
sensors

Review

A Survey of Deep Convolutional Neural Networks Applied for
Prediction of Plant Leaf Diseases

Vijaypal Singh Dhaka 1, Sangeeta Vaibhav Meena 1, Geeta Rani 1 , Deepak Sinwar 1,* , Kavita 2,

Muhammad Fazal Ijaz 3,* and Marcin Woźniak 4

����������
�������

Citation: Dhaka, V.S.; Meena, S.V.;

Rani, G.; Sinwar, D.; K.; Ijaz, M.F.;

Woźniak, M. A Survey of Deep

Convolutional Neural Networks

Applied for Prediction of Plant Leaf

Diseases. Sensors 2021, 21, 4749.

https://doi.org/10.3390/s21144749

Academic Editors: Abdeldjalil

Ouahabi, Amir Benzaoui and

Sébastien Jacques

Received: 10 June 2021

Accepted: 2 July 2021

Published: 12 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur,

Rajasthan 303007, India; vijaypalsingh.dhaka@jaipur.manipal.edu (V.S.D.); sangeeta.yad@gmail.com (S.V.M.);

geeta.rani@jaipur.manipal.edu (G.R.)
2 Department of Computer Science and Engineering, Chandigarh University, Mohali, Punjab 140413, India;

kavita@ieee.org
3 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea
4 Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland;

marcin.wozniak@polsl.pl

* Correspondence: deepak.sinwar@gmail.com (D.S.); fazal@sejong.ac.kr (M.F.I.)

Abstract: In the modern era, deep learning techniques have emerged as powerful tools in image

recognition. Convolutional Neural Networks, one of the deep learning tools, have attained an

impressive outcome in this area. Applications such as identifying objects, faces, bones, handwritten

digits, and traffic signs signify the importance of Convolutional Neural Networks in the real world.

The effectiveness of Convolutional Neural Networks in image recognition motivates the researchers

to extend its applications in the field of agriculture for recognition of plant species, yield management,

weed detection, soil, and water management, fruit counting, diseases, and pest detection, evaluating

the nutrient status of plants, and much more. The availability of voluminous research works in

applying deep learning models in agriculture leads to difficulty in selecting a suitable model according

to the type of dataset and experimental environment. In this manuscript, the authors present a

survey of the existing literature in applying deep Convolutional Neural Networks to predict plant

diseases from leaf images. This manuscript presents an exemplary comparison of the pre-processing

techniques, Convolutional Neural Network models, frameworks, and optimization techniques

applied to detect and classify plant diseases using leaf images as a data set. This manuscript also

presents a survey of the datasets and performance metrics used to evaluate the efficacy of models.

The manuscript highlights the advantages and disadvantages of different techniques and models

proposed in the existing literature. This survey will ease the task of researchers working in the field

of applying deep learning techniques for the identification and classification of plant leaf diseases.

Keywords: convolutional neural networks; deep learning; agriculture; leaf; disease; survey

1. Introduction

There is an exponential increase in population around the globe. As per the report
published in [1], the population is expected to reach 8.5 billion by 2030. Thus, there is a
solid requirement to maximize the production of the agriculture industry for fulfilling the
needs of the increasing population. The growth of bacteria, viruses, fungi, nematodes,
and other microorganisms is increasing due to weather conditions such as temperature,
humidity, and precipitation. Plants become more prone to diseases due to a large number
of pathogens in their surroundings. Attacks of pests and diseases are significant causes of
the reduction in crop production. Precise prediction of plant diseases well in time helps
to apply suitable prevention and protection measures. Hence, it helps improve the yield
quality and increase crop productivity.

Diseases in plants are detected by various symptoms such as lesions, changes in color,
damaged leaf, damage in the stem, abnormal growth of stem, leaf, bud, flower and/or root,

Sensors 2021, 21, 4749. https://doi.org/10.3390/s21144749 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5786-2504
https://orcid.org/0000-0001-9597-6206
https://orcid.org/0000-0001-5206-272X
https://orcid.org/0000-0002-9073-5347
https://doi.org/10.3390/s21144749
https://doi.org/10.3390/s21144749
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144749
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144749?type=check_update&version=4


Sensors 2021, 21, 4749 2 of 34

etc. In addition, leaves show symptoms such as spots, dryness, pre-mature falls, etc., as
an indicator of disease [2]. Analyzing these observable symptoms is an effective way to
detect plant diseases. The traditional disease detection approach is a visual examination
of a plant by a trained or experienced person(s). However, the approach requires sound
knowledge and expertise in the field of disease detection. Moreover, it can result in
erroneous predictions due to visual illusions and biased decisions [3]. Thus, the approach
is not a practical solution for large agricultural land.

The traditional approach’s limitations have motivated the researchers to propose tech-
nological solutions for disease prediction in plants. Artificial Neural Network (ANN) [4],
Support Vector Machine (SVM) [5], Bayes classifier [6], Random Forests [7], K-Nearest
Neighbor (KNN) [8], etc. are used for developing automated disease detection models.
A disease detection model completes its task in five steps: plant leaf image acquisition,
pre-processing of images, segmentation, feature extraction, and classification of different
diseases. Existing models are effective in disease identification. However, disease classi-
fication accuracy depends on human expertise in leaf image acquisition [9]. Thus, there
is a scope of improvement in these models according to the type of available datasets
and experimental conditions. Therefore, the researchers in [10] focus on enhancing the
efficiency and accuracy of the above-said models.

Due to the availability of a plethora of research works in applying machine learning
and deep learning models for predicting plant diseases, it becomes difficult for researchers
to select an effective model according to the dataset, parameters, hardware configuration,
and experimental conditions. Thus, there is a demand for a comprehensive survey of
the existing literature that can assist the researchers in identifying a suitable model for
data pre-processing, prediction, and classification of plant diseases. Therefore, the authors
present an extensive survey of the pre-processing techniques, Deep Convolutional Neural
Network (DCNN) architectures, DCNN frameworks, and Optimization techniques in
this manuscript. In addition, the manuscript highlights the advantages, drawbacks, and
applications of the deep learning models developed in the field of identification and
classification of plant leaf diseases.

The remaining sections of this paper are organized as follows: Section 2 describes the
literature survey. It includes the technologies applied for automatic disease prediction. This
section also includes the problem definition, challenges, and progress made during the last
5 years in the field of plant leaf disease identification. Section 3 presents the comparative
analysis of various pre-processing techniques, commonly used CNN models for plant
disease detection, various optimization techniques, and different frameworks used for
plant disease detection and classification. Finally, Section 4 presents the discussion of the
works, issues, and challenges of current approaches, conclusions drawn, and directions for
future work.

2. Materials and Methods

The literature study shows that nutrition deficiency, attack of microbes, rodents,
unfavorable environmental conditions, etc., are the leading causes of plant diseases [11].
These factors lead to plant stress, impairment in the structure or functioning of a plant.
Plant stress is broadly categorized into two categories: biotic and abiotic, as shown in
Figure 1. Biotic stress originates from living organisms such as fungi, bacteria, protozoa,
viruses, nematodes, or parasitic plants. The agents causing biotic stress restricts plants
to nutrients that lead to severe damage to the plants. In response to the attack, plants
counterattack to recover with the help of various strategies, i.e., plant’s genetic code. On the
other hand, abiotic stress arises from non-living influences, i.e., unfavorable atmosphere,
lack of soil nutrients, extreme sunlight, variation in temperatures, excessive or low rainfall,
inappropriate oxygen, moisture levels, deficiency, or excess essential mineral(s). Biotic
stress is infectious, transmissible, and more dangerous than abiotic stress [12]. Sometimes,
due to the heavy chewing of plant leaves by insects, the total area of a leaf is reduced to
a great extent, which results in a reduction of photosynthesis as well. Azimi et al. [13]



Sensors 2021, 21, 4749 3 of 34

presented a deep learning-based approach for plant leaf stress identification caused by
nitrogen deficiency. On the other hand, Noon et al. [14] presented a plant leaf stress
identification survey using deep learning techniques.

 

Figure 1. Types of plant stress.

A diseased plant shows symptoms such as a change in color, shape, size, retardation
in growth, etc. These symptoms vary at different stages of a disease. At the transition stage,
disease-causing factor(s) start affecting a healthy plant, and there is a gradual appearance
of symptoms for a disease. At this stage, it is difficult to distinguish a healthy plant from
a diseased plant. Additionally, there are fair chances that a disease weakens the immune
system and multiple diseases attack the plant. Thus, there is an appearance of similar
symptoms for two or more diseases [15].

Moreover, environmental factors such as temperature, wind, humidity, exposure to
sunlight, and other meteorological phenomena can alter the symptoms of a disease. These
factors lead to the variations in shape, color, and size of the disease-affected region(s). In
such cases, it becomes challenging to identify a disease by merely examining a plant or
plant part with naked eyes [16]. On the other hand, the advanced techniques of Artificial
Intelligence (AI), such as Convolutional Neural Networks (CNN) and Deep Convolutional
Neural Networks (DCNNs), can minimize human intervention and give good accuracy in
disease identification. Nevertheless, irrelevant information such as background with dead
leaves, soil, branches, leaves of other plants, weeds, insects, etc., in an image is a challenge
in identifying disease.

Moreover, the quality of a plant image is highly dependent on the illumination con-
ditions, overcast conditions, the position of the sun and angle of reflection, etc., while
capturing an image. A poor-quality image with low contrast does not give sufficient
information for disease identification. More challenges in applying AI and DCNNs are
building a suitable model according to the dataset, collecting a vast dataset for training a
model, finding the optimal number of layers in a model, and determining the number of
neurons in each layer. In addition, determining the optimal number of parameters to be
fed to CNN is a challenging task [17].

Deep learning models can face the problem of vanishing gradients during the training
phase. During the adjustment of parameters, the gradient of the loss function may approach
zero, which makes the network difficult to train. The initial layers play a vital role in
recognizing the basic features of the input data. A small gradient means that the parameters
of the initial layers will not be updated effectively, leading to the overall inaccuracy in the
entire network. Thus, the accuracy of a model depreciates by increasing the depth of a
network beyond a threshold value. Wang et al. claimed that the accuracy of a shallow
network decreases by increasing the depth of a network beyond eight [18]. At the time of
training of Deep Neural Networks, the output of one layer is fed as an input to the next
layer. A change in a layer’s parameters leads to variation in the distribution of input data



Sensors 2021, 21, 4749 4 of 34

to the subsequent layers. Thus, it causes the Internal Covariate Shift problem. The problem
slows down the training process. It requires the vigilant initialization of parameters and
lower learning rates. To minimize the Internal Covariate Shift problem, the authors applied
the Batch Normalization technique [19]. Batch Normalization permits the usage of much
higher learning rates and less concern about initialization. It tries to normalize the inputs
fed to each hidden layer. Therefore, the distribution of inputs is relatively constant. This
improves the overall accuracy and rate of learning in deep networks [20].

Recent Developments in Plant Leaf Disease Identification and Classification

A survey of the existing literature shows extensive use of image processing techniques
and machine learning algorithms for the detection and classification of plant leaf diseases in
the last 2 decades. Table 6 shows a comparative analysis of deep CNN models applied for
the identification of plant leaf diseases. From 2015 onwards, deep learning models gained
popularity due to their high accuracy in classifying plant leaf diseases. The comparison of
machine learning and deep learning models is shown in Table 1.

Table 1. Comparison of machine learning and deep learning models.

Points of Difference Machine Learning Models Deep Learning Models

Data Requirements
Require a small amount of data for

training a model.
Require a large amount of data

to train a model.

Hardware Dependency
Machine learning algorithms can work on

low-end machines such as CPUs.
Deep learning models need high-end

machines for execution, such as GPUs.

Feature Engineering

Machine learning models rely on hand-crafted
feature extractors such as Histogram of Oriented

Gradients (HOG), Scale-Invariant Feature
Transform (SIFT), Speeded-Up Robust Features
(SURF), Principle Component Analysis (PCA),

etc. for extracting features from an image.

Do not require explicit identification of
features from an image. Deep learning

models perform automatic feature
extraction without human intervention.

Interpretability

Machine learning algorithms such as decision
trees give crisp rules to justify why and what the

algorithm chooses. Thus, it is quite easy to
interpret the reasoning behind these algorithms.

It is difficult to interpret the reasoning
behind deep learning algorithms.

Training Time

It takes less time to train a model. The time
ranges from a few minutes to a few hours. The

training time is dependent on data size,
hardware configuration, type of model, etc.

It takes more time to train a model. The
time ranges from a few hours to a few

weeks. The training time is dependent on
data size, hardware configuration, type of
model, number of layers in a model, etc.

Problem Solving Technique

Divides a problem into subproblems, solves each
subproblem individually, and combines results

obtained from each subproblem to solve the
complete problem.

Efficient in providing a solution for the
complete problem. Efficient in

performing both feature extraction as
well as classification.

3. Comparative Analysis

This section presents a detailed comparison of the techniques applied for pre-processing,
different convolutional neural networks applied on different datasets, architectures, opti-
mization techniques, and frameworks applied for automating the disease prediction.

3.1. Pre-Processing Techniques

Captured images of plant leaves contain noise, undesirable background, low illumi-
nation, etc. Applying classification techniques on these captured images does not give
accurate results [2]. Therefore, there is a need to apply pre-processing techniques on
raw datasets before feeding a dataset as an input to a CNN model. This is important to
accelerate the training process and improve classification accuracy.



Sensors 2021, 21, 4749 5 of 34

Pre-processing includes resizing images, converting colored images into grayscale
images, normalization, augmentation, cropping, and extracting Region of Interest (ROI),
etc. Figure 2 displays the categories of the most used pre-processing techniques.

 

Figure 2. Categories of pre-processing techniques.

The study of literature evidences the availability of a plethora of pre-processing tech-
niques under each category. Applying pre-processing techniques transforms the dataset
so that a CNN model precisely and efficiently classifies a given dataset. Exemplified as
conversion of Red–Green–Blue (RGB) images into grayscale images makes the training
process more manageable and faster as a single color channel has lower computational
requirements than multiple color channels [21–23]. Applying Principal Component Analy-
sis (PCA) transforms data into a compressed space with a smaller number of dimensions.
Zero-Phase Component Analysis (ZCA), a whitening method, is similar to PCA. It is ap-
plied to highlight the features and structures for making the learning process easier [17].
Cropping on images is applied to highlight the ROI [24–26]. Contrast stretching is applied
before segmenting a region using the correlation coefficient method [27]. This strengthens
the visual quality of a diseased region. Otsu’s algorithm is applied to perform the seg-
mentation of leaf images [28]. The following discussion reveals the details about existing
pre-processing techniques.

