbone
infrastructure to handle big data generated by thousands
of sensors, actuators, smart meters, etc., deployed across
the smart-city [10]. To monitor the humongous amount
of data generated by the IoT devices, the IoT application
performs stage-wise data aggregation at a local-level or at
application-level initially, (e.g. power generation and distri-
bution, waste management, surveillance, and smart meters)
and later at global level. The localized aggregates are inte-
grated thorough an IoT cloud infrastructure.

Besides reducing the number of data packets and easing
the network traffic, data aggregation also reduces the latency
and the power consumed by the nodes in the network. To
illustrate this, consider the WSN shown in Figure 4(a),
where the leaf nodes S7, S1, S6, S5, S4, S3, and S2 capture their
sensed information in one data packet each in a given time
period. It is assumed that other nodes in the network act
as relay or aggregator nodes. To address channel contention,
a timeslot allocation scheme is charted out, where a node is
permitted to either receive or transmit only one packet per
timeslot allocated to it. As per this scheme, the leaf nodes
S7, S1, S6, S4, and S2 are allocated timeslot T1, and S5, S3,
are allocated timeslot T2 to transmit their sensed data to
their parent node. The time slots for intermediary nodes,
S8, S9, S10, and S11 are accordingly adjusted so as to avoid
channel contention for performing both reception and relay
operations.

Thus, the relay node S10 receives the sensed data packet
from its child nodes S6 and S10 in time slots T1, and T2,
respectively, and relays these packets to S11 in time slots T3
, and T4. Similarly, the nodes S8, S9, and S11 adjust their
transmission slots and the BS receives all data packets only
after 12 timeslots as shown in Figure 4(a).

The node S11 being closest to BS, acts as its gateway
node. In the absence of data aggregation mechanism, node
S11 is forced to transmit large number of data packets com-
pared to other leaf or intermediary nodes, and takes a min-

imum of 6 time-slots (T2, T8, T9, T10, T11, and T12) to
relay all packets that it receives. Due to this delay, there is
good chance that some of the incoming packets are dropped
if the S11 buffer is full. This forces the source nodes to
retransmit the dropped packets. Further, as S11 is involved
in relaying data to BS continuously, it drains out much faster
than other nodes in the network. Being one of the main gate-
ways to the BS, there is a strong likelihood that the network
collapses as soon as the energy of node S11 drains out. This
can amicably be addressed through data aggregation scheme
as illustrated in Figure 4(b), where the leaf nodes S7, S1, S6,
S4, and S2 transmit in timeslot T1, while the nodes S5, S3
transmit in timeslot T2. The aggregator nodes S8, S9, S10,
and S11 relay just one data (aggregated) packet to their par-
ent nodes. While aggregator nodes S8 and S10 transmit their
aggregates in timeslot T3, S9 transmits its aggregate to S11 in
timeslot T4 after performing aggregation on the packet
received from S4 (timeslot T1) and the aggregate from S8
(timeslot T3).

The aggregator node S11 transmits its aggregate in time-
slot T5. Thus, the traffic across the network is relatively
reduced, and the BS receives an aggregate of the data sensed
by the leaf nodes in relatively less number of timeslots i.e. 5
timeslots. To further illustrate the advantage of data aggrega-
tion, assume that each node Sn in the example, can transmit
only one packet in a given time slot Ti, which is of 5 time
units duration. If data aggregation is not performed the BS
receives the data packets from all leaf nodes in 60 time units
(12 timeslots), and the network traffic witnesses a total of 20
transmissions. On the other hand, if aggregation is per-
formed BS receives the information from source nodes in
25 time units (5 timeslots) and the overall network traffic
is reduced to 11 transmissions.

2.2. Taxonomy of Data Aggregation Protocols. Data aggrega-
tion protocols define the standard operational procedures to:
(a) aggregate the sensed data based on an aggregation func-
tion, (b) handle the communication of data and control mes-
sages, and (c) route the aggregates to the BS/internet cloud.
The primary objectives of data aggregation protocols are to
eliminate redundant data transmission from source nodes
to BS/internet cloud, maintain the accuracy of the data while
performing aggregation, and improve the lifetime of WSN/
IoT. Considering the diversity of application and widely
varying nature of operation, there can be several classifica-
tions to data aggregation protocols based on (a) WSN/IoT
topology, (b) interference models (c) security, and (d) net-
work dynamics as shown in Figure 5. A taxonomy of the
protocols based on above classification for WSN and IoT is
shown in Figure 6. The protocols based on above classifica-
tion are surveyed in subsequent sections.

3. Data Aggregation Protocols Based on
Topology, Security, and Mobility

3.1. Data Aggregation Protocols Based on Topology. Data
aggregation protocols based on network topology is catego-
rized into flat-based and hierarchical-based protocols.

Internet cloud

BS-1

WSN-1

BS-2

WSN-2

IoT-1

IoT-2

IoT-3

Figure 2: Typical IoT application network.
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3.1.1. Data Aggregation Protocols Based on Flat Topology.
Flat networks are topology-free and the nodes are not bound
by hierarchy. The nodes are generally assumed to possess
same functionality and capability in terms of battery and
computational powers except in IoTs, where the devices dif-
fer widely from each other. All devices in Flat networks
maintain same network state information and keep track
of their one-hop neighbor. This helps the nodes to collabo-
rate and relay aggregated data to the BS. Based on commu-
nication methodology, the routing schemes are classified

into (a) Flooding, (b) Forwarding, and (c) Data-centric
based routing.

Sensor Protocols for Information via Negotiation (SPIN)
is the most prominent data aggregation protocol amongst
Flat networks. SPIN is a three-stage protocol where the basic
operations are performed using control messages viz. ADV
(advertise), REQ (request), and DATA (message to be trans-
mitted). The nodes incorporate resource adaptation tech-
nique to determine when to participate in negotiation
process. During negotiation, each node polls to know the

Table 2: Characteristics of WSN and IoT.

Characteristics WSN IoT

Number of devices
Typically restricted to few wireless sensors to thousands

of sensors
Theoretically no limit

Topology
Adhoc, hierarchical (tree, cluster, ring, chain, and grid)

flat (flooding and forwarding)
Adhoc, largely heterogeneous

Radio channel
access

CSMA-CD, CSMA-CA TDMA, TDMA/CDMA, and
LORA

CSMA-CD, CSMA-CA, TDMA, TDMA/CDMA, and
LORA

Communication Wireless
Wireless, internet, edge computing, and fog/cloud

computing

Security
The wireless transmissions are not always encrypted,

hence the communication security is moderate

Since all data transmissions are through internet, the
application has the same security as the one provided by
the ISP, which is usually high. If the transmissions are

through fog/cloud, the security is very high.

Keys
Symmetric (ZigBee, WirelessHART), asymmetric (ISA

100.11a)
Symmetric (ZigBee, WirelessHART), asymmetric (ISA

100.11a)

Interface to
external world

Through BS, centralized, and distributed Through internet, cloud, and distributed

Scalability Moderate scalability Highly scalable

Protocols

ZigBee, WirelessHART, ISA 100.11a, WiFi, and
mmWave (2.4GHz, 5GHz, 6GHz upper, 6GHz lower,

24GHz, and 60GHz), LoRaWAN RF (868MHz)
LoRaWAN RF (900MHz)

3G/4G/5G Mobile data, Bluetooth low energy (2.4GHz)

Datalink protocol: IEEE 802.15.4e, EEE 802.11ah,
WirelessHART (TDMA), Z-wave Bluetooth low energy
(2.4GHz), ZigBee smart energy, DASH7, and HomePlug.

G.9959, IPv6, LTE-A, LoRaWAN RF (868MHz,
900MHz), NB-IoT, DECT/ULE, EnOcean, and 3G/4G/

5G Mobile data
Network layer routing protocols: RPL, CORPL, CARP,

and E-CARP
Network layer encapsulation protocol: 6LoWPAN,

6TiSCH, 6Lo, IPv6 over G.9959, and IPv6 over Bluetooth
low energy

Session layer protocols:MQTT, SMQTT, AMQP, CoAP,
XMPP, DDS

WiFi, and mmWave (2.4, 5, 6, GHz Upper and Lower,
24GHz, and 60GHz) [9]

Autonomy of
devices

Moderate Highly autonomous

Deployment and
coverage

The sensors are usually deployed through a predefined
strategy. As WSNs are highly application oriented, the

deployment strategy ensures maximum coverage.

As the communication is through internet, control on
deployment and coverage does not exist.

Signal and data
processing

While signal processing is performed by the sensors, data
processing is performed by the BS. Therefore, the

computational capacity of the BS can be a limiting factor.

Signal and data processing activities are performed
through internet and cloud, and hence the IoT devices
need not carry high-end processors for computation.

IoTs are good candidates for handling Bigdata.

Mobility
Mobility is restricted, as sensor nodes rely on BS for all

communication and high-end computation needs.

IoT devices rely on internet/cloud for communication
and high-end computation. Therefore, IoT can

accommodate high mobility of devices.
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current energy level, so that nodes with lower energy can cut
down low priority tasks. SPIN manages topological changes
locally by making forwarding decisions based on the knowl-
edge of its one-hop neighbours. Due to this feature, SPIN
can be extended to IoT applications where nodes are mobile.
While direct implementation of SPIN protocol for IoT appli-
cation is not widely reported, certain variants of SPIN like
M-SPIN, SPIN-BC, and SPIN-RL can be applied to IoT.
The family of SPIN and their features are summarized in
Table 3.

3.1.2. Data Aggregation Protocols Based on Hierarchy. Flat
networks may sometimes lead to excessive computation
and communication overheads, resulting in energy deple-
tion. To reduce these overheads several hierarchical data
aggregation protocols were proposed, which can be catego-
rized into: (i) Cluster-based, (ii) Chain-based, (iii) Tree-
based, (iv) Grid-based, and (v) Ring-sector based networks.
The most popular data aggregation approach in hierarchical
networks is the cluster-based approach, particularly for IoT
applications. In this approach, the region of interest is

Thermal power

Hydro-electric
power

Solar power
Wind power

Smart power generationSmart power consumption

Industry

Smart
houses

Smart offices

Electric vehicles

IoT data
aggregation

for smart power

https://ars.elscdn.com/content/image/ 
1-s2.0-S1319157819309000-gr2_lrg.jpg)

Nuclear power

https://www.vertica.com/blog/internet-things-iot-smart-metering/

Data aggregation from smart meters

Waste coordination

Recycling plants

Collection of 
WasteGarbage collection

IoT data aggregation for
waste management

Collection from hospitals and
shopping malls

Manufacturing plants
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IoT data
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Security
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IOT cloud
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Figure 3: Illustration: IoT data aggregation.
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fragmented into clusters with one of the nodes designated as
Cluster Head (CH). The CH collects data from all cluster
nodes, performs aggregation, and routes its aggregate to
the BS, either through direct transmission or with the help
of neighboring CH nodes. Based on this, several protocols
were proposed, the most popular being LEACH and HEED,
which are briefly described below.

(1) Low Energy Adaptive Clustering Hierarchy (LEACH). The
LEACH protocol facilitates the formation of adaptive, self-
configuring clusters with localized control, and application-
specific data aggregation or compression techniques. The
nodes that are in close proximity with one another form a
cluster, where one of the nodes is chosen as the Cluster Head
(CH) through an election process. Periodic election ensures
that the elected CH makes way for a new CH, once its own
energy falls below a predefined threshold. Depending on
the methodology adopted for cluster formation, CH selec-
tion and communication mechanism; several variants of
LEACH were developed, some of which are described in
Table 4.

