
A Survey of Decision Tree Classifier Methodology

S. Rasoul Safavian and David Landgrebe
School of Electrical Engineering

Purdue University, West Lafayette, IN 47907
Phone 317-494-3486; Fax 317-494-3358

landgreb@ecn.purdue.edu

Copyright (c) 1991 Institute of Electrical and Electronics Engineers. Reprinted from IEEE

Transactions on Systems, Man, and Cybernetics, IEEE Transactions on Systems, Man, and

Cybernetics, Vol. 21, No. 3, pp 660-674, May 1991.

This material is posted here with permission of the IEEE. Internal or personal use of this material is

permitted. However, permission to reprint/republish this material for advertising or promotional

purposes or for creating new collective works for resale or redistribution must be obtained from the

IEEE by sending a blank email message to info.pub.permission@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

A SURVEY OF DECISION TREE CLASSIFIER METHODOLOGY1

by

S. Rasoul Safavian and David Landgrebe
School of Electrical Engineering

Purdue University, West Lafayette, IN 47907

 Abstract - Decision Tree Classifiers (DTC's) are used successfully in many diverse areas such

as radar signal classification, character recognition, remote sensing, medical diagnosis, expert

systems, and speech recognition, to name only a few. Perhaps, the most important feature of

DTC's is their capability to break down a complex decision-making process into a collection of

simpler decisions, thus providing a solution which is often easier to interpret. This paper presents a

survey of current methods for DTC designs and the various existing issues. After considering

potential advantages of DTC's over single stage classifiers, the subjects of tree structure design,

feature selection at each internal node, and decision and search strategies are discussed. Some

remarks concerning the relation between decision trees and Neural Networks (NN) are also made.

I. INTRODUCTION

The decision tree classifier is one of the possible approaches to multistage decision making; table

look-up rules [34], decision table conversion to optimal decision trees [36],[43],[57],[94], and

sequential approaches [22],[80] are others. The basic idea involved in any multistage approach is

to break up a complex decision into a union of several simpler decisions, hoping the final solution

obtained this way would resemble the intended desired solution. A complete review of multistage

recognition schemes is given by Dattatreya and Kanal [14]. Some of the differences between the

different multistage schemes are addressed in Kulkarni & Kanal [45]. The emphasis of this paper

is on the hierarchical approaches. Hierarchical classifiers are a special type of multistage classifiers

which allow rejection of class labels at intermediate stages.

1 The work reported in this paper was supported in part by NSF Grant ECS 8507405 & NASA Grant NAGW-925

IEEE Trans. Systems, Man, & Cybernetics - 2 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

 The organization of the paper is as follows: Section II contains the preliminaries, definitions, and

terminologies needed for later sections; section III explains the motivations behind DTC's and their

potential use and drawbacks; section IV addresses the problems of tree structure design, feature

selection and decision rules to be used at each internal node. Tree structure design is considered

from top-down, bottom-up, hybrid, and tree growing-pruning points of view. In considering the

feature subset selection at the internal nodes of the tree, a newly proposed approach based on

application of neural networks is considered. Some possible search strategies are also mentioned in

this section. These problems are addressed from the Bayesian, the decision-theoretic, and the

information theoretic and entropy reduction approaches. Other issues such as incremental tree

design, the tree capability to generalize, the missing data value problem, the robustness of tree

design, and the relation between decision trees and neural networks are discussed in section V.

Final comments and conclusions are provided in section VI.

II. PRELIMINARIES

We briefly describe some necessary terminology for describing trees (see Aho et. al. [3] for more

details).

Definitions:

1) A graph G = (V, E) consists of a finite, non-empty set of nodes (or vertices) V

and a set of edges E. If the edges are ordered pairs (v,w) of vertices, then the

graph is said to be directed.

2) A path in a graph is a sequence of edges of the form (v
1
, v

2
), (v

2
, v

3
), ...,

 (v
n-1

, vn). We say the path is from v1
 to vn

and is of the length n.

3) A directed graph with no cycles is called a directed acyclic graph. A directed

(or rooted) tree is a directed acyclic graph satisfying the following properties:

IEEE Trans. Systems, Man, & Cybernetics - 3 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

i) There is exactly one node, called the root, which no edges enter. The

root node contains all the class labels.

ii) Every node except the root has exactly one entering edge.

iii) There is a unique path from the root to each node.

4) If (v,w) is an edge in a tree, then v is called the father of w , and w is a son of

v. If there is a path from v to w (v ≠w), then v is a proper ancestor of w and w

is a proper descendant of v.

5) A node with no proper descendant is called a leaf (or a terminal). All other

nodes (except the root) are called internal nodes.

6) The depth of a node v in a tree is the length of the path from the root to v. The

height of node v in a tree is the length of a largest path from v to a leaf. The

height of a tree is the height of its root. The level of a node v in a tree is the

height of the tree minus the depth of v.

7) An ordered tree is a tree in which the sons of each node are ordered (normally

from left to right).

8) A binary tree is an ordered tree such that

i) each son of a node is distinguished either as a left son or as a right son, and

ii) no node has more than one left son nor more than one right son.

9) The balance of a node v in a binary tree is (1+ L)/(2 + L + R), where L and R

are the number of nodes in the left and right subtrees of v. A binary tree is

 α - balanced , 0 < α <= 1, if every node has balance between α and 1 - α. A

2
1 - balanced binary tree is also known as a complete tree.

We will denote any tree by T. See Figure 1 for an example of a general decision tree.

IEEE Trans. Systems, Man, & Cybernetics - 4 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

terminals
(class labels)

•

•
•

depth 0

depth (m-1)

node t

root

depth 1

i jk

•

•
• •

•
•

•

•
•

• • • C(t), F(t), D(t)

C(t) - subset of classes accessible from node t
F(t) - feature subset used at node t
D(t) - decision rule used at node t

Figure 1. Example of a general decision tree.

10) If two internal nodes contain at least one common class, then it is said that the

nodes have overlap classes. See Figure 2.

11) The average number of layers from the root to the terminal nodes is referred to

as the average depth of the tree. The average number of internal nodes in each

level of the tree is referred to as the average breadth of the tree. In general, the

average breadth of the tree will reflect the relative weight given to classifier

accuracy whereas the average depth of the tree will reflect the weight given to

efficiency [77].

IEEE Trans. Systems, Man, & Cybernetics - 5 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

node i node k

...,C ,C ,C ,C ,...3 5 8 12

...,C ,C ,C ,...3 5 8 ...,C ,C ,C ,...3 5 12 level j

Figure 2. Part of the tree with overlap at nodes i and j; i.e., classes 3 and 5 are repeated.

Let us also introduce the following. Let (X_ , Y) be jointly distributed random variables with q-

dimensional vector X_ denoting a pattern or feature vector and Y denoting the associated class label

of X_ . The components of X_ are the features.

Definitions:

12) X_ is called an ordered or numerical (see Breiman et.al. [7]) pattern if its

features take values from an ordered set, and categorical if its features take

values from a set not having a natural ordering. Ordered or numerical features

can have either discrete or continuous values. For simplicity of notation let us

assume that X_ is of continuous ordered type; furthermore, let X_ take values

from R
q
. Let Y take integer values {1,2, ..., J}; i.e., there are J classes of

concern. Then the goal of any classification scheme in general, and DTC in

particular, is to estimate Y based on observing X_ .

13) A decision rule d(.) is a function that maps R
q
 into {1,2, ..., J} with d(X_)

representing the class label of feature vector X_ . The true misclassification rate

of d, denoted by R*(d), is

 R*(d) = p (d(X_) ≠ Y) (1)

IEEE Trans. Systems, Man, & Cybernetics - 6 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

where p(.) denotes the probability.

Let us denote the available labeled samples as L ={(X_ n,Yn), n =1,2, ... , N}.

14) Usually the available labeled samples are divided into two parts: the training

sample L
(1)

 and the test sample L
(2)

 . Commonly L
(1)

 is taken to be randomly

sampled 2/3 of L and L
(2)

 the remaining 1/3 of L.

15) Due to the difficulty of computing the true misclassification rate R*(d), it is

usually estimated from either the training set or the test set. Let us denote the

estimated misclassification rate as R(d). When the training set is used to

estimate R*(d), R(d) is called the resubstitution estimate of R*(d), and when

the test sample is used to estimate R*(d), R(d) is called a test sample estimate

of R*(d). In either case, the misclassification rate is simply estimated by the

ratio of samples misclassified to the total number of samples used to do the

test. A more complex method of estimating the misclassification rate is the K-

fold cross-validation method. Here, the data set L is divided into k nearly equal

parts L1, L2, ..., LK(usually K=10). Then L - Lk is used for the training

sample, and Lk
 is used for the test sample. Next the test sample estimate of the

misclassification rate for each k is found, and averaged over K. Note that when

K=N (the size of the labeled sample), N-fold cross-validation is also called the

“leave-one-out” estimate.

III. POTENTIALS AND PROBLEMS WITH DECISION TREE CLASIFIERS

Decision tree classifiers (DTC's) are attractive for the following reasons [40],[52],[53],[59],[77],

[81]:

IEEE Trans. Systems, Man, & Cybernetics - 7 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

1) Global complex decision regions (especially in high-dimensional spaces) can

be approximated by the union of simpler local decision regions at various

levels of the tree.

2) In contrast to conventional single-stage classifiers where each data sample is

tested against all classes, thereby reducing efficiency, in a tree classifier a

sample is tested against only certain subsets of classes, thus eliminating

unnecessary computations.

3) In single stage classifiers, only one subset of features is used for

discriminating among all classes. This feature subset is usually selected by a

globally optimal criterion, such as maximum average interclass separability

[77]. In decision tree classifiers, on the other hand, one has the flexibility of

choosing different subsets of features at different internal nodes of the tree

such that the feature subset chosen optimally discriminates among the classes

in that node. This flexibility may actually provide performance improvement

over a single-stage classifier [58],[97].

4) In multivariate analysis, with large numbers of features and classes, one

usually needs to estimate either high-dimensional distributions (possibly multi-

modal) or certain parameters of class distributions, such as a priori

probabilities, from a given small sized training data set. In so doing, one

usually faces the problem of "high-dimensionality." This problem may be

avoided in a DTC by using a smaller number of features at each internal node

without excessive degradation in the performance.

The possible drawbacks of DTC, on the other hand, are:

1) Overlap (for the definition, see Sec. II) especially when the number of classes

is large, can cause the number of terminals to be much larger than the number

IEEE Trans. Systems, Man, & Cybernetics - 8 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

of actual classes and thus increase the search time and memory space

requirements. Possible solutions to this problem will be addressed in Sec. IV.

