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Abstract

Deep neural networks can achieve great successes when presented with large data sets and 

sufficient computational resources. However, their ability to learn new concepts quickly is 

limited. Meta-learning is one approach to address this issue, by enabling the network to 

learn how to learn. The field of Deep Meta-Learning advances at great speed, but lacks 

a unified, in-depth overview of current techniques. With this work, we aim to bridge this 

gap. After providing the reader with a theoretical foundation, we investigate and summa-

rize key methods, which are categorized into (i) metric-, (ii) model-, and (iii) optimization-

based techniques. In addition, we identify the main open challenges, such as performance 

evaluations on heterogeneous benchmarks, and reduction of the computational costs of 

meta-learning.

Keywords Meta-learning · Learning to learn · Few-shot learning · Transfer learning · Deep 

learning

1 Introduction

In recent years, deep learning techniques have achieved remarkable successes on various 

tasks, including game-playing (Mnih et  al. 2013; Silver et  al. 2016), image recognition 

(Krizhevsky et al. 2012; He et al. 2015), machine translation (Wu et al. 2016), and auto-

matic classification in biomedical domains (Goceri 2019a; Goceri and Karakas 2020; Iqbal 

et al. 2019a, b, 2020). Despite these advances and recent solutions (Goceri 2019b, 2020), 

ample challenges remain to be solved, such as the large amounts of data and training that 

are needed to achieve good performance. These requirements severely constrain the abil-

ity of deep neural networks to learn new concepts quickly, one of the defining aspects of 

human intelligence (Jankowski et al. 2011; Lake et al. 2017).

Meta-learning has been suggested as one strategy to overcome this challenge (Naik 

and Mammone 1992; Schmidhuber 1987; Thrun 1998). The key idea is that meta-learning 

agents improve their learning ability over time, or equivalently, learn to learn. The learn-

ing process is primarily concerned with tasks (set of observations) and takes place at two 
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different levels: an inner- and an outer-level. At the inner-level, a new task is presented, and 

the agent tries to quickly learn the associated concepts from the training observations. This 

quick adaptation is facilitated by knowledge that it has accumulated across earlier tasks at 

the outer-level. Thus, whereas the inner-level concerns a single task, the outer-level con-

cerns a multitude of tasks.

Historically, the term meta-learning has been used with various scopes. In its broadest 

sense, it encapsulates all systems that leverage prior learning experience in order to learn 

new tasks more quickly (Vanschoren 2018). This broad notion includes more traditional 

algorithm selection and hyperparameter optimization techniques for Machine Learning 

(Brazdil et al. 2008). In this work, however, we focus on a subset of the meta-learning field 

which develops meta-learning procedures to learn a good inductive bias for (deep) neural 

networks.1 Henceforth, we use the term Deep Meta-Learning to refer to this subfield of 

meta-learning.

The field of Deep Meta-Learning is advancing at a quick pace, while it lacks a coherent, 

unifying overview, providing detailed insights into the key techniques. Vanschoren (2018) 

has surveyed meta-learning techniques, where meta-learning was used in the broad sense, 

limiting its account of Deep Meta-Learning techniques. Also, many exciting developments 

in deep meta-learning have happened after the survey was published. A more recent survey 

by Hospedales et al. (2020) adopts the same notion of deep meta-learning as we do, but 

aims for a broad overview, omitting technical details of the various techniques.

We attempt to fill this gap by providing detailed explications of contemporary Deep 

Meta-Learning techniques, using a unified notation. More specifically, we cover modern 

techniques in the field for supervised and reinforcement learning, that have achieved state-

of-the-art performance, obtained popularity in the field, and presented novel ideas. Extra 

attention is paid to MAML (Finn et  al. 2017), and related techniques, because of their 

impact on the field. We show how the techniques relate to each other, detail their strengths 

and weaknesses, identify current challenges, and provide an overview of promising future 

research directions. One of the observations that we make is that the network complexity 

is highly related to the few-shot classification performance (see Fig. 1). One might expect 

that in a few-shot setting, where only a few examples are available to learn from, the num-

ber of network parameters should be kept small to prevent overfitting. Clearly, the figure 

shows that this does not hold, as techniques that use larger backbones tend to achieve better 

performance. One important factor might be that due to the high amount of tasks that have 

been seen by the network, we are in a setting where similarly large amounts of observations 

have been evaluated. This result suggests that the size of the network should be taken into 

account when comparing algorithms.

This work can serve as an  educational introduction to the field of Deep Meta-Learn-

ing, and as reference material for experienced researchers in the field. Throughout, we 

will adopt the taxonomy used by Vinyals (2017), which identifies three categories of Deep 

Meta-Learning approaches: (i)  metric-, (ii)  model-, and (iii)  optimization-based meta-

learning techniques.

The remainder of this work is structured as follows. Sect. 2 builds a common foun-

dation on which we will base our overview of Deep Meta-Learning techniques. Sec-

tions  3,  4, and  5 cover the main metric-, model-, and optimization-based meta-learn-

ing techniques, respectively. Section  6 provides a helicopter view of the field and 

1 Here, inductive bias refers to the assumptions of a model which guide predictions on unseen data (Mitch-

ell 1980).
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summarizes the key challenges and open questions. Table  1 gives an overview of 

the notation that we will use throughout this paper.

2  Foundation

In this section, we build the necessary foundation for investigating Deep Meta-Learn-

ing techniques in a consistent manner. To begin with, we contrast regular learning and 

meta-learning. Afterwards, we briefly discuss how Deep Meta-Learning relates to dif-

ferent fields, what the usual training and evaluation procedure looks like, and which 

benchmarks are often used for this purpose. We finish this section by describing the 

context and some applications of the meta-learning field.

2.1  The meta abstraction

In this subsection, we contrast base-level (regular) learning and meta-learning for two 

different paradigms, i.e., supervised and reinforcement learning.

Fig. 1  The accuracy scores of the covered techniques on 1-shot miniImageNet classification. The used fea-

ture extraction backbone is displayed on the x-axis. As one can see, there is a strong relationship between 

the network complexity and the classification performance
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2.1.1  Regular supervised learning

In supervised learning, we wish to learn a function f
�
∶ X → Y  that learns to map inputs 

x
i
∈ X to their corresponding outputs yi ∈ Y  . Here, � are model parameters (e.g. weights 

in a neural network) that determine the function’s behavior. To learn these parameters, we 

are given a data set of m observations: D = {(xi, yi)}
m
i=1

 . Thus, given a data set D , learning 

boils down to finding the correct setting for � that minimizes an empirical loss function L
D
 , 

which must capture how the model is performing, such that appropriate adjustments to its 

parameters can be made. In short, we wish to find

where SL stands for “supervised learning”. Note that this objective is specific to the data 

set D , meaning that our model f
�
 may not generalize to examples outside of D . To meas-

ure generalization, one could evaluate the performance on a separate test data set, which 

contains unseen examples. A popular way to do this is through cross-validation, where one 

repeatedly creates train and test splits Dtr
, D

test
⊂ D and uses these to train and evaluate a 

model respectively (Hastie et al. 2009).