(2) Hybrid Energy Efficient Distributed Clustering (HEED).
In HEED all nodes are assumed to have similar functionality
and possess discrete transmission power levels. Unlike
LEACH, the node with maximum residual energy and min-
imum communication overhead is selected as the CH. The
neighboring nodes are mapped based on their proximity to
the CH. However, if a node falls in the range of two or more
CHs, the CH with minimum intracluster communication
overhead is chosen as its CH. Both LEACH and HEED have
emerged as popular protocols for hierarchy based networks
and have attracted the attention of researchers to devise sev-
eral variants as shown in Table 4.

3.1.3. Bioinspired Selection of Cluster Head. CH selection has
been an important topic for research in all cluster based data
aggregation approaches. The main strategy is to select a CH,
based on residual energy, cluster density, proximity to BS,
etc. However, the challenge is to determine the metrics for
CH selection and arrive at an optimummix to select the most

suitable CH for a given application. In addition, issues such
as load balancing, coverage, network life-time, hop-count
distance to BS, delay latency, etc., need to be considered.
This leads to a multiobject optimization problem. In IoT
applications where the nodes are mobile, the transmission
energies required by a node varies widely. Therefore, estima-
tion of residual energies of nodes and their hop-count to the
BS is nondeterministic. Due to the nondeterministic nature
of these variables, the traditional deterministic approaches
involved in cluster formation and CH selection encounter
severe limitations. To counter this, several Bioinspired tech-
niques such as: Multiobjective Optimization Algorithm
(SMS-EMOA), Nondominated Sorting Genetic Algorithm
(NSGA-II), S-Metric Selection Evolutionary and MultiObjec-
tive Evolutionary Algorithm by Decomposition (MOEA/D)
have emerged as popular approaches for selection of CH.
These bioinspired approaches define a fitness function based
on optimization of multiple objectives. The fitness function
is determined iteratively for all potential candidates that
are in contention to be selected as the CH. When the itera-
tions reach a saturation point, the node with the best fitness
function is selected as the CH [28–31].

Ahmad et.al [32], propose a Honey Bee algorithm to
form clusters and select an appropriate CH in mobile WSNs,
which can be extended to IoT applications. The bees have
the combined responsibility of forming nonoverlapped clus-
ters and identifying most suitable set of CHs for performing
data aggregation. In this approach the population is divided
into two groups. The onlooker bees (control packets) are
responsible for identifying the food source (nodes) based
on node energy, direction and speed of the mobile node
and node degree. The data packets are represented by the
employed bees that are responsible for nectar collection (data
aggregation). The node with higher degree, energy, and uni-
form distance from other nodes becomes a better candidate
to be selected as the CH.

In Flying Adhoc Networks (FANETS), due to the contin-
uous movement of the Unmanned Aerial Vehicles (UAV),
which are considered as nodes in the network, the topology
keeps changing at a rapid pace. Khan et.al [33], make use of
Glow-worm Swarm Optimization (GOS) and Krill Heard
(KH) algorithm to form clusters. The UAV with the best fit-
ness function is selected as the CH, which performs data
aggregation.

3.2. Security and Mobility in Data Aggregation. WSNs and
IoT networks are vulnerable to security attacks due to the
involvement of multiple entities like sensors, actuators, com-
munication and computational devices, etc.; and also due to
physical interactions with external environment and user-
base. Therefore, while security issues pose unique challenges
to data aggregation [34], especially in defense and mission-
critical applications; issues related to privacy are of prime
importance in applications where data that is privy to an
individual need to be preserved. Hardware and software
solutions do help ward off these threats to a limited extent,
but counter measures in the form of encryption and decryp-
tion, secure key management, secure routing, etc., are more
effective and relatively easier to implement.
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Figure 5: Classification of data aggregation protocols for WSN and
IoT applications.
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In general, network security prevents injection of mali-
cious attacks and guarantees integrity and confidentiality in
data aggregation. Data encryption, authentication, attack
detection, etc., are some of the popular methods traditionally
used to provide network security. However, direct use of these
methods for data aggregation in WSN and IoT applications
may suffer from severe limitations due to multitude devices,
heterogeneity, and network topologies. To improve network
performance, data aggregation is combined with security goals
to ensure availability, confidentiality, freshness, lifetime, and
integrity of data transmitted during the delivery process. A
comprehensive review of secure data aggregation (SDA) in
WSNs is provided in [35]. The authors present a comparative
analysis of SDA protocols by categorizing them into five differ-
ent security mechanisms viz. slicing SDA, confidence SDA,
encryption SDA, privacy SDA, and anomaly detection SDA,
security goals, and network topologies. To save communica-
tion costs and protect private data, data decomposition tech-
nique is implemented instead of slicing in privacy-preserving
data aggregation protocols [36].

Rezaeibagha et.al [37] present an efficient and provably
secure scheme as a first step toward secure data aggregation
for handling data collection and analysis of IoT wireless
body sensors. A novel cryptographic accumulator based on
authenticated additive homomorphic encryption was devel-
oped, which can collect and aggregate data from IoT wireless
wearable devices. The encrypted data can be used for analy-
sis in an encrypted form so that the information is not
revealed. Some of the recent security protocols developed
for WSN and IoT applications are presented in Table 5.

In applications that demand large geographical spread, the
nodes are located quite far apart from each other. In such
applications, energy consumed by the nodes to communicate
with their immediate neighbors is quite large, resulting in fas-
ter battery drain-out. To counter this, WSNs employ mobile
agents that go around the network to collect data from each
node in the network and perform aggregation [21, 38]. How-
ever, when the demand is to establish interconnection between
mobile wireless devices, as in the case of IoTs, issues related to
mobility pose severe challenges to the existing data aggrega-
tion schemes. A review of data aggregation schemes based
on mobility in presented in Table 6.

4. Data Aggregation in IoT

Faster access to WiFi and internet connectivity has made it
possible to establish connection between two or more
devices (things) at any point in time. This has led to the pro-
liferation of IoTs into several application areas like
healthcare, environment, surveillance [39], network traffic
monitoring, etc. The recent spurt in the number of devices
that can be connected to the cloud, has paved way for the
development of protocols with low latency transactions.
Due to close similarity with WSNs, IoTs have thrived on
borrowing the concepts of WSN for developing strategies
for data aggregation protocols. Unlike WSNs, where the data
generated is singularly in-tune with its intended application,
data generated by IoT devices encompass a wider range of
application areas. To handle such heterogeneous data, IoTs
rely on a collection of aggregator nodes that report to multi-
ple sinks/BSs. More so, in Machine to Machine (M2M) com-
munication scenarios where both sensor and actuator
devices work in tandem [40].

Due to the deployment of diverse range of IoT devices
and their geographic spread, IoTs rely on cloud server envi-
ronment for computation and interpretation of data, and for
actuation. Such platforms are particularly useful in fog com-
putations [41] where low-latency fog devices (nodes)
deployed close to the IoT network edge, play a large role in
operations related to control, computation, and storage.
The all-encompassing nature of IoTs demand pervasive
security and privacy at both aggregator and cloud server
ends. A privacy preserving data aggregation scheme that
makes use of data slicing approach is presented in [42]. In
this scheme, each IoT device in a group (comprising n
nodes/devices) slices its data randomly into n segments
and forwards the slices to other n − 1 nodes/devices in the
group using symmetric encryption, while retaining one of
such slice for itself. The aggregator node aggregates the slices
received along with its own slice and forwards the same to its
group aggregator by employing homomorphic and AES
encryption. Haseeb-Ur-Rehman et al. [43], analyze the sen-
sor cloud frameworks by considering critical issues such as
heterogeneity, scalability, service availability, data accessibil-
ity, and security. Based on this study, a comparison of
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Figure 6: Taxonomy of data aggregation protocols.
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different cloud frameworks in the context of reliability,
energy efficiency, and latency, is presented in the paper.

As IoTs proliferate into social networking sites, geo-
tagging of data generated in Social Internet of Things (SIoT)
and performing data aggregation, has emerged as a major
area of research. Shuja et al. [44] present a hierarchical clus-
tering framework for geo-tagged data, and determine opti-

mal parameters to handle various types of data sets, cluster
sizes, tokenization techniques, etc. A systematic and com-
prehensive approach to study and analyze the importance
of network lifetime in data aggregation for IoT applications
was carried out by Pourghebleh et al. [45].

Compressed sensing which is a signal processing tool for
efficient data acquisition and signal reconstruction has

Table 3: Variants of SPIN Protocol.

Protocols Features Advantages, limitations

SPIN-1, SPIN-2 [12]

(i) Ensures that only the correct data queried is
transmitted.

(ii) SPIN-2 is an extension of SPIN-1. It
incorporates threshold-based resource
awareness mechanism.

(i) SPIN-1 is simple to implement.
(ii) Allows a node to negotiate only when it can

complete all operations without reaching a low
energy-threshold level.

SPIN-BC (broadcast) [13]
SPIN-PP (point-to-point),
SPIN-EC (energy consumption
awareness) [13]
SPIN-RL [13]

SPIN-BC is specifically designed to work in
broadcast medium.
SPIN-PP is designed for point-to-point
communication in lossless medium. Nodes that
reach low-energy threshold, do not participate in
negotiation. While the nodes cannot forbid
themselves from receiving ADV and REQ messages,
they are capable of stopping the transmission of
data message.
SPIN-RL is a reliable version of SPIN-BC for lossy
medium.

SPIN-BC works in environments where nodes have
sufficient energy but are susceptible to transmission
errors in lossy medium.
(i) SPIN-PP is resilient to frequent changes in

topology.
(ii) It is adaptable to lossy, mobile, and

unconfigured networks.
(iii) SPIN-PP is ideal for applications where nodes

have adequate energy. SPIN-EC incorporates
energy conservation heuristics and prevents
receipt of DATA messages for nodes with
energy below a threshold.

(iv) SPIN-RL selectively limits the frequency of
retransmission of same data, thus ensuring
transmission of reliable data.

SPMS (shortest path minded
SPIN) [14]

(i) Uses shortest path to reach the destination.
(ii) Determines maximum transmission radius or

zones for each node.

(i) Optimizes energy consumption by adjusting the
transmitting power level of nodes on the basis of
distance.

(ii) Node failure is detected and recovered through
a backup path.

Modified SPIN (M-SPIN) [15]

(i) SPIN is designed to support quick reliable
response and selective transmission. It adopts a
distance discovery phase to find distance in
terms of hop distance to BS.

(ii) Data dissemination is moderated by the hop-
count distance between nodes. It facilitates only
one-way transmission of data from nodes to
the BS.

(i) The energy consumption is reduced due to
simplex communication between nodes and
BS. However, the computational complexity is
more due to frequent energy level status
updates after every transaction.

(ii) Compared to SPIN-BC, M-SPIN takes
relatively longer time to calculate the hop
distance.

(iii) Suitable for alarm monitoring applications.

Secure SPIN [16]

(i) Uses PSAC (personal sensor authentication
code) to generate sensor node’s privacy key.