2) Errors may accumulate from level to level in a large tree. It is pointed out by

Wu et.al.[95] that one cannot simultaneously optimize both the accuracy and

the efficiency; for any given accuracy a bound on efficiency must be satisfied.

3) Finally, there may be difficulties involved in designing an optimal DTC. The

performance of a DTC strongly depends on how well the tree is designed.

IV. DESIGN OF A DECISION TREE CLASSIFIER

The main objectives of decision tree classifiers are: 1) to classify correctly as much of the training

sample as possible; 2) generalize beyond the training sample so that unseen samples could be

classified with as high of an accuracy as possible; 3) be easy to update as more training sample

becomes available (i.e., be incremental - see section IV) ; 4) and have as simple a structure as

possible. Then the design of a DTC can be decomposed into following tasks [45],[49],[50]:

1) The appropriate choice of the tree structure.

2) The choice of feature subsets to be used at each internal node.

3) The choice of the decision rule or strategy to be used at each internal node.

When a Bayes point of view is pursued, the optimal tree design may be posed as the following

optimization problem

 Minimize pe (T, F, d)
 T,F,d

Subject to: Limited training sample size

(2)

IEEE Trans. Systems, Man, & Cybernetics - 9 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

where Pe is the overall probability of error, T is a specific choice of the tree structure, F and d are

the feature subsets and decision rules to be used at the internal nodes, respectively. The implication

of the above constraint is that,with a limited training sample size, the accuracy of the estimates of

class conditional densities may deteriorate as the number of features increases. This is also known

as the Hughes phenomena [38]. In practice this places a limit on the number of features that may be

utilized. That is, out of say L, available features, one forms a new feature set of size N , e.g., by

subset selection or by combining features, where usually N << L. Note that for a fixed size N ,

selected as the best feature subset to discriminate among all the classes, the minimum probability of

error decision rule, by definition, is the single-stage Bayes rule. But, if one is allowed to select

different feature subsets for differentiating between different groups of classes (i.e., a tree

structure), one may be able to obtain even smaller probabilities of error than those predicted by

Bayes decision rule.

The above optimization problem can be solved in two steps [50]:

step 1: for a given T and F, find d* = d*(T,F) such that

 pe (T, F, d* (T,F)) = min Pe (T, F, d)
 d

(3)

step 2: Find T* and F* such that

 Pe (T
, F, d* (T*, F*)) = min pe (T , F, d*(T, F))

 T, F
(4)

It should be noted here that no mention of time complexity or computation speed has been made so

far. Including these factors would make the optimization problem even more difficult. Swain and

Hauska [77], and Wang and Suen [81]-[84] have offered some ways to include time efficiency

(i.e. speed) into the analysis. These are discussed in the latter part of the paper.

When the information theoretic point of view is pursued, however, the optimal design of the tree

involves maximizing the amount of average mutual information gain at each level of the tree. We

will return to this point shortly.

IEEE Trans. Systems, Man, & Cybernetics - 10 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

IV.1.a. DECISION TREE STRUCTURE DESIGN

Several methods [4],[6],[8],[15],[17],[20],[32],[37],[42],[45],[48],[53],[61],[64],[65],[68],

[73],[77],[82],[95],[97],[98] have been proposed for the tree structure design. Some have no

claim of optimality and utilize the available a priori knowledge for the design [4],[30],[52],

[68],[74],[81],[95],[97], while others apply mathematical programming methods such as dynamic

programming or branch-and-bound techniques [45],[46],[48],[57],[61]. Some studies [53],[65],

[71],[73] have attempted to combine the tree structure design task with feature selection and the

decision rules to be used throughout the tree.

Some of the common optimality criteria for tree design are: minimum error rate, min-max path

length, minimum number of nodes in the tree, minimum expected path length, and maximum

average mutual information gain. The optimal tree is constructed recursively through the

application of various mathematical programming techniques such as dynamic programming [56]

with look ahead (or back) capabilities to approach global optimality. A basic problem with any of

the suggested optimization methods is their computational infeasibility; usually large amounts of

computational time and storage (space) are required. This in practice has placed a restriction on the

type of tree and/or the number of features (variables) to be used at each node [97].

In many pattern recognition problems at the outset, one has only a set of labeled samples L from

the set of possible classes. The problem is then, given L , find a decision tree T that optimizes

some cost function, such as the average number of nodes in the tree. However, there may be

several ways the labeled sample space could be partitioned, all being equally attractive and

acceptable. For instance, Figure 3 shows two possible binary partitionings using hyperplanes

perpendicular to the feature axes of the space with 3 classes and 2 features; both provide 100%

correct classification of the labeled samples.

IEEE Trans. Systems, Man, & Cybernetics - 11 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

--

X

X X

X

X

XX
X

XX
X

X

X

X
X

X

X

X
X

o
o
o o o

o
o

o

o

o

o
o

o

o
o

o

o
o

oo

o

+

+

+

+

+

+

+

+

+

+

+ +

+
+

+
+

++

+

+

+

+
+

+

+ +

+

+

+

+

b
2

b 1

a1
a2 x

x2

ω
2

ω
3

ω
1

ω
3

ω
2

ω
2ω

1

1

Figure 3. Two dimensional feature space showing two possible partitionings of the
same space, each providing 100% classification accuracy. Samples from
the three classes are designated x, o, and +. The two sets of decision
boundaries are designated by the solid lines and the dashed lines.

For each partitioning, there is a corresponding binary tree. Figure 4 shows the binary trees

corresponding to the partitioning of Figure 3. The goal, then, is to construct a binary tree that is

equivalent in the sense of giving the same decision, but optimal in the sense of having the

minimum average number of nodes [44], or more generally satisfying some size optimality

criterion. Meisel and Michalopoulos [57], and Payne and Meisel [61] address exactly this problem.

ω
1

ω
1

ω
3

ω
2

ω
3 ω

1
ω

2

X
2

b<
2

1
< aX

2 1
< aX

1

< aX
12

X
2

b
1<

b) Decision tree for the dashed line decision boundaries of Fig. 3.

X
2 b2
<

1
< aX 1

1
< aX 2

X
2

b 1<

ω
3

ω
3

ω
2

ω
2

ω
1

a) Decision tree for the solid line decision boundaries of Fig. 3.

Figure 4. Decision trees for the feature space partitions of Figure 3.

IEEE Trans. Systems, Man, & Cybernetics - 12 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

The algorithms they provide are basically composed of two parts. In the first part, they find a

sufficient partitioning of the space; there are actually many ways to do this part [2],[24],[61],[73].

A general approach [61] is to sequentially examine the univariate projections of the sample onto

each feature axes, then find the hyperplanes perpendicular to the feature axes that partitions the

projected samples as accurately as possible, with 100% accuracy if samples are linearly separable.

These hyperplanes partition the space into hypercuboids. Also then the problem is transformed to

one with the discrete features. Each hypercuboid is labeled with the class label of the majority of

the samples in that subregion. The hyperplanes are extended to infinity to create a regular lattice, L,

thus each lattice point has a class label and a feature subset associated with it. See Figure 5. Lattice

L can be binary partitioned on the feature axis i into mutually exclusive left and right sets, where a

left (right) set includes lattice elements with feature i values smaller (larger) than the threshold

value. A binary partition can also be denoted by a 5-tuple (n, i, m, nL, nR), where n denotes a

decision node label for the partition, i and m are the feature axis and the threshold value used for

the partition, and nL and nR are the node labels for partition of the left and right sets, respectively.

Note that a binary tree is a collection of nested binary partitions, and can conveniently be

represented in the following recursive form

 T = {(n, i, m, nL, nR), T
L
, T

R
} (5)

starting from the root; where T
L and T

R denote the subtrees defined on the left and right sets of a

partition.

IEEE Trans. Systems, Man, & Cybernetics - 13 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

x1

x2

ω 3 ω1

ω
2

ω
3

ω
3

ω 3 ω
3

ω
1

ω
1

ω 2

ω
3

ω
3

Figure 5. A regular lattice constructed by extending the original partitioning,
with each element of the lattice assigned a class label.

For the binary trees defined on this lattice L, the general cost function considered has the form [61]

 C(T) = F(L, C(T
L
), C(T

R
)) (6)

where F(L, . , . ,) is component-wise non-decreasing and F ≥ 0. The optimization problem, is

then given L, find T* such that

 C*(L) = Min C(T) = C(T*)

 T
(7)

The optimal tree, therefore, could be recursively constructed through the application of invariant

embedding (dynamic programing).

IEEE Trans. Systems, Man, & Cybernetics - 14 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Remarks:

1) Only one feature is examined at each node.

2) The algorithms are feasible only for a small number of features, else the size of

the lattice becomes large and storage space requirements become a problem.

This is because during the optimization process intermediate results must be

fully accessible. This perhaps is the main limitation.

The problem of designing a truly optimal DTC seems to be a very difficult problem. In fact it has

been shown by Hyafil and Rivest [39] that the problem of constructing optimal binary trees,

optimal in the sense of minimizing the expected number of tests required to classify an unknown

sample is an NP-complete problem and thus very unlikely of non-polynomial time complexity. It is

conjectured that more general problems, i.e. the problem with a general cost function or

minimizing the maximum number of tests (instead of average) to classify an unknown sample

would also be NP-complete. They also conjecture that no sufficient algorithm exists (on the

supposition that P ≠ NP) and thereby supply motivation for finding efficient heuristics for

constructing near-optimal decision trees.

The various heuristic methods for construction of DTC can roughly be divided into four categories:

Bottom-Up approaches, Top-Down approaches, the Hybrid approach and tree Growing-Pruning

approaches. In a bottom-up approach [52], a binary tree is constructed using the training set.

Using some distance measure, such as Mahalanobis-distance, pair-wise distances between a priori

defined classes are computed and in each step the two classes with the smaller distance are merged

to form a new group. The mean vector and the covariance matrix for each group are computed

from the training samples of classes in that group, and the process is repeated until one is left with

one group at the root. This has some of the characteristics of an unsupervised hierarchical

clustering approach. In a tree constructed this way, the more obvious discriminations are done

first, near the root, and more subtle ones at later stages of the tree. It is also recommended [52] that

IEEE Trans. Systems, Man, & Cybernetics - 15 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

from a processing speed point of view, the tree should be constructed such that the most frequently

occurring classes are recognized first.

It is worth noting that usually most decision tree designs are restricted to having a binary structure.

This is not really a restriction since any ordered tree can be uniquely transformed into an equivalent

binary tree [65].

In top-down approaches, the design of a DTC reduces to the following three tasks:

1) The selection of a node splitting rule.

2) The decision as to which nodes are terminal.

3) The assignment of each terminal node to a class label.