3.1.1. Resizing

Images gathered from different sources differ in size. The difference in size adds to
the training time of the model. Therefore, there is a requirement to resize the captured
and/or collected images before applying a CNN model. The padding of zeros in small
images and cropping of large images are valuable techniques for maintaining uniformity
in the size of images. Resizing of images is completed according to an input layer of the
CNN model, exemplified as an image resized to 299 × 299 in the Inception-v3 model [29]
and Xception model [30]. In the Visual Geometry Group (VGGNet), as discussed in [31],
ResNet presented in [32], and DenseNet architecture discussed in [33], images are resized
to 224 × 224. In AlexNet, images are resized to 227 × 227 [34]. Researchers in [23–25,28,35]
applied automatic resizing on images by writing scripts in programming languages such
as Python and Java. The written script automatically reduces the dimensions of fed images
to 256 × 256. Authors in [17] reduced the dimensions of RGB images from 5760 × 3840 to
512 × 512 during retainment of the model with features of input images. Authors in [22,36]
applied the resizing of images to reduce the size from 2048 × 1536 and 2736 × 1824 pixels
to 224 × 224 pixels. Authors in [21] used plant leaf images of 60 × 60 pixels. Authors
in [26] used images of 200 × 200 pixels, [37] 800 × 600 pixels, and [38] used images of
832 × 832 pixels to enhance the efficiency of image processing techniques and to minimize
the computational cost. The above discussion shows that resizing images is essential to
reduce the time of training a model and perform classification.

3.1.2. Augmentation

The performance of Deep Neural Networks is highly dependent on the amount of
data used for training a model. In case a small dataset is available, then there is a need for
data augmentation. There are multiple techniques of data augmentation such as brightness
change, horizontal and vertical shift, cropping, PCA jittering [39], shearing, flipping, and



Sensors 2021, 21, 4749 6 of 34

zooming of training images [18], rotation [22,40], and affine transformations [25]. In addi-
tion to the above-stated traditional techniques, advanced techniques such as Generative
Adversarial Networks (GANs) and Neural Style Transfer (NST) are applied to augment
deep learning. These augmentation techniques increase a training data set by artificially
generating modified forms of images [41]. Thus, they prevents overfitting in a network
and enhances the performance of a model [42,43].

3.1.3. Normalization and Standardization

Normalization is a process of scaling dimensions or values of pixel intensity in a
particular range. Exemplified as an 8-bit RGB image, pixel values are integer numbers
ranging from 0 to 255. The learning process of a CNN is disturbed when large input values
are multiplied by small values of weights. Therefore, there is a requirement to normalize
the values of pixels. This is completed by dividing all pixel values by the largest value, i.e.,
255. It gives all values in a range from 0 to 1 across all channels without disturbing the
view of images [20]. Normalization helps in eliminating distortions caused by lights and
shadows in an image. It gives equal importance to each feature and improves the model’s
learning rate, quality, and accuracy. There are different ways of performing normalization,
such as Decimal scaling, Min–Max normalization, and Z-score normalization.

Min–Max normalization scales data into a range from 0 to 1 as given in Equation (1).
Here, the values of newmin and newmax are 0 and 1 respectively, x is the value of an attribute,
max is the maximum value of the given attribute, and min is the minimum value of the
given attribute. This technique gives stable gradients. However, it lacks handling outliers.
Min–Max normalization scales data into a range from 0 to 1 as given in Equation (1). Here,
the values of newmin and newmax are 0 and 1 respectively, x is the value of an attribute, max
is the maximum value of the given attribute, and min is the minimum value of the given
attribute. This technique gives stable gradients. Nevertheless, it lacks handling outliers.

newx =
x − min

max − min
(newmax − newmin) + newmin (1)

Z-score normalization or standardization involves the rescaling of pixel values. It
performs zero centering of data by subtracting the mean value from each pixel and then
dividing each dimension by its standard deviation, as given in Equation (2). Here, z is the
standardized value, x is the value of an attribute, the mean, and the standard deviation.

z =
(x − µ)

σ
(2)

3.1.4. Annotation

Annotation is a technique of assigning labels to images for training a model. For
detecting diseases in plant leaves, experts with sound knowledge about the diseases
perform the annotation [43]. There are different techniques of annotation, such as bounding
box annotations and pixel-wise image annotations. The bounding box annotation is a
commonly used annotation approach. In this approach, a tight rectangle or cuboid is fitted
around the targeted object. The drawback of this technique is that it includes additional
noise in the bounded box. This technique also faces difficulty in the case of occluded
objects. In pixel-wise image annotation, point-by-point object selection is made. Pixel-
wise image annotation takes more time than bounding box annotations [44] because it
makes point-by-point object selection through the edges of objects. This technique is costly,
time-consuming, and prone to human errors.

3.1.5. Outlier Rejection

Outlier rejection involves ignoring invalid or irrelevant images from a dataset. Exem-
plified as low resolution, low values of intensity, blurriness, noise, irrelevance, duplicate



Sensors 2021, 21, 4749 7 of 34

images are criteria for rejection [25]. Authors in [45] developed a CNN model, namely,
organNet, for the removal of unwanted or invalid images from a given dataset.

3.1.6. Denoising

Denoising is the removal of noise from an image without adversely affecting the
features of an image. It improves the performance of an image classification technique in a
noisy environment. Researchers apply different denoising techniques such as Gaussian
filter, Mean filter, Wiener filter, Median filter, Small-window median filter, and Bilateral
smoothing filter, etc.

Gaussian filter, a popular denoising algorithm, is used to blur an image and removes
noise and details related to the noise by applying the Gaussian function. A median filter is
a non-linear filter. It removes the non-additive type of noise. In the Median filter, a 7 × 7,
5 × 5, or 3 × 3 filter of pixels is scanned over the pixel matrix of an image. The median
of all pixel values replaces the central pixel in the window. It is effective in preserving
sharp edges. It is useful in image processing for reducing salt and pepper noise. Salt-and-
pepper noise represents arbitrarily occurring white and black pixels. An image containing
salt-and-pepper noise has dark pixels in the bright regions and bright pixels in the dark
regions. Mean filter and Wiener filter gives the best performance with Gaussian noise
filtering. Cruz et al. applied a small-window median filter for removing noise in the leaf
image dataset [28].

The above discussion indicates that pre-processing techniques such as resizing, aug-
mentation, normalization and standardization, annotation, outlier rejection, and de-noising
play an essential role in transforming raw datasets into a desired form. The transformed
dataset is fed to a CNN model as input for yielding accurate classification results faster.
The pre-processing techniques differ in mechanism of working and types of dataset.
Each technique has its advantages and drawbacks. The comparison of pre-processing
techniques, as shown in Table 2, gives an idea to researchers to select an appropriate
pre-processing technique.

Table 2. Comparison of pre-processing techniques.

Preprocessing
Technique Objective(s) Methodology Working

Mechanism
Advantages Disadvantages

Resizing
Effective utilization

of storage space
and reducing

computation time.

Nearest-neighbor
interpolation

Replaces the value of
each input pixel with
the translated value

nearest to it.

Simple and fast.
Causes distortion,

blurring, and
edge halos.

Bilinear interpolation

The average of four
nearest pixel values
is used to find the

value of a new pixel.

No grey
discontinuity defects

and provides
satisfactory results.

Produces blurring and
edge halos.

Time consuming and
more complex than the

nearest-neighbor
interpolation.

Bicubic interpolation

Considers the closest
4 × 4 neighborhood
of known pixels, i.e.,
16 nearest neighbors

of a pixel.

Provides smoother
images with less

interpolation
distortion.

It needs more time to
generate the output

due to complex
calculations.

Augmentation

To increase the
amount of relevant
data in a dataset for

training a model.

Traditional
augmentation

techniques

Generate new data
from existing data by

applying various
transformation

techniques such as
rotation, flipping,
scaling, cropping,

translation, adding
Gaussian noise, etc.

Simple to implement.

Disadvantages of
geometric

transformations
include additional

memory,
transformation

compute costs, and
additional training

time.



Sensors 2021, 21, 4749 8 of 34

Table 2. Cont.

Preprocessing
Technique Objective(s) Methodology Working

Mechanism
Advantages Disadvantages

Generative
Adversarial

Networks (GANs)

Comprise of a
generator and a
discriminator.

Generator generates
new examples,

whereas
discriminator
distinguishes

between generated
and real.

Gives very
impressive result by
generating realistic

visual content.

It fails to recover the
texture of an

image correctly.
In the case of too small
text or distortion in an

original image, it
generates a completely

different image.

Neural style transfer

Combines the content
of one image with the

style of another to
form a new image.

Generating artistic
artifacts with
high quality.

Normalization and
Standardization

Used to find a new
range of pixel values

of an image.

Decimal scaling

Divides all pixel
values with the

largest value, i.e., 255
(8-bit RGB image).

Simplest
transformation

technique.

Min–Max
normalization

The minimum pixel
value is transformed
to 0; the maximum

value is transformed
to 1. Other values are

transformed into a
decimal number
between 0 and 1.

It provides a uniform
scale for all pixels.

It is ineffective in
handling outliers.

Standardization or
Z-score

normalization

Standardization or
Z-score

normalization
performs zero

centering of data by
subtracting the value

of mean from each
pixel and then
dividing each

dimension by its
standard deviation.

It effectively
handles outliers.

It does not produce
normalized data with a

uniform scale.

Annotation

Used for selecting
objects in images and
labeling the selected

objects with
their names.

Bounding box
annotations

A rectangle
superimposed over

an image in which all
key features of a

particular object are
expected to reside.

Easy to create,
declared by simply
specifying X and Y
coordinates for the

upper left and
bottom right corners

of the box.

Additional noise is also
included in the
bounded box.

This method faces
difficulty for

occluded objects.

Pixel-wise image
annotations

Point-by-point object
selection is

completed through
the edges of objects.

Easy to use for any
task where sizable,

discrete regions must
be classi-

fied/recognized.

High computation cost
in terms of time.
More prone to
human errors.

Outlier Rejection
Ignores invalid or
irrelevant images

from a dataset.
OrganNet

OrganNet is a CNN
model, trained on the

existing image
datasets (ImageNet
and PlantClef) as an
automatic filter for

data validation.

OrganNet is more
efficient than the

hand-design
features set.

Denoising
Noise removal from

an image.

Gaussian filter
Blurs an image and
removes noise using
a Gaussian function.

Conceptually simple,
reduces noise and

edge blurring.

It takes time, images
are blurred as image

details and edges
are degraded.

Mean filter

It is a linear filter that
replaces the center

value in the window
with the mean or

average of all values
of the pixel in
the window.

Simple, easy to
implement for

smoothing of images.

Over-smooth images
with high noise.



Sensors 2021, 21, 4749 9 of 34

Table 2. Cont.

Preprocessing
Technique Objective(s) Methodology Working

Mechanism
Advantages Disadvantages

Median filter

It is a non-linear filter
that replaces the

center value in the
window with the

median of all values
of the pixel in
the window.

Reduces noise.
Better than mean

filter in preserving
sharp edges.

Relatively costly and
complex to compute.

Wiener filter

It minimizes the
overall mean square
error in the process of
inverse filtering and

noise smoothing.

It is optimal in terms
of mean square error.
Removes the additive
noise and inverts the
blurring simultaneously.

Slow to apply; blurs
sharp edges.

Bilateral smoothing
filter

It replaces the
intensity of each

pixel with a weighted
average of intensity

values from
nearby pixels.

Preserves edges.
Reduces noise.

Performs smoothing.
Less efficient.

3.2. Convolutional Neural Networks

Convolutional Neural Networks were discovered in 1962 by Hubel and Wiesel [46].
The survey of the existing literature reveals that CNNs are the most popular deep learning
models used for the classification of image data [47]. The structure of a CNN is inspired
by the structure of the receptive field of the visual cortex in humans. A CNN is a feed-
forward Neural Network. A hierarchical network is composed of multiple layers, namely,
convolution, pooling, and fully connected layers. The structure of a CNN model is shown
in Figure 3.

Figure 3. Structure of a typical CNN model.

CNN architectures are trained through back-propagation algorithms for tuning the
weights and biases of a network. As a result, it reduces the value of the cost function.
In the late 1980s, the CNN models were applied to recognize the handwritten zip code
digits taken from the U.S. Postal Service [48]. On extending applications of CNN for
detecting diseases of plant leaves, it is observed that CNN scans a dataset containing leaf
images and identifies and extracts the essential features before classifying the diseases. The
Decision-making technique of CNN is similar to human beings. It captures the textures
and color lesions of plant leaves for disease identification [49]. The feature learning power
of CNN automatically detects the essential features directly from a leaf image through
many non-linear filters. Thus, the overall performance of a model becomes better than
models using hand-engineered features [50].



Sensors 2021, 21, 4749 10 of 34

3.3. Datasets and CNN Models

Researchers used various datasets for the detection and classification of plant diseases
by applying deep learning models. Mohanty et al. trained a CNN model using the dataset
‘PlantVillage’ developed by the authors [51]. For preparing this dataset, the authors plucked
leaves from plants and kept the plucked leaves on a black or grey background sheet. They
captured images of leaves using a digital camera (Sony DSC—Rx100/13 20.2 megapixels)
under different environmental conditions, such as strong sunlight, cloud, and shade. In
addition, they set ideal conditions of illumination, background, distance, and angle of
capturing an image. The authors used a wide variety of 54,306 images of 14 crops with
26 different diseases to train the CNN model. Mohanty et.al performed a set of experiments
using three different sets of the PlantVillage dataset. The first set refers to the original
version of the ‘PlantVillage’ dataset containing colored images. The second set refers to
the gray-scaled version of the ‘PlantVillage’ dataset. The third set includes images of
segmented leaves where extra background information is removed from the PlantVillage
dataset. They trained the CNN model with 80% data and tested the model for 20% data of
the total dataset. They achieved the highest accuracy of 99.35% on colored leaf images by
using GoogLeNet architecture with transfer learning [23]. The details about experiments
on three sets of PlantVillage datasets are discussed in [51].

Similarly, L. C. Ngugi et al. presented a review of image processing techniques
applied for plant leaf disease recognition [52]. They applied 10 DL models, videlicet,
AlexNet, GoogLeNet, VGG-16, ResNet-101, DenseNet-201, Inception-v3, InceptionResNet-
v2, Shuffle Net, SqueezeNet and Mobile-Nets on the Plant Village dataset. Based on the
analysis of the performance of these models, the authors claimed that deep networks such
as DenseNet-201 are most suitable for computation-intensive plant disease detection tasks.
In contrast, shallow networks such as Shuffle Net and SqueezeNet are efficient for real-time
mobile applications.

Kundu et al. [53] experimented with different deep learning models, videlicet, VGG16,
VGG19, ResNet50, ResNet101, ResNet152, InceptionResNetV2, DenseNet121 on the pub-
licly available dataset of the bell pepper plant. Based on the analysis of results, the authors
claim that the ‘DenseNet’ model outperforms the above-stated models in predicting dis-
eases in bell pepper. They also claimed that the model is less computation-intensive and
can be adopted for real-time prediction [53].