Finding globally optimal parameters �
SL

 is often computationally infeasible. We can, 

however, approximate them, guided by pre-defined meta-knowledge � (Hospedales et al. 

(1)�
SL

∶= arg min
�

L
D
(�),

Table 1  Some notation and meaning, which we use throughout this paper

Expression Meaning

Meta-learning Learning to learn

Tj = (Dtr
Tj

, Dtest
Tj

) A task consisting of a labeled support and query set

Support set The train set Dtr
Tj

 associated with a task Tj

Query set The test set Dtest
Tj

 associated with a task Tj

x
i

Example input vector i in the support set

yi (One-hot encoded) label of example input x
i
 from the support set

k Number of examples per class in the support set

N Number of classes in the support and query sets of a task

x Input in the query set

y A (one-hot encoded) label for input x

(f∕g∕h)
◦

Neural network function with parameters ◦

Inner-level At the level of a single task

Outer-level At meta-level: across tasks

Fast weights A term used in the literature to denote task-specific parameters

Base-learner Learner that works at the inner-level

Meta-learner Learner that operates at the outer-level

� The parameters of the base-learner network

L
D

Loss function with respect to task/dataset D

Input embedding Penultimate layer representation of the input

Task embedding An internal representation of a task in a network/system

SL Supervised Learning

RL Reinforcement Learning
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2020), which includes, e.g., the initial model parameters � , choice of optimizer, and learn-

ing rate schedule. As such, we approximate

where g
�
 is an optimization procedure that uses pre-defined meta-knowledge � , data set 

D , and loss function L
D
 , to produce updated weights g

�
(D, LD) that (presumably) perform 

well on D.

2.1.2  Supervised meta-learning

In contrast, supervised meta-learning does not assume that any meta-knowledge � is given, 

or pre-defined. Instead, the goal of meta-learning is to find the best � , such that our (reg-

ular) base-learner can learn new tasks (data sets) as quickly as possible. Thus, whereas 

supervised regular learning involves one data set, supervised meta-learning involves a 

group of data sets. The goal is to learn meta-knowledge � such that our model can learn 

many different tasks well. Thus, our model is learning to learn.

More formally, we have a probability distribution of tasks p(T) , and wish to find optimal 

meta-knowledge

Here, the inner-level concerns task-specific learning, while the outer-level concerns multi-

ple tasks. One can now easily see why this is meta-learning: we learn � , which allows for 

quick learning of tasks Tj at the inner-level. Hence, we are learning to learn.

2.1.3  Regular reinforcement learning

In reinforcement learning, we have an agent that learns from experience. That is, 

it interacts with an environment, modeled by a Markov Decision Process (MDP) 

M = (S, A, P, r, p0, � , T) . Here, S is the set of states, A the set of actions, P the transition 

probability distribution defining P(s
t+1|st

, a
t
) , r ∶ S × A → ℝ the reward function, p

0
 the 

probability distribution over initial states, � ∈ [0, 1] the discount factor, and T the time 

horizon (maximum number of time steps) (Sutton and Barto 2018; Duan et al. 2016).

At every time step t, the agent finds itself in the state s
t
 , in which the agent performs an 

action a
t
 , computed by a policy function �

�
 (i.e., a

t
= �

�
(s

t
) ), which is parameterized by 

weights � . In turn, it receives a reward r
t
= r(s

t
,�

�
(s

t
)) ∈ ℝ and a new state s

t+1
 . This pro-

cess of interactions continues until a termination criterion is met (e.g. fixed time horizon 

T reached). The goal of the agent is to learn how to act in order to maximize its expected 

reward. The reinforcement learning (RL) goal is to find

where we take the expectation over the possible trajectories traj = (s0,�
�
(s0), ...s

T
,�

�
(s

T
)) 

due to the random nature of MDPs (Duan et al. 2016). Note that � is a hyperparameter that 

can prioritize short- or long-term rewards by decreasing or increasing it, respectively.

(2)�SL ≈ g
�
(D, LD),

(3)
�
∗ ∶= arg min

�

�Tj∽p(T)

⏟⏟⏟

Outer-level

[LTj
(g

�
(Tj, LTj

))

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Inner-level

].

(4)�
RL

∶= arg min
�

�traj

T
∑

t=0

�
t
r(s

t
,�

�
(s

t
)),
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Also in the case of reinforcement learning, it is often infeasible to find the global opti-

mum �
RL

 , and thus we settle for approximations. In short, given a learning method � , we 

approximate

where again Tj is the given MDP, and g
�
 is the optimization algorithm, guided by pre-

defined meta-knowledge �.

Note that in a Markov Decision Process (MDP), the agent knows the state at any given 

time step t. When this is not the case, it becomes a Partially Observable Markov Decision 

Process (POMDP), where the agent receives only observations O and uses these to update 

its belief with regard to the state it is in Sutton and Barto (2018).

2.1.4  Meta reinforcement learning

The meta abstraction has as its object a group of tasks, or Markov Decision Processes 

(MDPs) in the case of reinforcement learning. Thus, instead of maximizing the expected 

reward on a single MDP, the meta reinforcement learning objective is to maximize the 

expected reward over various MDPs, by learning meta-knowledge � . Here, the MDPs are 

sampled from some distribution p(T) . So, we wish to find a set of parameters

2.1.5  Contrast with other fields

Now that we have provided a formal basis for our discussion for both supervised and rein-

forcement meta-learning, it is time to contrast meta-learning briefly with two related areas 

of machine learning that also have the goal to improve the speed of learning. We will start 

with transfer learning.

Transfer Learning In Transfer Learning, one tries to transfer knowledge of previous 

tasks to new, unseen tasks (Pan and Yang 2009; Taylor and Stone 2009), which can be 

challenging when a  new task comes from a different distribution than the one used for 

training Iqbal et al. (2018). The distinction between Transfer Learning and Meta-Learning 

has become more opaque over time. A key property of meta-learning techniques, however, 

is their meta-objective, which explicitly aims to optimize performance across a distribu-

tion over tasks (as seen in previous sections by taking the expected loss over a distribution 

of tasks). This objective need not always be present in Transfer Learning techniques, e.g., 

when one pre-trains a model on a large data set and fine-tunes the learned weights on a 

smaller data set.

Multi-task learning Another, closely related field, is that of multi-task learning. In 

multi-task learning, a model is jointly trained to perform well on multiple fixed tasks 

(5)�RL ≈ g
�
(Tj, LTj

),

(6)�
∗ ∶= arg min

�

�Tj∽p(T)

⏟⏟⏟

Outer-level

⎡
⎢⎢⎢⎢⎢⎣

�traj

T�
t=0

�
tr(st,�g�(Tj,LTj

)(st))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Inner-level

⎤
⎥⎥⎥⎥⎥⎦

.
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(Hospedales et al. 2020). Meta-learning, in contrast, aims to find a model that can learn 

new (previously unseen) tasks quickly. This difference is illustrated in Fig. 2. 