Of the above three tasks, the class assignment problem is by far the easiest. Basically, to minimize

the misclassification rate, terminal nodes are assigned to the classes which have the highest

probabilities. These probabilities are usually estimated by the ratio of samples from each class at

that specific terminal node to the total number of samples at that specific terminal node. Then this is

just the basic majority rule; i.e., assign to the terminal node the label of the class that has most

samples at that terminal node.

It seems that most of the research in DTC design has concentrated in the area of finding various

splitting rules; this also naturally embodies the termination rules. Following is a summary of some

of the research done in this direction.

Wu et. al [95] have suggested that a histogram based on an interactive top-down approach for the

tree design may be especially useful for remote sensing applications. In this approach, the

histogram of the training data of all classes is plotted on each feature axis with the same scale. By

IEEE Trans. Systems, Man, & Cybernetics - 16 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

observing the histograms, a threshold is selected to partition those classes into several groups. If a

group contains more than one class, the same procedure is repeated until each group contains only

one class. The drawback of this method is that only a few features (usually one) are used at each

stage. Interaction between features cannot be observed.

When the distributions of classes under consideration are known, You and Fu [97] proposed the

following approach for design of a linear binary tree classifier. Since even for moderately small

numbers of features and classes, the number of possible trees is astronomically large, they

suggested two restrictions to reduce the size of the search space. First, limit the number of features

to be used at each stage. Secondly, for the sake of accuracy, specify tolerable error probabilities at

each stage. Obviously the choice of linear classifiers and a binary tree structure is made to decrease

computational complexity and time and thus to increase the speed. Again, using a distance

measure, such as Bhattacharyya distance, classes at each node are divided into two groups. Then,

using an iterative procedure with an initial guess, a classifier is found that provides minimum

probability of error. If this error exceeds the pre-assigned error bound, the class that commits the

maximum error is taken from consideration (i.e. included in both of the following subgroups

causing overlap) and, repeating the above procedure, a new classifier is found and the error

assessed. Presuming that now the error is below the specified error bound, new subgroups are

formed, else the entire above process is repeated. Assuming that the error calculation function is

first order differentiable with respect to the coefficients of the linear equations of the classifier, they

recommended the Fletcher-Powell algorithm [19].

Remark:

Even though allowing overlap is one way of improving recognition rate, caution

must be exercised since overuse of it will cause the number of terminals to be

much larger than the actual number of classes, thus reducing the efficiency of

the tree classifier. This could be a serious drawback in large-class problems.

IEEE Trans. Systems, Man, & Cybernetics - 17 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

A heuristic procedure which incorporates the time component in the tree structure design is

proposed by Swain and Hauska [77], and Wu et.al. [95]. For every node n
i

an evaluation

function E(n
i
) is defined as

 E(n
i
) = - T(n

i
) - W.e(n

i
) + ∑

j=1

C
i
 p

i+j
 .E(n

i+j
) (8)

where T(n
i
)

and e(n

i
)

are the computation time and the classification error associated with node

 n
i
 , respectively. W is the weighting factor, specified by the user, reflecting the relative importance

of accuracy to the computation time, and Ci is the number of descendent nodes of n
i
 . The third

term on the right side of the above equation is the sum of the evaluation functions at the descendent

nodes of ni
 , weighted by their probabilities of access from ni

 . Obviously in this forward top-

down search procedure, the configuration of the descendent nodes of ni
 is not known yet. Their

evaluation function values, however, can be lower-bound-estimated by the values of the

corresponding evaluation functions if the usual single-stage (one shot) classifier were used at ni
 .

The configuration that provides the maximum evaluation function among all the candidate

configurations is selected and the process is repeated at the following nodes. As pointed out in

[77], this node-by-node design approach, using only local (not global) information, can provide at

best only a suboptimal result.

Since in top-down approaches to tree design, sets of classes are successively decomposed into

smaller subsets of classes, some researchers have attempted to combine the tree design problem

and feature selection problem by using an appropriate splitting criteria at each internal node

[53],[65],[71],[73]. Rounds [65] has suggested Kolmogorov-Smirnov distance and test as the

splitting criteria. Considering a two-class problem with a binary tree structure in mind, only one

feature is selected at each internal node, with the corresponding threshold value. The rationale of

this approach is that crossover points of probability distributions of two classes (especially when

classes have multi-modal distributions) are good locations to place the partitioning planes. These

IEEE Trans. Systems, Man, & Cybernetics - 18 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

crossover points also correspond to the relative maxima of difference of cumulative distributions,

also known as the Kolmogorov-Smirnov (K-S) distance. In the absence of true class distributions,

empirical distributions are estimated from the training set. The K-S distance being a random-

variable, a measure of confidence is provided by the Kolmogorov-Smirnov test. At each node for

each feature, the K-S distances and confidence level are estimated. The actual value of the feature

that provides above two maxima is used as the threshold value to create the descendant nodes.

This approach provides a means for evaluating the discrimination power and significance of each

feature in the classification process but has the following shortcomings. First of all, it requires as

many decision trees to be developed as there are pattern classes [73]. Second, this method uses

only one feature at each node. Third, even for one feature and for a two-class problem, it results in

a tree with differentiated structure and a large number of nodes. Furthermore, the K-S distance

depends on the sample sizes of both classes at each internal node, which would be in general

different at the different internal nodes. The distribution of this statistic under certain restrictions on

the relative values of sample sizes for each class can be found in Gnedenko and Kareljuk [26] and

Rounds [66].

Li and Dubes [53] proposed a permutation statistic as the splitting criterion. The permutation

statistic measures the degree of similarity between two binary vectors: the vector of thresholded

feature values, obtained from the training data, and the vector of known pattern class labels. The

advantages of this splitting criterion over, for instance, a statistic based on distance between

empirical distributions (e.g., K-S distance) are its known distribution and its independence from

the number of training patterns. Even though the permutation statistic is based on the two-class

assumption, multi-class problems can be handled by a sequence of binary decision trees.

In general, the basic idea in choosing any splitting criteria at an internal node is to make the data in

the son nodes “purer”. One way to accomplish this task [7] is to define an impurity function i(t) at

IEEE Trans. Systems, Man, & Cybernetics - 19 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

every internal node t. Then suppose that for the internal node t there is a candidate split S which

divides node t into left son tL and right son tR such that a proportion pL of the cases in t go into tL

and a proportion p
R go into t

R.

One could then define the goodness of the split S to be the

decrease in impurity

 ∆i(S,t) = i(t) - i(t
L
)p

L
 - i(t

R
)p

R (9)

Then choose a split that minimizes ∆i(S,t) over all splits S in some set S . The impurity function

suggested in [7] is the Gini index defined as

 i(t) = ∑
i≠j

 p(i| t)p(j| t) (10)

where p(i| t) is just the probability of a random sample X_ belonging to the the class i, given we are

at node t.

The final component in top-down DTC design is to determine when the splitting should be

stopped; i.e., we need a stopping rule. Early approaches to selecting terminal nodes were of the

form: set a threshold β > 0 and declare a node t terminal if

 max ∆i(S(t), t) < β
S∈S

(11)

The problem with this rule is that usually partitioning is halted too soon at some nodes and too late

at some others. The other major problem in deciding when to terminate splitting is the following.

Suppose we have classes whose underlying distributions overlap; that is the true misclassification

rate is positive (R*(d) > 0). Furthermore, suppose we have a training set L, and we use a splitting

approach (e.g. impurity function) along with a terminal labeling approach mentioned earlier, and

continue the splitting until every node has pure samples; i.e., samples from only one class. Now

IEEE Trans. Systems, Man, & Cybernetics - 20 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

consider the resubstitution estimate (see III, definition 15) of the misclassification rate of the tree T

defined as

 R(T) = ∑
t∈∼

T

 r(t)p(t) = ∑
t∈∼

T

 R(t) (12)

where r(t) is the resubstitution estimate of the misclassification rate, given a sample falls into node

t, p(t) is the probability of a random sample falling into node t, and
∼
T is the set of terminal nodes

of the tree T. Notice that for above scenario R(T) = 0! Obviously this estimate is very biased. That

is, in general, R(T) decreases as the number of terminal nodes increases. But the tree so

constructed usually fails miserably in classification of the test data. Breiman, et.al. [7] conjectured

that decision tree design is rather insensitive to a variety of splitting rules, and it is the stopping rule

that is crucial. Breiman et.al. [7] suggest that instead of using stopping rules, continue the splitting

until all the terminal nodes are pure or nearly pure, thus resulting in a large tree. Then selectively

prune this large tree, getting a decreasing sequence of subtrees. Finally, use cross-validation to

pick out the subtree which has the lowest estimated misclassification rate. To go any further, we

need the following definitions (see [7] for more detail).

Definitions:

16) A branch Tt
of tree T with root node t∈T consists of node t and all the

descendants of t in T.

17) Pruning a branch Tt from a tree T consists of deleting from T all descendants

of t. Denote the pruned tree as T- Tt.

18) If by successively pruning off branches from T we obtain the subtree T', we

call T' a pruned subtree of T and denote it by T'< T.

Recall that the size of a tree is of utmost importance. In order to include the complexity of tree T in

the design process, define a cost-complexity measure Rα(T) as

IEEE Trans. Systems, Man, & Cybernetics - 21 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

 Rα(T) = R(T) + α | ∼T | (13)

where R(T) has the usual meaning of estimated misclassification rate of tree T , and α >= 0 is the

complexity cost measure. That is, the complexity of tree T is measured by the number of its

terminal nodes, and α is the complexity cost per (terminal) node. Let us denote the fully grown tree

as Tmax. Then the objective of a pruning process is, for every α , find the subtree T (α) <= Tmax

such that

 Rα(T(α)) = min Rα(Τ)
 T <= Tmax

(14)

Notice that as α is varied from sufficiently small values where Tmax itself is the optimally pruned

tree, to sufficiently large values where Tmax is pruned so far that only the root node {root} is left,

one obtains a finite sequence of trees T
1
, T

2
, ..., {root}; where T

i
 corresponds to the optimal

subtree for α = α
i. Then among these trees, the tree that provides the smallest test sample or

cross-validation estimate of the misclassification rate is selected. (See [7] for more details.)

Note that the pruning algorithm is essentially a (multipass) top-down algorithm. The tree growing

and pruning of Breiman et.al. [7] has been incorporated into a computer program known as CART

(Classification and Regression Trees.) Following are some of the shortcomings of CART. First of

all, CART allows only either a single feature or a linear combination of features at each internal

node. Second, CART is computationally very expensive as it requires generation of multiple

auxiliary trees. Finally and perhaps most importantly, CART selects the final pruned subtree from

a parametric family of pruned subtrees, and this parametric family may not even include the optimal

pruned subtree. There are, of course, other tree growing and, more importantly, pruning

algorithms (e.g. [12],[25]). Gelfand et.al. [25] propose an iterative tree growing and pruning

algorithm based on the following ideas:

IEEE Trans. Systems, Man, & Cybernetics - 22 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

1) Divide the data set into two approximately equal sized subsets and iteratively

grow the tree with one subset and prune it with the other subset.