Liu et al. presented the review of deep learning models employed for plant pest
and disease prediction [54]. They highlighted the challenges in applying the deep learn-
ing models in plant disease prediction and highlighted the possible solutions for the
identified challenges.

Amara et al. [21] performed experiments on 3700 images of banana leaves, a part of the
PlantVillage dataset. The environmental conditions of illumination, size, background, pose,
and orientation set for image capturing were different from conditions set by Mohanty et al.
and Amara et al. who achieved the maximum classification accuracy of 96% by applying
LeNet architecture. Yadav et al. [55] presented a deep learning model to identify disease
areas, automatic segmentation, and bacteria from the peach leaf. Experimental evaluations
on both lab data sets and actual cultivation reveal an overall classification accuracy of
98.75%. In [56], authors presented disease prediction from Rice leaves using transfer
learning based on InceptionResNetV2. Chen et al. [57] also demonstrated the identification
of Rice plant diseases using transfer learning. MobileNet-V2 was chosen for the backend,
followed by an attention mechanism for learning inter-channel relationships. Comparison
with other state-of-the-art public data sets, it presented an overall accuracy of 99.67%.
Deep transfer learning is gaining tremendous popularity in plant leaf disease identification.
In [58], the authors contributed an automatic disease identification method on the Vigna
Mungo plant using three CNN architectures, videlicet, VirLeafNet-1, VirLeafNet-2, and
VirLeafNet-3. Experimental evaluations on a self-made data set revealed 97.40% accuracy
using VirLeafNet-3.



Sensors 2021, 21, 4749 11 of 34

Wang et al. [18] performed a set of experiments on a small dataset of 552 images
of apple leaves selected from the PlantVillage dataset. The dataset contains images of
four stages of apple black rot disease. It includes 110 images of leaves of a healthy plant,
137 images of the early stage of the disease, 180 images of the middle stage, and 125 images
of the late-stage black rot disease in apple leaves. The authors applied the VGG-16 model
to the above-mentioned dataset. They fine-tuned the model through transfer learning.
The model achieved the highest accuracy of 90.4%. The accuracy indicates the utility
and effectiveness of the deep learning model, ‘VGG-16’, on a small training dataset for
automatic estimation of plant disease severity [18]. Bhatt et al. applied the ResNet-50
model on 3750 images of tomato leaves from the PlantVillage dataset. They achieved an
accuracy of 99.7% for the classification of leaf diseases in tomato plants [59].

Brahimi et al. [35] applied GoogLeNet architecture on 14,828 tomato leaves from the
PlantVillage dataset. They achieved a maximum accuracy of 99.18%. Durmus et al. [40]
applied the AlexNet model on the same dataset. They achieved an accuracy of 95.65%.
Zhang et al. [60] applied the ResNet model on the dataset mentioned above and achieved
an accuracy of 97.28%. These three experiments by researchers on the same dataset indicate
that GoogLeNet architecture outperforms the AlexNet and ResNet models.

Researchers in [61] chose maize leaves for performing experiments. They designed
their architecture of CNN and achieved an accuracy of 92.85% on a dataset containing
400 maize leaf images. Joly et al. [62] gathered the LifeCLEF dataset. Its training dataset
contains 91,758 images, and the testing dataset contains 21,446 images of various species
of plants. Ghazi et al. [63] applied three deep learning architectures, namely, GoogLeNet,
AlexNet, and VGGNet, on the LifeCLEF dataset for plant identification. They achieved the
highest accuracy of 80.18% by combining the GoogLeNet and VGGNet models using the
score-based fusion technique. In this hybrid architecture, at the first layer, tuning weights
is completed to extract features such as edges or color blobs. At higher layers, specific
patterns are extracted that are observed in plant organs [63].

Ferentinos [24] used an open database of 87,848 leaf images for performing a set of ex-
periments. The images were captured from healthy as well as diseased plants. The dataset
includes 58 different classes and 25 species of peach, pepper, pumpkin, raspberry, soybean,
etc. Its training dataset contains 70,300, and the testing dataset contains 17,548 images. The
author applied five different models to this dataset. They achieved an accuracy of 99.06%
by using AlexNet, 99.49% by applying AlexNetOWTBn, 92.27% by using GoogLeNet,
98.96% by applying Over feat, and 99.53% accuracy by applying the VGG model. The
authors performed a set of experiments on original images and pre-processed images. All
models yielded higher accuracy on original images than pre-processed images. However, a
significant reduction in computation time is noticed on applying the above-stated models
on pre-processed, down-scaled, and squared images [24].

Sladojevic et al. [25] downloaded 4483 images from the Internet for creating a database.
These images are categorized into 15 classes. A total of 13 classes represent diseased plants,
1 class represents healthy leaves, and 1 class represents a background. The experimental
results show an overall accuracy of 96.3%.

Authors in [20] performed experiments on images of leaves of watermelon, orange,
corn, grapes, cherry, and blueberry, with a dataset size of 54,306 images from the PlantVil-
lage. They achieved an accuracy of 82% by applying VGG16 architecture, 98% accuracy by
using Inception-V4, 99.6% by ResNet50, 99.6% by ResNet101, 99.7% by ResNet152, and
99.75% accuracy by using DenseNet121 CNN architecture.

Authors in [38,64] captured authentic images from cultivated fields. They used these
images to develop an automatic plant disease detection system. DeChant et al. [64] used
the computational pipeline of CNNs. The first CNN model is trained for classifying small
regions of images based on the presence of disease lesions on leaves. The predictions
about the presence of lesions were fed to another CNN model in the pipeline trained
for classifying an entire image. Researchers in [23] use images processed in a laboratory
with controlled lighting, illumination, and intensity. Segmentation on leaves was applied,



Sensors 2021, 21, 4749 12 of 34

and background removal was performed. The researcher in [65] applied the GoogLeNet
model on the Expanded dataset (XDB). This dataset contains original images. Researchers
successfully identified 79 diseases of 14 different plant species through individual lesion
and spot identification.

Deep learning models require massive datasets for training. Transfer learning al-
leviates the problem of insufficient training datasets. In the case of the availability of
small datasets, transfer learning outperforms the models trained from scratch. Therefore,
researchers use pre-trained models. Deng et al. applied the ImageNet model [66], and
Everingham et al. used Pascal VOC [67] datasets to pre-train deep learning architectures.
These researchers employed the concept of transfer learning and used pre-trained models
for classification. Figure 4 shows different ways to apply transfer learning. Pre-trained
models are applied as a feature extractor in case of the small size of the dataset and high
data similarity with a pre-trained model. These models obtain features with their learned
weights. There is a need to fine-tune the weights of a network and train it on a new dataset
when the size of the dataset is large. Moreover, there is a need to modify the number of
nodes at the final layer of the network, according to the number of different classes in a
problem [63].

 

Figure 4. Approaches in transfer learning.

Khan et al. [27] applied contrast stretching and segmentation of disease areas before
classifying diseases identified in apple and banana leaves. Next, they focus on determining
the severity of black rot disease on apple leaves. Finally, they also classified leaves into four
stages of the disease: healthy, early, middle, and end-stage. Researchers divide datasets
into different ratios of training and testing to evaluate the efficacy of deep learning models.
Exemplified as 60:40, 80:20 and 70:30, etc. Researchers in [68] divide the dataset into three
parts: 80% training, 10% validation, and 10% testing to minimize the bias.

Deep learning models have a strong advantage over feature learning. These models
automatically extract features from images. However, they require large datasets to enhance
classification accuracy [69]. In the case of insufficient datasets, researchers use pre-trained
models. As per details given in [33], deeper networks are more efficient in training and
provides better results. Strategies such as skip connections [32], optimization methods [70],
transfer learning [69], initialization strategies [71], layer-wise training [72], and Batch
Normalization [19] effectively deal with problems such as vanishing gradients, degradation,
and internal covariate shift for deep neural networks.

3.4. Common CNN Architectures

The evolution of CNN began with LeNet [73] in 1998. It became popular in 2012,
when AlexNet won the ‘ImageNet Large Scale Visual Recognition Challenge [74] with
great distinction. Further improvements in architectures increase the accuracy rate and



Sensors 2021, 21, 4749 13 of 34

decrease the error rate. Applications of CNN architectures are extended in the field of
image classification. Each architecture has unique advantages and characteristics which
make it suitable for a specific data set and experimental conditions [75]. Commonly used
architectures for image classification are given as follows.

3.4.1. LeNet-5

LeNet-5 is a pioneering, seven-level, mostly straightforward architecture, as shown in
Figure 5. It contains three convolutional layers (C1, C3, and C5), two pooling layers (S2
and S4), one fully connected layer (F6), and an output layer. Its details are described in [75].
Initially, LeNet-5 architecture was used for recognizing handwritten digits from an image
of dimensions 32 × 32 × 1. A convolution was performed by using six filters of dimensions
5 × 5 and a stride of 1. A feature map of dimensions 28 × 28 × 6 is obtained. It uses
an average pooling with the same filter width and stride 2. It reduced the dimensions to
14 × 14 × 6. Another convolutional layer was used with 16 filters of dimensions 5 × 5 and
a stride of 1. It gave a feature map of dimension 10 × 10 × 16, a pooling layer with a filter
size of 2 × 2, and a stride of two gave a feature map of dimensions 5 × 5 × 16. The next
convolutional layer, C5, contains 120 feature maps. The 400 nodes of the previous layer
with dimensions (5 × 5 × 16) are connected to 120 neurons. Layer F6 contains 84 units. It
is fully connected with 120 units of convolutional layer, C5. The output layer comprises
Euclidean RBF (Radial Basis Function) units for each class with 84 inputs. The output of
each RBF unit is computed as per the formula given in Equation (3). Here, yi represents the
output of the ith RBF unit, xj represents jth unit of an input vector, and wij represents the
value of a parameter vector at ij position.

yi = ∑
j

(xj − wij)
2 (3)

= 	 (	 −	 )

Figure 5. LeNet-5 architecture [73].

As per the discussion given in [76], LeNet is faster to deploy, acquiescent to parallel
hardware, and efficient in performing small-scale image recognition problems.

The basic architecture of LeNet is applied for the classification of two types of diseases,
namely Black Sigatoka and Banana Speckle in leaves of banana. It achieved accuracy in
the range of 92–99% under challenging images capturing such as complex backgrounds,
different sizes, low illumination, and improper orientation [21]. As discussed in [28], a
modification is completed in LeNet for detecting quick decline syndrome in olive and
achieved an accuracy of 99%. Its comparison with three feature vector representations,
videlicet, SIFT, Local Binary Patterns, and Gabor filter, prove its better effectiveness. Ar-
chitecture with three convolutional layers, two pooling layers, and one fully connected
layer similar to LeNet-5 is applied to images of infected leaves of cucumber for detecting
diseases. It yielded better results than classifiers, namely, Support-Vector Machines (SVM),



Sensors 2021, 21, 4749 14 of 34

Random Forest, and AlexNet [37]. Kerkech et al. also used LeNet-5 on Unmanned Aerial
Vehicle Red Green Blue (UAV RGB) images for detecting Esca disease in the vineyard. It
gave four categories, namely, ground, healthy, potentially diseased, and diseased class. It
achieved a classification accuracy of 95.80% [77]. However, the LeNet model requires less
storage space and short training time, but it suffers from inadequate training. Employing
the ReLU activation function causes the problem of the vanishing gradient. Thus, it reports
low prediction accuracy and becomes unsuitable for plant disease prediction.

3.4.2. AlexNet

AlexNet architecture came into existence after showing its outstanding performance
in ImageNet Large Scale Visual Recognition Challenge-2012. This architecture is similar to
LeNet, but it is deeper and uses about 60 million parameters. As per the discussion given
in [72], it achieved the top-five error of 15.3%, lower than 26.2% achieved by the second-best
entry. The architecture of AlexNet consists of five convolutional and three fully connected
layers. It uses the ReLU activation function. It uses the MaxPooling layer, local response
normalization, and many GPUs for training a network. The first convolutional layer filters
an input image of size 224 × 224 × 3 through 96 kernels of dimensions 11 × 11 × 3 by a
stride of 4. The second convolutional layer receives a normalized response and pooling
output of the first layer. It applied filters by using 256 kernels of dimensions 5 × 5 × 48. The
next three layers are connected to each other without using any normalization or pooling
layer. The third convolutional layer contains 384 kernels with dimensions 3 × 3 × 256. In
the fourth convolutional layer, 384 kernels of dimensions 3 × 3 × 192 are used. In the fifth
convolutional layer, 256 kernels of dimensions 3 × 3 × 192 are used. Each fully connected
layer contains 4096 neurons. The output of the last fully connected layer is fed to a softmax.
It yields 1000 class labels. The ReLU layer followed all the five convolutional layers. ReLU
nonlinearity is followed by local response normalization. These normalization layers are
added to help generalization. The response-normalized activity is defined as given in
Equation (4). Here b is the regularized output for kernel i at position (x, y). The activity of a
neuron is calculated by applying ith kernel at (x, y) position. N denotes the total number of
kernels in a layer. The constants α, β, k, and n, are the hyper-parameters, and their values
are determined by using a validation set.

bi
xy = ai

xy/(k + α
min(N−1,i+n/2)

∑
j=max(0,i−n/2)

(a
j
xy)

2
)

β

(4)

AlexNet reduces the problem of overfitting in fully connected layers. Therefore, it
leads to a dropout of the regularization method. The regularization method starts learning
the excessive details of the dataset, including inaccurate data entries and noise. Thus, it
faces the problem of overfitting when a model is trained with a vast dataset. In such cases,
a model fits well with the training dataset but may fail to categorize new data entries
correctly. However, the AlexNet model reports higher accuracy than LeNet but dealing
with the imbalanced dataset and fine-tuning of the model according to the type of dataset
still presents unresolved issues.

3.4.3. VGGNet

VGGNet [31] is devised by the Visual Geometry Group from the University of Oxford.
It was the first runner-up in the ILSVRC-2014 challenge. The localization and classification
accuracy of this model increases with an increase in the depth of a model. VGGNet is
a simpler network. It uses small convolutional filters of dimensions 3 × 3 with a stride
of one in all layers. It includes a max-pooling layer of dimension 2 × 2 with a stride
of two. The architecture of VGGNet is shown in Figure 6. It receives an RGB image of
dimension 224 × 224 × 3 as an input. In the training dataset, the mean average value of
RGB is subtracted from each pixel to perform pre-processing. A pre-processed image is
passed through a stack of convolutional layers followed by five max-pooling layers. It uses



Sensors 2021, 21, 4749 15 of 34

the first two fully connected layers with 4096 channels in each layer and the third fully
connected layer with 1000 channels. The last layer performs a 1000-way classification. At
the last stage, a softmax layer works to determine multi-class probabilities.