2.2  The meta-setup

In the previous section, we have described the learning objectives for (meta) supervised 

and reinforcement learning. We will now describe the general setting that can be used 

to achieve these objectives. In general, one optimizes a meta-objective by using various 

tasks, which are data sets in the context of supervised learning, and (Partially Observable) 

Markov Decision Processes in  the case of reinforcement learning. This is done in three 

stages: the (i) meta-train stage, (ii) meta-validation stage, and (iii) meta-test stage, each of 

which is associated with a set of tasks.

First, in the meta-train stage, the meta-learning algorithm is applied to the meta-train 

tasks. Second, the meta-validation tasks can then be used to evaluate the performance on 

unseen tasks, which were not used for training. Effectively, this measures the meta-gen-

eralization ability of the trained network, which serves as feedback to tune, e.g., hyper-

parameters of the meta-learning algorithm. Third, the meta-test tasks are used to give a 

final performance estimate of the meta-learning technique.

2.2.1  N-way, k-shot Learning

A frequently used instantiation of this general meta-setup is called N-way, k-shot classi-

fication (see Fig. 3). This setup is also divided into the three stages—meta-train, meta-

validation, and meta-test—which are used for meta-learning, meta-learner hyperparam-

eter optimization, and evaluation, respectively. Each stage has a corresponding set of 

disjoint labels, i.e., Ltr
, Lval

, Ltest
⊂ Y  , such that Ltr ∩ Lval = �, Ltr ∩ Ltest = � , and 

Lval ∩ Ltest = � . In a given stage s, tasks/episodes Tj = (Dtr
Tj

, Dtest
Tj

) are obtained by sam-

pling examples (xi, yi) from the full data set D , such that every yi ∈ Ls . Note that this 

requires access to a data set D . The sampling process is guided by the N-way, k-shot 

principle, which states that every training data set Dtr
Tj

 should contain exactly N classes 

Fig. 2  The difference between multi-task learning and meta-learning. Adapted from  https:// meta- world. 

github. io/.

https://meta-world.github.io/
https://meta-world.github.io/
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and k examples per class, implying that |Dtr
Tj

| = N ⋅ k . Furthermore, the true labels of 

examples in the test set Dtest
Tj

 must be present in the train set Dtr
Tj

 of a given task Tj . D
tr
Tj

 

acts as a support set, literally supporting classification decisions on the query set Dtest
Tj

 . 

Importantly, note that with this terminology, the query set (or test set) of a task is used 

during the meta-training phase. Furthermore, the fact that the labels across stages are 

disjoint ensures that we test the ability of a model to learn new concepts.

The meta-learning objective in the training phase is to minimize the loss function of 

the model predictions on the query sets, conditioned on the support sets. As such, for a 

given task Tj , the model ‘sees’ the support set, and extracts information from the sup-

port set to guide its predictions on the query set. By applying this procedure to different 

episodes/tasks Tj , the model will slowly accumulate meta-knowledge � , which can ulti-

mately speed up learning on new tasks.

The easiest way to achieve this is by doing this with regular neural networks, but as 

was pointed out by various authors (see, e.g., Finn et al. 2017) more sophisticated archi-

tectures will vastly outperform such networks. In the remainder of this work, we will 

review such architectures.

At the meta-validation and meta-test stages, or evaluation phases, the learned meta-

information in � is fixed. The model is, however, still allowed to make task-specific 

updates to its parameters � (which implies that it is learning). After task-specific 

updates, we can evaluate the performance on the test sets. In this way, we test how well 

a technique performs at meta-learning.

N-way, k-shot classification is often performed for small values of k (since we want 

our models to learn new concepts quickly, i.e., from few examples). In that case, one 

can refer to it as few-shot learning.

Fig. 3  Illustration of N-way, k-shot classification, where N = 5 , and k = 1 . Meta-validation tasks are not 

displayed. Adapted from Ravi and Larochelle (2017)
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2.2.2  Common benchmarks

Here, we briefly describe some benchmarks that can be used to evaluate meta-learning 

algorithms.

• Omniglot (Lake et  al. 2011): This data set presents an image recognition task. Each 

image corresponds to one out of 1 623 characters from 50 different alphabets. Every 

character was drawn by 20 people. Note that in this case, the characters are the classes/

labels.
• ImageNet (Deng et al. 2009): This is the largest image classification data set, containing 

more than 20K classes and over 14 million colored images. miniImageNet is a mini var-

iant of the large ImageNet data set (Deng et al. 2009) for image classification, proposed 

by Vinyals et al. (2016) to reduce the engineering efforts to run experiments. The mini 

data set contains 60 000 colored images of size 84 × 84 . There are a total of 100 classes 

present, each accorded by 600 examples. tieredImageNet (Ren et al. 2018) is another 

variation of the large ImageNet data set. It is similar to miniImageNet, but contains a 

hierarchical structure. That is, there are 34 classes, each with its own sub-classes.
• CIFAR-10 and CIFAR-100 (Krizhevsky 2009): Two other image recognition data sets. 

Each one contains 60K RGB images of size 32 × 32 . CIFAR-10 and CIFAR-100 con-

tain 10 and 100 classes respectively, with a uniform number of examples per class 

(6  000 and 600 respectively). Every class in CIFAR-100 also has a super-class, of 

which there are 20 in the full data set. Many variants of the CIFAR data sets can be 

sampled, giving rise to e.g. CIFAR-FS (Bertinetto et al. 2019) and FC-100 (Oreshkin 

et al. 2018).
• CUB-200-2011 (Wah et al. 2011): The CUB-200-2011 data set contains roughly 12K 

RGB images of birds from 200 species. Every image has some labeled attributes (e.g. 

crown color, tail shape).
• MNIST (LeCun et  al. 2010): MNIST presents a hand-written digit recognition task, 

containing ten classes (for digits 0 through 9). In total, the data set is split into a 60K 

train and 10K test gray scale images of hand-written digits.
• Meta-Dataset (Triantafillou et al. 2020): This data set comprises several other data sets 

such as Omniglot (Lake et  al. 2011), CUB-200 (Wah et  al. 2011), ImageNet (Deng 

et  al. 2009), and more (Triantafillou et  al. 2020). An episode is then constructed by 

sampling a data set (e.g. Omniglot), selecting a subset of labels to create train and test 

splits as before. In this way, broader generalization is enforced since the tasks are more 

distant from each other.
• Meta-world (Yu et  al. 2019): A meta reinforcement learning data set, containing 50 

robotic manipulation tasks (control a robot arm to achieve some pre-defined goal, e.g. 

unlocking a door, or playing soccer). It was specifically designed to cover a broad range 

of tasks, such that meaningful generalization can be measured (Yu et al. 2019).