2) Successively interchange the role of the two subsets.

Their pruning algorithm is a simple and intuitive one-pass bottom-up approach which starts from

the terminal nodes and proceeds up the tree, pruning away branches. They prove the convergence

of their algorithm, and their experimental results on waveform recognition, along with the

theoretical proof, suggests the superiority of their algorithm to the pruning algorithm of Breiman

et.al.[7]. (See [25] for details.)

Recently, a hybrid method was proposed by Kim and Landgrebe [41] that uses both bottom-up

and top-down approaches sequentially. The rational for the proposed method is that in a top-down

approach such as hierarchical clustering of classes, the initial cluster centers and cluster shape

information are unknown. It is also well known that the proper choice of initial conditions could

considerably influence the performance of a clustering algorithm (e.g., speed of convergence and

final clusters). These information can be provided by a bottom-up approach. The procedure is as

follows. First, considering the entire set of classes, one uses a bottom-up approach such as [52] to

come up with two clusters of classes. Then one computes the mean and covariance for each cluster

and uses these information in a top-down algorithm such as [95] to come up with two new

clusters. Every cluster is checked to see if it contains only one class. If so, that cluster is labeled as

terminal; else the above procedure is repeated. The procedure terminates when all the clusters are

labeled as terminals. (See [41] for details.)

In all the foregoing discussions, at each node a decision is made and only one path is traversed

from the root of the tree to a terminal node. This is referred to as a "hard-decision system" by

IEEE Trans. Systems, Man, & Cybernetics - 23 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Schuerman and Doster [68]. In contrast to hard-decision systems, they propose an approach where

all the a posteriori probabilities are approximated at each internal node without making a decision at

any of those points; a decision is made only at the terminal nodes of the tree by selecting the

maximum a posteriori probability. In other words, in a manner similar to single-stage approaches

[23], a posteriori probabilities for the different classes are estimated, but in a sequence of steps.

Obviously, one would expect to obtain the same a posteriori probabilities at the terminal nodes as

the ones the global single stage classifier would give, assuming the estimated a posteriori

probabilities at each internal node are the same as the actual values.

In single-stage classifications, one way to classify an unknown sample into one of m classes is to

evaluate (m-1) discriminant functions [18],[23]. When Bayes minimum probability of error is the

desired criterion, these discriminant functions are the a posteriori probabilities. In a sequential

approach to evaluate these probabilities, the conditional probabilities of classes at each of the output

branches of an internal node are estimated, based on the set of classes and the full feature

measurement vector at the input to that node. Obviously the structure of the tree and the accuracy of

these estimates are somewhat related. But, clearly, if the true a posteriori probabilities could be

furnished, the explicit structure of the tree would not be critical. So, at least conceptually, the input

classes at each node can be decomposed in a way that a posteriori probabilities of the classes at the

outgoing branches may be estimated with "maximal confidence." Again due to the enormous

number of possible combinations at each node, the actual tree is usually constructed using training

data and heuristic methods based on a separability measure.

Mean square polynomial discriminant functions, using training sets, are suggested [96] for

estimating the a posteriori probabilities of classes at the output of each node branch given the set of

classes at the input of the node and the full feature measurement vector.

Remarks:

IEEE Trans. Systems, Man, & Cybernetics - 24 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

1) By thresholding these a posteriori probabilities at each node, if desired, the

soft-decision approach can be converted to the conventional hard-decision

approach.

2) When the number of classes is large and no overlap is allowed in the tree, the

hard-decision approach raises the possibility of error accumulation [81]-[83].

Even though using heuristics such as proper tree search strategies (see section

IV.3) this error can be reasonably controlled [81], but the soft-decision

approach avoids the problem altogether.

3) When the number of classes and features are large and the class distributions

have significant overlap, a hard-decision approach usually covers up

ambiguities by a "forced recognition" [68]. In the soft-decision approach, no

decision is made until the last stage of the tree.

4) In general, however, the computational time complexities of the soft-decision

approach may be a limiting factor.

IV.1.b. ENTROPY REDUCTION AND INFORMATION-THEORETIC APPROACHES

A different point of view about pattern recognition is taken by Watanabe [85]-[93] and Smith and

Grandy [75]. Since organization and structure of objects or a set of stochastic variables could be

expressed in terms of entropy functions [86], Watanabe refers to the problem of pattern recognition

as that of "seeing a form" or structure in an object [86], and he suggests ways to cast the problems

of learning [88],[89], such as feature (variable) selection, dimensionality reduction [91], and

clustering [90],[92], to mention a few, in terms of minimizing properly defined entropy functions.

IEEE Trans. Systems, Man, & Cybernetics - 25 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

As noted by Suen and Wang [76],[81] this point of view could be very attractive when the number

of classes is large and calculation of Bayes error probabilities is not so simple. Basically, since at

the root of a tree, a given sample could belong to any of the classes, the uncertainty is maximum.

At the terminal nodes of the tree, the sample is eventually classified and the uncertainty is

eliminated. So, an objective function for a tree design could be to minimize uncertainty from each

level to the next level, or in other words, maximize entropy reduction at each stage. Since it is also

desirable to have as few overlaps as possible, Suen and Wang [76] suggested an interactive

iterative clustering algorithm (ISOETRP) with an objective function directly proportional to the

entropy reduction and inversely proportional to some function of class overlap at each stage of the

tree. Even though any entropy measure could be used, Shannon's entropy, defined as

 H = - ∑
i

 p
i
 log p

i
 (15)

where pi
 is the a priori probability of class i, is preferred because of its strong additivity property

[1].

Sethi and Sarvarayudu [73] propose a simple, yet elegant, method for the hierarchical partitioning

of the feature space. The method is non-parametric and based on the concept of average mutual

information. More specifically, let the average mutual information obtained about a set of classes

 C
k
 from the observation of an event X

k, at a node k in a tree T be defined as

 I
k
(C

k
; X

k
) = ∑

C
k

∑
X

k

 p(C
ki

, X
kj

). log
2
[

p(C
ki

)

p(C
ki

 | X
kj

)
]

(16)

Event X
k
 represents the measurement value of a feature selected at node k and has two possible

outcomes; measurement values greater or smaller than a threshold associated with that feature at

that node.

IEEE Trans. Systems, Man, & Cybernetics - 26 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Then, the average mutual information between the entire set of classes, C, and the partitioning tree,

T, can be expressed as

 I(C; T) = ∑
k=1

L
 p

k
. I

k
(C

k
; X

k
)

(17)

where pk

 is the probability of the class set Ck

 and L is the number of internal nodes in the tree T.

The probability of misclassification, pe , of a decision tree classifier T and the average mutual

information I(C; T) are also related as [73]

 I(C; T) >- - ∑
j=1

m
[p(C

j
). log

2
p(C

j
)] + pe. log

2
pe + (1-pe).

log
2
(1-pe) + pe. log

2
(m-1)

(18)

with equality corresponding to the minimum required average mutual information for a pre-

specified probability of error. Then a goal for design of the tree could be to maximize the average

mutual information gain (AMIG) at each node k. The algorithm terminates, when the tree average

mutual information, I(C;T), exceeds the required minimum tree average mutual information

specified by the desired probability of error. (See [73] for more details.) An alternative stopping

criterion proposed by Talmon [78] is to test the statistical significance of the mutual information

gain that results from further splitting a node.

A tree constructed by this top-down algorithm would have a binary structure, and since at each

node the partitioning hyperplane (i.e., the optimum feature and its corresponding threshold) is

selected to maximize the average mutual information at that node, the performance is optimized in a

"local sense". Once the partitioning is specified, the globally optimum tree could be obtained using

the algorithm suggested by Payne and Meisel [61].

IEEE Trans. Systems, Man, & Cybernetics - 27 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Chou and Gray [11] view decision trees as variable-length encoder/decoder pairs, and compare the

performance of the decision trees to the theoretical limits given by the rate-distortion function.

More specifically, they show that rate is equivalent to the average tree depth while the distortion is

the probability of misclassification. They also use greedy algorithms to design trees and compare

their performances to certain classes of optimal trees under certain restrictive conditions. The

applicability of their method is limited, in practice, to only small problems. Goodman and Smyth

[29] prove that a tree designed based on a top-down mutual information algorithm is equivalent to a

form of Shannon-Fano prefix coding. They drive several fundamental bounds for mutual

information-based recursive tree design procedures. They also suggest a new stopping rule which

they claim to be more robust in the presence of noise.

When the measurement variables (features) are discrete, as for instance, in computer diagnostics of

diseases or in stroke directions or number of line crossings in character recognition, the

conventional classifier design or feature selection techniques face practical difficulties [71]. This is

mainly due to the non-metric nature of the measurement space. Sethi and Chatterjee [71] use

concepts of prime events to come up with an efficient approach to the decision tree design. Even

though their method does not guarantee optimality, in most cases it provides close to optimal

results, but most importantly, it is efficient.

IV.2. FEATURE SELECTION IN DTC'S

Regardless of its importance, the problem of feature subset selection in DTC's has received

relatively little attention. Kulkarni and Kanal [46] proposed the use of a branch-and-bound

technique [51] to assign features to the nodes in a sequential top-down manner. The probability of

error is calculated for each possible feature subset selected; if it exceeds the pre-assigned lower

bound then that feature subset is abandoned.

IEEE Trans. Systems, Man, & Cybernetics - 28 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Due to computation time, as a practical matter, the size of the feature subset to be used at each node

is usually limited to be much smaller than the total number of available features [97]. Once it has

been determined (often heuristically) how many features are to be used at each node, different

feature subsets are examined and the one that provides maximum separability, measured by some

distance function, among classes accessible from that node, is usually selected. Note that when the

number of classes is large, an exhaustive search may be infeasible. In that case, usually a greedy-

type search algorithm is used. Again, this at best would provide local optimality. Some studies, in

order to determine the significance of each feature in discriminating among classes associated with

each node, have offered methods that utilizes only one feature at each node. It should be noted that

while the use of single feature decisions at every internal node reduces the computational burden at

the tree design time, it usually leads to larger trees.