(ii) BS maintains privacy keys of all nodes and
CHs.

(iii) Hash function is used to generate the message
authentication code (MAC) session key for
maintaining data freshness. Session key ensures
that no adversary can replay the old messages.

(i) Provides multilevel security amongst: (i) node
and CH (ii) CH and BS, and (iii) BS to all
nodes.

(ii) CDMA codes help maintain secure
communication.

(iii) Data integrity is ensured through MAC.
(iv) PSAC ensures data confidentiality and

authentication.
(v) Requires relatively smaller processing power

and memory for data authentication and
integration.

S-SPIN [17]

MAC scheme is used to guarantee correctness and
integrity of the messages. Each sensor has a
resource manager to keep track of resource
consumption.

Secure against existential forgery attack.
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Table 4: Variants of LEACH and HEED Protocols.

Protocol Description, features Advantages/limitations

LEACH-C LEACH-
Centralized [18]

(i) LEACH-C considers centralized single-hop
homogeneous network. CHs are elected by the BS
based on their average energy level and distance
from BS. The BS determines the clusters using
simulated annealing algorithm.

(ii) Ensures uniform distribution of clusters.

BS carries out load balancing to ensure uniform energy
consumption across the network. Network lifetime is
more, compared to LEACH.

TL-LEACH Two-Level
Leach [19]

TL-LEACH considers a two-level structure comprising
primary and secondary CHs in a homogenous multihop
network, with the primary CH communicating the final
aggregate to BS.

Due to smaller transmit distances the energy
consumption is relatively reduced.

E-LEACH Energy
LEACH [20]

(i) E-LEACH considers homogenous single hop
network.

(ii) Equal probability for all nodes to become CH in
first round. After first round, residual energy of
nodes is considered to select CHs in next round.

(i) Improved CH selection procedure.
(ii) Prolonged network lifetime compared to LEACH.

M-LEACH Multi-hop
LEACH [20]

(i) M-LEACH adopts multihop routing between CH
and BS via other CHs in a homogenous multihop
network.

(ii) Other CHs in the route act as relay nodes to convey
the information.

Longer network life time compared to both LEACH and
E-LEACH protocols.

LEACH-ME LEACH-
Mobile-Enhanced [21]

(i) LEACH-ME protocol considers homogenous
location-aware network that supports mobility. CH
rotation/election is based on a membership
function (MF). A node with least MF, minimal
transition count and energy level above a defined
threshold is selected as CH.

(ii) Nodes detached from a cluster due to mobility get
connected to other clusters.

(iii) Remoteness is determined using reference point
group mobility model.

Improved communication over LEACH-Mobile.
LEACH-ME is useful particularly when the node speed
and angular deviation from the current state are
unpredictable.

iHEED
(integrated HEED)
[22]

(i) Suitable for both source and data driven
applications.

(ii) Follows integrated data aggregation where each
node aggregates its own data and then routes the
aggregate to the CH, either directly or through a
parent.

(iii) Parent selection module estimates the link cost for
each neighbor node, based on its proximity to the
BS.

(iv) Communication quality is determined by data
losses and link symmetry.

(i) Reduces contention on communication channels.
(ii) Network lifetime is prolonged due to smaller

clustering interval.
(iii) Minimal clustering effect.
(iv) Periodic reclustering delays first node death by

pushing each node in and out of the routing
overlay.

hetHEED-1, 2, 3 [23]

(i) CH is determined based on node residual energy
and (ii) Cluster node density.

(ii) In hetHEED-1, all sensor nodes have uniform
energy levels. In hetHEED-2, the nodes have two
energy levels while nodes in hetHEED-3 have three
energy levels.

The network lifetime of hetHEED-3 is > than
hetHEED-2> than hetHEED-1 with minimal energy
dissipation.

hetHEED-FL-1, FL-2,
FL-3 [23]

Fuzzy logic approach is used to determine a CH by
considering: (i) residual energy of each node, (ii) hop
distance from a node to BS, and (iii) node density.

Precise information of the residual energy status is not
necessary to determine the CH. hetHEED-FL-3
provides the longest lifetime amongst the three variants.

Modified Leach [24]

The modified LEACH discovers its neighbors and then
forms clusters. The maximum number of cluster
members is set to a desired value which is equal to the
node degree of CH.

The modified LEACH can adapt to changes in network
and hence, the nodes can adaptively change their
transmission range to ensure the network connectivity.
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shown great promise for data aggregation in IoT. However,
energy efficiency and recovery fidelity are often compro-
mised. Therefore, optimal data aggregation aimed at maxi-
mizing IoT network lifetime by minimizing constrained
on-board resource utilization continues to be a challenging
task. To address this, Amarlingam et al. [62] have developed
a Light Weight Compressed Data Aggregation (LWCDA)
algorithm, which fragments the entire network into non-
overlapping clusters. Clustering results in localized data
compression which reduces the number of data transmis-
sions by the cluster. As the number of IoT devices connected
through internet tend to become large, the task arrival rates
are random and intermittent. To study this, Metzger et al.
[63] presented a survey of various approaches to map com-
mon IoT network properties to different types of network
traffic. Further, they derive guidelines for assuming Poisson
process for aggregated periodic IoT traffic.

As IoT sensors pervade all walks of life, the network den-
sity increases, and humongous amount of data is generated,
which also includes large chunks of redundant data. Under
this scenario, one of the main impediments to the develop-
ment of efficient data aggregation algorithms is to aggregate
nonredundant data. Idrees et.al [64] developed a two-level
data aggregation mechanism IDiCoEK using divide-
conquer algorithm to eliminate the redundant data. In this
approach, the CH applies enhanced K-means approach that
weeds out redundant data and determines the best represen-
tative data to be aggregated.

Constrained by limited data storage space, IoT devices
tend to rely on cloud network for data storage, which results
in higher transmission overheads leading to faster depletion
of energy [4, 65]. To overcome these constraints, Edge com-
puting offers localized access to data to offset transmission

delays between the IoT device and the cloud. Edge comput-
ing in IoT facilitates: (a) decentralized data aggregation by
the IoT/sensor devices, and (b) localized computation at
the IoT device. Such arrangement, on one hand helps better
management of resources by the end-users, and on the other
hand, it ensures uniform availability of resources across all
IoT devices and users. Further, when such resources are
brought to the edge, the IoT/sensor devices expend less
energy for activities such as data aggregation and communi-
cation [66].

Ghosh et.al [67] combined edge and cloud computing
platforms to reduce data transfer overheads and delay
latency through edge computing, while taking advantage of
cloud for ML and DL for Human Activity Recognition
(HAR) application. Instead of waiting for the arrival of all
data and then performing aggregation, sliding window con-
cept is used, which significantly reduces latency and energy
consumed.

5. Data Aggregation Protocols Based
on Interference

When two or more transmitter nodes within the radio inter-
ference range of a receiver node, make simultaneous trans-
missions, the receiver node receives distorted/corrupt or
interfered signal [68–70]. In this Section we outline two
most popular approaches (a) Protocol and (b) Physical, that
model the interference phenomenon in WSN and present a
review of other data aggregation approaches that attempt
to mitigate the impact of interference. As IoTs tend to be a
conglomeration of several WSNs, the data aggregation
schemes developed for WSN to address interference phe-
nomenon, are also of interest to IoTs. In this context, some

Table 4: Continued.

Protocol Description, features Advantages/limitations

Energy Efficient
Modified LEACH [25]

Unlike traditional LEACH, a CH can again assume the
role of CH if its energy is more than a predefined
threshold energy limit. A threshold energy limit is
introduced for CH selection. The nodes can bid for CH
selection by generating a priority value.

The energy efficient modified LEACH was found to be
more effective than LEACH for IoT applications.

FOI-LEACH (field
observation
instruments LEACH)
[26]

FOI-LEACH is primarily developed for improving the
routing amongst field instruments. The protocol is
applicable to heterogeneous networks, with
rechargeable field instruments. CH election is based on
residual energy, rechargeable energy of nodes and the
proximity with BS. The FOI-LEACH alleviates the
“hotspot” problem, to extend the lifetime of network
nodes.

This protocol can be made directly applicable to IoT
devices to enhance their routing capability.

S-LEACH
(sectored LEACH) [27]

Divides the network area into sectors. Sectored network
shrink’s transmission distance, limits sensing and
transmitting area, and provides equal energy
consumption distribution for CH.
(i) Self-organized CH selection based on the node’s

residual energy without BS contribution reduces
network overload.

(ii) Minimized transmission distance reduces energy
consumed and prolongs network lifetime.

AI (particle swarm optimization (PSO) algorithm and
genetic algorithm (GA)) techniques can be used for
nodes distribution to improve IoT network life-time
and attain high packet delivery ratio.
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Table 5: Security in data aggregation protocols.

Protocol Description, features Applicability to IoT

RPIDA [46] (Recoverable
rivacy-preserving
Integrity-assured Data
Aggregation)

(i) Combines pH and aggregate HMAC techniques along
with data aggregation to provide both end-to-end
data privacy and data integrity for data aggregation.

(ii) Handles false data injection in cluster WSN at sensor
nodes and CHs aggregators.

Prevents eavesdropping in IoT. It can
also be used to detect malicious sensor
devices.

Sen-SDA [47] (Secure Data
Aggregation): Supports cluster
based three-tier heterogeneous
topology and follows asymmetric
cryptosystem.

(i) The CH collects time-stamped CT-signature pair
from its member nodes, verifies the timestamp and
signature, and transmits time-stamped aggregates to
BS.

(ii) HE and IBS ensure end-to-end confidentiality and
hop-by-hop authentication, respectively.

(iii) CHs and BS execute batch verification using binary
quick search (BQS) to detect invalid signatures.

High communication and computation
overheads.
The rigid three-tier topology may not
be suitable for IoTs.

SESDA [48] (Secure Energy-saving
Data Aggregation): Supports
heterogeneity with. High-end
CHs and low-end member nodes.

(i) CH shares separate symmetric keys with its member
nodes and the BS.

(ii) BS decrypts CT and extracts sensed data from
aggregates after verifying its data integrity.

(iii) CHs employ MAC to filter out bogus/false data
packets.

(iv) Implements Okamoto-Uchiyama HE to provide end-
to-end data confidentiality against adversary attack,
viz., eavesdropping, replay, injection, unauthorized
aggregation, and CH attacks.

SESDA is applicable for large-scale
WSNs, and hence, can be employed for
IoT applications.
Reduces decryption delay.

MODA (multifunctional secure
data aggregation) [49] supports
tree topology. Uses differential
encoding and applies asymmetric
key EC-EG based additive HE
for secure aggregation.

(i) Suitable for data mining WSNs that require secure
data aggregation.

(ii) Encoding of raw data into vectors preserves value,
order, and context.

(iii) Homomorphic encryption enables CT aggregation
and end-to-end security.

(iv) RODA (enhanced RandOm selected encryption based
data aggregation), a variant of MODA, has reduced
communication cost and relatively low security.

(v) Another complementary of MODA, the
compression-based data aggregation (CODA) also
reduces communication cost but the aggregation
accuracy is low.

The data mining feature of MODA
makes it attractive for IoTs.
However, the trade-off between
security, communication cost, and
accuracy need to addressed.