2.2.3  Some applications of meta-learning

Deep neural networks have achieved remarkable results on various tasks from image recog-

nition, text processing, game playing to robotics (Silver et al. 2016; Mnih et al. 2013; Wu 

et al. 2016), but their success depends on the amount of available data (Sun et al. 2017) 

and computing resources. Deep meta-learning reduces this dependency by allowing deep 
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neural networks to learn new concepts quickly. As a result, meta-learning widens the appli-

cability of deep learning techniques to many application domains. Such areas include few-

shot image classification (Finn et al. 2017; Snell et al. 2017; Ravi and Larochelle 2017), 

robotic control policy learning (Gupta et  al. 2018; Nagabandi et  al. 2019) (see Fig.  4), 

hyperparameter optimization (Antoniou et al. 2019; Schmidhuber et al. 1997), meta-learn-

ing learning rules (Bengio et al. 1991, 1997; Miconi et al. 2018, 2019), abstract reasoning 

(Barrett et al. 2018), and many more. For a larger overview of applications, we refer inter-

ested readers to Hospedales et al. (2020).

2.3  The meta-learning field

As mentioned in the introduction, meta-learning is a broad area of research, as it encapsu-

lates all techniques that leverage prior learning experience to learn new tasks more quickly 

(Vanschoren 2018). We can classify two distinct communities in the field with a different 

focus: (i) algorithm selection and hyperparameter optimization for machine learning tech-

niques, and (ii) search for inductive bias in deep neural networks. We will refer to these 

communities as group (i) and group (ii) respectively. Now, we will give a brief description 

of the first field, and a historical overview of the second.

Group (i) uses a more traditional approach, to select a suitable machine learning algo-

rithm and hyperparameters for a new data set D (Peng et al. 2002). This selection can for 

example be made by leveraging prior model evaluations on various data sets D′ , and by 

using the model which achieved the best performance on the most similar data set (Van-

schoren 2018). Such traditional approaches require (large) databases of prior model evalu-

ations, for many different algorithms. This has led to initiatives such as OpenML (Van-

schoren et  al. 2014), where researchers can share such information. The usage of these 

systems would limit the freedom in picking the neural network architecture as they would 

be constrained to using architectures that have been evaluated beforehand.

Driven by advances in neural networks another approach, taken by group (ii), is to adopt 

the view of a self-improving agent, which improves its learning ability over time by finding 

Fig. 4  Learning continuous robotic control tasks is an important application of Deep Meta-Learning tech-

niques. Image is taken from (Yu et al. 2019)
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a good inductive bias (a set of assumptions that guide predictions). We now present a brief 

historical overview of developments in this field of Deep Meta-Learning, based on Hos-

pedales et al. (2020).

Pioneering work was done by Schmidhuber (1987) and Hinton and Plaut (1987). 

Schmidhuber developed a theory of self-referential learning, where the weights of a neural 

network can serve as input to the model itself, which then predicts updates (Schmidhuber 

1987, 1993). In that same year, Hinton and Plaut (1987) proposed to use two weights per 

neural network connection, i.e., slow and fast weights, which serve as long- and short-term 

memory respectively. Later came the idea of meta-learning learning rules (Bengio et  al. 

1991, 1997). Meta-learning techniques that use gradient-descent and backpropagation were 

proposed by Hochreiter et  al. (2001) and Younger et  al. (2001). These two works have 

been pivotal to the current field of Deep Meta-Learning, as the majority of techniques rely 

on backpropagation, as we will see on our journey of contemporary Deep Meta-Learning 

techniques. We will now cover the three categories metric-, model-, and optimization-

based techniques, respectively.

2.4  Overview of the rest of this work

In the remainder of this work, we will look in more detail at individual meta-learning 

methods. As indicated before, the techniques can be grouped into three main categories 

(Vinyals 2017), namely (i) metric-, (ii) model-, and (iii) optimization-based methods. We 

will discuss them in sequence.

To help give an overview of the methods, we draw your attention to the following figure 

and tables. Table 2 summarizes the three categories and provides key ideas, strengths, and 

weaknesses of the approaches. The terms and technical details are explained more fully 

in the remainder of this paper. Table 3 contains an overview of all techniques that are dis-

cussed further on. 

3  Metric-based meta-learning

At a high level, the goal of metric-based techniques is to acquire—among others—meta-

knowledge � in the form of a good feature space that can be used for various new tasks. 

In the context of neural networks, this feature space coincides with the weights � of the 

Table 2  A high-level overview of the three Deep Meta-Learning categories, i.e., (i) metric-, (ii) model-, and 

(iii) optimization-based techniques, and their main strengths and weaknesses

Recall that Tj is a task, Dtr
Tj

 the corresponding support set, k
�
(x, x

i
) a kernel function returning the similarity 

between the two inputs x and x
i
 , yi are true labels for known inputs x

i
 , � are base-learner parameters, and g

�
 

is a (learned) optimizer with parameters �

Metric Model Optimization

Key idea Input similarity Internal task represen-

tation

Optimize for fast adaptation

Strength Simple and effective Flexible More robust generalizability

p
�
(Y|x, Dtr

Tj

)
∑

(xi ,yi)∈Dtr
Tj

k
�
(x, xi)yi f

�
(x, Dtr

Tj

) fg�(�,Dtr
Tj

,L
Dtr

Tj

)
(x)
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networks. Then, new tasks can be learned by comparing new inputs to example inputs (of 

which we know the labels) in the meta-learned feature space. The higher the similarity 

between a new input and an example, the more likely it is that the new input will have the 

same label as the example input.

Table 3  Overview of the discussed Deep Meta-Learning techniques

The table is partitioned into three sections, i.e., metric-, model-, and optimization-based. All methods in 

one section adhere to the key idea of its corresponding category, which is mentioned in bold font. The col-

umns RL and Bench show whether the techniques are applicable to reinforcement learning settings and the 

used benchmarks for testing the performance of the techniques. Note that all techniques are applicable to 

supervised learning, with the exception of recurrent meta-learners. The benchmark column displays which 

benchmarks from Sect. 2.2.2 were used in the paper proposing the technique. The used coding scheme for 

this column is the following. 1: Omniglot, 2: miniImageNet, 3: tieredImageNet, 4: CIFAR-100, 5: CIFAR-

FS, 6: CIFAR-10, 7: CUB, 8: MNIST, “–”: used other evaluation methods that are non-standard in Deep 

Meta-Learning and thus not covered in Sect. 2.2.2. Used abbreviations: “opt.”: optimization, “diff.”: differ-

entiable, “bench.”: benchmarks

Name RL Key idea Bench.