 
Figure 6. VGG-16 architecture [31].

3.4.4. GoogLeNet

GoogLeNet [78] is inspired by the Inception module [79], which is the winner of
ILSVRC-2014. It is a deeper and broader architecture. It consists of 22 layers with
224 × 224 receptive fields and very small convolutions of 1 × 1, 3 × 3, 5 × 5. GoogLeNet
uses 1 × 1, 3 × 3, 5 × 5 convolutions and 3 × 3 max-pooling layers together to extract
different kinds of features. It has nine linearly stacked inception modules. The Inception
module is a combination of 1 × 1, 3 × 3, 5 × 5 convolutional layers with their outputs con-
catenated into a solitary output vector. This creates an input for the next layer, as shown in
Figure 7. GoogLeNet makes two significant modifications to an original inception module.
First, a 1 × 1 convolutional layer is applied before other layers. Second, it uses a parallel
max-pooling layer. GoogLeNet reduces dimensions which further reduces the computation
cost. At the end of the last inception module, it uses global average pooling rather than
fully connected layers. As there is an increase in the number of layers and the number
of neurons in each layer, networks become more prone to overfitting. GoogLeNet uses
sparsely connected network architectures rather than fully connected networks, specifically,
inside convolutional layers.

 

Figure 7. Inception module with dimension reduction [79].



Sensors 2021, 21, 4749 16 of 34

GoogLeNet provides a good solution for overfitting problems and reduces computa-
tional and storage costs.

3.4.5. ResNet

Kaiming et al. developed ResNet. It was the winner of ILSRVC-2015 with a top-
five error rate of 3.57% [32]. This deep residual learning framework is motivated by the
degradation problem due to more and more layers to a network. It becomes difficult to
train a deep network due to the vanishing gradient problem. During backpropagation,
gradients of loss are calculated concerning weights. The gradients tend to become smaller
on moving backward in a network. Thus, the performance of the network saturates or
degrades. This indicates that lower layers are slow learners than upper layers of a network.
Another problem of deeper networks is performing optimization on large parameter space.
Therefore, adding more layers causes higher training errors. ResNet builds the network
through residual modules for the training of deep networks, as shown in Figure 8.

Figure 8. Building block of residual learning [80].

ResNet-50 is a convolutional network that contains residual blocks with 50 convo-
lutional layers. It includes about 25.6 million parameters. In ResNet-101, the number
of parameters is increased to 44.5 million. In ResNet-152, the number of parameters are
60.2 million [80].

3.4.6. ResNeXt

This architecture is an extension of ResNet. Here, ResNet blocks are replaced by
ResNeXt blocks based on the strategy of ‘split-transform-merge.’ ResNet does not create
filters for the entire channel depth of an input. It splits the input into groups. Each group
represents a channel. As per experiments completed in [81], increasing the cardinality of
a network makes more improvement in the performance of a model than an increase in
the depth of a network. Applying ResNeXt architecture with a faster R-CNN detector is
effective in disease detection and pest recognition in tomato leaves [82].

3.4.7. DenseNet

G.Huang et al. proposed DenseNet, a densely connected network. It consists of two
modules, namely, Dense Blocks and Transition Layers, as shown in Figure 9. In this network,
all layers are connected directly with each other in a Feed-Forward manner. A DenseNet
of N layers contains N(N + 1)/2 direct connections [33]. Each layer receives feature
maps of previous layers as inputs. A Dense Block is composed of Batch Normalization,
ReLU activation, and 3 × 3 Convolution. Transition layers lie between two Dense Blocks.
These are made up of Batch Normalization, 1 × 1 Convolution, and average pooling. To
concatenate all feature maps in each dense block, feature maps of all layers are of the
same size.



Sensors 2021, 21, 4749 17 of 34

Figure 9. Architecture of DenseNet containing 3 Dense Blocks [33].

3.4.8. SqueezeNet

SqueezeNet [83] is a sandwich of eight fire modules between two convolutional layers,
as shown in Figure 10. The fire module consists of a squeeze convolutional layer with a
filter of dimensions 1 × 1. It is fed to an expanded layer. This layer contains a mixture of
1 × 1 and 3 × 3 convolutional filters. For each fire module, the number of filters gradually
increases from beginning to end of a network. Max-pooling is performed after convolution1,
fire4, and fire8 layers with a stride of two. It makes use of the ReLU activation function. It
uses Dropout after module Fire9.

 

Figure 10. Architecture of SqueezeNet [83].

Some researchers developed their architectures inspired by the above-discussed archi-
tectures. The details of these architectures are given below:

3.4.9. LeafNet

J. Chen et al. developed a CNN model, LeafNet, to identify diseases in tea leaves [84].
This model is an improvement over AlexNet. It is built by reducing the number of filters in
the convolutional layer and the nodes in the fully connected layer. This effective reduction
in the number of network parameters helps in reducing the problem of overfitting.

3.4.10. M-bCNN

Lin et al. proposed a unified CNN model, matrix-based CNN (M-bCNN), to detect
diseases in wheat leaves using image classification. The model outperforms VGG-16 and
AlexNet due to the substantial increase of data streams, link channels, and neurons at a fair
growth of computational requirements [85]. Liang et al. proposed two CNN architectures



Sensors 2021, 21, 4749 18 of 34

for the recognition of rice blast diseases [86]. These are similar to LeNet-5. The first CNN
comprises four convolutional layers with four max-pooling layers and three fully connected
layers. In this network, ReLU is added after each layer. The second CNN has the same
convolutional and max-pooling layers as in the first CNN but has only two fully connected
layers. To avoid the problem of overfitting, dropout layers are added in both networks.

3.4.11. Comparison of Common CNN Architectures

Deep learning is a powerful technique. It makes use of ANNs containing a larger
number of processing layers than traditional Neural Network methodologies [24]. Con-
volutional Neural Network (CNN) is one of the most preferred deep learning techniques.
It automatically learns important features from raw data. This network extracts the color
and texture features of an image for the identification and classification of images. It
is applied for identifying objects [87], faces [88–90], bones [91], handwritten digits [92],
traffic signs [93], etc. Besides, CNNs are successfully used in the field of agriculture for
recognition of plant species [63], yield management [94,95], weed detection [96], soil and
water management [97], fruit counting [98], diseases and pest detection [82,99], evaluating
the nutrient status of plants [100], and monitoring of fields [101].

In this manuscript, the authors focus on the application of CNN in plant
disease identification and classification. An extensive literature survey shows that
researchers use CNN for disease localization, identification, and classification. The work
discussed in [35,38,81,101] focuses on disease localization, identification. Researchers
in [18,26,28,64,77,86,102] worked on detection of a single disease in plants. Researchers
in [17,22–25,27,35,37,39,40,59–61,65,68,82,84,85,103–106] make use of CNN for identifying
multiple diseases in plants. The model proposed in [18] identifies the severity of plant
diseases. However, identifying the severity of plant disease is more challenging than the
classification of plant diseases. This is due to the presence of intraclass similarities with
interclass variance.

AlexNet is applied to images of plant leaves for identifying 26 diseases in 14 species
of crops. For example, researchers in [23] achieved an accuracy of 99.27% for diseases
such as Apple Scab, Apple Black Rot, Apple Cedar Rust, Cherry Powdery Mildew, Corn
Gray Leaf Spot, Corn Common Rust, Corn Northern Leaf Blight, Grape Black Rot, Grape
Black Measles (Esca), Grape Leaf Blight, Orange Huanglongbing, Peach Bacterial Spot, Bell
Pepper Bacterial Spot, Potato Early Blight, Potato Late Blight, Squash Powdery Mildew,
Strawberry Leaf Scorch, Tomato Bacterial Spot, Tomato Early Blight, Tomato Late Blight,
Tomato Leaf Mold, Tomato Septoria Leaf Spot, Tomato Two Spotted Spider Mite, Tomato
Target Spot, Tomato Mosaic Virus, and Tomato Yellow Leaf Curl Virus.

Brahimi et al. achieved an accuracy of 98.66% for classifying nine diseases of tomato
plants [35]. Authors applied visualization methods for localizing leaf disease regions for
understanding the symptoms of a disease. Ferentinos [24] applied CNN to detect and
diagnose plant diseases from an open dataset of 87,848 images. The dataset contains
25 different species of plants and 58 distinct categories of plants’ diseases. Experimental
results claim that the success rate of VGGNet is 99.53%, with a learning rate ranging
from 0.01 to 0.0001. The learning rate is decreased by 1/2 and 1/5 alternatively on every
20 epochs. Durmus et al. [40], in their work, applied two deep learning models, AlexNet
and SqueezeNet, for detecting leaf diseases of tomato plants. Research reveals that AlexNet
architecture performed better than small-sized architecture sequeezeNet. A comparison of
three robust architectures AlexNet, GoogLeNet, and VGGNet, is performed on LifeCLEF
2015 dataset for automated plant identification [61].

Fine-tuning improves the performance of pre-trained architectures, namely, GoogLeNet
and VGGNet. Thus, the GoogLeNet and VGGNet provide better results than the AlexNet
model. A comparison of AlexNet with GoogleNet shows that GoogleNet reduces the
number of parameters to 4 million from 60 million parameters as used in AlexNet [29].
Experimental results obtained on applying AlexNet and GoogLeNet to classify tomato
diseases and symptoms visualization [35] show that GoogLeNet provides better accuracy of



Sensors 2021, 21, 4749 19 of 34

99.19% than AlexNet with 98.66% accuracy. GoogLeNet architecture increases nonlinearity
without outbursts in the number of weights. Hence, it becomes superior in performance to
AlexNet. A comparison of AlexNet and GoogLeNet presented by Mohanty et al. in [23]
on PlantVillage also claims that GoogLeNet architecture outperforms with an accuracy of
99.35%. GoogLeNet architecture achieved an accuracy of 94% to identify plant diseases
using individual lesions [65].

Further developments lead to the release of new versions of GoogLeNet. The suc-
cessive versions of GoogLeNet are named InceptionvN. Here, N is a version number [29].
Inception v3 improves the performance of a network with a low computational cost. It is
favorable for applications where computational power and memory are limited. The exper-
imental results obtained in [104] show that Inception v3 is a robust network for detecting
cassava diseases using transfer learning that achieved an overall accuracy of 93%. One
more version of GoogLeNet, Inception v4, replaces the filter concatenation stage. It unites
residual connections with Inception architecture to speed up the training of Inception
networks. The accuracy acquired by this model is 98% [20].

A comparative analysis of VGGNet, Inception-v3, and ResNet-50 architectures for
estimating the severity of plant disease [18] shows that VGG-16 outperforms VGG-19 with
an accuracy rate of 90.4%. This comparative study also revealed that the performance
on small datasets could be improved through pre-trained deep models by fine-tuning a
network. VGG-16 is less effective than Inception-v4, ResNet (with 50, 101, and 152 layers),
and DenseNet in the case of identification of plant diseases [20]. This is due to the use
of a larger number of parameters in VGGNet than the number of parameters in deeper
networks such as DenseNets, ResNet, and Inception-v4. A comparison of VGGNet with
GoogLeNet shows that GoogLeNet trains faster than VGGNet. Moreover, the size of a
pre-trained GoogLeNet is smaller than VGGNet.

A comparison of CNN models given in [59] for the health assessment of crops shows
that the accuracy of ResNet-50 is more than Xception, Inception-v3, and VGG-19. This is
due to the depth of the network and the correction of residual errors. The work in [20]
shows that fine-tuned networks such as ResNet-50, ResNet-101, and ResNet-152 perform
better than VGG-16 and Inception-V4. Picon et al. perform an extension of work given
in [107]. They applied ResNet-50 on images captured by mobile for detecting multiple
crop diseases in a real-time environment. The model achieved a classification accuracy
of 96% in the identification of plant diseases [68]. Another network model, DenseNet, is
similar to ResNet. However, it concatenates feature maps, whereas ResNet performs a
summation of feature maps. DenseNet uses a skip connection from each previous layer,
but ResNet uses a skip connection from one previous layer. DenseNet’s advantageous as
it reduces the vanishing-gradient problem and requires a fewer parameters. Irrespective
of the increasing number of epochs, it continually improves accuracy. It does not face
the problem of performance degradation and overfitting. DenseNet, with 121 layers
applied for identification of plant disease, achieved the highest accuracy of 99.75% among
models, namely, VGG, Inception, and ResNet [20]. SqueezeNet [83] is built on three design
strategies. First, it reduces filter size from 3 × 3 to 1 × 1, leading to a nine times reduction in
the number of parameters. Second, it decreases the number of input channels using squeeze
layers, and its delay down-sampling, leading to large activation maps in convolutional
layers. Durmus et al. [40] applied SqueezeNet for detecting diseases in tomato leaves.
SqueezeNet is a lightweight model of 2.9 MB. It is approximately 80 times smaller than
AlexNet and achieves the same level of accuracy. Its smaller size makes it useful for mobile-
based disease detection applications. Ha et al. applied the VGG-A model (Visual Geometry
Group-Architecture), a network of eight convolutional layers and two fully connected
layers on input images of dimensions 200 × 200 to distinguish Fusarium wilt diseased
radish from healthy radish [26]. The model achieved an accuracy of 93.3%. Oppenheim
and Shani applied the VGG model of eight learnable layers with five convolutional layers
and three fully connected layers to classify potato disease [22]. The classification accuracy



Sensors 2021, 21, 4749 20 of 34

of the VGG model is dependent on the size of the training dataset. It yielded classification
accuracy ranging from 83% to 96% in the case of potato disease classification.

Discussion of common Deep Convolutional Neural Network (DCNN) architectures
shows that the selection of suitable CNN model depends on the type of dataset, size of
the dataset, and experimental conditions. In Table 3, the authors present a comparison of
architectures of standard CNN models used to detect diseases in plant leaves. Figure 11
demonstrates a comparison of different architectures based on plant type and accuracy
achieved by different authors.

Table 3. Comparison of popular CNN architectures.

Architecture Layers Parameters Highlights Reference

AlexNet
8

(5 Convolution + 3 Fully
Connected)

60 million

AlexNet is similar to LeNet-5, but it is
deeper, contains more filters in each

layer, and uses stacked convolutional
layers. Winner of ILSVRC-2012.

[74]

VGGNet
16–19

(13–16 convolution + 3 FC)
134 million

The depth of a model is increased by
using small convolutional filters of

dimensions 3 × 3 in all layers to
improve its accuracy. First runner-up in

ILSVRC-2014 challenge.

[31]

GoogLeNet
22 Convolution layers,
9 Inception modules

4 million

A deeper and wider architecture with
different receptive field sizes and
several very small convolutions.

Winner of ILSVRC-2014.