Recently, the subject of neural networks, has become very popular in many areas such as signal

processing and pattern recognition. Actually, the applications of neural networks in pattern

recognition problems go back to the days of simple perceptrons in the 1950'S. Many advantages

for neural networks have been cited in the literature (c.f. Rumelhart et.al. [67] and Lippmann

[55]). Most important of them, for the pattern recognition problems, seems to be the fact that

neural network-based approaches are usually nonparametric even though statistical information

could be possibly incorporated to improve their performance (speed of convergence, etc.). Also

neural networks can extract nonlinear combinations of features, and the resulting discriminating

surfaces can be very complex. These characteristics of neural networks can be very attractive in a

decision tree classifier where one has to determine the appropriate feature subsets and the decision

rules at each internal node. There are various neural network models such as Hopfield nets, the

Boltzmann machine and Kohonen self-organizing feature maps, to name a few; the most popular

network by far, however, is the multilayer feedforward network [67].

IEEE Trans. Systems, Man, & Cybernetics - 29 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

A multilayer feedforward neural network is simply an acyclic directed graph consisting of several

layers of simple processing elements known as neurons. The neurons in every layer are fully

connected to the neurons in the proceeding layer. Every neuron sums its weighted inputs and

passes it through some kind of nonlinearity, usually a sigmoidal function. The first layer is the

input layer, the last layer is the output layer and the intermediate layers are known as the hidden

layers. See Figure 6. Then for a supervised learning, training samples are assigned to the inputs of

the network, and the connection weights between neurons are adjusted such that the error between

the actual outputs of the network and the desired outputs are minimized. A commonly used error

criterion is the total sum-of-squared error between the actual outputs and the desired outputs. There

are many learning algorithms to perform this learning task; a frequently used learning rule is the

back propagation algorithm which is basically a (noisy or stochastic) gradient descent optimization

method. Note that, once one fixes the structure of the network, i.e., the number of hidden layers

and the number of neurons in each hidden layer are chosen, then the network adjust its weights via

the learning rule until the optimum weights are obtained. The corresponding weights (along with

the structure of the network) create the decision boundaries in the feature space. The question of

how to choose the structure of the network is beyond the scope of this paper and is a current

research issue in neural networks. It suffices to mention that for most practical applications,

networks with only one hidden layer are utilized. Also see comments in section V and [55].

IEEE Trans. Systems, Man, & Cybernetics - 30 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Input Layer Hidden Layer Output Layer

α 11
β

11

x
1

x
2

x
6

y
1

y
2

y
3

Figure 6. A three layer feedforward network with 6 inputs and 3 outputs. αij and

βkl are the connection weights between neuron i of input layer and neuron j of

hidden layer and neuron k of hidden layer and neuron l of output layer,

respectively.

How can neural networks assist us in the design of decision trees? Gelfand and Guo [31] propose

the following. Recall that in every internal node t of the tree T one would like to find the optimum

(here, in the local sense) feature subset and the corresponding decision surface to partition C(t), the

set of classes in t, into C(tL) and C(tR), two subset of classes at nodes tLand tR, respectively. That

is, there are two nested optimization tasks involved here. The outer optimization loop searches for

the optimum partitioning of classes into two (possibly disjoint) subsets of classes and the inner

optimization loop searches for the optimum decision surface in the feature space to perform the

outer optimization task. Suppose for now that we know the partitioning of C(t) into C(tL) and

C(tR), and are only looking for the (optimum) decision surface in the feature space. This, of

course, can be easily implemented by a simple multilayer feedforward network. Then the

remaining question is how to partition C(t) into C(tL) and C(tR)? As mentioned in section IV.1,

there are various splitting rules. One such possible rule is the impurity reduction criterion used in

IEEE Trans. Systems, Man, & Cybernetics - 31 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

CART. That is, one will consider various partitioning of the C(t) into C(tL) and C(tR), and choose

the partitioning that gives the maximum impurity reduction (see section IV.1.a, and [7] for details).

Of course, when the number of classes is large, an exhaustive search may be impractical. In this

case, some type of greedy search can be performed.

IV.3. DECISION RULES AND SEARCH STRATEGIES IN DTC's

Once the tree structure is designed and the feature subsets to be used at each node of the tree are

selected, a decision rule is needed for each node. These decision rules could be designed such that

optimal performance (in any specified sense) could be attained at each node (i.e. local optimality);

or the overall performance of the tree could be optimized (i.e. global optimality). Obviously,

decision strategies designed to provide optimum performance at each node, do not necessarily

provide overall optimum performance. For globally optimum performance, decisions made at each

node should "emphasize the decision which leads to a greater joint probability of correct

classification at the next level" [50]; i.e., decisions made at the different nodes are not independent.

Kurzynski [49],[50] addresses both locally and globally optimum decision rules. He shows that

the decision rule that provides minimum probability of error at each node (i.e., local optimality) is

just the well known maximum a posteriori probability rule. Since for globally optimum rules, error

recognition information in the future nodes are needed, the problem is worked in a sequentially

backward (bottom up) manner starting from the terminal nodes.

Let us assume that there are m pattern classes and λij represents the cost or losses incurred in

classifying a sample from class Ci to class Cj. Then the Bayes minimum risk classifier allocates an

unknown pattern sample to class Ck if

 k = arg (min ∑
i=1

m
 p(C

i
 | X) λ

ij
)

 j
(19)

IEEE Trans. Systems, Man, & Cybernetics - 32 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

where X is the feature measurement vector of the unknown sample. For a "0-1" loss function, λij =

1-δij where δij is the Kronecker delta. Then, above rule becomes the simple maximum a posteriori

rule, i.e.,

 C

k
 = arg (max p(C

i
 | X))

 i
(20)

Even though "0-1" is a reasonable and frequently used loss function, in a decision tree classifier, it

should only be applied at the terminal nodes where the actual classification task is performed. At

the intermediate nodes in a tree, decisions are made as to which of the possible branches leaving

that node should be followed. Let αij represent the cost incurred when a sample of class C
i
 is

routed through branch j. Obviously, αij
is a random variable since (Dattatreya and Kanal [13])

actions at the levels below the present level are not known. Dattatreya and Kanal [13] propose an

interesting unsupervised scheme that adaptively learns the mean values of these random variables

and improves the tree performance.

The only cost considered above was the cost of decision-making and classification. What about the

cost of feature measurements? In many applications, such as medical diagnosis, feature

measurement costs (e.g., lab tests, X-rays, and etc.) may be a major portion of the cost. Thus

more generally, the total cost should be (Dattatreya and Sarma [16], and Kulkarni and Kanal [45])

the sum of the feature measurement cost and the classification cost. Assuming that feature

measurement costs are constant, Wald [80] shows that the minimum cost classifier is a multistage

scheme which measures only one feature at every stage and decides the next course of action.

Furthermore, Dattatreya and Sarma [16] show that rejection of class labels at intermediate stages as

unlikely candidates is suboptimal in the Bayes minimum cost sense.

Now consider the situation where the tree is designed and feature subsets to be used at each node

are determined. In this case, the problem of hierarchical classification can also be viewed as a

problem of tree search. Kanal [40], and Kulkarni and Kanal [46] have generalized the idea of state

IEEE Trans. Systems, Man, & Cybernetics - 33 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

space representation and ordered admissible search methods of Artificial Intelligence (Nilsson [60])

to the problem of hierarchical classification. Then, to search through the tree, an evaluation

function f(n) (Kanal [40]) is defined at each node n as

 f (n) = g(n) + h(n) + l(n) (3.16)

where g(n) is the cost from the root to node n, h(n) is (an estimate of) the cost from n to a

terminal node accessible from n, and l(n) is (an estimate of) the risk of classification at a terminal

node accessible from n.

At a goal node, s*, the total cost is the sum of measurement costs at each node along the path from

the root to s* plus the actual risk, r(s*), associated with s*. If r(s*) is estimated based on only the

feature measurements at each node along the path from the root to s*, the strategy that provides

minimum total cost is called an S-admissible search strategy. When r(s*) is estimated using all the

measurements, not just those on the path to s*, then the strategy that provides minimum total cost

is known as a B-admissible search strategy (Kanal [40]).

At every node, a lower bound on the value of risk is used in the evaluation function for the S-

admissible search, except for a goal node where the actual risk is used. In a B-admissible search,

however, since the risk associated with any goal s* can change as additional measurements are

made along other paths in the tree, a search could not be terminated simply as one goal state is

reached. Therefore, an upper bound function on the risk is also needed to determine the termination

point (Kanal [40], and Kulkarni and Kanal [46]). Obviously, the performance of either of the

above two search methods is dependent on one's ability to find proper bounds on the goal risk.

The advantage of the state-space model as pointed out by Kulkarni and Kanal [46] is that, in

contrast to the hierarchical classifier approach where only one path is pursued from the root to a

terminal point, here provisions are made to back up and follow other alternative paths in the tree if

IEEE Trans. Systems, Man, & Cybernetics - 34 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

it is needed. Obviously, however, this would increase the number of nodes visited before a

decision is made and thus reduce the efficiency. Also search efficiency is a function of the tightness

of the bounds on the risk; and tight bounds are difficult to obtain particularly for some continuous

distributions [46]. It is also interesting to note that the way cost functions are usually defined

neither the B-admissible nor the S-admissible search has provisions for the time component [81].

As mentioned earlier, when the number of classes is large, i.e. on the order of hundreds or even

thousands as is in the Chinese character recognition problem for instance, tree classifiers could

provide a considerable amount of time savings. But error has a tendency to accumulate from level

to level. This is because in problems with large numbers of classes, the tree has many levels. If e

is the minimum error at each node of each level and there are on the average l levels in the tree, the

average total error rate of the tree would be on the order of (l * e). As proposed in Wang and

Suen [81], there are two ways to reduce the total error: either reduce e or have a better search

strategy capable of backing-up and re-routing. In general e can only be reduced by allowing

overlaps at internal nodes [95]; but this would increase the number of nodes and terminal nodes,

thus greatly increasing the memory space requirements. To improve tree search, however, several

heuristic search strategies are proposed [2],[9],[10],[28],[33],[35],[81]-[83]. Chang and Pavlidis

[10] proposed a branch-bound-backtracking algorithm. A fuzzy decision function [99], taking

values in the interval [0,1], is used to assign the decision values of all the branches going out of a

node. The overall decision value of a path is defined to be the product of the decision values of all

the branches along that path. The product operator could be either the regular product or the max-

min operator [9]. Branches with the largest decision values are followed. At any node, if the total

decision value up to that node falls below a pre-specified threshold, the algorithm backtracks to the

previous node(s) and follows another path. Of course, the speed of the search is related to the

threshold value set.

IEEE Trans. Systems, Man, & Cybernetics - 35 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Since the most confusion and error occurs for samples that come from regions near the boundaries

between classes (or groups of classes), Wang and Suen [81] propose a two-step search approach.