Metric-based Input similarity –

Siamese networks ✗ Two-input, shared-weight, class identity network 1, 8

Matching net-

works

✗ Learn input embeddings for cosine-similarity weighted predictions 1, 2

Prototypical 

networks

✗ Input embeddings for class prototype clustering 1, 2, 7

Relation networks ✗ Learn input embeddings and similarity metric 1, 2, 7

ARC ✗ LSTM-based input fusion through interleaved glimpses 1, 2

GNN ✗ Propagate label information to unlabeled inputs in a graph 1, 2

Model-based Internal and stateful latent task representations –

Recurrent ml. ✓ Deploy Recurrent networks on RL problems –

MANNs ✗ External short-term memory module for fast learning 1

Meta networks ✓ Fast reparameterization of base-learner by distinct meta-learner 1, 2

SNAIL ✓ Attention mechanism coupled with temporal convolutions 1, 2

CNP ✗ Condition predictive model on embedded contextual task data 1, 8

Neural stat. ✗ Similarity between latent task embeddings 1, 8

Opt.-based Optimize for fast task-specific adaptation –

LSTM optimizer ✗ RNN proposing weight updates for base-leaner 6, 8

LSTM ml. ✓ Embed base-learner parameters in cell state of LSTM 2

RL optimizer ✗ View optimization as RL problem 4, 6

MAML ✓ Learn initialization weights � for fast adaptation 1, 2

iMAML ✓ Approx. higher-order gradients, independent of optimization path 1, 2

Meta-SGD ✓ Learn both the initialization and updates 1, 2

Reptile ✓ Move initialization towards task-specific updated weights 1, 2

LEO ✗ Optimize in lower-dimensional latent parameter space 2, 3

Online MAML ✗ Accumulate task data for MAML-like training 4, 8

LLAMA ✗ Maintain probability distribution over post-update parameters �′

j
2

PLATIPUS ✗ Learn a probability distribution over weight initialization � –

BMAML ✓ Learn multiple initializations � , jointly optimized by SVGD 2

Diff. solvers ✗ Learn input embeddings for simple base-learners 1, 2, 3, 4, 5



4495A survey of deep meta-learning  

1 3

Metric-based techniques are a form of meta-learning as they leverage their prior learning 

experience (meta-learned feature space) to ‘learn’ new tasks more quickly. Here, ‘learn’ is 

used in a non-standard way since metric-based techniques do not make any network changes 

when presented with new tasks, as they rely solely on input comparisons in the already meta-

learned feature space. These input comparisons are a form of non-parametric learning, i.e., 

new task information is not absorbed into the network parameters.

More formally, metric-based learning techniques aim to learn a similarity kernel, or equiv-

alently, attention mechanism k
�
 (parameterized by � ), that takes two inputs x

1
 and x

2
 , and out-

puts their similarity score. Larger scores indicate larger similarities. Class predictions for new 

inputs x can then be made by comparing x to example inputs x
i
 , of which we know the true 

labels yi . The underlying idea is that the larger the similarity between x and x
i
 , the more likely 

it becomes that x also has label yi.

Given a task Tj = (Dtr
Tj

, Dtest
Tj

) and an unseen input vector x ∈ Dtest
Tj

 , a probability distribu-

tion over classes Y is computed/predicted as a weighted combination of labels from the sup-

port set Dtr
Tj

 , using similarity kernel k
�
 , i.e.,

Importantly, the labels yi are assumed to be one-hot encoded, meaning that they are repre-

sented by zero vectors with a ‘1’ on the position of the true class. For example, suppose 

there are five classes in total and our example x
1
 has true class 4. Then, the one-hot encoded 

label is y1 = [0, 0, 0, 1, 0] . Note that the probability distribution p
�
(Y|x, Dtr

Tj

) over classes is 

a vector of size |Y|, in which the i-th entry corresponds to the probability that input x has 

class Y
i
 (given the support set). The predicted class is thus ŷ = arg max i=1,2,…,|Y|p�

(Y|x, S)i , 

where p
�
(Y|x, S)i is the computed probability that input x has class Y

i
.

(7)
p
�
(Y|x, Dtr

Tj
) =

∑

(xi ,yi)∈Dtr
Tj

k
�
(x, xi)yi.

Fig. 5  Illustration of our metric-

based example. The blue vector 

represents the new input from the 

query set, whereas the red vec-

tors are inputs from the support 

set which can be used to guide 

our prediction for the new input
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3.1  Example

Suppose that we are given a task Tj = (Dtr
Tj

, Dtest
Tj

) . Furthermore, suppose that 

Dtr
Tj

= {([0,−4], 1), ([−2,−4], 2), ([−2, 4], 3), ([6, 0], 4)} , where a tuple denotes a pair (xi, yi) . 

For simplicity, the example will not use an embedding function, which maps example inputs 

onto an (more informative) embedding space. Our query set only contains one example 

Dtest
Tj

= {([4, 0.5], y)} . Then, the goal is to predict the correct label for new input [4, 0.5] using 

only examples in Dtr
Tj

 . The problem is visualized in Fig. 5, where red vectors correspond to 

example inputs from our support set. The blue vector is the new input that needs to be classi-

fied. Intuitively, this new input is most similar to the vector [6, 0], which means that we expect 

the label for the new input to be the same as that for [6, 0], i.e., 4.

Suppose we use a fixed similarity kernel, namely the cosine similarity, i.e., 

k(x, x
i
) =

x⋅x
T

i

||x||⋅||x
i
||
 , where ||v|| denotes the length of vector v , i.e., ��v�� =

�
(
∑

n
v

2

n
) . Here, v

n
 

denotes the n-th element of placeholder vector v (substitute v by x or x
i
 ). We can now compute 

the cosine similarity between the new input [4, 0.5] and every example input x
i
 , as done in 

Table  4, where we used the facts that ��x�� = �� [4, 0.5] �� =
√

42 + 0.52 ≈ 4.03 , and 
x

||x||
≈

[4,0.5]

4.03
= [0.99, 0.12].

From this table and Eq.  7, it follows that the predicted probability distribution 

p
�
(Y|x, Dtr

Tj

) = −0.12y1 − 0.58y2 − 0.37y3 + 0.99y4 −0.58[0, 1, 0, 0] − 0.37[0, 0, 1, 0]+

0.99[0, 0, 0, 1] = [−0.12,−0.58,−0.37, 0.99] . Note that this is not really a probability distri-

bution. That would require normalization such that every element is at least 0 and the sum of 

all elements is 1. For the sake of this example, we do not perform this normalization, as it is 

clear that class 4 (the class of the most similar example input [6, 0]) will be predicted.

One may wonder why such techniques are meta-learners, for we could take any single data 

set D and use pair-wise comparisons to compute predictions. At the outer-level, metric-based 

meta-learners are trained on a distribution of different tasks, in order to learn (among others) 

a good input embedding function. This embedding function facilitates inner-level learning, 

which is achieved through pair-wise comparisons. As such, one learns an embedding function 

across tasks to facilitate task-specific learning, which is equivalent to “learning to learn”, or 

meta-learning.

After this introduction to metric-based methods, we will now cover some key metric-based 

techniques.