LBOA (Location based Secure
Outsourced Aggregation for IoT)
[50]

(i) Used in location-critical applications where data
aggregation at each location is outsourced and the
application demands privacy and confidentiality of
location as well as the location strategy.

(ii) Public-key encryption is used to protect the privacy of
location and order-preserving encryption the
confidentiality of user’s location strategy.

LBOA can readily be adopted for IoT
applications.
The security features satisfy the privacy
and confidentiality requirements.

CBDA [51] (Chain-Based
Data Aggregation)

(i) Sensor nodes are organized as a tree topology. Leaf
nodes reconnect sequentially with each other to form
chain topologies.

(ii) Tail nodes of the chain provide data privacy to
collected data by slicing them into fragments.
Mitigate risks of sliced data by injecting fake
fragments to interfere with adversaries.

(iii) Its semihonest model can withstand eavesdropping
and tolerate collusion attacks.

Applicable to IoT and IoT to achieve
privacy-preserving data aggregation
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of the data aggregation schemes developed for WSN to
address the interference phenomenon, which are also of
interest to IoTs are reviewed in this section.

5.1. Review of Data Aggregation Techniques to Address
Interference in WSN. The primary objective of most
approaches that model interference is to establish basic con-
ditions for successful communication between two nodes in
terms of: (a) the Euclidean distance between the receiver and
an unintended transmitter, and (b) the SINR threshold at
the receiver end. The two most popular approaches to model
interference are (a) Protocol Interference model, based on
Euclidean distance between two communicating nodes and
(b) Physical Interference model, based on SINR.

The Protocol Interference (PRI) model defines a proto-
col for identifying the source nodes, whose transmissions
can potentially interfere with the radio transmissions of an
unintended receiver node. PRI is a graph-based model where
a link between any two nodes can be established if the
Euclidean distance between them is ≤R, where R is commu-
nication range. In a Unit Disk Graph (UDG) of radius R, the
communication between nodes n1 and n2 is successful if
there is no other transmitting node within a certain interfer-
ence range RI (where RI ≥ R) from n2.

The Physical Interference model assumes that all nodes
in the network possess same transmission power P. If a node

S1 transmits with power P to node S2, the power of the trans-
mission received by S2 is given by: PS2

ðS1Þ = P ∗min ð1,
kS1, S2k−αÞ, where kS1, S2k is the Euclidean distance between
S1 and S2, α ≥ 2 is the path-gain exponent. The path gain
from node S1to S2 is generally set as min ð1, kS1, S2k−αÞ ≤1.
The transmission from S1 to S2 is successful if and only if
the SINR (signal-to-noise plus interference ratio) at S2 is
greater than a threshold β.

SINRS2
S1ð Þ = PS2

S1ð Þ
N0 +∑Si∈N ′PS2

Sið Þ ≥ β, ð1Þ

where β (threshold SINR)>0, N0 ≥0 is the varying back-
ground noise and Si is the set of transmitting nodes N ′ other
than S2 i.e. ðN ′ϵðN − S2ÞÞ, that transmit in the same time
slot as that of S1.

The Protocol and Physical Interference models, triggered
the development of several models on how to deal with
interfering transmissions in WSN. However, not much effort
has been devoted toward developing models that effectively
address: (a) Exposed Station (ES) problem, (b) Hidden Ter-
minal (HT) problem, (c) identifying the links that can
potentially interfere with communication between neighbor-
ing nodes, and (d) devising schemes for Interference-Fault
Free Transmission (IFFT) schedule. To tide over these

Table 5: Continued.

Protocol Description, features Applicability to IoT

FESDA (Fog-Enabled Secure Data
Aggregation in Smart Grid IoT
Network) [52]

(i) Fog nodes (FN) are employed to aggregate HE data
from SMs.

(ii) FN use HMAC secret key for each SM, to ensure data
integrity and source authentication.

(iii) Paillier cryptosystem is used to prevent FNs from
extracting user consumption data.

(iv) FESDA is resilient to false data injection attacks.

FESDA can readily be adopted for IoT
applications.

ESDTA (Efficient and Secure Data
Transmission and Aggregation) [53]

(i) Delimiter based message aggregation and extraction
provides enhanced aggregation efficiency and data
security.

(ii) Employs the SMA algorithm at the Mobile node and
SMD algorithms at FN, to ensure secure data
aggregation and data forwarding of healthcare
parameter values.

(iii) Preserves data integrity and protects against threats
viz., data fabrication and replay attack.

(iv) Computation at FN minimizes storage and
computational cost at the cloud server.

Used in internet of medical things
(IoMT) for remote health monitoring.

EEDAM (Energy-Efficient Data
Aggregation Mechanism) [54]
Decentralized cluster topology and
blockchain secure edge services with
minimum delay

(i) Member nodes for clustering at the CH are analyzed
using a fuzzy similarity matrix.

(ii) Member nodes employ sleep scheduling to reduce
data redundancy, network traffic jamming, and
transmission costs.

(iii) Fuzzy based data aggregation in the IoT layer.
(iv) Uses edge computing to provide on-demand trusted

services to IoT.
(v) Cloud server has integrated blockchain and the edge

is validated by the blockchain.

It can be used in 6G to ensure reliable
transmission of sensor elements for IoT
system

∗ HE- Homomorphic Encryption, IBS- Identity-Based Signature, pH- privacy homomorphism, MAC- message authentication code, HMAC- Hash-MAC,
CT- ciphertexts, EC-EG - elliptic curve ElGamal, SM - Smart Meter, SMA-Secure Message Aggregation, SMD- Secure Message Decryption.
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Table 6: Mobility related data aggregation protocols.

Protocol Features Limitations/advantages, applicability for IoT

EEMSRA [55] (Energy-Efficient
Mobile Sink Routing Algorithm)
Hierarchical, cluster. Multihop.
Controlled sink mobility.

(i) Cross-layer protocol that operates in
coordination with the MAC layer and is
based on LEACH. The Mobile sink
broadcasts it’s next projected cluster visit in
order to enable the network to update routes
prior to the sink’s actual arrival at the
cluster.

(ii) CHs perform aggregation before
transmitting data to mobile BS.

(i) Avoids the bottleneck problem of funnel
model.

(ii) Requires the BS to have knowledge about its
short-term trajectory.

(iii) Has better energy efficiency than LEACH.
(iv) Need for controlled BS mobility is a limiting

factor, and hence may not be applicable for
IoT.

HexDD [56] (Hexagonal Cell-Based
Data Dissemination) Hierarchical,
Homogeneous (neighborhood).
Random sink mobility. Hexagonal
grid.
Multiple sink support.

(i) Constructs a virtual grid infrastructure with
highways in a honeycomb tessellation.

(ii) Query matching invokes data transmission
in reverse path to BS. The forwarding paths
along the diagonals are shared by all
source-BS pairs. It allows similar data to
meet at the common border nodes.

(iii) Data from multiple sources can be
aggregated and replaced by a single data
packet and forwarded towards BS.

(i) Suitable for intelligent sensor network
applications.

(ii) Honeycomb architecture keeps the traffic
flow in all regions of the network nearly
balanced.

(iii) Replicating data on the border cells
decreases the cost of data look-up and the
data delivery latency.

(iv) Nodes lying on borderlines and on the
center cell suffer from hotspot problem.
This can be avoided by adjusting the size of
borderlines and shape of central region
based on network size and traffic.

(v) Applicable for IoT.

BRH-MDG [57] (Bounded Relay Hop
Mobile Data Gathering) Mobile node/
collector.
Controlled movement of mobile node.

(i) Data is gathered by a mobile node/collector
by resorting to polling mechanism, where a
mobile collector starts its tour from a static
BS located inside or outside in the sensing
field.

(ii) PP temporarily buffers the aggregated data
and uploads the aggregates upon the arrival
of mobile collector before forwarding to the
BS.

(i) A tradeoff need to be arrived between
energy saving and data gathering latency by
striking a balance between relay hop count
of data aggregate and the tour length of the
mobile collector.

(ii) Buffer overflow problem occurs due to delay
in the arrival of the mobile collector to
polling points.

(iii) The need to have a mobile collector makes
it unsuitable for IoT.

TCBDGA [58] (Tree-Cluster-based
Data-Gathering Algorithm)
Multiple trees rooted at RP. Mobile BS
starts periodically and has unlimited
energy.

(i) Weighted trees are constructed by taking
into account residual energy of 1-hop
neighbor, the number of its 2-hop
neighbors, and the distance to the BS.

(ii) The mobile BS stop at at some locations
named Rendevous points (RP) and sub-RPs
to collect and aggregate the data from the
neighboring nodes. The RPs are reselected
after a certain data collection rounds/period.

(i) Balances evenly the load of entire network,
reduces the energy consumption, alleviates
the hotspot problem, and prolongs the
network lifetime.

(ii) Sub-tree decomposition into sub-RPs and
normal nodes balances network energy
consumption.

(iii) The need for mobile BS makes it unsuitable
for IoT.

TTDD-QL [59] Grid structure,
multicast routing, multi-hop, mobile
sink, hierarchical, Sensor nodes
Proactive.

(i) TTDD-QL is based on Q-learning to find
most energy efficient path from
dissemination node to the BS.

(i) Two-level aggregation reduces
communication overhead between
dissemination nodes (higher tier) and BSs
(lower tier). It supports mobility of BSs.

(ii) Soft-states timer installed at dissemination
nodes balances the overhead of periodic
upstream update messages generation.

(iii) Ability to disseminate information across
multiple BSs, makes TTDD a good
candidate for use IoT.

14 Wireless Communications and Mobile Computing



issues, Beneyaz et al. [70] develop a new holistic framework -
the Composite Interference Mapping (CIM) model that
maps the nodes that potentially interfere with each and
every node in the network. Armed with the potential inter-
ference map, all active links can coordinate to schedule their
transmissions so as to get over the ES and HT problems, and
also determine an IFFT schedule.

Due to the presence of intermediary nodes in a tree topol-
ogy rooted at the BS, the transmission of aggregated data need
to be carefully coordinated to avoid interference from other
concurrent transmissions. The Minimum Latency Aggrega-
tion Scheduling (MLAS) algorithm aims tominimize the effect
of wireless interferences and the number of time slots required
to aggregate the data [71]. Several data aggregation scheduling
algorithms have been developed using either Protocol or Phys-
ical Interference models or by using a combination of both, to
address interference inWSN and IoTs [72]. Algorithms devel-
oped on the concepts of link/node coloring, dominator-dom-
inatee, nearest-neighbor, link-length diversity, competitor
nodes in the interference range, etc., have emerged as the most
popular approaches. We briefly discuss of some of these algo-
rithms in this section.