[78]

Inception v3
42 Convolution layers,
10 Inception modules

22 million

Improves the performance of a
network. It provides faster training

with the use of Batch Normalization.
Inception building blocks are used in

an efficient way for going deeper.

[29]

Inception v4 75 Convolution layers 41 million
Inception-v4 is considerably slower in

practice due to many layers.
[108]

ResNet
50 in ResNet-50, 101 in

ResNet-101,
152 in ResNet-152

25.6 million in
ResNet-50,

44.5 million in
ResNet-101, 60.2

million in ResNet-152.

A novel architecture with ‘skip
connections’ and heavy batch

normalization. Winner of ILSVRC 2015.
[32]

ResNeXt-50
49 Convolution layers and

1 Fully Connected layer
25 million

Use ResNeXt blocks based on the
strategy of ‘split–transform–merge’.

Despite creating filters for a full
channel depth of input, the input is

split into groups. Each group
represents a channel.

[81]

DenseNet-121
117 Convolution layers, 3

Transition layers and 1
Classification layer

27.2 million

All layers are connected directly with
each other in a feed-forward manner. It

reduces the vanishing-gradient
problem and requires few parameters.

[33]

SqueezeNet
Squeeze layer and

Expand layers

50 times fewer
parameters than

AlexNet.

SqueezeNet is a lightweight model of
size 2.9 MB. It is approximately 80

times smaller than AlexNet. Achieves
the same level of accuracy as AlexNet.
Reduces the number of parameters by

using a smaller number of filters.

[83]

LeNet-5
7

(5 Convolution + 2 FC)
60 thousand

Fast to deploy and efficient in solving
small-scale image

recognition problems.
[73]



Sensors 2021, 21, 4749 21 of 34

 

Figure 11. Comparison of CNN architectures based on plant types and accuracy.

On comparing the accuracy of machine learning models and Deep Convolutional Neu-
ral Networks models applied on different sizes of datasets for detection of plant diseases us-
ing images of leaves, it is observed that Deep Convolutional Neural Networks outperform
machine learning models [64]. Moreover, deep learning bypasses the handcrafted features.
Instead, it automates and optimizes feature extraction, the availability of more data, and
powerful computation engines such as GPUs help overtake deep learning models.

Due to outstanding performances, deep learning models gain popularity over machine
learning models. The comparison curves are shown in Figure 12. The X-axis refers to
the amount of data or size of a dataset, and the Y-axis refers to the accuracy achieved by
different machine learning and DCNN models.

Figure 12. Comparison of classification accuracy of machine learning and deep learning models [64].

3.5. Optimization Techniques

There is a vital requirement of applying a suitable optimization technique to improve
the effectiveness of a CNN model. The discussion in Sections 3.5.1–3.5.5 gives a brief
description of the most applied optimization techniques. The authors present a comparison
of the most commonly used optimization techniques in Table 4.



Sensors 2021, 21, 4749 22 of 34

Table 4. Advantages and disadvantages of various optimization techniques.

Name of Optimizer Advantages Disadvantages

BGD Easy to compute, implement and understand.

It requires large memory for calculating gradients
on the whole dataset.

It takes more time to converge to minima as
weights are changed after calculating the gradient
on the whole dataset. May trap to local minima.

SGD

Easy to implement.
Efficient in dealing with large-scale datasets.

It converges faster than batch gradient descent by
frequently performing updates.

It requires less memory as there is no need to store
values of loss functions.

SGD requires a large number of
hyper-parameters and iterations.

Therefore, it is sensitive to feature scaling.
It may shoot even after achieving global minima.

AdaGrad
Learning rate changes for each training parameter.

Not required to tune the learning rate manually.
It is suitable for dealing with sparse data.

The need to calculate the second-order derivative
makes it expensive in terms of computation.

The learning rate is constantly decreasing, which
results in slow training.

RMSProp

A robust optimizer has pseudo
curvature information.

It can deal with stochastic objectives very nicely,
making it applicable to min-batch learning.

The learning rate is still handcrafted.

Adam
Adam is very fast and converges rapidly.

It resolves the vanishing learning rate problem
encountered in AdaGrad.

Costly computationally.

3.5.1. Batch Gradient Descent (BGD) Optimization

In this technique, a complete training dataset is scanned for updating the parameter x,
as given in Equation (5). Gradient calculation takes a long time to scan millions or billions
of samples in a training dataset. Moreover, it is quite difficult to feed all samples to a model
simultaneously due to limited computational memory. As claimed in [69], the drawbacks
make Batch Gradient Descent non-preferable for a deep learning model to update the
parameters. Here, xk+1 is the updated parameter of a model, xk is the parameter of a model
at kth iteration, tk is the step size for kth iteration, and ∆ f (xk) is a loss function based on the
training data instance indexed by k, for iteration 1 to n.

xk+1 = xk − tk∆ f (xk)
(1:n) (5)

3.5.2. Stochastic Gradient Descent (SGD) Algorithm

The Stochastic Gradient Descent algorithm updates the parameters of a model in a
negative direction. It calculates the gradient and updates the parameters of a model for
each training sample. It brings randomness by calculating the cost of a single data point
and the corresponding gradient instead of the computing cost of all the data points. This
quickly updates the steps and reaches the minimum in small time duration. Therefore, it
is one of the most commonly used optimization algorithms. A small step size helps SGD
converge to a good point, making the training process slow. In addition, when GPUs are
used to conduct the calculations, the efficiency is reduced by frequent commutation of
data between the GPU memory and the local memory. The update occurs as shown in
Equation (6). Here, xk+1 is the updated parameters of the model, xk is the parameters of
the model at iteration k, tk is the step size for iteration k, ∆ f (xk) is a loss function based on
the training data instance indexed by k, and i is the iteration index.

xk+1 = xk − tk∆ f (xk)
i (6)



Sensors 2021, 21, 4749 23 of 34

3.5.3. AdaGrad

AdaGrad is an optimization technique with parameter-specific learning rates. These
learning rates are adjusted based on how frequently a parameter is updated during training.
It performs more minor updates or low learning rates for the parameters with frequently oc-
curring features. It performs more significant updates or high learning rates for parameters
with infrequent features. This makes Adagrad suitable for dealing with sparse data.

3.5.4. Root Mean Square Propagation (RMSprop)

The objective of RMSprop is to reduce the number of oscillations without adjusting the
learning rate. RMSprop is used when there is a high fluctuation in gradients of successive
mini-batches. In such cases, the weights are finely adjusted by dividing the learning rate by
the average exponential decay of squared gradients. RMSprop automatically adjusts the
learning rates. It uses different learning rates for the different parameters. The RMSprop
optimizer is similar to the gradient descent algorithm with momentum. However, it
differs in the mechanism of calculation of gradients. It limits the oscillations in the vertical
direction. Therefore, the algorithm takes more giant steps in the horizontal direction and
converges faster.

3.5.5. Adaptive Moment Estimation (Adam) Optimizer

As given in [109], the Adam Optimizer computes the average and square of a gradient
for each parameter. The Adam optimization algorithm is a blend of gradient descent with
momentum and RMSprop algorithm. Like RMSprop, it uses the squared gradients to
scale the learning rate. However, it takes advantage of SGD with momentum by using the
moving average of the gradient instead of the gradient itself. The main advantage of this
optimizer is that it requires low memory and usually works well even with a slight tuning
of hyper-parameters.

Wang et al. used the SGD optimization algorithm in VGG16, VGG19, Inception-V3,
and ResNet50 models in both training from scratch and fine-tuned models. The SGD
optimizer results in poor generalization and leads to a local optimization while using
ResNet architecture. In addition, it puts residual mapping in building blocks of ResNet to
zero too early. The best accuracy of 90.4% is achieved by the VGG16 model with transfer
learning [18].

K. Zhang et al. applied SGD and Adam optimization on AlexNet, GoogLeNet, and
ResNet architectures individually. The comparison shows that the performance of the
SGD optimization method is better than Adam optimization in all networks. ResNet
with the SGD optimization algorithm attains the highest accuracy of 96.51%, as claimed
in [60]. Bhatt et al. applied SGD, Adam Optimizer, and RMSProp optimizers on VGG-19,
Inception-v3, Xception, and ResNet-50 architectures as given in [59] to update weights of
the parameters to minimize the cross-entropy loss. SGD faces the optimum local problem;
thus, Liu et al. preferred Nesterov’s Accelerated Gradient for better performance [39].

3.6. Frameworks

Developments in Artificial Intelligence provide various tools and platforms to ap-
ply deep learning in different application areas. A brief description of commonly used
frameworks is given in Sections 3.6.1–3.6.9.

3.6.1. TensorFlow

As per the discussion given in [110], TensorFlow is the commonly used framework for
deep learning applications. It is a popular open-source software library. It is written in C++
and Python. Google develops the library for artificial Neural Networks. It helps perform
numerical computations on a CPU, GPU, server, desktop, or mobile, by using data flow
graphs. Ramcharan et al. applied TensorFlow for implementing an image recognition code
for the detection of cassava disease [104]. Picon et al. used TensorFlow for deploying mobile



Sensors 2021, 21, 4749 24 of 34

applications for the classification of crop diseases [68]. Authors in [59] used TensorFlow in
the backend with Keras Deep Learning framework for assessing the health of crops.

3.6.2. Theano

Theano [111,112] is a powerful Python library. It allows us to define, evaluate and
optimize numerical operations, including multidimensional arrays with a higher level of
efficiency [113]. This tool includes integration with NumPy, transparent use of a GPU,
generation of dynamic C code, speed optimization, and efficient symbolic differentiation.
It is not easy to understand the syntaxes of Theano. However, it is still in common use
due to its advantage of highly optimized performance. Researchers make use of Theano in
the backend with Keras or with other Deep Learning libraries. Exemplified as researchers
in [38] used the Theano framework by running their code on a Geforce GTX 1080 GPU for
automatic disease diagnosis in a wheat field. Wang et al. performed experiments on an
Ubuntu workstation with a CPU of Intel Core i5 6500 and a GeForce GTX TITAN X GPU
to automatically estimate the severity of diseases from the image dataset. The technique
yields an accuracy of 90.4% [18].

3.6.3. Keras

Keras is an open-source, simple, and easy-to-use library for implementing deep
learning. It is an application programmer’s interface written in Python. It serves the
purpose of quick experimentation and uses the same code for both CPU and GPU. It can
run on top of TensorFlow [30] and Microsoft cognitive toolkit. Tools such as Caffe and
Theano incorporate popular architecture, namely, VGGNet, AlexNet, GoogLeNet, in the
form of classes or libraries.

3.6.4. Caffe

Caffe [114] is an open-source deep learning framework developed by Yangqing Jia
at UC Berkley. It provides a good interface in Matlab, C++, and Python. It is very fast
and efficient; thus, it is helpful in building Convolutional Neural Networks for image
classification. This tool allows applying Neural Networks without writing code. It is the
most accessible framework to evaluate the performance of deep architectures [115]. Ha
et al. used the Caffe framework for training a CNN model to classify Fusarium wilt of
radish with an NVIDIA DIGITS 5 toolbox [26]. They used an Intel processor Core i7-5930K
with three NVIDIA Titan X 12 GB GPUs and four 3072 Cuda cores in the Linux platform,
Ubuntu 14.04. Caffe provides ease of use for evaluating the performance of standard deep
architectures than other frameworks such as Theano and Torch; it is used for implementing
CNN-based models for plant disease identification as discussed in [35,36,39]. The Caffe
model is accelerated by integration with the cuDNN library [116].

3.6.5. Torch

Torch7, based on the Lua programming language, is an open-source library for nu-
merical and scientific operations. This tool provides efficient GPU support, routines for
indexing, transposing and slicing, n-dimensional array, linear algebra routines, etc. Fer-
entinos [24] used the Torch7 framework for comparing the performance of different CNN
models for plant disease detection and diagnosis. They implemented it on an NVIDIA
GTX1080 GPU. Facebook developed PyTorch, a framework similar to Torch. This is one
of the most flexible frameworks. Its features such as easy-to-use API, support of Python
language, dynamic computation graphs increase its popularity.

3.6.6. Neuroph

This framework is an integrated environment. It consists of a Java Neural Network
library, Java IDE based on NetBeans Platform for creating and deploying Neural Net-
works. This framework is suitable for building a CNN model without much knowledge of
programming languages, such as C, Python, and MATLAB [61].



Sensors 2021, 21, 4749 25 of 34

3.6.7. Deeplearning4j

Deeplearning4j is an open-source, distributed deep-learning library written in Java.
It can be used with API languages such as Scala, Python, Kotlin, and Clojure. For image
recognition, Deeplearning4j is as fast as Caffe using multiple GPUs. Furthermore, if
Deeplearning4j is created with Keras, they can import models from Tensorflow and other
Python frameworks. For example, Amara et al. used the deeplearning4j framework to
evaluate the performance of their model for classifying banana leaf diseases [21].

3.6.8. Pylearn2

As per the literature study, there is minimal use of Pylearn2 because it is ineffective in
solving large-scale problems.

3.6.9. DL MATLAB Toolbox

Deep learning MATLAB Toolbox provides a framework for designing and imple-
menting deep neural networks. This framework is written in MATLAB, Java, C, C++ and
supported on Linux, macOS, and Windows platforms. In addition, the toolbox supports
transfer learning with a library of pre-trained models includes SqueezeNet, Inception-v3,
and ResNet-101.

The above discussion highlights the details about different CNN frameworks available
in the literature. The authors present a comparative analysis of existing frameworks
in Table 5.

Table 5. Comparative analysis of CNN frameworks.

Framework
Compatible
Operating

System

Programming
Language
Used for

Development

Interface
Open

Source
OpenMP
Support

OpenCL
Support

CUDA
Support

TensorFlow
Linux, macOS,

Windows,
Android

C++, Python,
CUDA

Python, Java, Go,
JavaScript, R,
Swift, Julia

Yes No

Build
TensorFlow with

Single Source
OpenCL

Yes

Theano Cross-platform Python Python Yes Yes Under
development

Yes

Keras Linux, macOS,
Windows Python R, Python Yes Yes TensorFlow as

backend
Yes

Caffe
Linux, macOS,

Windows C++ C++, MATLAB,
Python Yes Yes Under

development
Yes

Torch
Linux, macOS,

Windows,
Android, iOS

C, Lua Lua, LuaJIT, C,
C++/OpenCL Yes Yes

Third-party
implementations

Yes

deeplearning4j
Linux, macOS,

Windows,
Android

Java, C++
Java, Scala,

Python, Clojure,
Kotlin

Yes Yes No Yes

DL Matlab
Toolbox

Linux, macOS,
Windows

MATLAB, Java,
C, C++ MATLAB No No No Via GPU Coder

3.7. Analysis of DCNNs for Plant Leaf Disease Identification

The researcher has presented plenty of plant leaf disease identification approaches
based on DCNN’s influence in the last 5 years. The usage of deep learning for plant leaf
identification has been proved to be efficient and accurate. Shah et al. [117] investigated
ResTS (Residual Teacher/Student)—a novel architecture for classification and visualization.
ResTS first deconstructs input images using the ResTeacher classifier for latent represen-
tations and then reconstructs images using a decoder followed by a deconstruction of
replicated images using ResStudent. Comparison with other state-of-the-art with the
PlantVillage dataset containing 54,306 images of 14 different plants has shown promising
results. Bedi et al. [118] presented a hybrid model comprised of convolutional autoencoder
(CAE) and CNN for disease identification from peach plant leaves. The proposed model
has used only a few parameters and provided a testing accuracy of 98.38% on the PlantVil-



Sensors 2021, 21, 4749 26 of 34

lage data set. On the other hand, Khanramaki et al. [119] presented an ensemble of CNNs
and achieved an accuracy of 99.04% on 1774 citrus leaves.