In the first step, following the usual top-down search approach, an unknown sample reaches a

terminal node. The degree of similarity of the sample with the class label associated with that node

is computed. If this value is above a preset threshold, the sample is classified and the next sample

is treated; otherwise, the unknown sample goes through the second search called "fuzzy logic

search." As argued in [81], the rationale for fuzzy logic is that somehow the global search

information and all the possible terminals (classes) must be recorded. Probabilistic decision values

based on Bayes decision regions, although perhaps more precise, are usually much harder to

estimate. Fuzzy decision values, however, are both flexible and easier to compute. By adjusting

the two thresholds involved in the two steps, the speed of the search could be controlled. This

would also provide a trade-off between speed and accuracy of the tree classifier.

V. OTHER TREE RELATED ISSUES

A) Incremental tree design:

With regard to the training samples, there are two possibilities: 1) The entire training sample is

available at the time of decision tree design; 2) the training sample arrives in a stream.

For case 1, once a tree is designed the task is completed and such design algorithms are known as

non-incremental algorithms. For the second case, however, one has two options:

a) Whenever the new training samples become available, discard the current tree

and construct a replacement tree using the enlarged training set.

b) Or revise the existing tree based on the new available information.

Procedures corresponding to b) are known as incremental decision tree design algorithms.

IEEE Trans. Systems, Man, & Cybernetics - 36 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Of course, it would be desirable that the incremental decision tree design algorithms produce the

same trees as those if all the training samples were available at the time of design. Utgoff [79] has

developed one such incremental algorithm.

B) Tree generalization:

In designing a DTC, one must always keep in mind that the tree designed is going to be used to

classify unseen test samples. With this in mind, one has two options: 1) Design a decision tree that

correctly classifies all the training samples, also known as a perfect tree [62],[63]; and select the

smallest perfect tree. 2) Or construct a tree that is perhaps imperfect (in the above sense) but has the

smallest possible error rate in classification of test samples. In practical pattern recognition tasks, it

is usually this second type of tree that is of most interest.

Regardless of which of the above two types of trees one may need, it is usually desirable to keep

the size of the tree as small as possible. The reasons for this are: 1) Smaller trees are more efficient

both in terms of tree storage requirements and test time requirements; 2) smaller trees tend to

generalize better for the unseen samples because they are less sensitive to the statistical

irregularities and idiosyncrasies of the training data.

C) Missing value problem:

The missing value problem can occur in either the design phase, or the test phase, or both. In the

design step, suppose some of the training sample feature vectors are incomplete; that is some

feature elements of some feature vectors are not recorded or are missing. This can happen, for

instance, due to some occasional sensor failures. Similarly for the test samples, some feature

values may be missing.

IEEE Trans. Systems, Man, & Cybernetics - 37 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

In the design phase, one simple but wasteful method to cope with this problem is to throw away

the incomplete feature vectors. For the test sample, of course, this simple option is not acceptable.

Breiman et.al. [7] propose the following solution which is based on the idea of using surrogate

splits. For the case of simplicity, consider the case of binary splitting at every internal node based

on the value of only one feature. For the extension of this idea to a linear combination of features,

see [7] and [21]. The basic idea is as follows.

In the tree design phase, at node t, find the best split Sm
*
 on the feature element X musing all the

training samples containing a value of X m. Then select the split S* which maximizes the impurity

reduction ∆i (Sm
* , t) at node t (see section IV 1.a) .

For the incomplete test sample, if at a node t the best split S* is not defined because of missing

feature element values, proceed as follows. Define a measure of similarity between two splits

 Si and Sj as λ(Si ; Sj) . Examine all non-missing feature elements for the test sample; find that

one, say X m, with split ∼Sm , that is most similar to S* . ∼Sm is called a surrogate split to S* . Then

use ∼Sm at node t to decide to traverse to node tL or t
R.

D) Robustness of decision tree design:

Since decision trees are often constructed by using just some sets of training samples, it is

important to make sure that the design procedure is in some sense robust relative to the presence of

"bad" samples or outliers. Of course, one could always edit the training data before application in

the tree design. This, however, in many cases may not be feasible for the following reasons.

1) The designer may not be aware of the existence of outliers at the time of the tree design,

even though outliers are usually easily detected in a training set; in some cases a thorough

examination of data set may be necessary.

IEEE Trans. Systems, Man, & Cybernetics - 38 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

2) With a small sample, one may not want to throw away any valuable samples.

E) Decision trees and neural networks:

Even though multilayer perceptron (MLP) networks and DTC's are two very different techniques

for classification, the similarities in the distributed nature of decision-making in both processes has

motived some researchers [5] to perform some empirical comparative studies. Following are some

of the general conclusions drawn so far.

1) Both DTC's and MLP networks are capable of generating arbitrarily complex decision

boundaries from a given set of training samples; usually neither needs to make any assumptions

about the distributions of the underlying processes.

2) MLP networks are usually more easily capable of providing incremental learning than

DTC's.

3) Training time for MLP networks is, however, usually much longer than the training time

for DTC's. Therefore, MLP networks tend to be most useful in the circumstances where the

training is infrequent and the given classifier is used for a long period of time.

4) In the empirical studies reported in [5], MLP networks performed as well as or better

than their CART counterpart.

5) DTC's are sequential in nature, compared to the massive parallelism usually present in

MLP networks.

6) The behavior of DTC's in general, and CART in particular, make it much more useful

for data interpretation than MLP networks. An MLP network, in general, is no more than a black

box of weights; and reveals little information about the problem its applied to.

7) Perhaps the most interesting conclusion in [5] is that there is not enough evidence

(theoretical or empirical) to provide a strong support for either one of the approaches alone.

IEEE Trans. Systems, Man, & Cybernetics - 39 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Then, perhaps a more useful stand to take with regards to the decision trees and neural networks is

to consider both of these tools together. This may be looked at from following two perspectives.

 I) Neural networks may be used in the implementation of various aspects of decision trees.

For instance, Gelfand and Guo [31] use neural networks in the internal nodes of a decision tree to

perform the task of feature selection and decision boundary construction. In this approach, one is

constructing a tree of neural networks. See also Golea and Marchand [27]

II) The alternate possibility is to design the DTC and then map the tree into a neural

network. This is the direction Sethi [69]-[70], and Sethi and Otten [72] have taken. The main idea

here is that, as it was mentioned earlier in section IV.2, in the design of multilayer feedforward

networks, the structure of the network, i.e., the number of hidden layers and the number of

neurons in each hidden layer is not known in advance, and is often chosen rather heuristically and

by trial and error. The method described in [69], [70], and [72] offers one way to uncover the

structure of the network. That is, they offer a method to implement a pre-designed decision tree via

a multilayer feedforward neural network. Perhaps one of the main advantages of this approach,

other than possibly eliminating guess work in the design of MLP networks, is that the network

designed this way usually has fewer connections. This may be an important factor from VLSI

implementation point of view.

VI. CONCLUSIONS AND FINAL REMARKS

Decision tree classifiers show a great deal of potential in many pattern recognition problems such

as remotely sensed multisource data classification, medical diagnosis, speech and character

recognition, to mention a few. Perhaps one of the main features of DTC's is the flexibility they

provide; for example the capability of using different feature subsets and decision rules at different

IEEE Trans. Systems, Man, & Cybernetics - 40 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

stages of classification and the capability of trade-offs between classification accuracy and

time/space efficiency.

Some of the goals of this review have been to:

1) Bring the disparate issues in decision tree classifiers closer together and

perhaps motivate some new ideas;

2) Provide a more unified view of decision tree classifiers;

3) And caution the "casual" users of these methods of the possible "pitfalls" of

each method.

Even though optimization techniques such as dynamic programing have been offered by some

researchers to define trees that have certain optimal characteristics, a practical and feasible solution

that is truly optimal with respect to the choice of tree structure, feature subsets and decision rule

strategies is yet far from realization. This is mainly due to either unavailability of the necessary

information (e.g., a priori and class conditional statistics) for the design or to complexities of the

proposed methods that limits their usefulness for real applications of moderate or large size.

Recognizing the difficulties involved in the design of optimal DTC's, many heuristic methods have

been proposed in the literature.

 The four basic approaches for design of DTC's examined in this review are:

1) Bottom-up approach where one starts with the information classes and

continues combining classes until one is left with a node containing all the

classes (i.e., the root).

IEEE Trans. Systems, Man, & Cybernetics - 41 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

2) Top-down approach where starting from the root node, using a splitting rule,

classes are divided until a stopping criterion is met. The main issues in this

approach are: a) choice of splitting criterion; b) stopping rules ; c) labeling the

terminal nodes.

3) Hybrid approach where one use a bottom-up procedure to direct and assist a

top-down procedure.

4) Tree growing-pruning approach where in order to avoid some difficulties in

choosing a stopping rule, one grows the tree to its maximum size where the

terminal nodes are pure or almost pure, and then selectively prunes the tree.

As was pointed out earlier, computational efficiency, accuracy of classification and storage space

requirements usually seem to be conflicting requirements. This fact may actually assist the designer

(user) of a DTC in selecting one possible scheme over the others. The existing methods with their

relative time/space complexities, degrees of (sub)optimality and proposed areas of applications are

summarized in the following tables. Table 1 provides a summary of some of the tree design

methods in terms of the assumptions each approach makes, their performance criterion and some

of the specific requirements of each method. Table 2 gives the brief summary of various feature

selection methods. Table 3 summarizes the various decision rule and search strategies used in

decision trees. And finally, Table 4 provides specific references for various applications.

Finally it should be pointed out that since the performance of a DTC depends on how well the tree

is designed, special attention should be paid to this phase. In particular, when the number of test

samples to be classified is large, as is, for example, in remote sensing applications, the time spent

for the design could be well justified.

IEEE Trans. Systems, Man, & Cybernetics - 42 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Table 1 - Summary of tree structure design

Ref. Optimal ? Criterion Assumptions Remarks
(by author or alternate ref.)

4 Locally
(node-wise)

Prob. of error
- Given: a well

defined feature
transformation

- An automated technique;
- uses only a priori statistics;
- a procedure to compute the global Pe

is also provided.

8 No Max.inf.gain
at each node.

- Given: a binary
image with a
priori class
prob.'s;

- and number of
black bits in
each position in
each class in
the design
samples.

-Input (for classification) is a 2-D
binary pattern

- computationally efficient;
- storage requirements reasonable;
- especially suited for (optical)

character recognition.

15 Yes
Min. total cost
(feature meas.
cost + classif.

cost).

- Design
samples
available;

- conditional
densities are
unimodal.

-Provides a binary tree;
-superior performance to the method

proposed in ref. #13; both in terms
of simplicity of design and the total
expected cost of classification.