For physical interference model, Li et al. [73] have pro-
posed a time-efficient data aggregation distributed MLAS
algorithm, where the latency depends on network radius or
depth of the aggregation tree, and node degree of the com-
munication graph. The MLAS takes into consideration pri-
mary interference problem by allowing only disjoint set of
links. This work assumes that all nodes transmit with a con-
stant power P. The power of the signal received by a node x
from a transmitting node y located at a distance r is given by
P xðyÞ = P ∗min ð1, r−αÞ where α is the path gain exponent.
This expression indicates that the power of received signal
decreases as the distance increases. If N0 is the variance in
background noise, the transmitted signal is successfully
received if SINR ≥ β (a threshold value) and the distance r

= ðP/βN0Þ−1/α. A network of n nodes is modelled as a graph
Gðn, δrÞ with communication links of Euclidean distance ≤
δr, where δ ϵ ð0, 1Þ, and only nodes that are within a distance
≤δr are allowed to communicate with each other. If the
transmission link >δr, the probability of interference with
other transmissions taking place in the same time slot is
high. The scheduling algorithm developed in this paper is
based on distributed synchronous message passing model
with unicast communication and it ensures that every datum
is aggregated only once without violating the SINR. The
MLAS employs a link coloring scheme to determine sets of
disjoint transmitting nodes, and identifies noninterfering
nodes in a given timeslot from a CDS-based aggregation tree
discussed in [74]. To further improve the performance of the
algorithm and reduce/compress the scheduling latency of
MLAS, a Compressed Scheduling algorithm is also devel-
oped. In this algorithm, the scheduled links from previous
time-slots are merged into a single slot, such that there is
no interference amongst the scheduled links. The authors
employ an approach to generate a subset of feasible set of
links using path scheduling algorithm as discussed in [75].
The subset is then expanded by adding noninterfering nodes
that obey the SINR-threshold. Merging multiple links into a
single time slot not only reduces overall number of timeslots
required for aggregation but also lowers the latency com-
pared to the distributed algorithm.

Two interference-free, TDMA scheduling approaches:
Centralized Improved Aggregation Scheduling (CIAS) and
DIAS (Distributed-IAS), to minimize delay during data
aggregation under protocol interference are discussed in
[76]. As per the approach, the network topology is organized
as a CDS or Cluster-based data aggregation tree rooted at the
topology/network center. The CDS acts as the backbone of
the network. In the CIAS approach, data from dominatees
are aggregated by their dominators. Aggregation process
progresses level-by-level in a bottom–up manner between

Table 6: Continued.

Protocol Features Limitations/advantages, applicability for IoT

MSRP [60] (Mobile Sink based
Routing Protocol) Cluster, stationary
sensor nodes, between sink and CH.

(i) Mobile sink in first movement cycle
determines CHs that are closer than a
specified distance threshold. For subsequent
cycles the residual energy of CHs
maintained in cluster head residual energy
table (CHRET) by the sink, is considers.

(ii) Mobile BS visits the CHs with higher energy
to gather their aggregates.

(i) Energy efficient and extends network
lifetime.

(ii) Suitable of delay-tolerant applications.
(iii) Do not guarantee that mobile BS visits all

the CHs within a time bound.
(iv) Not applicable for IoT.

TSVA-CP-ABE scheme (time-
sensitive and verifiable data
aggregation) [61]
IoT data aggregation system

(i) Attribute-based encryption to achieve
efficient access control in edge-assisted
mobile crowd sensing.

(ii) IoT devices perform outsourced computing
and edge nodes perform verification and
filtration of aggregated data.

(iii) A mobile crowd sensing platform (MCP)
encrypts the time-sensitive task data as
CTs.

(iv) Edge nodes perform aggregation on
collected CTs.

(i) Suitable for edge-assisted mobile crowd
sensing where mobile devices are equipped
with smart sensing computing and
communication capabilities, and context-
aware applications.
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dominators within two hops level, which are connected by
connectors. The connectors collect aggregated data from
the dominators in the lower level, and transmit the aggre-
gates to the dominator nodes in level above. As CIAS
approach depends on the CDS tree structure, it may not be
amenable to changes in networks that need to accommodate
dynamic topologies. To address this, a distributed approach
that allows aggregation of data in an interleaved manner was
presented. In the first step the data from dominatees is
aggregated by their dominators. Later, the aggregates of
dominators in lower level are aggregated by their higher level
dominators at two-hop distance. The aggregator node at
higher level, then schedules its transmission greedily after
it has aggregated data from all its child nodes, without wait-
ing for its same-level neighbors to complete their aggrega-
tion. This interleaved mechanism increases the number of
simultaneous transmissions and minimizes aggregation
delay. Every node in the CDS tree maintains (i) set of com-
petitor nodes that are in its interference range, and (ii) ready
competitor set, a subset of competitor nodes, which are
active. Based on this information, a node is allowed to trans-
mit its data only if its transmission does not interfere with
the set of ready competitor nodes. It is critical to understand
the limit of many-to-one information flows, and devise effi-
cient data collection algorithms to improve the performance
of WSN. Chen et al. [77] present an approach to establish
theoretical upper and lower-bounds for evaluating data col-
lection capacity. Data collection capacity quantified in bits/
sec, is a measure of how fast the BS can collect non-
interfered data from its sensor nodes. To establish the
bounds, the approach considers different interference
models such as Protocol and Physical Interference models,
disk graph and Gaussian Channel models. The approach
assumes that: (i) there is no spatial correlation amongst
the sensed data, and (ii) the transmission and interference
ranges of nodes are identical. Further, the models assume
that packet size (b bits) and transmission rate (W) of
packets in a given transmission path are fixed. The nodes
can resort to concurrent transmission only if they are spa-
tially separated, and their transmissions do not cause any
interference. For every given path Pi, the number of slots
τi required to collect one data packet at the BS is equal to
the product of the path length and its maximum interfer-
ence number Δi (the number of nodes in the interference
range), i.e., ΔijPij. The number of time slots τ required to
collect data from all nodes along all paths is given byΔn,
where Δ is max fΔ1, Δ2,⋯, Δcg and c is the number of leaf
nodes in the tree. As the length of each slot t = b/W, the
overall delay encountered in data collection along all
branches is,D = τt and the data collection capacity C is
given by: C = nb/D =W/Δ: Therefore, the lower bound for
capacity is Θ ðW/nÞ and upper-bound is Θ ðWÞ.

The MLAS problem under the physical interference
model is also investigated in [78]. Two MLAS algorithms a
centralized Nearest-Neighbor Aggregation Scheduling
(NN-AS) and a distributed Cell-Aggregation Scheduling
(Cell-AS) scheduling were developed. The centralized NN-
AS algorithm is proposed as a benchmark for distributed
MLAS algorithm. NN-AS constructs the aggregation tree in

a phase-by-phase manner by determining the transmission
set at each phase. At each round of aggregation, a node in
the transmission set identifies its nearest neighbor that is
not connected to other nodes; and establishes a link with
it. The links thus formed, are scheduled using non-linear
power assignment. At the end of each round, the nodes that
have transmitted are removed from the transmission set.
This process is repeated with the reduced node set using
the nearest neighbor criterion until a single sensor node is
left, which then transmits the aggregate data to the BS in a
single hop. For networks where centralized approach is not
practical, a distributed Cell-AS algorithm, which divides
the network into hexagonal cells is employed. For any given
cell, the node closest to the BS is selected as the Head Node
(HN). Aggregation is performed by the HN by extracting the
data from its neighbors with the help of pulling mechanism.
After aggregation the HNs pool up into larger hexagonals
until the entire area is covered. Unlike NN-AS algorithm,
the Cell-AS algorithm strategically divides the network
based on link-length diversity. Therefore, it obviates the
need to possess global interference information for schedul-
ing. Various popular works on handling interference in data
aggregation are summarized in Table 7.

5.2. Review of Data Aggregation Techniques to Address
Interference in IoT. As IoT embraces different types proto-
cols, technologies and topologies; the impact of interference
is quite significant in data aggregation. Unlike WSN where
all sensor nodes operate on the same network, in IoT, the
devices may operate on technologies that use different fre-
quency bands on the RF spectrum. At the same time, some
wireless technologies such as Bluetooth, WiFi, and ZigBee
may operate in the same 100MHz bands in 2.4GHz to
2.5GHz range. In such cases, a WiFi network can interfere
with another neighboring WiFi network, even if the two net-
works are not in direct communication with each other. In
addition, any neighboring non-IoT device (e.g. a microwave)
utilizing the same frequency as that of an IoT device can
interfere with the WiFi network. Similarly, there may be sev-
eral proprietary products with unique, non-standard fre-
quencies that can be the potential sources of RF
interference. A major challenge is to detect and diagnose
interference remotely. Additionally, when IoT devices can-
not communicate with one another due to interference
issues they try to establish communication repeatedly, and
multiple such attempts lead to battery drain-out. One solu-
tion to manage interference is such cases is to use IoT sys-
tems only in cellular bands where the RF environment is
well planned and coordinated. However, such systems are
more expensive than those deployed in the unlicensed
bands. A second solution is to use IoT systems that are
well-separated in frequency.

Issues due to limited radio frequency spectrum and
bandwidth availability, etc., force the IoT devices to share
narrow spectrum with overlapped frequencies. The issue is
further compounded by the fact that in some applications,
the IoT devices might be located in close proximity to one
other. In such scenario, the communication between the
IoT devices is highly prone to interference. To counter this,
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Table 7: Data aggregation protocols based on interference models for WSN and IoT.

Interference model Algorithm complexity and description

Wan et al. [82]
(i) Follows protocol interference model MLAS in synchronous

multihop networks.
(ii) Constructs three centralized data aggregation schedules, SAS,

PAS and E-PAS with same transmission and interference range
ρ = 1:

(i) Upper bound latencies of the three algorithms are:
(a) SAS (sequential aggregation scheduling): 15R + Δ – 4,
(b) PAS (pipelined aggregation scheduling):

2R +O log Rð Þ + Δ,
(c) E-PAS (enhanced-pipelined aggregation scheduling):

1 +O log R/3√Rð ÞÞR + Δ:
Where R is radius and Δ is maximum node degree.

(ii) The algorithms implement CDS for routing by constructing
maximal independent set (MIS) induced by a BFS ordering of
vertices.

Li et al. [73]
(i) Follows physical interference model.
(ii) MLAS algorithm constructs a BFS data aggregation tree and

prepares a collision-free schedule.

(i) The latency of MLAS schedule is bounded by O R + Δð Þ time-
slots.

(ii) CDS tree used for routing by constructing MIS induced by a BFS
ordering of vertices.

(iii) Deployment pane is partitioned into grids and a link coloring
approach is followed to resolve interference. Latency of
scheduling is further improved by compressive scheduling
which merges links scheduled in different slots to a single slot
without violating SINR.

Li et al. [83]
(i) Follows physical interference model.
(ii) Presents two algorithms for MLAS
(iii) Cell-AS, and NN-AS use distributed and centralized data

approaches, respectively.

(i) Latency for cell aggregation scheduling cell-AS for arbitrary
WSN topology is O Kð Þ time slots, where K is the logarithm of
the ratio between the lengths of the longest and shortest links in
the network.

(ii) Cell-AS exploits link diversity combined with coloring of cells to
avoid interference and to minimize the aggregation latency.

(iii) Latency for nearest-neighbor aggregation scheduling (NN-AS) is
O log3n
� �

time slots (where n is the total number of nodes). The
deployment pane is divided into hexagonal cells.

Orsson et al. [84]
(i) Follows physical interference model.
(ii) Focuses on connecting arbitrary point set into a strongly

connected diagraph.

(i) The algorithm “schedule” connects the arbitrarily oriented MST
in O (log n) slots.

(ii) The algorithm “schedule” considers both unidirectional and
bidirectional (half-duplex) communication between the nodes of
a link in the same slot.

Yousefi et al. [85]
(i) Follows protocol interference model.
(ii) Considers fixed tree-based topology and connected network.
(iii) Minimizes time latency by generating a collision-free schedule

with least number of time slots.