Table 4  Example showing pair-

wise input comparisons

Numbers were rounded to two decimals

x
i

yi ||x
i
|| x

i

||x
i
||

x
i

||x
i
||
⋅

x

||x||

[0,−4] [1, 0, 0, 0] 4 [0,−1] −0.12

[ − 2,−4] [0, 1, 0, 0] 4.47 [−0.48,−0.89] −0.58

[ − 2, 4] [0, 0, 1, 0] 4.47 [−0.48, 0.89] −0.37

[6, 0] [0, 0, 0, 1] 6 [1, 0] 0.99
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3.2  Siamese neural networks

A Siamese neural network (Koch et al. 2015) consists of two neural networks f
�
 that share 

the same weights � . Siamese neural networks take two inputs x1, x2 , and compute two hid-

den states f
�
(x1), f

�
(x2) , corresponding to the activation patterns in the final hidden lay-

ers. These hidden states are fed into a distance layer, which computes a distance vector 

d = |f
�
(x

1
) − f

�
(x

2
)| , where d

i
 is the absolute distance between the i-th elements of f

�
(x

1
) 

and f
�
(x

2
) . From this distance vector, the similarity between x1, x2 is computed as �(�T

d) , 

where � is the sigmoid function (with output range [0,1]), and � is a vector of free weight-

ing parameters, determining the importance of each d
i
 . This network structure can be seen 

in Fig. 6.

Koch et al. (2015) applied this technique to few-shot image recognition in two stages. In 

the first stage, they train the twin network on an image verification task, where the goal is 

to output whether two input images x
1
 and x

2
 have the same class. The network is thus 

stimulated to learn discriminative features. In the second stage, where the model is con-

fronted with a new task, the network leverages its prior learning experience. That is, given 

a task Tj = (Dtr
Tj

, Dtest
Tj

) , and previously unseen input x ∈ Dtest
Tj

 , the predicted class ŷ is equal 

to the label yi of the example (xi, yi) ∈ Dtr
Tj

 which yields the highest similarity score to x . In 

contrast to other techniques mentioned further in this section, Siamese neural networks do 

not directly optimize for good performance across tasks (consisting of support and query 

sets). However, they do leverage learned knowledge from the verification task to learn new 

tasks quickly.

In summary, Siamese neural networks are a simple and elegant approach to perform 

few-shot learning. However, they are not readily applicable outside the supervised learning 

setting.

Fig. 6  Example of a Siamese neural network. Source: Koch et al. (2015)
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3.3  Matching networks

Matching networks (Vinyals et al. 2016) build upon the idea that underlies Siamese neu-

ral networks (Koch et al. 2015). That is, they leverage pair-wise comparisons between 

the given support set Dtr
Tj

= {(xi, yi)}
m
i=1

 (for a task Tj ), and new inputs x ∈ Dtest
Tj

 from the 

query set which we want to classify. However, instead of assigning the class yi of the 

most similar example input x
i
 , matching networks use a weighted combination of all 

example labels yi in the support set, based on the similarity of inputs x
i
 to new input x . 

More specifically, predictions are computed as follows: ŷ =
∑m

i=1
a(x, xi)yi , where a is a 

non-parametric (non-trainable) attention mechanism, or similarity kernel. This classifi-

cation process is shown in Fig. 7. In this figure, the input to f
�
 has to be classified, using 

the support set Dtr
Tj

 (input to g
�
).

The attention that is used consists of a softmax over the cosine similarity c between 

the input representations, i.e.,

where f� and g
�
 are neural networks, parameterized by � and � , that map raw inputs to a 

(lower-dimensional) latent vector, which corresponds to the output of the final hidden layer 

of a neural network. As such, neural networks act as embedding functions. The larger the 

cosine similarity between the embeddings of x and x
i
 , the larger a(x, x

i
) , and thus the influ-

ence of label yi on the predicted label ŷ for input x.

Vinyals et al. (2016) propose two main choices for the embedding functions. The first 

is to use a single neural network, granting us � = � = � and thus f� = g� . This setup is 

the default form of matching networks, as shown in Fig. 7. The second choice is to make 

f� and g
�
 dependent on the support set Dtr

Tj

 using Long Short-Term Memory networks 

(LSTMs). In that case, f� is represented by an attention LSTM, and g
�
 by a bidirectional 

one. This choice for embedding functions is called Full Context Embeddings (FCE), and 

yielded an accuracy improvement of roughly 2% on miniImageNet compared to the 

(8)a(x, xi) =
ec(f�(x),g�(xi))

∑m

j=1
ec(f�(x),g�(xj))

,

Fig. 7  The architecture of matching networks. Source: Vinyals et al. (2016)
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regular matching networks, indicating that task-specific embeddings can aid the classifi-

cation of new data points from the same distribution.

Matching networks learn a good feature space across tasks for making pair-wise compari-

sons between inputs. In contrast to Siamese neural networks (Koch et al. 2015), this feature 

space (given by weights � ) is learned across tasks, instead of on a distinct verification task.

In summary, matching networks are an elegant and simple approach to metric-based meta-

learning. However, these networks are not readily applicable outside of supervised learning 

settings, and suffer from performance degradation when label distributions are biased (Vinyals 

et al. 2016).

3.4  Prototypical networks

Just like Matching networks (Vinyals et al. 2016), prototypical networks (Snell et al. 2017) 

base their class predictions on the entire support set Dtr
Tj

 . However, instead of computing 

the similarity between new inputs and examples in the support set, prototypical networks 

only compare new inputs to class prototypes (centroids), which are single vector represen-

tations of classes in some embedding space. Since there are fewer (or equal) class proto-

types than the number of examples in the support set, the amount of required pair-wise 

comparisons decreases, saving computational costs.

The underlying idea of class prototypes is that for a task Tj , there exists an embedding 

function that maps the support set onto a space where class instances cluster nicely around 

the corresponding class prototypes (Snell et al. 2017). Then, for a new input x , the class of 

the prototype nearest to that input will be predicted. As such, prototypical networks per-

form nearest centroid/prototype classification in a meta-learned embedding space. This is 

visualized in Fig. 8.

More formally, given a distance function d ∶ X × X → [0,+∞) (e.g. Euclidean distance) 

and embedding function f
�
 , parameterized by � , prototypical networks compute class prob-

abilities p
�
(Y|x, Dtr

Tj

) as follows

(9)p
�
(y = k�x, Dtr

Tj
) =

exp[−d(f
�
(x), ck)]∑

yi
exp[−d(f

�
(x), cyi

)]
,

Fig. 8  Prototypical networks for the case of few-shot learning. The c
k
 are class prototypes for class k which 

are computed by averaging the representations of inputs (colored circles) in the support set. Note that the 

representation space is partitioned into three disjoint areas, where each area corresponds to one class. The 

class with the closest prototype to the new input x in the query set is then given as prediction. Source: Snell 

et al. (2017). (Color figure online)
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where c
k
 is the prototype/centroid for class k and yi are the classes in the support set Dtr

Tj

 . 

Here, a class prototype for class k is defined as the average of all vectors x
i
 in the support 

set such that yi = k . Thus, classes with prototypes that are nearer to the new input x obtain 

larger probability scores.