16 No " –
-Heuristic;
- provides a binary tree.

45 Yes
Weighted sum
of Pe and avg.
meas. cost in
classifying a
random sample

- Uses ML at
each node

- overall Pe of
tree is small;

- features on any
path from root
to a terminal
node are statist.
indep

- A bottom-up approach;
-time and space complexities are high.

52 No – - Training sample
avail.

- Unsupervised clustering of a priori
classes.

53 No Accuracy
- Labeled training

pattern
available.

- Examines 1 feature at each node;
- finds best feature and corresp.

threshold for each node.

57 Yes A general cost
function.

- Given: samples
from all the
classes.

- Binary tree;
- storage requirements may be large.

IEEE Trans. Systems, Man, & Cybernetics - 43 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Table 1 - Continued

61 Yes " "

- Single feature comparison at each
node;

- feasible for small # of features;
- given a specific partitioning of the

feature space (i.e., Pe fixed), this
method could be used to obtain a
tree with,for instance, min. # of
nodes.

65 Locally Min. Bayes
error.

- Two-class
problem;

- training
samples
available.

-Integrates binary tree construction
and feature selection problem;

-efficient for 2-class problem;
-can evaluate contribution of each

feature to the classification task.

68 Yes Prob. of error

- All the N
features are
avail. at every
node.

-Estimates a posteriori prob.'s, but in
a sequence of steps;

-asymptotically robust w.r.t. changes
in tree structure.

71 No

- Min. expected
cost of a tree;

- weights of the
terminal nodes
and meas. cost

- Meas. costs are
known;

- each meas. can
be used only
once in
decision
making.

-Useful for discrete feature
applications;

-efficient;
-easy to implement.

73 Locally

Max. mutual
inf. gain at each
node.

- Given: a set of
design samples
& a pre-spec.
desired Pe .

-Examines 1 feature per node;
- provides a binary structure;
-easy to implement;
-feature selection capability inherent in

the algorithm.

76 Yes
Max. entropy
reduction and
min. overlap.

–
-A clustering algorithm;
-useful for large # of classes

77 sub-opt.
weighted sum
of accuracy
&efficiency.

- Decision rule at
each stage is
Gaussian ML

-Many applications in remote sensing
explained here.

95 Yes Accuracy, or
 total perform.

- Uses training
set to estimate
appropriate
densities.

–

97 No
Efficiency and

accuracy.

- Multivariate
Gaussian dist.
for all the
classes

-Uses linear discriminant function to
improve speed;

-number of features at each node is
pre-specified.

IEEE Trans. Systems, Man, & Cybernetics - 44 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Table 2 - Summary of feature selection

Reference Optimal Criterion Remarks
(by author or alternate reference)

45 Yes Accuracy Not very efficient.
53 No Accuracy Finds one best feature at each node
65 Locally Accuracy " " "

68 Yes
Max. accuracy in
estimating proper a
posteriori prob.'s

73 Locally Max. inf. gain at
each node.

Finds one best feature at each node.

[52],[77],[95]
[97]

No
Max. separability
between classes at
each node, usually
measured by some
distance function.

Usually by some heuristic methods
number of features to be used at each
node are specified; most practical
(feasible) ones.

Table 3 - Summary of decision rule & search strategies

Reference Optimal? Criterion? Remarks

40 No
Min. total cost of
decision making; i.e.,
sum of costs at different
nodes plus risk of final
classification.

- Several search methods within the
context of pattern classification
are addressed here.

45 Yes
Weighted sum of correct
recognition rate and avg.
meas. cost incurred per
sample.

- Assumes knowledge of all joint
class conditional probabilities;

- some methods to reduce
computational complexities are
offered.

46 No –
- Crucial task is to find tight

bounds on the goal risk;
- able to back-up & re-route, thus

can improve correct recogn. rate.

[49],[50] Yes Probability of error
- Assumes: tree structure and

feature subsets to be used at
each node are given.

81 No
Allow trade-off between
accuracy & efficiency.

- Uses: fuzzy logic search to
improve speed, and global
training to improve correct
recogn. rate.

IEEE Trans. Systems, Man, & Cybernetics - 45 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

Table 4 - Cited applications

Reference Cited Application

[4],[6],[41],
[77],[95],[97]

Remote sensing

[52],[58],[98] Medical

[15],[16] Speech

[8],[9],[10],[30],
[53],[68],[71],
[73],[81]-[84]

Character recognition

[7],[40],[45]-[48]
[57],[61]

General

IEEE Trans. Systems, Man, & Cybernetics - 46 - May 1991

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

REFERENCES

[1] J. Aczel and J. Daroczy, On measures of information and their characterizations, New York:

Academic, 1975.

[2] Rudolf Ahlsmede and Ingo Wegeru, Search problems, Wiley-Interscience, 1987.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullmann, "The Design and Analysis of Computer

Algorithm," Reading, MA, Addison- Wesley, 1974.

[4] P. Argentiero, R. Chin and P. Beaudet, "An automated approach to the design of decision

tree classifiers," IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 51-57 (1982).

[5] L. Atlas, et. al. , “ A performance comparison of trained multilayer perceptrons and trained

classification trees,” Proceedings of the IEEE, vol. 78, No. 10, 1614-1619 (1990).

[6] L. A. Bartolucci, P. H. Swain, and C. Wu, “ Selective radiant temperature mapping using a

layered classifier,” IEEE trans. Geosci. Electron. vol. GE-14, 101-106 (1976).

[7] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classification and regression

trees, Belmont, CA: Wadsworth Int. 1984.

[8] R. C. Casey and G. Nagy, "Decision tree design using a probabilistic model," IEEE Trans.

Inform. Theory vol. IT-30, 93-99 (1984).

- 47 -

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

[9] R. L. P. Chang, "Application of fuzzy decision techniques to pattern recognition and curve

fitting," Ph.D. Thesis, Dept. of EECS, Princeton Univ., 1976.

[10] R. L. P. Chang and T. Pavlidis, "Fuzzy decision tree algorithms," IEEE Trans Syst. Man

Cybernet., vol. SMC-7, 28-35 (1977).

[11] P. A. Chou and R. M. Gray, "On decision trees for pattern recognition," IEEE Symposium

on Information Theory, Ann Arbor MI., 69, 1986.

[12] M. Chou, T. Lookabaugh, and R. M. Gray, “ Optimal pruning with applications to tree

structured source coding and modeling,” IEEE Trans. Inform. Theory, vol. IT-35, 299-315

(1989).

[13] G. R. Dattatreya and L. N. Kanal, "Adaptive pattern recognition with random costs and its

application to decision trees," IEEE Trans. Syst. Man Cybernet., SMC-16, No.2, 208-218

(1986).

[14] G. R. Dattatreya and L. N. Kanal, " Decision trees in pattern recognition," In

Progress in Pattern Recognition 2, Kanal and Rosenfeld (eds.) , Elsevier Science

Publisher B.V., 189-239 (1985).

[15] G. R. Dattatreya and V. V. S. Sarma, "Decision tree design for pattern recognition including

feature measurement cost," in Proc. 5th Int. Conf. Pattern Recognition, vol. II, 1212-1214

(1980).

- 48 -

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

[16] G. R. Dattatreya and V. V. S. Sarma,"Bayesian and decision tree approaches for pattern

recognition including feature measurement costs," IEEE Trans. Pattern Anal. Mach. Intell.

vol. PAMI-3, 293-298, (1981).

[17] E. Diday and J. V. Moreau, "Learning hierarchical clustering from examples -- Applications

to the adaptive construction of dissimilarity indices," Pattern Recognition Lett.," 223-230

(1986)

[18] R.O. Duda and P.E. Hart, Pattern classification and scene analysis, Wiley-Interscience,

1973.

[19] P. Fletcher and M.j.D. Powell,"A rapid decent method for minimization," Computer Journal,

Vol.6, ISS.2, 163-168 (1963).

[20] J. H. Friedman, "A variable metric decision rule for nonparametric classification," Stanford

Linear Accelerator Center-PUB-1573, CS-75-487, Apr. 1975.

[21] --------------------, “ A recursive partitioning decision rule for nonparametric classifier, IEEE

Trans. Comput. , vol. C-26, 404-408 (1977).

[22] K.S. Fu, Sequential methods in pattern recognition and machine learning, Academic press,

1968.

[23] K. Fukunaga, Introduction to statistical pattern recognition, Academic Press: New York,

1972.

- 49 -

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

[24] K. Fukunaga and P. M. Narendra, "A branch and bound algorithm for computing k-Nearest

Neighbors," IEEE Trans. Comput. vol. C-24, 750-753 (1975).

[25] S.B. Gelfand, C.S. Ravishankar, and E.J. Delp, "An iterative growing and pruning

algorithm for classification tree design," IEEE Trans. Pattern Anal. Machine Intell (accepted

for publication).

[26] B.V. Gnedenko and V.S. Koreljuk,"On the maximum discrepancy between two empirical

distributions," Dokl. Acad. Nauk., SSSR 4, 525-528 (1951).

[27] M. Golea and M. Marchand, " A growth algorithm for neural networks," Europhys. Lett.,

vol. 12, No. 3, 205-210 (1990).

[28] S. W. Golomb and L. D. Bavmert, "Backtrack programming," J. Ass. Comput. Mach., vol.

12, 516-524 (1965).

[29] R. M. Goodman and P. Smyth, "Decision tree design from a communication theory

standpoint," IEEE Trans. Inform. Theory vol. IT-34, 979-994 (1988).

[30] Y.X. Gu, Q.R. Wang and C.Y. Suen,"Application of multi-layer decision tree in a computer

recognition of Chinese characters," IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-5,

83-89 (1983).

[31] S. Gelfand and H. Guo, "Tree classifiers with multilayer perceptron feature extraction,"

work in preparation at Purdue University.

[32] D. E. Gustafson, S. B. Gelfand, and S. K. Mitter, “ A nonparametric multiclass partitioning

methods for classification,” in proc. 5th int. conf. pattern Recognition, 654-659 (1980).

- 50 -

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

[33] P. A. V. Hall, "Branch-and-Bound and Beyond," Proc. 2nd Joint Int. Conf on Artificial

Intelligence, 1971.

[34] R.M. Haralick,"The table look-up rule," in Proc. Conf. on Pattern Recognition, 447- ,1976.

[35] P. E. Hart, "Searching probabilistic decision tress," AI Group Tech. Note No. 2, SRI

project 7494, SIR, Stanford, CA., 1969.

[36] C. R. P. Hartmann, P. K. Varshney, K. G. Mehrotra, and C. L. Gerberich," Application of

information theory to the construction of efficient decision trees," IEEE Trans. Inform.

Theory vol. IT-28, No.4, 565-577 (1982).