(i) FAST (collision-free minimum latency aggregation scheduling
algorithm for tree-based WSNs) generates aggregation
schedules under the consideration that collisions generally occur
at the receivers.

(ii) Latency of distributed TDMA-based FAST is upper-bound by
12R + Δ − 2

(iii) To avoid collision, the parents schedule transmissions based on
negotiation with each child node and decide time slots for
transmissions according to their priorities.

(iv) FAST adapts waiting policy, where each node in the backbone
waits for the arrival of the target schedules from all its higher-
ranked neighbors in order to successfully determine the
applicable transmission slots for its children. FAST outperforms
Clu-DDAS as the network density increases.

Bushnaq et al. [86]
Follows physical interference model and slotted ALOHA

(i) A data aggregation algorithm is developed for data collection by
an unmanned aerial vehicle that hovers over a finite region of
interest.

(ii) With hovering and travelling times as tradeoffs, the algorithm
heuristically arrives at an optimum number of hovering
locations, data collection time and number samples to be
collected, without compromising the data accuracy.
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it is important to devise Interference Management Mecha-
nisms (IMM) that eliminate the narrowband IoT (NB-IoT)
and move toward long-term evolution (LTE) systems. Fur-
thermore, as IoTs comprise several heterogeneous devices
and networks that use different protocols, the data aggrega-
tion approaches developed for WSN are not directly applica-
ble to IoT. The IMMs can be broadly classified into two
categories: (a) IMMs that use resource partitioning to isolate
mutually interfering transmissions, and (b) IMMS that use
signal processing strategies to facilitate concurrent transmis-
sion of multiple interfering signals. While the first category
may lead to poor spectrum efficiency, the second category
demands accurate Channel State Information (CSI) to
implement the IMM. To counter this, a novel Interference
Steering (IS) method is introduced [79] where a steering sig-
nal is generated to steer the interference imposed orthogonal
to the original intended signal and thus neutralizing the
effect of interference on the intended receiver.

Fitzgerald et al. [40] present a Mixed-Integer Program-
ming (MIP) formulation for providing energy optimal rout-

ing and data aggregation at multiple BSs in IoT edge
networks. Further, the MIP formulations assess the mini-
mum total energy and min-max energy required for data
aggregation and dissemination. The approach also presents
schemes for scheduling of transmissions under Physical
Interference model to attain optimized throughput. The
MLAS problem in IoTs is addressed in [71]. A constant-
factor approximation Aggregation Scheduling in IoTs
(ASIoT) is developed to manage scheduling of heteroge-
neous devices. ASIoT employ Collision (Interference) model
to identify conflicting nodes. The aggregation tree is in the
form of CDS. The dominatees in the aggregation tree are
scheduled using modified first-fit scheduling algorithm. Both
the dominators and connectors connecting the dominators
schedule their aggregated data using level-based scheduling.
Theoretical analysis of ASIoT algorithm generates a schedule
with latency ≤Δ − 1 + 15 ∗D, i.e., ≤Δ − 1 + 15 ∗ 2R, where
D ≤ 2R is network diameter and R is network radius.

Battery-Free Wireless Sensor Networks (BF-WSNs) are
increasingly becoming popular for IoT applications. A

Table 7: Continued.

Interference model Algorithm complexity and description

Nabi et al. [87]
(i) Follows physical interference model.
(ii) Spatial & temporal models to characterize SINR distribution in

large-scale grid-based IoT networks with synchronous periodic
traffic.

(i) IoT devices are modelled as spatially interacting phase-type
arrival/departure (pH/pH/1) queues for packet generation,
transmission scheduling, and rate-sensitive SINR-based packet
departure.

(ii) The model considers the impact of inter-device spacing,
directional antenna & radiation pattern, packet sizes, power
control and data transmission rate on data aggregation by
arriving at optimal transmission reliability by considering data
granularity, transmission delay as some of the trade-off
parameters.

Fitzgerald et al. [40]
(i) Follows physical interference model.
(ii) Formulates 1 K model data collection and nK model for joint

optimization of data aggregation and dissemination.

(i) Uses mixed-integer programming (MIP) to arrive at energy-
optimal data aggregation and routing of sensor measurement
data in IoT edge networks.

(ii) Optimization of network accounts for energy cost in terms of
both minimal total energy usage, and min-max per-node energy
usage (computation of aggregation functions).

(iii) The algorithm however, does not account for reliability of IoT
systems in terms of redundancy of data transmitted over
multiple destination nodes and multiple redundant paths.

An et al. [71]
Collision (interference) model similar to protocol model

(i) A constant-factor approximation algorithm (ASIoT-
aggregation scheduling in IoTs) is developed to address the
MLAS problem in IoTs.

(ii) The algorithm builds a data aggregation tree from connected
dominating set. It then schedules dominatees first, and
repeatedly schedules dominators and connectors until all nodes
in the aggregation tree are scheduled.

(iii) Latency is approximated to be ≤Δ − 1 + 15D, where D is network
diameter ≤2R.

Cai et al. [80]
Follows protocol interference model

(i) The algorithms developed achieve reduction in latency through
(a) even distribution of aggregator nodes so as to maximize the
coverage and (b) determination of collision–free communication
schedule, in battery-free wireless sensor networks (BF-WSNs)
and IoTs.

(ii) The algorithms are extended for the study of BF-WSNs with
multiple channels.
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popular MLAS approach that addresses coverage require-
ment and latency reduction in BF-WSNs; is to randomly
choose q percent of nodes for communication and aggrega-
tion purposes, and select Aggregator Nodes (AN) based on
their residual energy. However, this approach does not guar-
antee equitable distribution of ANs across the network, espe-
cially in applications where IoT device-density is non-
uniform. Such non-equitable distribution could leave some
nodes orphaned, while many others may end up being
squeezed to a limited number of aggregators. To counter
this, two scheduling algorithms based on bottom-up and
top-down approaches that guarantee equitable distribution
of aggregators was proposed in [80]. The theoretical analysis
and simulations results suggest that the algorithms perform
relatively better in terms of latency. Data Aggregation for
IoT networks are often mired with issues that demand
adaptability to dynamic requirements of the network, partic-
ularly synchronization. This is addressed by deploying self-
configurable sensors that perform time synchronization on
the data sensed. However, if the volume of data generated
is quite large, time synchronization turns out to be extremely
complicated. To counter this, mechanisms that determine
the optimal sample size and sample probability for calculat-
ing approximate values need to be designed [81].

6. Fault Diagnosis and Fault-
Tolerant Mechanisms

6.1. Fault Detection and Diagnosis. A probabilistic distrib-
uted localized fault detection algorithm to identify the status
of faulty sensors is described in [88]. Locally, each sensor
node in the network identifies its own status and categorizes
as, good or faulty, and based on this assessment, the neigh-
bors of the node either support or oppose the claim. The
approach focuses on hardware faults such as calibration sys-
tematic error, random noise error, etc., with an assumption
that the system software and application software are not
prone to faults. A similar approach is discussed in [89] using
judgment principle [88] to judge the status of other sensors
through parent-child relationship.

In WSN applications involving large geographic spread,
a centralized approach to detect faults may lead to degrada-
tion of service. In such applications faults are diagnosed by
following a distributed approach where the sensed data
and the data received are compared for deviations. To vali-
date sensor readings, a BIT (Built-In Test) diagnosis method
with spatial correlated weighted adaptation is usually
adopted. Whilst BIT methods are used to detect hard faults
(readings beyond operating rage), methods that additionally
involve spatial correlation with weighted adaptation are used
to detect soft faults (inrange or slow drift faults). Depending
on how close the sensor readings are to the minimum or
maximum operating range, the BIT method determines the
performance degradation of sensors.

6.2. Fault-Tolerance. Larrea et al. [90] present three fault-
tolerant hierarchical data aggregation algorithms to address
intra-region and inter-region process faults. The algorithms
consider a predefined QoS metric and a battery depletion

threshold, for selecting a reliable fault-tolerant aggregator
based on distributed Omega Failure Detector Model [91].
In this approach a node that encounters minimum num-
ber incarnations (crashes) is chosen as a super-aggregator
(SA). After every round of aggregation, the energy level
of the SA is checked against a battery depletion threshold
to assess the necessity of electing a new SA. To detect pro-
cess failures, a suspect list of processes that might fail is
maintained. The processes in the suspect list periodically
broadcast I-AM-ALIVE message in order to proclaim that
they have not crashed. A popular approach to address
issues such as energy efficiency, integrity and fault-
tolerance in a multi-sensor hierarchical clustered WSN; is
to assign a predefined weight-factor to each node. In the
event of sensor failure or its likelihood, the weight of the
node is adaptively decreased. The CH validates the integ-
rity of acquired data and performs a weighted-average
data aggregation. This approach however, does not zero-
out faulty sensors, but decreases the contribution of faulty
sensors in data aggregation. Younis et al. [92] analyze net-
work topology management techniques for tolerating node
faults, and suggest the use of techniques to develop robust
mechanisms for failure detection, restoration of connectiv-
ity and offsetting the effect of node mobility in recovery
schemes.

A fault-tolerant data aggregation protocol comprising (i)
aggregation scheduling and (ii) amendment strategy is pre-
sented in [93]. The data is aggregated according to CDS-
based aggregation scheduling discussed in [74]. The data
aggregation scheduling consists of two phases. The first
phase involves a single-hop aggregation schedule, which
aggregates data from leaf nodes (dominatees) to the domina-
tors. The single-hop aggregation schedule is based on Itera-
tive Minimum Covering (IMC). In the second phase,
aggregation is carried out layer-by-layer using SAS algo-
rithm [82]. In the event of an intermediate node failure,
the amendment strategy is implemented that aims to mini-
mize the number of nodes affected indirectly due to presence
of faulty nodes in the network.

Zhang et al. [94] have proposed a TDMA-based fault-
tolerant scheduling (FTS), where every node maintains
information about its Backup Parent Set (BPS). The data col-
lection process starts by identifying a start-point node which
is closest to the BS in terms of time slots/hops. A Maximum
Non-Interference set of nodes that can transmit concur-
rently without interference is determined. To identify the
status of nodes, a coloring scheme is adopted, where all next
hop nodes in the BFS tree are initially are colored white. A
node that does not have any packets to transmit is colored
black. After every transmission, the color of the node is
updated iteratively. For better reliability every successful
receipt of data is duly acknowledged by the parent node.
To restore communication, in the event of failure of the par-
ent, the child node randomly selects one node from its BPS
as its new parent node. However, in the FTS algorithm, the
BPS contains only the neighboring nodes that lead to the
parent of the faulty node to find alternate path. Therefore,
this strategy precludes other alternate paths that might lead
to BS.
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In the absence of a robust mechanism to detect inter-
ference-faults, quite often the receiver node aggregates the
distorted or interfered faulty signals that it receives, and
relays it to the BS. This leads to propagation of faulty,
interference ridden signals across the network. The pres-
ent approaches primarily focus on addressing node/link
failures and not on faults induced by signal interference.
To this end, Begum and Nandury [95–97] have devel-
oped algorithms to determine Interference-Fault Free
Transmission (IFFT) schedules. The algorithms attempt
to accomplish IFFT by: (a) identifying nodes whose trans-
missions can potentially interfere with other ongoing
transmissions of neighboring nodes, (b) mapping interfer-
ence effect of each transmitting node on other on-going
transmissions in the network, and (c) identifying the con-
stituent transmitting nodes from the received inference-
ridden signal. A component-graph based self-healing
algorithms were developed in [98] that attempt to restore
the overall structure of a hierarchical data aggregation
tree, without the use of redundant resources. Besides tol-
erating interference-faults and node failures, the algo-
rithms maximize the number of transmissions and
minimize the energy consumed per round compared to
other algorithms.