Instead of developing a new CNN model from scratch, researchers are utilizing trans-
fer learning, and the same is gaining tremendous popularity nowadays. In transfer learning,
an existing CNN model for accomplishing a task is utilized for another study. In [120–122],
researchers presented the concept of disease identification from plant leaf images using
transfer learning. Sravan et al. [120] demonstrated the fine-tuning of hyperparameters of
existing ResNet50 for disease classification and achieved a higher accuracy of 99.26% on
the PlantVillage data set containing 20,639 images. In contrast, Jiang et al. [121] utilized
VGG16 to recognize diseases from rice and wheat plants. Experimental evaluations and
comparisons with other state-of-the-art presented an overall accuracy of 97.22% and 98.75%
on rice and wheat plants.

On the other hand, Tahir et al. [122] investigated disease identification from the Apple
plant using InceptionV3 and shown an overall accuracy of 97% on the PlantVillage data
set. Shin et al. [123] depicted the comparative study of six different CNN models to
identify powdery mildew disease on strawberry leaves. The optimal models for different
parameters, videlicet, accuracy, speed, and hardware requirement have been suggested
upon comparison. ResNet-50 provided the highest classification accuracy of 98.11%,
AlexNet with the fastest processing time, and SqueezeNet-MOD2 with fewer memory
requirements. Several implementations of DCNNs based on the concept of both novel
architecture and transfer learning are presented in Table 6.

Table 6. Comparative analysis of DCNN in identification of plant leaf diseases.

Plant Disease Architecture Datasets Results

Banana
Black sigatoka and

Black speckle
LeNet [21] PlantVillage:

3700 images
Accuracy: 99%

Apple Black rot on Apple leaves
VGG16, VGG19,
Inception-v3 and

ResNet50 [18]

PlantVillage:
2086 images

VGG16: 90.4%,
VGG19: 90.0%,

Inception-v3: 83.0%,
ResNet50: 80.0%

14 different
crop species 26 different diseases AlexNet,

GoogLeNet [23]
PlantVillage:

54,306 images

AlexNet:
Accuracy: 99.28%

GoogLeNet:
Accuracy: 99.35%

6 different fruit
plant species 13 different diseases Modified CaffeNet [25]

Authors created database
containing 4483 images

downloaded from the internet
Accuracy: 96.3%

Tomato 9 different diseases
in tomato

AlexNet,
GoogLeNet [35]

PlantVillage:
14,828 Images

GoogleNet:
Accuracy: 99.18%

AlexNet:
Accuracy: 98.66%

Cucumber
Melon Yellow Spot Virus
(MYSV), Zucchini Yellow

Mosaic Virus (ZYMV)
Author-defined CNN [36]

800 images of cucumber leaves
captured by Saitama Prefectural

Agriculture and Forestry
Research Center, Japan

Average accuracy: 94.9%,
MYSV Sensitivity: 96.3%,
ZYMV Sensitivity: 89.5%,

Rice 10 different diseases Author-defined CNN [19]

The author created a database of
500 images captured from
experimental rice fields of

Heilongjiang Academy of Land
Reclamation Sciences, China

Accuracy: 95.48%

Tomato
9 different types of
diseases and pests

VGG-16,
ResNet-50,
ResNet-101,
ResNet-152,

ResNetXt-50, [82]

The author created a dataset of
5000 images captured through a

camera from tomato farms
located in Korea

VGG-16: 83.06%,
ResNet-50: 75.37%,
ResNet-101: 59.0%,
ResNet-152: 66.83%,
ResNetXt-50: 71.1%

25 different
Plant’s species 19 different plant diseases

AlexNet, AlexNetOWTBn,
GoogLeNet, Overfeat and

VGGNet [24]

PlantVillage:
87,848 images of different plants

(Both laboratory and
field conditions)

AlexNet: 99.06%,
AlexNetOWTBn: 99.49%,

GoogLeNet: 92.27%,
Overfeat: 98.96%,
VGGNet: 99.53%



Sensors 2021, 21, 4749 27 of 34

Table 6. Cont.

Plant Disease Architecture Datasets Results

Apple
Mosaic, Rust, Brown spot,
and Alternaria leaf spot

Authors-defined CNN
architecture based on

AlexNet [39]

Dataset of
13,689 synthetic images

Proposed Model: 97.62%,
AlexNet: 91.19%,

GoogLeNet: 95.69%,
ResNet-20: 92.76%,

VGGNet-16: 96.32%

Olive Olive Quick Decline
Syndrome (OQDS)

Authors-defined
LeNet [28] PlantVillage Accuracy of 99%

Tomato
9 different types of

diseases of tomato plant
AlexNet and

SqueezeNet [40] PlantVillage AlexNet: 95.65%,
SqueezeNet: 94.3%

Wheat 6 different diseases
of wheat

VGG-CNN-S,
VGG-CNN-VD16,
VGG-FCN-S and

VGG-FCN-VD16 [38]

WDD2017:
9230 wheat crop images

VGG-FCN-VD16: 97.95%,
VGG-FCN-S: 95.12%,

VGG-CNN-VD16: 93.27%,
VGG-CNN-S: 73.00%

Cucumber
Anthracnose, Downy

mildew, powdery mildew
and Target leaf spots

Architecture similar to
LeNet-5 [37]

1184 images: PlantVillage,
forestry and captured through

digital camera

Proposed model: 93.4%,
SVM: 81.9%,
RF: 84.8%,

AlexNet: 94.0%

Radish Fusarium wilt VGG-A [26]
139 Images captured by a

commercial UAV equipped with
an RGB camera

Accuracy: 93.3%

14 different
plant species 79 different diseases GoogLeNet [65]

1567 images captured using
smartphones, compact cameras,

DSLR cameras
Average accuracy: 94%

Potato
Black Scurf disease, Silver
Scurf, Common Scab and

Black Dot disease
VGG [22]

A total of 2465 patches of
diseased potatoes

Accuracy: 96.00%

Tomato

Early Blight, Late Blight,
Yellow Leaf Curl Virus,

Spider Mite Damage and
Bacterial Spot

VGG-19,
Xception,

Inception-v3,
ResNet-50 [59]

PlantVillage:
3750 images

ResNet-50: 99.7%,
Xception: 98.6%,

Inception-v3: 98.4%,
VGG-19: 98.2%

Wheat
Septoria, Tan Spot

and Rust
ResNet50 [68] Author-defined dataset of 8178

images
Accuracy: 96.00%

Cassava

3 diseases:
Brown leaf spot, Brown

streak, and cassava
mosaic 2

Inception-v3 [104]
Author-defined dataset.

Originally: 2756 images. Leaflet:
15,000 images

Accuracy: 93.00%

14 different
plant species Not mentioned

VGG 16,
Inception V4,

ResNet50,
ResNet101,

ResNet152 and
DenseNet121 [20]

PlantVillage

VGG16: 82%,
Inception V4: 98%,
ResNet50: 99.6%,

ResNet101: 99.6%,
ResNet152: 99.7% and
DenseNet121: 99.75%

Maize 8 different
diseases GoogLeNet and Cifar10

500 images were collected from
different sources: Plant Village

and Google websites

GoogLeNet: 98.9%
Cifar10: 98.8%

Wheat 6 different
diseases

Author-defined
architecture named

M-bCNN (Matrix-based
CNN) [85]

16,652 images collected from
Shandong Province, China

Accuracy: 90.1%

Maize Northern
Leaf Blight

Five CNNs were trained
on the augmented data set

with variations in the
architecture and

hyperparameters of the
networks [64]

1796 images of maize leaves
grown on the Musgrave

Research Farm in Aurora, NY
Accuracy: 96.7%,

Apple 6 different diseases AlexNet [106]

2539 images of three species of
apple trees from orchards

located in the southern part
of Brazil

Accuracy: 97.3%,

Radish Fusarium wilt of radish GoogLeNet [102]

The images were captured in
Korea, including Jungsun,

Gangwon, and Hongchun, using
two commercial UAVs

Accuracy: 90%

Tomato 8 different
diseases

AlexNet,
GoogLeNet, and

ResNet [60]

PlantVillage:
5550 images

ResNet: 97.28%



Sensors 2021, 21, 4749 28 of 34

Table 6. Cont.

Plant Disease Architecture Datasets Results

Rice Rice Blast Disease Two CNN models similar
to Lenet5 [86]

5808 images are obtained from
the Institute of Plant Protection,
Jiangsu Academy of Agricultural

Sciences, Nanjing, China

First CNN: 95.37%
Second CNN: 95.83%

Banana
Five major diseases along

with a pest class

ResNet50,
InceptionV2, and

MobileNetV1 [103]

Dataset comprises about 18,000
field images of bananas from

Bioversity International, Africa,
and Tamil Nadu Agricultural

University, India

Accuracy between 70–90%

Apple,
Banana

Apple scab,
apple rot,

banana sigotka, banana
cordial leaf spot,

banana diamond leaf spot,
and Deightoniella leaf and

fruit spot

VGG-16 [27]
6309 sample images of apple and
banana fruits PlantVillage and

CASC-IFW datasets
Accuracy: 98.6%

Grapevine Esca disease LeNet-5 [77]
The dataset consists of 70,560
learning patches by the UAV
system with an RGB sensor

The best results were
obtained with the

combination of ExR, ExG
and ExGR vegetation

indices using (16 × 16)
patch size reaching 95.80%

Maize

The northern corn
leaf blight,

common rust and gray
leaf spot

Author-defined CNN [61] PlantVillage Accuracy: 92.85%

Tea

7 Diseases:
Red leaf spot,

Algal leaf spot,
Bird’s eye spot,

Gray blight, White spot,
Anthracnose, Brown blight

Author-defined CNN
model named LeafNet

(Improvement over
AlexNet) [84]

A total of 3810 tea leaf images
captured using a Canon

PowerShot G12 camera in the
natural environments of Chibi
and Yichang within the Hubei

province of China.

Accuracy: 90.16%

Instead of only identifying the presence or absence of diseases in plant leaves using
deep learning, the severity of diseases is gaining popularity nowadays. Agarwal et al. [124]
proposed a new Conv2D model for disease severity identification from the Cucumber plant.
Comparison with not only other CNN models but also with machine learning models
revealed improvements in disease identification.

4. Discussion and Conclusions

In this manuscript, the authors present a survey of the existing literature in identifying
and classifying plant leaf diseases using Deep Convolutional Neural Networks (DCNN).
The authors identified the closely related research articles for presenting the comparative
analysis of different DCNN architectures. The survey focuses on the study of plant diseases,
datasets used, size of the datasets, image pre-processing techniques, CNN architectures,
CNN frameworks, performance metrics, and experimental results of different models
applied to identify and classify plant leaf diseases.

For the classification of plant leaf diseases, the researchers applied traditional tech-
niques of augmentation such as rotation [30,40], flipping, scaling, cropping, translation [18],
and adding Gaussian noise [25]. They achieved satisfactory outputs using the above-stated
techniques. Thus, the literature has observed the minimum use of deep learning augmenta-
tion techniques, such as Generative Adversarial Networks, Neural Style Transfer, etc.

Based on the literature, the authors conclude that DCNN is a better feature extractor
than handcrafted feature engineering. DCNN being an automatic feature extractor saves the
efforts of researchers. Furthermore, these models are robust under challenging conditions,
such as images with a complex background, non-uniform size, improper orientation, and
images captured in poor illumination, etc. However, there are several challenges and
issues of these approached, videlicet, the requirement of a huge dataset, longer training
time to yield the desired output. The current approaches reduced human intervention



Sensors 2021, 21, 4749 29 of 34

in predicting plant diseases, but the availability of a small dataset for training may lead
to their poor prediction accuracy. Additionally, self-collection and labeling are tedious
and time-consuming, requiring expertise in plant disease identification. Further, selecting
optimum number layers and parameters is not defined according to the type and size of
the dataset. As per the current research, the model’s architecture is designed based on
the number and type of samples in a dataset. On the other hand, extracting the region
of interest from the collected images is challenging, as the infected area may have low
visibility due to occlusion while capturing the images.

The performance of DCNN models is directly proportional to the amount and accuracy
of the labeled data used for training. If there is a low availability of data for training the
model, then fine-tuned pre-trained models can give better results than the models trained
from scratch.

Discussion of the common Deep Convolutional Neural Network (DCNN) architectures
shows that selecting a suitable CNN or DCNN model depends on the type of dataset, size
of the dataset, and experimental conditions. In the case of small network size and good
accuracy, SqueezeNet is a good choice. As the number of layers increases, its efficiency
is reduced. For deeper networks, ResNet is the better choice that uses skip connections.
DenseNet architecture performs well where all the layers are connected directly with each
other in a feed-forward manner. It reduces the vanishing-gradient problem and requires a
few numbers of parameters.

Caffe is a high-speed and efficient framework that helps in building the Convolutional
Neural Networks for image classification. Moreover, this tool allows applying Neural
Networks without writing the code. Therefore, the Caffe framework is the most accessible
framework to apply. The authors observed that around 33% of researchers from the
literature review applied the Caffe framework to evaluate the performance of DCNNs.

The study of the existing literature reveals that researchers applied the CNN models
on the images captured from the upper side of leaves, using cameras or drones. The
existing research focuses on disease identification and classification but lacks in present-
ing information about the localization of disease regions. It highlights the advantages
and challenges in applying computational technologies in agriculture and hence gives a
direction towards developing feasible solutions for increasing crop productivity. This is
completed by helping the researchers identify the suitable framework, architecture, model,
optimization technique, and dataset for disease prediction. The early stage prediction of
diseases helps apply preventive and disease-diagnosing measures.

There is also scope in the automatic estimation of the severity of plant diseases
which may prove helpful to farmers in deciding what measures they need to take for the
culmination of a disease.