Snell et  al. (2017) found that the squared Euclidean distance func-

tion as d gave rise to the best performance. With that distance function, pro-

totypical networks can be seen as linear models. To see this, note that 

−d(f
�
(x), ck) = −||f

�
(x) − ck||

2 = −f
�
(x)T f

�
(x) + 2c

T
k
f
�
(x) − c

T
k
ck . The first term does not 

depend on the class k, and does thus not affect the classification decision. The remain-

der can be written as wT
k
f
�
(x) + bk , where w

k
= 2c

k
 and b

k
= −c

T

k
c

k
 . Note that this is lin-

ear in the output of network f
�
 , not linear in the input of the network x . Also, Snell et al. 

(2017) show that prototypical networks (coupled with Euclidean distance) are equivalent to 

matching networks in one-shot learning settings, as every example in the support set will 

be its own prototype.

In short, prototypical networks save computational costs by reducing the required num-

ber of pair-wise comparisons between new inputs and the support set, by adopting the 

concept of class prototypes. Additionally, prototypical networks were found to outperform 

matching networks (Vinyals et al. 2016) in 5-way, k-shot learning for k = 1, 5 on Omniglot 

(Lake et al. 2011) and miniImageNet (Vinyals et al. 2016), even though they do not use 

complex task-specific embedding functions. Despite these advantages, prototypical net-

works are not readily applicable outside of supervised learning settings.

Fig. 9  Relation network architecture. First, the embedding network f
�
 embeds all inputs from the support 

set Dtr
Tj

 (the five example inputs on the left), and the query input (below the f
�
 block). All support set 

embeddings f
�
(xi) are then concatenated to the query embedding f

�
(x) . These concatenated embeddings 

are passed into a relation network g� , which computes a relation score for every pair (x
i
, x) . The class of the 

input x
i
 that yields the largest relation score g�([f�(x), f�(xi)]) is then predicted. Source: Sung et al. (2018)
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3.5  Relation networks

In contrast to previously discussed metric-based techniques, Relation networks (Sung et al. 

2018) employ a trainable similarity metric, instead of a pre-defined one (e.g. cosine simi-

larity as used in matching networks (Vinyals et al. 2016)). More specifically, matching net-

works consist of two chained, neural network modules: the embedding network/module f
�
 

which is responsible for embedding inputs, and the relation network g� which computes 

similarity scores between new inputs x and example inputs x
i
 of which we know the labels. 

A classification decision is then made by picking the class of the example input which 

yields the largest relation score (or similarity). Note that Relation networks thus do not use 

the idea of class prototypes, and simply compare new inputs x to all example inputs x
i
 in 

the support set, as done by, e.g., matching networks (Vinyals et al. 2016).

More formally, we are given a support set Dtr
Tj

 with some examples (xi, yi) , and a new 

(previously unseen) input x . Then, for every combination (x, x
i
) , the Relation network pro-

duces a concatenated embedding [f
�
(x), f

�
(xi)] , which is the vector obtained by concatenat-

ing the respective embeddings of x and x
i
 . This concatenated embedding is then fed into 

the relation module g� . Finally, g� computes the relation score between x and x
i
 as

The predicted class is then ŷ = y
arg max iri

 . This entire process is shown in Fig. 9. Remark-

ably enough, Relation networks use the Mean-Squared Error (MSE) of the relation scores, 

rather than the more standard cross-entropy loss. The MSE is then propagated backwards 

through the entire architecture (Fig. 9).

The key advantage of Relation networks is their expressive power, induced by the usage 

of a trainable similarity function. This expressivity makes this technique very powerful. As 

a result, it yields better performance than previously discussed techniques that use a fixed 

similarity metric.

3.6  Graph neural networks

Graph neural networks (Garcia and Bruna 2017) use a more general and flexible approach 

than previously discussed techniques for N-way, k-shot classification. As such, graph neu-

ral networks subsume Siamese (Koch et al. 2015) and prototypical networks (Snell et al. 

2017). The graph neural network approach represents each task Tj as a fully-connected 

graph G = (V , E) , where V is a set of nodes/vertices and E a set of edges connecting nodes. 

In this graph, nodes v
i
 correspond to input embeddings f

�
(xi) , concatenated with their one-

hot encoded labels yi , i.e., vi = [f
�
(xi), yi] . For inputs x from the query set (for which we 

do not have the labels), a uniform prior over all N possible labels is used: y = [
1

N
,… ,

1

N
] . 

Thus, each node contains an input and label section. Edges are weighted links that connect 

these nodes.

The graph neural network then propagates information in the graph using a number 

of local operators. The underlying idea is that label information can be transmitted from 

nodes of which we do have the labels, to nodes for which we have to predict labels. Which 

local operators are used, is out of scope for this paper, and the reader is referred to Garcia 

and Bruna (2017) for details.

(10)ri = g�([f�(x), f�(xi)]).
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By exposing the graph neural network to various tasks Tj , the propagation mecha-

nism can be altered to improve the flow of label information in such a way that predic-

tions become more accurate. As such, in addition to learning a good input representation 

function f
�
 , graph neural networks also learn to propagate label information from labeled 

examples to unlabeled inputs.

Graph neural networks achieve good performance in few-shot settings (Garcia and 

Bruna 2017) and are also applicable in semi-supervised and active learning settings.

3.7  Attentive recurrent comparators

Attentive recurrent comparators (Shyam et al. 2017) differ from previously discussed tech-

niques as they do not compare inputs as a whole, but by parts. This approach is inspired 

by how humans would make a decision concerning the similarity of objects. That is, we 

shift our attention from one object to the other, and move back and forth to take glimpses 

of different parts of both objects. In this way, information of two objects is fused from 

the beginning, whereas other techniques (e.g., matching networks (Vinyals et  al. 2016) 

and graph neural networks (Garcia and Bruna 2017)) only combine information at the end 

(after embedding both images) (Shyam et al. 2017).

Given two inputs x
i
 and x , we feed them in interleaved fashion repeatedly into a recur-

rent neural network (controller): x
i
, x,… , x

i
, x . Thus, the image at time step t is given by 

I
t
= x

i
 if t is even else x . Then, at each time step t, the attention mechanism focuses on a 

square region of the current image: G
t
= attend(I

t
,�

t
) , where �t = Wght−1

 are attention 

Fig. 10  Processing in an attentive recurrent comparator. At every time step, the model takes a glimpse of 

a part of an image and incorporates this information into the hidden state h
t
 . The final hidden state after 

taking various glimpses of a pair of images is then used to compute a class similarity score. Source: Shyam 

et al. (2017)
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parameters, which are computed from the previous hidden state h
t−1

 . The next hidden state 

h
t+1 = RNN (G

t
, h

t−1) is given by the glimpse at time t, i.e., G
t
 , and the previous hidden 

state h
t−1

 . The entire sequence consists of g glimpses per image. After this sequence is fed 

into the recurrent neural network (indicated by RNN(◦)), the final hidden state h
2g is used 

as a combined representation of x
i
 relative to x . This process is summarized in Fig. 10. 