Large IoTs generally depend on WSNs to gather data in
their field of interest. Due to heterogeneity of the sensor
nodes and IoT devices, cluster-based routing is preferred
compared to individual device-centric routing of informa-
tion. However, in the event of failure of CH, the data aggre-
gated by this CH is lost. To counter this, Lin et al. [99] utilize
virtual CH, which serves as a back-up to all CHs in case of
their failure. Flow-graph modeling is then used to retrieve
information from the virtual CH.

In several applications, communication between nodes
is constrained due to poor or intermittent bandwidth
availability. Grining et.al [100] develop a privacy preserv-
ing algorithm that utilizes limited communication between
the nodes and preserves their privacy. IoT applications
that rely on fog/cloud to access data storage and computa-
tional resources often encounter faults due to non-
reporting of data by an IoT device. In such eventuality,
the fault-tolerance feature makes an estimate of the data
from past record. This strategy is also used to make data
estimates if a node malfunctions or reports false data
[101]. As data is shared and aggregated across the IoT
devices, issues related to data privacy are of prime impor-
tance. Although the data is encrypted to facilitate secure
transmission of the data, for better reliability, the data
aggregation algorithms need to be fault-tolerant. C. Xu
et.al [102] present fault-tolerant privacy preserving algo-
rithm that aggregates time-series data. The algorithm
accommodates failure of periodic data uploads from IoT
devices and tolerates arbitrary aggregation functions with-
out much loss in accuracy. While utilizing the fog/cloud
resources, data aggregation is prone to unsolicited injec-
tion of false data. H.M. Khan et.al [103] develop a privacy
preserving data aggregation algorithm to safeguard against
such FDI (false data injection) attacks in fog-enabled
smart grids.

7. Requirements and Tradeoffs in Data
Aggregation Approaches

Data aggregation approaches in WSN and IoT applications
encounter several challenges & requirements related to: (a)
maintaining the accuracy of the data aggregates, (b) data
corruption due to transmission losses and radio interference,
(c) communication delays, (d) network lifetime, (e) energy
constraints, (f) temporal data, etc. These challenges primar-
ily arise due to limited computational & communication
capabilities, memory storage, and battery-energy of sensor
nodes & IoT devices. With little or no access to frequent bat-
tery recharge option, the sensor nodes/devices may fail or
function erroneously, which might lead to incorrect aggrega-
tion of sensed data. Considering the underlying complexities
involved in handling these challenges, it may not always be
possible to find a unilateral data aggregation scheme that
satisfies all these requirements, which at times, may be con-
tradictory to each other. For example, in pursuit of accuracy,
if the aggregator has to wait for too long a period till all
nodes/devices have transmitted their sensed data to the
aggregator, it might lead to poor latency. Similarly, if the
data aggregation scheme, while performing aggregation
drops data packets corrupted due to radio interference, it
might affect both data accuracy and latency parameters. As
a consequence, the design of data aggregation algorithms
that aim to address these challenges is inherently demand-
ing; as one needs to consider trade-offs amongst various
optimization parameters such as latency, data accuracy, reli-
ability, energy efficiency, etc. A thorough understanding of
these parameters is necessary to define appropriate optimi-
zation functions. Based on these functions, data aggregation
strategies can be drawn to bring about the desired tradeoff.
Issues related to optimization parameters and tradeoffs are
briefly enumerated in this Section.

QoS is an essential requirement to assure guaranteed
performance of the identified quality parameters [104].
Due to wide ranging nature of applications, the primary
QoS parameters can be classified as: (i) coverage – the num-
ber of sensors required and their deployment, (ii) sensing
mechanism, (iii) data accuracy, (iv) network life-time, (v)
time criticality, and (vi) reliability. The QoS parameters that
are of prime importance for data aggregation are latency,
timeliness and accuracy. To guarantee data accuracy, the
QoS mechanism must ensure data freshness while perform-
ing aggregation.

Stankovitch [105] proposed the major research chal-
lenges for IoTs, namely: massive scaling, architecture & its
dependencies, creating knowledge & big data, robustness &
openness, security & privacy, and human-in the-loop. Each
of these challenges primarily focus on new problems that
arise for future IoT systems. Out of the challenges identified,
scaling, architecture/topology and handling of big data are
critical for data aggregation in WSN and IoTs.

7.1. Optimization Parameters. Most tradeoffs in WSN and
IoTs focus on optimization parameters that aim to: (a)
accommodate heterogeneity, (b) prolong the network life-
time, (b) enhance data accuracy and energy efficiency, (c)
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shorter latency and temporal correctness, (d) QoS, etc. Some
of these critical parameters are discussed below:

7.1.1. Accommodating Heterogeneity. To accommodate the
inherent heterogeneity in IoT, while at the same time lever-
age the homogeneity in WSNs; parameters such as: (a) net-
work topology, coverage and capacity, (b) computational
capability, (c) data storage, etc., play an important role in
arriving at optimization strategies for data aggregation.
While coverage refers the extent up to which a sensor node
or an IoT device can reach out to other neighbouring
devices, the capacity of a network refers to the amount of
traffic that the network can handle. For IoT application,
which essentially is a conglomerate of several WSNs with
distinct protocols and heterogeneous IoT devices; too large
a coverage space of sensors might be counter-productive.
Larger coverage might result in reception of unsolicited data
from IoT devices and sensors, leading to interference, high
network traffic load, transgression into the domain of other
neighbouring IoTs, and poor energy conservation. On the
other hand, a smaller coverage value results in poor connec-
tivity and higher data transmission range, leading to faster
depletion of node energy. Further, transgression into other
domains might lead to interference amongst the devices in
the overlapping domains. This issue gains prominence when
several low-power devices like electric meters, smart
watches, etc., need to be networked through datalink proto-
cols. While most datalink protocols like Sigfox and LoRa-
WAN, perform admirably well in the absence of
interference in high coverage networks; there is a drastic fall
in their performance when these protocols are subjected to
interference [106]. Therefore, coverage and capacity are
key optimizing parameters to accommodate heterogeneity,
especially in the presence of interference [107].

7.1.2. Prolong Network Lifetime. Network Life Time (NLT) is
measure of the overall health of a WSN or an IoT applica-
tion. Based on the criticality and nature of application, there
are several definitions for NLT. In dense WSNs, where node
failures do not significantly impact its functioning, NLT is
defined in terms of the number of aggregation rounds, or
the time-interval till the energy drain-out of the last healthy
node. On the other hand, in applications where failure of a
single node can cripple the whole network, NLT is defined
as the time interval until the first sensor has drained off its
energy. Studies to estimate NLT assume prime importance
for giving QoS guarantees. In general, NLT depends on the
communication load of the network. The communication
load in turn, depends on optimal usage of computational
resources and the quantum of information processed by
the node/device. Therefore, the key optimization parameters
to minimize communication load are ready availability of (a)
computational resources, and (b) information.

Edge computing is a popular approach to ensure ready
availability of computational resources to every aggregating
node in the WSN/IoT. Edge computing works on the para-
digm, where the computational resources and storage are
made readily available or brought to the edge/doorstep of
the node/device that requires these resources [65]. Another

approach to prolong NLT is to employ caching schemes,
where the nodes cache the frequently used information. In
cooperative caching scheme, the nodes/IoT devices mutually
share their cached data with their neighbors. This eliminates
the need for a node to route its query all the way to BS each
time it needs an information. Identification of the informa-
tion that needs to be cached is a critical factor for optimal
use of caching schemes [108, 109]. To make best use of the
resources, the IoT network needs to identify the type of
resources to be optimized before assessing the type of edge
computing–cloud, fog, or mobile-edge to be deployed.

7.1.3. Data Accuracy and Energy Efficiency. Data accuracy to
a large extent is application-specific and is a measure of how
close the aggregate is to the actuals, as recorded by the sensor
nodes/IoT devices. For example, in a routine environment
monitoring application, data accuracy depends on the accu-
racy of the data sensed, transmitted and aggregated. There-
fore, the optimization parameters for such application are
dependent only on the sensing mechanism of the sensor;
its interference-fault free transmission and data aggregation.
However, in defense and space applications, more than one
type of sensor may be required to accurately determine a
phenomenon. In such applications, the data accuracy
depends on optimizing the number of sensors and their
locations, besides the sensing mechanisms of each sensor.

Most data aggregation schemes assume that the energy
consumption across the network is uniform and devise uni-
lateral schemes that try to optimize the energy consumption.
However, in IoTs there is a wide variation in the energy
overheads due to the presence of heterogeneous devices, net-
works and protocols. Hence, the energy load imposed by the
nodes across the IoT is nonuniform in nature. As a conse-
quence, it is extremely complicated to model the energy con-
sumption pattern while developing data aggregation
algorithms. Therefore, for IoTs, it is necessary to have an
application-specific definition of energy-efficiency in order
to evaluate the efficacy of a data aggregation algorithm.
Accordingly, a data aggregation algorithm is said to be
energy-efficient, if the aggregation strategy arrives at an opti-
mum trade-off with respect to other optimization parame-
ters such as latency, time-criticality, data delivery ratio,
NLT, etc.

7.1.4. Latency and Temporal Correctness. WSNs often
encounter delays in transmission and reception of data
packets due to factors such as: (i) packet-drop that force
retransmissions, (ii) network congestion, (iii) node/link fail-
ures, etc. In applications where data sensed by the nodes is
time varying, the prime requirement is to guarantee timely
delivery of the sensed information to the BS before a prede-
fined time deadline. While accuracy is enhanced if the aggre-
gation is performed only after the aggregator receives data
from all its sensor nodes, it is of little or limited significance
if the BS receives this aggregate beyond a threshold time
limit. Thus, there exists a trade-off between how long an
aggregator node needs to wait to perform data aggregation,
versus how quickly the BS needs to receive ‘fresh data’ from
the aggregator node. Further, the energy load imposed on
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the network to accumulate data from all sensor nodes might
result in faster depletion of node energy. Therefore, in the
quest to achieve better accuracy, the WSN application may
lose out on its effectiveness in terms of its NLT. So, there is
a trade-off that exists between data accuracy versus data
freshness and its effectiveness [110].

7.1.5. Interference. Industrial IoT (IIoT) are driven by high
precision and any deviation in the data emanating from
the sensors can severely impact the process conditions. The
critical role of real-time interference detection and classifica-
tion mechanisms that rely on IIoT devices is analyzed in
[111]. The trade-offs between performance and feasibility
were analyzed in connection with the implementation on
low-complexity IIoT devices.

Malicious interference due to jammers and/or uninten-
tional interference due to neighboring IoT devices working
on same frequency is difficult to handle, as it may not be
possible to identify the source of interference. To this end,
Sparber et al. [112] present a new approach - DynCCA,
where the impact of unintentional interference is estimated
and compared with a clear channel assessment threshold
that is computed at run-time. The run-time threshold com-
puted is used to dynamically mitigate the malicious and
unintentional interference beyond the threshold limit.