Author Contributions: For preparing this manuscript, S.V.M. and D.S. were involved in conceptual-

ization, data curation, and investigation of research gaps. They also prepared the original draft of

the manuscript. V.S.D., G.R. and K. were involved in the validation of the concept and methodology

decided. They were also involved in the review and editing of the original manuscript. M.F.I. and

M.W. were involved in project administration, reviewing, editing the manuscript, and funding

acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the contribution to this project from the Rector of the Silesian

University of Technology under a proquality grant grant no. 09/020/RGJ21/0007. This work was

supported by the Polish National Agency for Academic Exchange under the Programme PROM-

International scholarship exchange of PhD candidates and academic staff no. PPI/PRO/2019/1/00051.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, W. A forecast analysis on world population and urbanization process. Environ. Dev. Sustain. 2008, 10, 717–730. [CrossRef]

2. Chouhan, S.S.; Singh, U.P.; Jain, S. Applications of computer vision in plant pathology: A survey. Arch. Comput. Methods Eng.

2020, 27, 611–632. [CrossRef]

http://doi.org/10.1007/s10668-007-9081-8
http://doi.org/10.1007/s11831-019-09324-0


Sensors 2021, 21, 4749 30 of 34

3. Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant disease severity estimated visually, by digital photography and image

analysis, and by hyperspectral imaging. CRC Crit. Rev. Plant Sci. 2010, 29, 59–107. [CrossRef]

4. Huang, K.-Y. Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features.

Comput. Electron. Agric. 2007, 57, 3–11. [CrossRef]

5. Huang, T.; Yang, R.; Huang, W.; Huang, Y.; Qiao, X. Detecting sugarcane borer diseases using support vector machine. Inf. Process.

Agric. 2018, 5, 74–82. [CrossRef]

6. Bauer, S.D.; Korč, F.; Förstner, W. The potential of automatic methods of classification to identify leaf diseases from multispectral

images. Precis. Agric. 2011, 12, 361–377. [CrossRef]

7. Li, Y.; Cao, Z.; Lu, H.; Xiao, Y.; Zhu, Y.; Cremers, A.B. In-field cotton detection via region-based semantic image segmentation.

Comput. Electron. Agric. 2016, 127, 475–486. [CrossRef]

8. Tan, W.; Zhao, C.; Wu, H. Intelligent alerting for fruit-melon lesion image based on momentum deep learning. Multimed. Tools

Appl. 2016, 75, 16741–16761. [CrossRef]

9. Pound, M.P.; Atkinson, J.A.; Townsend, A.J.; Wilson, M.H.; Griffiths, M.; Jackson, A.S.; Bulat, A.; Tzimiropoulos, G.; Wells, D.M.;

Murchie, E.H.; et al. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience

2017, 6, gix083. [CrossRef]

10. Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine learning for high-throughput stress phenotyping in plants.

Trends Plant Sci. 2016, 21, 110–124. [CrossRef]

11. Ampatzidis, Y.; De Bellis, L.; Luvisi, A. iPathology: Robotic applications and management of plants and plant diseases.

Sustainability 2017, 9, 1010. [CrossRef]

12. Kaur, S.; Pandey, S.; Goel, S. Plants disease identification and classification through leaf images: A survey. Arch. Comput. Methods

Eng. 2019, 26, 507–530. [CrossRef]

13. Azimi, S.; Kaur, T.; Gandhi, T.K. A deep learning approach to measure stress level in plants due to Nitrogen deficiency.

Measurement 2021, 173, 108650. [CrossRef]

14. Noon, S.K.; Amjad, M.; Qureshi, M.A.; Mannan, A. Use of deep learning techniques for identification of plant leaf stresses: A

review. Sustain. Comput. Inform. Syst. 2020, 28, 100443. [CrossRef]

15. Barbedo, J.G.A. A review on the main challenges in automatic plant disease identification based on visible range images. Biosyst.

Eng. 2016, 144, 52–60. [CrossRef]

16. Chouhan, S.S.; Kaul, A.; Singh, U.P.; Jain, S. Bacterial foraging optimization based radial basis function neural network (BRBFNN)

for identification and classification of plant leaf diseases: An automatic approach towards plant pathology. IEEE Access 2018, 6,

8852–8863. [CrossRef]

17. Lu, Y.; Yi, S.; Zeng, N.; Liu, Y.; Zhang, Y. Identification of rice diseases using deep convolutional neural networks. Neurocomputing

2017, 267, 378–384. [CrossRef]

18. Wang, G.; Sun, Y.; Wang, J. Automatic image-based plant disease severity estimation using deep learning. Comput. Intell. Neurosci.

2017, 2017, 2917536. [CrossRef]

19. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

20. Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for plant disease

identification. Comput. Electron. Agric. 2019, 161, 272–279. [CrossRef]

21. Amara, J.; Bouaziz, B.; Algergawy, A. A deep learning-based approach for banana leaf diseases classification. In Datenbanksysteme

für Business, Technology und Web (BTW 2017)-Workshopband; German Informatics Society: Bonn, Germany, 2017.

22. Oppenheim, D.; Shani, G. Potato disease classification using convolution neural networks. Adv. Anim. Biosci. 2017, 8,

244. [CrossRef]

23. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7,

1–10. [CrossRef]

24. Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145,

311–318. [CrossRef]

25. Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep neural networks based recognition of plant diseases

by leaf image classification. Comput. Intell. Neurosci. 2016, 2016, 3289801. [CrossRef]

26. Ha, J.G.; Moon, H.; Kwak, J.T.; Hassan, S.I.; Dang, M.; Lee, O.N.; Park, H.Y. Deep convolutional neural network for classifying

Fusarium wilt of radish from unmanned aerial vehicles. J. Appl. Remote Sens. 2017, 11, 1. [CrossRef]

27. Khan, M.A.; Akram, T.; Sharif, M.; Awais, M.; Javed, K.; Ali, H.; Saba, T. CCDF: Automatic system for segmentation and

recognition of fruit crops diseases based on correlation coefficient and deep CNN features. Comput. Electron. Agric. 2018, 155,

220–236. [CrossRef]

28. Cruz, A.C.; Luvisi, A.; De Bellis, L.; Ampatzidis, Y. X-FIDO: An effective application for detecting olive quick decline syndrome

with deep learning and data fusion. Front. Plant Sci. 2017, 8, 1–12. [CrossRef]

29. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2016, 2016, 2818–2826. [CrossRef]

30. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

http://doi.org/10.1080/07352681003617285
http://doi.org/10.1016/j.compag.2007.01.015
http://doi.org/10.1016/j.inpa.2017.11.001
http://doi.org/10.1007/s11119-011-9217-6
http://doi.org/10.1016/j.compag.2016.07.006
http://doi.org/10.1007/s11042-015-2940-7
http://doi.org/10.1093/gigascience/gix083
http://doi.org/10.1016/j.tplants.2015.10.015
http://doi.org/10.3390/su9061010
http://doi.org/10.1007/s11831-018-9255-6
http://doi.org/10.1016/j.measurement.2020.108650
http://doi.org/10.1016/j.suscom.2020.100443
http://doi.org/10.1016/j.biosystemseng.2016.01.017
http://doi.org/10.1109/ACCESS.2018.2800685
http://doi.org/10.1016/j.neucom.2017.06.023
http://doi.org/10.1155/2017/2917536
http://doi.org/10.1016/j.compag.2018.03.032
http://doi.org/10.1017/S2040470017001376
http://doi.org/10.3389/fpls.2016.01419
http://doi.org/10.1016/j.compag.2018.01.009
http://doi.org/10.1155/2016/3289801
http://doi.org/10.1117/1.JRS.11.042621
http://doi.org/10.1016/j.compag.2018.10.013
http://doi.org/10.3389/fpls.2017.01741
http://doi.org/10.1109/CVPR.2016.308


Sensors 2021, 21, 4749 31 of 34

31. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd

International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–14.

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 July 2016; pp. 770–778.

33. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 30th

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; Volume 2017, pp. 2261–2269.

34. Boulent, J.; Foucher, S.; Théau, J.; St-Charles, P.-L. Convolutional neural networks for the automatic identification of plant diseases.

Front. Plant Sci. 2019, 10, 941. [CrossRef]

35. Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep learning for tomato diseases: Classification and symptoms visualization. Appl.

Artif. Intell. 2017, 31, 299–315. [CrossRef]

36. Kawasaki, Y.; Uga, H.; Kagiwada, S.; Iyatomi, H. Basic study of automated diagnosis of viral plant diseases using convolutional

neural networks. Int. Symp. Visual Comput. 2015, 9475, 842–850. [CrossRef]

37. Ma, J.; Du, K.; Zheng, F.; Zhang, L.; Gong, Z.; Sun, Z. A recognition method for cucumber diseases using leaf symptom images

based on deep convolutional neural network. Comput. Electron. Agric. 2018, 154, 18–24. [CrossRef]

38. Lu, J.; Hu, J.; Zhao, G.; Mei, F.; Zhang, C. An in-field automatic wheat disease diagnosis system. Comput. Electron. Agric. 2017,

142, 369–379. [CrossRef]

39. Liu, B.; Zhang, Y.; He, D.J.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry

2018, 10, 11. [CrossRef]

40. Durmuş, H.; Güneş, E.O.; Kırcı, M. Disease detection on the leaves of the tomato plants by using deep learning. In Proceedings of

the 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; pp. 1–5.

41. Ghosal, S.; Blystone, D.; Singh, A.K.; Ganapathysubramanian, B.; Singh, A.; Sarkar, S. An explainable deep machine vision

framework for plant stress phenotyping. Proc. Natl. Acad. Sci. USA 2018, 115, 4613–4618. [CrossRef]

42. Pawara, P.; Okafor, E.; Schomaker, L.; Wiering, M. Data augmentation for plant classification. In Proceedings of the International

Conference on Advanced Concepts for Intelligent Vision Systems, Antwerp, Belgium, 18–21 September 2017; pp. 615–626.

43. Barbedo, J.G.A. Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 2018, 172, 84–91. [CrossRef]

44. Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A fruit detection system using deep neural networks.

Sensors 2016, 16, 1222. [CrossRef] [PubMed]

45. Nguyen, T.T.-N.; Le, T.-L.; Vu, H.; Hoang, V.-S. Towards an automatic plant Identification system without dedicated dataset. Int. J.

Mach. Learn. Comput. 2019, 9, 26–34. [CrossRef]

46. Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol.

1962, 160, 106–154. [CrossRef]

47. Traore, B.B.; Kamsu-Foguem, B.; Tangara, F. Deep convolution neural network for image recognition. Ecol. Inform. 2018, 48,

257–268. [CrossRef]

48. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten

zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

49. Toda, Y.; Okura, F. How Convolutional neural networks diagnose plant disease. Plant Phenomics 2019, 2019, 9237136.

[CrossRef] [PubMed]

50. Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep learning for plant Stress phenotyping: Trends and future

perspectives. Trends Plant Sci. 2018, 23, 883–898. [CrossRef]

51. Mohanty, S. PlantVillage-Dataset. Available online: https://github.com/spMohanty/PlantVillage-Dataset (accessed on 30

June 2021).

52. Ngugi, L.C.; Abelwahab, M.; Abo-Zahhad, M. Recent advances in image processing techniques for automated leaf pest and

disease recognition—A review. Inf. Process. Agric. 2021, 8, 27–51. [CrossRef]

53. Kundu, N.; Rani, G.; Dhaka, V.S. A Comparative analysis of deep learning models applied for disease classification in Bell pepper.

In Proceedings of the 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, India, 6–8

November 2020; pp. 243–247.

54. Liu, J.; Wang, X. Plant diseases and pests detection based on deep learning: A review. Plant Methods 2021, 17, 22.

[CrossRef] [PubMed]

55. Yadav, S.; Sengar, N.; Singh, A.; Singh, A.; Dutta, M.K. Identification of disease using deep learning and evaluation of bacteriosis

in peach leaf. Ecol. Inform. 2021, 61, 101247. [CrossRef]

56. N, K.; Narasimha Prasad, L.V.; Pavan Kumar, C.S.; Subedi, B.; Abraha, H.B.; V E, S. Rice leaf diseases prediction using deep

neural networks with transfer learning. Environ. Res. 2021, 198, 111275. [CrossRef] [PubMed]

57. Chen, J.; Zhang, D.; Zeb, A.; Nanehkaran, Y.A. Identification of rice plant diseases using lightweight attention networks. Expert

Syst. Appl. 2021, 169, 114514. [CrossRef]

58. Joshi, R.C.; Kaushik, M.; Dutta, M.K.; Srivastava, A.; Choudhary, N. VirLeafNet: Automatic analysis and viral disease diagnosis

using deep-learning in Vigna mungo plant. Ecol. Inform. 2021, 61, 101197. [CrossRef]

59. Bhatt, P.; Sarangi, S.; Pappula, S. Comparison of CNN models for application in crop health assessment with participatory

sensing. In Proceedings of the 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 19–22

October 2017. [CrossRef]

http://doi.org/10.3389/fpls.2019.00941
http://doi.org/10.1080/08839514.2017.1315516
http://doi.org/10.1007/978-3-319-27863-6
http://doi.org/10.1016/j.compag.2018.08.048
http://doi.org/10.1016/j.compag.2017.09.012
http://doi.org/10.3390/sym10010011
http://doi.org/10.1073/pnas.1716999115
http://doi.org/10.1016/j.biosystemseng.2018.05.013
http://doi.org/10.3390/s16081222
http://www.ncbi.nlm.nih.gov/pubmed/27527168
http://doi.org/10.18178/ijmlc.2019.9.1.761
http://doi.org/10.1113/jphysiol.1962.sp006837
http://doi.org/10.1016/j.ecoinf.2018.10.002
http://doi.org/10.1162/neco.1989.1.4.541
http://doi.org/10.34133/2019/9237136
http://www.ncbi.nlm.nih.gov/pubmed/33313540
http://doi.org/10.1016/j.tplants.2018.07.004
https://github.com/spMohanty/PlantVillage-Dataset
http://doi.org/10.1016/j.inpa.2020.04.004
http://doi.org/10.1186/s13007-021-00722-9
http://www.ncbi.nlm.nih.gov/pubmed/33627131
http://doi.org/10.1016/j.ecoinf.2021.101247
http://doi.org/10.1016/j.envres.2021.111275
http://www.ncbi.nlm.nih.gov/pubmed/33989629
http://doi.org/10.1016/j.eswa.2020.114514
http://doi.org/10.1016/j.ecoinf.2020.101197
http://doi.org/10.1109/GHTC.2017.8239295


Sensors 2021, 21, 4749 32 of 34

60. Zhang, K.; Wu, Q.; Liu, A.; Meng, X. Can deep learning identify tomato leaf disease? Adv. Multimed. 2018, 2018,

6710865. [CrossRef]

61. Sibiya, M.; Sumbwanyambe, M. A Computational procedure for the recognition and classification of maize leaf diseases out of

healthy leaves using convolutional neural networks. AgriEngineering 2019, 1, 119–131. [CrossRef]

62. Joly, A.; Goëau, H.; Glotin, H.; Spampinato, C.; Bonnet, P.; Vellinga, W.-P.; Lombardo, J.-C.; Planqué, R.; Palazzo, S.; Müller, H.