[37] E. G. Henrichon,Jr. and K. S. Fu, "A nonparametric partitioning procedure for pattern

classification," IEEE Trans. Comput., Vol. C-18, 604-624, (1969).

[38] G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans.

Inform. Theory vol. IT-14, 55-63 (1968).

[39] L. Hyafil and R. L. Rivest, “ Constructing optimal binary decision trees is NP-complete ,”

Information Processing Letters, vol. 5, No. 1, 15-17 (1976).

[40] L. N. Kanal, "Problem-solving methods and search strategies for pattern recognition," IEEE

Trans. Pattern Anal. Mach. Intell. vol. PAMI -1, 193-201 (1979).

- 51 -

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

[41] B. Kim and D. A. Landgrebe, " Hierarchical decision tree classifiers in high-dimensional and

large class data," Ph.D. Thesis and Technical Report TR-EE-90-47, School of EE, Purdue

University (1990).

[42] P. R. Krishnaiah, Ed. "On hierarchical classifier and interactive design, in Applications of

Statistics," Amsterdam, The Netherlands: North-Holland, 1971, pp 301-321.

[43] D. E. Knuth, "Optimum binary search trees," ACTA Informatica, vol. 1, 14-25 (1971).

[44] D. E. Knuth, "The art of computer programming,1: fundamental algorithms," Addison-

Wesley 1968.

[45] A. V. Kulkarni and L. N. Kanal, "An optimization approach to hierarchical classifier

design," Proc. 3rd Int. Joint Conf. on Pattern Recognition, San Diego, CA, 1976.

[46] A. V. Kulkarni and L. N. Kanal, "Admissible search strategies for parametric and non-

parametric hierarchical classifiers," Proc. 4th Int. Conf. on Pattern Recognition, Kyoto,

Japan, 1978.

[47] A. V. Kulkarni, "On the mean accuracy of hierarchical classifiers," IEEE Trans. Comput.

vol. C-27, 771-776 (1978).

[48] A. V. Kulkarni, "Optimal and heuristic synthesis of hierarchical classifiers," Ph.D.

dissertation, Univ. of Maryland, College Park, Comput. Sci. Tech. Rep. TR-469, 1976.

[49] M. W. Kurzynski, "Decision rules for a hierarchical classifier," Pattern Recognition Lett.

vol. 1, 305-310, (1983).

- 52 -

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

[50] M. W. Kurzynski, "The optimal strategy of a tree classifier," Pattern Recognition vol. 16,

81-87 (1983).

[51] E. L. Lawler and D. E. Wood, "Branch-and-Bound: A Survey," Operation Research, vol.

14, 1966.

[52] G. Landeweerd, T. Timmers, E. Gelsema, M. Bins and M. Halic, "Binary tree versus single

level tree classification of while blood cells," Pattern Recognition vol. 16, 571-577 (1983).

[53] X. Li and R. C. Dubes, "Tree classifier design with a Permutation statistic," Pattern

Recognition vol. 19, 229-235 (1986).

[54] Y. K. Lin and K. S. Fu, “ Automatic classification of cervical cell using a binary tree

classifier,” Pattern Recognition vol. 16, 69-80 (1983).

[55] R. P. Lippmann, "An introduction to computing with neural nets," IEEE ASSP magazine, 4-

22, April (1987).

[56] C. McMillan Jr.,Mathematical programing, Wiley, Chapt.8 (1975).

[57] W. S. Meisel and D. A. Michalopoulos,"A Partitioning algorithm with application in pattern

classification and optimization of decision trees," IEEE Trans. Computers, Vol. C-22, 93-

103, Jan. 1973.

[58] J. Mui and K. S. Fu, "Automated classification of nucleated blood cells using a binary tree

classifier," IEEE Trans. Pattern Anal. Mach. Intell. vol. PAMI-2, 429-443 (1980).

- 53 -

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

[59] M. Nadler, "Error and reject rates in a hierarchical pattern recognizer," IEEE Trans. Comput .

vol. C-19, 1598-1601 (1970)

[60] N.J. Nilsson, Problem-solving methods in Artificial Intelligence, New York: McGraw-Hill,

1971.

[61] H. Payne and W. Meisel, "An algorithm for constructing optimal binary decision trees,"

IEEE Trans. Computing vol. C-26, 905- 916 (1977).

[62] J. R. Quinlan, “ Induction of decision trees, “ Machine Learning vol. 1, 81- 106 (1986).

[63] ------------------, “ Decision tress and decision-making, “ IEEE trans. on Systems, Man,

Cyber. vol. SMC-20, No. 2, 339-346, (1990).

[64] J. R. Quinlan and R. L. Rivest, " Inferring decision trees using the minimum description

length principle," Information and Computation, vol. 80, no. 3, 227-248 (1989).

[65] E. Rounds, "A combined non-parametric approach to feature selection and binary decision

tree design," Pattern Recognition 12, 313-317 (1980).

[66] E. Rounds, "Computation of two-sample Kolmogorov-Smirnov statistic. Project Memo

TSC-PM-A 142-5, Technology Service Corporation, Santa Monica, CA., 1978.

[67] D.E. Rumelhart and J.L. McClelland (eds), "Parallel distributed processing," vol. 1 M.I.T.

press, Cambridge Massachusetts, 1986.

- 54 -

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

[68] J. Schuermann and W. Doster, "A decision-theoretic approach to hierarchical classifier

design," Pattern Recognition vol. 17, 359- 369 (1984).

[69] I. K. Sethi, “ Entropy nets: From decision trees to Neural networks,” Proceedings of the

IEEE vol. 78, No. 10 (special issue on Neural Networks), 1605-1613, October (1990).

[70] --------------, “ Layered neural net design through decision trees,” in proc. Int. Symposium

on Circuits and Systems, New Orlean, LA. May 1-3 1990.

[71] I.K. Sethi and B. Chatterjee,"Efficient decision tree design for discrete variable pattern

recognition problems," Pattern Recognition vol. 19,197-206 (1977).

[72] I. K. Sethi and M. Otten, “ Comparison between entropy net and decision tree classifiers, “

in proc. Int. Joint Conf. on Neural Net. IJCNN, San Diego, CA 1989.

[73] I. K. Sethi and G. Sarvarayudu, "Hierarchical classifier design using mutual information,"

IEEE Trans. Pattern Anal. Mach. Intell. vol. PAMI-4, 441-445 (1982).

[74] Q. Y. Shi,” A method for the design of binary tree classifiers, “ in proc. IEEE conf. Image

processing and Pattern Recognition, 21-26 (1981).

[75] C. R. Smith and W. T. Grandy, Jr. eds., Maximum-Entropy and Bayesian Methods in

Inverse Problems," Reidel, Holland, 1985.

[76] C. Y. Suen and Q. R. Wang, "ISOETRP - An interactive clustering algorithm with new

objectives," Pattern Recognition vol. 17, 211-219 (1984).

- 55 -

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

[77] P. Swain and H. Hauska, "The decision tree classifier design and potential," IEEE Trans.

Geosci. Electron, vol. GE-15, 142-147 (1977).

[78] J. L. Talmon, " A multiclass nonparametric partitioning algorithm, " in E. S. Gelsema and L.

N. Kanal, Eds., Pattern Recognition in Practice II. Amsterdam: Elsevier Science Pub. B. V.

(North-Holland), 1986.

[79] P. E. Utgoff, “ Incremental induction of decision tress,” Machine Learning vol. vol. 4, 161-

186 (1989).

[80] A. Wald, Sequential analysis, Wiley, New York, 1947

[81] Q. R. Wang and C. Y. Suen, "Large tree classifier with heuristic search and global training,"

IEEE Trans. Pattern Anal. Machine Intell. vol. PAMI-9, 91-102 (1987).

[82] Q. R. Wang and C. Y. Suen, "Analysis and design of a decision tree based on entropy

reduction and its application to Large character set recognition," IEEE Trans. Pattern Anal.

Machine Intell. vol. PAMI- 6, 406-417 (1984).

[83] Q. R. Wang and C. Y. Suen, "Classification of Chinese characters by phase feature and

fuzzy logic search," Proc. Int. Conf. Chinese Inform. Processing, vol. 1, Beijing, 133-155

(1983).

[84] Q. R. Wang, Y. X. Gu, and C. Y. Suen, "A Preliminary study on computer recognition of

Chinese characters printed in different fonts," Proc. Int. Conf. Chinese Lang. Comput. Soc.,

344-351 (1982).

- 56 -

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

[85] Watanabe, "Pattern recognition as conceptual morphogenesis," IEEE Trans. Pattern Anal.

Machine Intell. vol. 2, 161-165 (1980).

[86] S. Watanabe, Knowing and guessing, Wiley, New York (1969).

[87] S. Watanabe, Pattern recognition: human and machine, Wiley-Interscience, 1985.

[88] S. Watanabe, "Learning process and inverse H-theorem," IRE Trans. Inform. Theory vol.

IT-8, 246 (1962).

[89] S. Watanabe, "Information-theoretical aspects of inductive and deductive inference," IBM J.

Res. Develop., vol. 4, 208. 1960.

[90] S. Watanabe, "Application of dynamical coalescence model of clustering," in Proc. 3rd Int.

Joint Conf. on Pattern Recognition, San Diego, 176, 1976.

[91] S. Watanabe, "Karhunen-Loeve expansion and factor analysis," in Trans. 4th Prague Conf.

on Inform. Theory, etc., 1965.

[92] S. Watanabe and E. T. Harada, "A dynamical model of clustering," in Proc. 2nd. Int. Joint

Conf. on Pattern Recognition, Copenhagen, 413, 1974.

[93] S. Watanabe, "Pattern Recognition as a quest for minimum entropy," Pattern Recognition

vol. 13, 381-387, 1981.

[94] R. Winston, "A heuristic program that constructs decision trees," MIT project MAC, Memo

#173, 1969.

- 57 -

Safavian & Landgrebe: Survey of Decision Tree Classifier Methodology

[95] C. Wu, D. Landgrebe, and P. Swain, The decision tree approach to classification," School

Elec. Eng., Purdue Univ., Lafayette, IN, Rep. RE-EE 75-17, 1975.

[96] S. S. Yau and J. M. Garnet, "Least mean square approach to pattern classification,"

Frontiers of Pattern Recognition, 575-588, Academic Press: New York, 1972.

[97] K. C. You and K. S. Fu, "An approach to the design of a linear binary tree classifier," Proc.

3rd Symp. Machine Processing of Remotely Sensed Data, Purdue Univ. 1976.

[98] S. Q. Yun and K. S. Fu, "A method for the design of binary tree classifiers," Pattern

Recognition vol. 16, 593-603 (1983).

[99] L. A. Zadeh, "Fuzzy sets," Inform. Control, 338-353, 1965.

- 58 -