7.2. Resource Optimization and Tradeoffs. Different strate-
gies have been proposed for resource optimization in WSNs
viz., (i) construction of broadcast and multicast trees for data
dissemination, (ii) identification of a head node to represent
a cluster or group of nodes, (iii) variable transmission power,
(iv) manipulation of sleep/awake states (v) switching off
transceivers of idle nodes, (vii) strategic placement of source
nodes in data-centric aggregation, (viii) assigning fair band-
width to ease traffic congestion, etc. The protocols so devel-
oped, can be broadly classified under the categories (a)
strategic structuring of nodes and resource optimization,
(b) medium access control, and (c) broadcast and multicast
trees [113]. Some of the strategies and protocols are
described below.

The number of source nodes and their position in the
network play an important role in optimizing the energy
consumption during data aggregation. Data aggregation
protocols based on topological structure like LEACH and
HEED along with their variants; PEGASIS and PEDAP
etc., strategically position the data aggregators so as to min-
imize the communication overhead and maximize the
energy efficiency. Most strategies rely on choosing a node
closest to the BS as the aggregator.

Event-driven applications tend to produce unexpected
load in the network when intermediary nodes witness a sud-
den spurt in incoming data packets. This leads to traffic con-
gestion, packet drop and reduction in network throughput.
To address these issues, a strategy to dynamically assign
additional (fair) bandwidth to congestion hotspots which is
commensurate with the traffic inflow at each node is pre-
sented in [114, 115]. For this strategy to be effective, we need
to determine the busyness of the channel by considering the
total length of busy periods. Smaller the busyness ratio of an

intermediary node, lower is the traffic load. A higher busy-
ness ratio indicates node congestion, which needs to be
eased-out by fair allocation of bandwidth. Another strategy
to accomplish fair bandwidth allocation is to estimate the
traffic-flow in a channel and determine a priority index to
indicate the importance of a node’s transmission. Based on
the traffic-flow and the priority-index, fair bandwidth is allo-
cated to reduce congestion and improve energy-efficiency.

8. Few Posers and Conclusion

While reviewing the literature and the work carried out in
data aggregation, we have come across few gap areas that
need to be explored further. We list out some of these areas
which can well become topics to be explored in future by
researchers working in WSN.

8.1. Energy Efficiency, Energy Optimization, Network Life
Time. Most energy-aware routing protocols and data aggre-
gation protocols make an assumption that the residual
energy of each node in the WSN is known a priori. It is this
assumption, that has driven researchers to devise energy-
aware protocols (e.g. LEACH, HEED, PEGASIS, PAMAS)
that center around judicious selection of aggregator nodes/
CHs, construction of minimum energy MST, etc., without
paying much heed to understand how the information of
residual energy of a sensor node is communicated to other
nodes in the network. Presently, schemes like e-Scan that
piggyback the residual information on control/data packets
are in vogue. The efficacy of these schemes to get accurate
information of the residual energies, geographic location,
connectivity with other nodes, etc., in order to select the
most suitable node as lead aggregator or CH, need to be
studied. This issue is more pertinent to IoT applications
where due to mobility and diverse nature of IoT devices, it
may not be possible to deterministically estimate the residual
energy and the geographical location of the nodes in the net-
work. In such applications, the selection of CH is a major
challenge and needs to depend on heuristic algorithms.
The heuristics depend on arriving at a tradeoff between var-
ious parameters for determining the node with optimal
residual energy, with better connectivity to other nodes in
the network. In such applications we propose the use of
bioinspired heuristics [28–33, 116] and fuzzy-based methods
to dynamically estimate the residual-energies of nodes and
choose the best amongst them as lead node. To estimate
the residual energy of nodes and their connectivity, the fit-
ness function (in the case of bio-inspired algorithms) and
fuzzy classifiers need to factor the number transmissions
and receptions, idle time, and computational overhead to
grade the nodes according to their residual energies.

8.2. Effect of Routing Protocols, Network Topology and
Network Resources on Data Aggregation. In most MAC pro-
tocols, the sleep schedules are extraneously imposed through
SYNC message. This forces a receiving node n to synchro-
nize its sleep schedule with neighboring nodes. Instead, can
one bring in modifications to the protocols, where the node
n dynamically estimates its sleep schedule based on
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transmission loads of its neighboring nodes? This way, the
node n gets up from sleep, just-in-time to receive transmis-
sion from a neighboring node. As a safeguard against end-
less sleep schedule, the node n can fix an upper bound for
its sleep time, after which, the node wakes up to broadcast
“I AM ALIVE” message to communicate its health status.

While Data Centric (DC) routing is an effective tool to
aggregate data of similar nature from closely placed nodes;
the energy efficiency tends to be suboptimal if the nodes
are located far apart. On the other hand, Address-Centric
(AC) routing loses its distinct advantage while aggregating
data of closely located nodes. Can we have a hybrid protocol
that combines the advantages of both AC and DC routing,
where DC is used for aggregating data from closely located
nodes and AC for far away nodes? Such protocol shall find
ready application in IoT devices, where the placement of
nodes is not predefined. In some zones the nodes may be
closely packed facilitating data-centric routing, while in
other zones the nodes may be sparsely located.

Determining an energy efficient routing paths in IoT
applications throws open a number of research challenges.
The challenges are primarily due to the fuzzy nature of rout-
ing transactions, energy-unaware devices, node mobility, etc.
In such scenarios we suggest that fuzzy classifiers with
appropriate membership functions and fitness functions
based on bioinspired techniques be developed to (a) estimate
the current network traffic load to facilitate the election of
lead aggregator node, (b) provide options for a node to
transmit its sensed data to BS via alternate low-latency paths,
and (c) arrive at optimal energy resource conservation
strategies.

8.3. Effect of Network Resources on Data Aggregation. Allo-
cating a fair bandwidth to nodes to control congestion in
network traffic is too fair in the sense that it does not distin-
guish between intermediary nodes and near-sink nodes.
Therefore, this scheme allocates bandwidth in proportion
to the network load of each node. However, it may be worth-
while to explore if assigning higher priority to near-sink
nodes compared to intermediary nodes eases the network
traffic. Further, if buffer_full/buffer_available signals can be
broadcast by a near sink node, the downstream nodes can
look for alternate routes to relay their data, in case the near-
est node is not available. The two modifications suggested
may potentially increase the overall throughput besides pre-
venting packet drop by nodes whose buffer is full.

8.4. Effect of AI and ML, Bigdata Analytics, and 5G on WSN
and IoT. The ever increasing popularity of IoT has thrown a
plethora of challenges to connect anything to everything. The
volume of data that can be collected presents limitless
opportunities to develop analytics to seek solutions, which
were hitherto inconceivable due to the empirical and NP
hard nature of problems being encountered. With multifold
increase in global data, the present day 4G technologies like
LTE, are not capable of meeting the requirements demanded
by the use of IoT. Therefore, 5G technology is likely to
become indispensable, and might emerge as the standard
for all “connected things”.

While collection of voluminous amount of data from
IoT devices is unlikely to pose any unsurmountable chal-
lenges due to 5G technology, a major issue is to ensure data
quality, integrity, and availability, which are of prime impor-
tance for data-centric approaches for informed decision
making. In this perspective, in addition to connectivity,
compute and control issues of IoT, one needs to ponder on
other open research issues on how to handle data availabil-
ity, data redundancy, data integrity and authenticity, data
transactions, real-time data, mobile data, etc. If these issues
are amicably addressed, the data can be used to develop a
host of data analytics for the IoT application domain.

Intelligence at the edge is one of the latest IoT trends.
Edge computing reduces latency when sending data from a
large number of devices to the cloud. Instead of sending
the data to the cloud for analysis and action, decisions, and
data processing can happen at the edge. This reduces traffic
through the network and provides additional gains in per-
formance [117, 118]. As new generation networks and pro-
tocols such as 5G, IPV6 keep emerging, there is a need to
integrate these approaches with an IoT application. Such
integration is essential for seamless exchange of information
across the network, security, and for QoS. Martinez et al.
[118] advocates the development of a network that inte-
grates WSN with 5G, TCP/IP (IPv6) protocols with IoT,
for secure exchange of information with QoS guarantees.

8.5. Exploiting Interference as a Tool to Enhance Fault-
Tolerant Features of WSNs. Successive Interference Cancel-
lation (SIC) techniques attempt to retrieve information from
a node that receives interfered data transmissions from mul-
tiple nodes. Nodes implementing SIC identify the strongest
signal, decode it and subtract this data from the mixed sig-
nal. The process continues iteratively to retrieve next stron-
gest data signal from the remaining signal. Li et al. [119]
discuss an Efficient Minimum Approximation Successive
Interference Cancellation (EMA-SIC) algorithm that can
recover data from multiple simultaneous senders under
Physical interference model.

A new paradigm is proposed, where interference is not
treated as a source of noise that is unintentionally received/
overheard by a node, but to consider the interfered signal
as information received from different source nodes that
needs to be deciphered. Armed with the knowledge of
potential interferers based on the CIM model [70] and the
interfered signal retrieved through successive interference
cancellation techniques [119] new approaches could be
devised to optimize the number of backup copies to be
scheduled as per the primary-backup approach of fault-
tolerance.

8.6. Fault-Tolerance. Fault-recovery schemes based on
Omega failure detector help identify the time of failure,
based on reception of the last “I AM ALIVE” message from
a process in suspect set. Recovery mechanisms are initiated
in the event of nonreception of this message. However, these
schemes do not address a scenario, where a process p sends
“I AM ALIVE” message to process q, but for some reason
like buffer full, traffic congestion, etc., the process q fails to

23Wireless Communications and Mobile Computing



receive the message. We put forth two posers for further
work on Omega failure detection models. The first is on,
“how to develop schemes that address the scenario discussed
above”. The second is to explore if the Omega detection
model can be used to detect node/link faults in addition to
process faults. Solutions to the two posers help the data
aggregation algorithms to identify the correct data to aggre-
gate. The concept of watch-dog timers that were primarily
used to detect hardware faults can also be explored to detect
the time of failure of a process.

Reliable network connectivity being one of the prime
requirements for data aggregation in WSNs and IoT, a
“network-reliability” index, that works as a metric for net-
work reliability needs to be established. While an attempt
to study the impact of energy depletion and node aging
[120] was carried out by associating aging with battery dis-
charge, a more formal effort is warranted. The proposed
network-reliability index shall factor some common traits
of WSN and IoT devices like, inherent redundancy, hetero-
geneity, application domain, etc. The state of this index at
any given point in time, may act as an indicator for remain-
ing life assessment studies of the sensors and IoT devices.

9. Conclusion

In this paper an effort is made to present an in-depth review
of literature on data aggregation in WSN and IoT. A brief
overview of the fundamentals of various data aggregation
approaches for WSN and IoT applications is presented.
The key features, advantages, and disadvantages of various
data aggregation approaches and protocols based on WSN/
IoT network topology, security, mobility, interference, and
fault-tolerance are reviewed. Certain gap areas, where fur-
ther work or abstraction is required, and the suggestions to
handle some these issues are presented as posers for further
research to be carried out.
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