Lifeclef 2017 lab overview: Multimedia species identification challenges. In Proceedings of the International Conference of the

Cross-Language Evaluation Forum for European Languages, Dublin, Ireland, 11–14 September 2017; pp. 255–274.

63. Mehdipour Ghazi, M.; Yanikoglu, B.; Aptoula, E. Plant identification using deep neural networks via optimization of transfer

learning parameters. Neurocomputing 2017, 235, 228–235. [CrossRef]

64. DeChant, C.; Wiesner-Hanks, T.; Chen, S.; Stewart, E.L.; Yosinski, J.; Gore, M.A.; Nelson, R.J.; Lipson, H. Automated identification

of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology 2017, 107, 1426–1432.

[CrossRef] [PubMed]

65. Arnal Barbedo, J.G. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 2019, 180,

96–107. [CrossRef]

66. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

67. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes (VOC) challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]

68. Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep convolutional neural networks for

mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. 2019, 161, 280–290. [CrossRef]

69. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]

70. Li, P. Optimization Algorithms for Deep Learning. 2017. Available online: http://lipiji.com/docs/li2017optdl.pdf (accessed on

30 June 2021).

71. Mishkin, D.; Matas, J. All you need is a good init. In Proceedings of the International Conference on Learning Representations

2015, San Diego, CA, USA, 7–9 May 2015.

72. Yu, D.; Xiong, W.; Droppo, J.; Stolcke, A.; Ye, G.; Li, J.; Zweig, G. Deep convolutional neural networks with layer-wise context

expansion and attention. In Proceedings of the Interspeech 2016, San Francisco, CA, USA, 8–12 September 2016; pp. 17–21.

73. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998. [CrossRef]

74. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the

25th International Conference on Neural Information Processing Systems—Volume 1; Curran Associates Inc.: New York, NY, USA,

2012; pp. 1097–1105.

75. Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv

2016, arXiv:1605.07678.

76. Ding, W.; Taylor, G. Automatic moth detection from trap images for pest management. Comput. Electron. Agric. 2016, 123,

17–28. [CrossRef]

77. Kerkech, M.; Hafiane, A.; Canals, R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases

detection in UAV images. Comput. Electron. Agric. 2018, 155, 237–243. [CrossRef]

78. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2015, 91, 2322–2330. [CrossRef]

79. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2014, arXiv:1312.4400.

80. Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2017, arXiv:1605.07146.

81. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Pro-

ceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;

pp. 5987–5995. [CrossRef]

82. Fuentes, A.; Yoon, S.; Kim, S.; Park, D. A Robust deep-learning-based detector for real-time tomato plant diseases and pests

recognition. Sensors 2017, 17, 2022. [CrossRef]

83. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

84. Chen, J.; Liu, Q.; Gao, L. Visual tea leaf disease recognition using a convolutional neural network model. Symmetry 2019, 11,

343. [CrossRef]

85. Lin, Z.; Mu, S.; Huang, F.; Mateen, K.A.; Wang, M.; Gao, W.; Jia, J. A unified matrix-based convolutional neural network for

fine-grained image classification of wheat leaf diseases. IEEE Access 2019, 7, 11570–11590. [CrossRef]

86. Liang, W.J.; Zhang, H.; Zhang, G.F.; Cao, H. Rice blast disease recognition using a deep convolutional neural network. Sci. Rep.

2019, 9, 2869. [CrossRef]

87. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic Object detection: A survey.

Int. J. Comput. Vis. 2020, 128, 261–318. [CrossRef]

88. Li, H.; Lin, Z.; Shen, X.; Brandt, J.; Hua, G. A convolutional neural network cascade for face detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

http://doi.org/10.1155/2018/6710865
http://doi.org/10.3390/agriengineering1010009
http://doi.org/10.1016/j.neucom.2017.01.018
http://doi.org/10.1094/PHYTO-11-16-0417-R
http://www.ncbi.nlm.nih.gov/pubmed/28653579
http://doi.org/10.1016/j.biosystemseng.2019.02.002
http://doi.org/10.1007/s11263-009-0275-4
http://doi.org/10.1016/j.compag.2018.04.002
http://doi.org/10.1109/TKDE.2009.191
http://lipiji.com/docs/li2017optdl.pdf
http://doi.org/10.1109/5.726791
http://doi.org/10.1016/j.compag.2016.02.003
http://doi.org/10.1016/j.compag.2018.10.006
http://doi.org/10.1109/CVPR.2015.7298594
http://doi.org/10.1109/CVPR.2017.634
http://doi.org/10.3390/s17092022
http://doi.org/10.3390/sym11030343
http://doi.org/10.1109/ACCESS.2019.2891739
http://doi.org/10.1038/s41598-019-38966-0
http://doi.org/10.1007/s11263-019-01247-4


Sensors 2021, 21, 4749 33 of 34

89. Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Jacques, S. Multi-block color-binarized statistical images for single-sample face recognition.

Sensors 2021, 21, 728. [CrossRef]

90. Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Taleb-ahmed, A. Past, Present, and future of face recognition: A review. Electronics 2020, 9,

1188. [CrossRef]

91. Pradhan, N.; Dhaka, V.S.; Chaudhary, H. Classification of human bones using deep convolutional neural network. IOP Conf. Ser.

Mater. Sci. Eng. 2019, 594, 12024. [CrossRef]

92. Nair, P.P.; James, A.; Saravanan, C. Malayalam handwritten character recognition using convolutional neural network. In

Proceedings of the 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT),

Coimbatore, India, 10–11 March 2017; pp. 278–281.

93. Shustanov, A.; Yakimov, P. CNN Design for real-time traffic sign recognition. Procedia Eng. 2017, 201, 718–725. [CrossRef]

94. Kuwata, K.; Shibasaki, R. Estimating crop yields with deep learning and remotely sensed data. In Proceedings of the 2015 IEEE

International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 858–861.

95. Xu, R.; Li, C.; Paterson, A.H.; Jiang, Y.; Sun, S.; Robertson, J.S. Aerial images and convolutional neural network for cotton bloom

detection. Front. Plant Sci. 2018, 8, 2235. [CrossRef]

96. Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network. Biosyst. Eng. 2016,

151, 72–80. [CrossRef]

97. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv 2015, arXiv:1510.00149.

98. Chen, S.W.; Shivakumar, S.S.; Dcunha, S.; Das, J.; Okon, E.; Qu, C.; Taylor, C.J.; Kumar, V. Counting apples and oranges with deep

learning: A data-driven approach. IEEE Robot. Autom. Lett. 2017, 2, 781–788. [CrossRef]

99. Pethybridge, S.J.; Nelson, S.C. Leaf doctor: A new portable application for quantifying plant disease severity. Plant Dis. 2015, 99,

1310–1316. [CrossRef] [PubMed]

100. Tran, T.-T.; Choi, J.-W.; Le, T.-T.H.; Kim, J.-W. A Comparative study of deep CNN in forecasting and classifying the macronutrient

deficiencies on development of tomato plant. Appl. Sci. 2019, 9, 1601. [CrossRef]

101. Shakoor, N.; Lee, S.; Mockler, T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the

field. Curr. Opin. Plant Biol. 2017, 38, 184–192. [CrossRef]

102. Dang, L.M.; Syed, I.H.; Suhyeon, I. Drone agriculture imagery system for radish wilt. J. Appl. Remote Sens. 2017, 11, 16006.

103. Selvaraj, M.G.; Vergara, A.; Ruiz, H.; Safari, N.; Elayabalan, S.; Ocimati, W.; Blomme, G. AI-powered banana diseases and pest

detection. Plant Methods 2019, 15, 1–11. [CrossRef]

104. Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep learning for image-based cassava disease

detection. Front. Plant Sci. 2017, 8, 1–7. [CrossRef] [PubMed]

105. Zhang, X.; Qiao, Y.; Meng, F.; Fan, C.; Zhang, M. Identification of maize leaf diseases using improved deep convolutional neural

networks. IEEE Access 2018, 6, 30370–30377. [CrossRef]

106. Nachtigall, L.G.; Araujo, R.M.; Nachtigall, G.R. Classification of apple tree disorders using convolutional neural networks. In

Proceedings of the 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), San Jose, CA, USA, 6–8

November 2016; pp. 472–476.

107. Johannes, A.; Picon, A.; Alvarez-Gila, A.; Echazarra, J.; Rodriguez-Vaamonde, S.; Navajas, A.D.; Ortiz-Barredo, A. Automatic

plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput. Electron. Agric. 2017, 138,

200–209. [CrossRef]

108. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on

learning. Proc. Thirty-First AAAI Conf. Artif. Intell. 2017, 4278–4284. [CrossRef]

109. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

110. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A

system for large-scale machine learning. In Proceedings of the 12th Symposium on Operating Systems Design and Implementation,

Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

111. Bastien, F.; Lamblin, P.; Pascanu, R.; Bergstra, J.; Goodfellow, I.; Bergeron, A.; Bouchard, N.; Warde-Farley, D.; Bengio, Y. Theano:

New features and speed improvements. arXiv 2012, arXiv:1211.5590.

112. Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu, R.; Desjardins, G.; Turian, J.; Warde-Farley, D.; Bengio, Y. Theano: A

CPU and GPU math compiler in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July

2010; Volume 1, pp. 3–10.

113. Team, T.T.D.; Al-Rfou, R.; Alain, G.; Almahairi, A.; Angermueller, C.; Bahdanau, D.; Ballas, N.; Bastien, F.; Bayer, J.; Belikov, A.;

et al. Theano: A Python framework for fast computation of mathematical expressions. arXiv 2016, arXiv:1605.02688.

114. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture

for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, Orlando, FL, USA, 3–7

November 2014; pp. 675–678.

115. Bahrampour, S.; Ramakrishnan, N.; Schott, L.; Shah, M. Comparative study of deep learning software frameworks. arXiv

2015, arXiv:1511.06435.

116. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cudnn: Efficient primitives for deep

learning. arXiv 2014, arXiv:1410.0759.

http://doi.org/10.3390/s21030728
http://doi.org/10.3390/electronics9081188
http://doi.org/10.1088/1757-899X/594/1/012024
http://doi.org/10.1016/j.proeng.2017.09.594
http://doi.org/10.3389/fpls.2017.02235
http://doi.org/10.1016/j.biosystemseng.2016.08.024
http://doi.org/10.1109/LRA.2017.2651944
http://doi.org/10.1094/PDIS-03-15-0319-RE
http://www.ncbi.nlm.nih.gov/pubmed/30690990
http://doi.org/10.3390/app9081601
http://doi.org/10.1016/j.pbi.2017.05.006
http://doi.org/10.1186/s13007-019-0475-z
http://doi.org/10.3389/fpls.2017.01852
http://www.ncbi.nlm.nih.gov/pubmed/29163582
http://doi.org/10.1109/ACCESS.2018.2844405
http://doi.org/10.1016/j.compag.2017.04.013
http://doi.org/10.1089/pop.2014.0089


Sensors 2021, 21, 4749 34 of 34

117. Shah, D.; Trivedi, V.; Sheth, V.; Shah, A.; Chauhan, U. ResTS: Residual deep interpretable architecture for plant disease detection.

Inf. Process. Agric. 2021. [CrossRef]

118. Bedi, P.; Gole, P. Plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural

network. Artif. Intell. Agric. 2021, 5, 90–101. [CrossRef]

119. Khanramaki, M.; Askari Asli-Ardeh, E.; Kozegar, E. Citrus pests classification using an ensemble of deep learning models. Comput.

Electron. Agric. 2021, 186, 106192. [CrossRef]

120. Sravan, V.; Swaraj, K.; Meenakshi, K.; Kora, P. A deep learning based crop disease classification using transfer learning. Mater.

Today Proc. 2021, in press. [CrossRef]

121. Jiang, Z.; Dong, Z.; Jiang, W.; Yang, Y. Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer

learning. Comput. Electron. Agric. 2021, 186, 106184. [CrossRef]

122. Tahir, M.B.; Khan, M.A.; Javed, K.; Kadry, S.; Zhang, Y.-D.; Akram, T.; Nazir, M. Recognition of apple leaf diseases using deep

Learning and variances-controlled features reduction. Microprocess. Microsyst. 2021, 2021, 104027. [CrossRef]

123. Shin, J.; Chang, Y.K.; Heung, B.; Nguyen-Quang, T.; Price, G.W.; Al-Mallahi, A. A deep learning approach for RGB image-based

powdery mildew disease detection on strawberry leaves. Comput. Electron. Agric. 2021, 183, 106042. [CrossRef]

124. Agarwal, M.; Gupta, S.; Biswas, K.K. A new Conv2D model with modified ReLU activation function for identification of disease

type and severity in cucumber plant. Sustain. Comput. Inform. Syst. 2021, 30, 100473. [CrossRef]

http://doi.org/10.1016/j.inpa.2021.06.001
http://doi.org/10.1016/j.aiia.2021.05.002
http://doi.org/10.1016/j.compag.2021.106192
http://doi.org/10.1016/j.matpr.2020.10.846
http://doi.org/10.1016/j.compag.2021.106184
http://doi.org/10.1016/j.micpro.2021.104027
http://doi.org/10.1016/j.compag.2021.106042
http://doi.org/10.1016/j.suscom.2020.100473

	Introduction 
	Materials and Methods 
	Comparative Analysis 
	Pre-Processing Techniques 
	Resizing 
	Augmentation 
	Normalization and Standardization 
	Annotation 
	Outlier Rejection 
	Denoising 

	Convolutional Neural Networks 
	Datasets and CNN Models 
	Common CNN Architectures 
	LeNet-5 
	AlexNet 
	VGGNet 
	GoogLeNet 
	ResNet 
	ResNeXt 
	DenseNet 
	SqueezeNet 
	LeafNet 
	M-bCNN 
	Comparison of Common CNN Architectures 

	Optimization Techniques 
	Batch Gradient Descent (BGD) Optimization 
	Stochastic Gradient Descent (SGD) Algorithm 
	AdaGrad 
	Root Mean Square Propagation (RMSprop) 
	Adaptive Moment Estimation (Adam) Optimizer 

	Frameworks 
	TensorFlow 
	Theano 
	Keras 
	Caffe 
	Torch 
	Neuroph 
	Deeplearning4j 
	Pylearn2 
	DL MATLAB Toolbox 

	Analysis of DCNNs for Plant Leaf Disease Identification 

	Discussion and Conclusions 
	References