Classification decisions can then be made by feeding the combined representations into 

a classifier. Optionally, the combined representations can be processed by bi-directional 

LSTMs before passing them to the classifier.

The attention approach is biologically inspired, and biologically plausible. A downside 

of attentive recurrent comparators is the higher computational cost, while the performance 

is often not better than less biologically plausible techniques, such as graph neural net-

works (Garcia and Bruna 2017).

3.8  Metric-based techniques, in conclusion

In this section, we have seen various metric-based techniques. The metric-based techniques 

meta-learn an informative feature space that can be used to compute class predictions 

based on input similarity scores. Figure  11 shows the relationships between the various 

metric-based techniques that we have covered.

As we can see, Siamese networks (Koch et  al. 2015) mark the beginning of metric-

based, deep meta-learning techniques in few-shot learning settings. They are the first to 

use the idea of predicting classes by comparing inputs from the support and query sets. 

This idea was generalized in graph neural networks (GNNs) (Hamilton et al. 2017; Garcia 

and Bruna 2017) where the information flow between support and query inputs is paramet-

ric and thus more flexible. Matching networks (Vinyals et al. 2016) are directly inspired 

by Siamese networks as they use the same core idea (comparing inputs for making pre-

dictions), but directly train in the few-shot setting and use cosine similarity as a similar-

ity function. Thus, the auxiliary, binary classification task used by Siamese networks is 

left out, and matching networks directly train on tasks. Prototypical networks (Snell et al. 

2017) increase the robustness of input comparisons by comparing every query set input 

with a class prototype instead of individual support set examples. This reduces the num-

ber of required input comparisons for a single query input to N instead of k ⋅ N . Relation 

Fig. 11  The relationships between the covered metric-based meta-learning techniques
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networks (Sung et al. 2018) replace the fixed, pre-defined similarity metrics used in match-

ing and prototypical networks with a neural network, which allows for learning a domain-

specific similarity function. Lastly, attentive recurrent comparators (ARCs) (Shyam et al. 

2017) take a more biologically plausible approach by not comparing entire inputs but by 

taking multiple interleaved glimpses at various parts of the inputs that are being compared.

Key advantages of these metric-based techniques are that (i) the underlying idea of sim-

ilarity-based predictions is conceptually simple, and (ii) they can be fast at test-time when 

tasks are small, as the networks do not need to make task-specific adjustments. However, 

when tasks at meta-test time become more distant from the tasks that were used at meta-

train time, metric-learning techniques are unable to absorb new task information into the 

network weights. Consequently, performance may suffer.

Furthermore, when tasks become larger, pair-wise comparisons may become compu-

tationally expensive. Lastly, most metric-based techniques rely on the presence of labeled 

examples, which make them inapplicable outside of supervised learning settings.

4  Model-based meta-learning

A different approach to Deep Meta-Learning is the model-based approach. On a high level, 

model-based techniques rely upon an adaptive, internal state, in contrast to metric-based 

techniques, which generally use a fixed neural network at test-time.

More specifically, model-based techniques maintain a stateful, internal representation 

of a task. When presented with a task, a model-based neural network processes the support 

set in a sequential fashion. At every time step, an input enters and alters the internal state 

of the model. Thus, the internal state can capture relevant task-specific information, which 

can be used to make predictions for new inputs.

Because the predictions are based on internal dynamics that are hidden from the out-

side, model-based techniques are also called black-boxes. Information from previous inputs 

must be remembered, which is why model-based techniques have a memory component, 

either in- or externally.

Recall that the mechanics of metric-based techniques were limited to pair-wise input 

comparisons. This is not the case for model-based techniques, where the human designer 

has the freedom to choose the internal dynamics of the algorithm. As a result, model-based 

techniques are not restricted to meta-learning good feature spaces, as they can also learn 

internal dynamics, used to process and predict input data of tasks.

More formally, given a support set Dtr
Tj

 corresponding to a  task Tj , model-based tech-

niques compute a class probability distribution for a new input x as

where f represents the black-box neural network model, and � its parameters.

4.1  Example

Using the same example as in Sect.  3, suppose we are given a task support set 

Dtr
Tj

= {([0,−4], 1), ([−2,−4], 2), ([−2, 4], 3), ([6, 0], 4)} , where a tuple denotes a pair 

(xi, yi) . Furthermore, suppose our query set only contains one example Dtest
Tj

= {([4, 0.5], 4)} . 

(11)p
�
(Y|x, Dtr

Tj
) = f

�
(x, Dtr

Tj
),
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This problem has been visualized in Fig. 5 (in Sect. 3). For the sake of the example, we do 

not use an input embedding function: our model will operate on the raw inputs of Dtr
Tj

 and 

Dtest
Tj

 . As an internal state, our model uses an external memory matrix M ∈ ℝ
4×(2+1) , with 

four rows (one for each example in our support set), and three columns (the dimensionality 

of input vectors, plus one dimension for the correct label). Our model proceeds to process 

the support set in a sequential fashion, reading the examples from Dtr
Tj

 one by one, and by 

storing the i-th example in the i-th row of the memory module. After processing the sup-

port set, the memory matrix contains all examples, and as such, serves as internal task 

representation.

Given the new input [4, 0.5], our model could use many different techniques to make a 

prediction based on this representation. For simplicity, assume that it computes the dot 

product between x , and every memory M(i) (the 2-D vector in the i-th row of M, ignoring 

the correct label), and predicts the class of the input which yields the largest dot product. 

This would produce scores −2,−10,−6, and 24 for the examples in Dtr
Tj

 respectively. Since 

the last example [6, 0] yields the largest dot product, we predict that class, i.e., 4.

Note that this example could be seen as a metric-based technique where the dot product 

is used as a similarity function. However, the reason that this technique is model-based is 

that it stores the entire task inside a memory module. This example was deliberately easy 

for illustrative purposes. More advanced and successful techniques have been proposed, 

which we will now cover.

4.2  Recurrent meta-learners

Recurrent meta-learners (Duan et  al. 2016; Wang et  al. 2016) are, as the name sug-

gests, meta-learners based on recurrent neural networks. The recurrent network serves as 

dynamic task embedding storage. These recurrent meta-learners were specifically proposed 

for reinforcement learning problems, hence we will explain them in that setting.

The recurrence is implemented by e.g. an LSTM (Wang et al. 2016) or a GRU (Duan 

et al. 2016). The internal dynamics of the chosen Recurrent Neural Network (RNN) allows 

for fast adaptation to new tasks, while the algorithm used to train the recurrent network 

gradually accumulates knowledge about the task structure, where each task is modelled as 

an episode (or set of episodes).

The idea of recurrent meta-learners is quite simple. That is, given a task Tj , we simply 

feed the (potentially processed) environment variables [s
t+1, a

t
, r

t
, d

t
] (see Sect. 2.1.3) into 

Fig. 12  Workflow of recurrent meta-learners in reinforcement learning contexts. As mentioned in 

Sect. 2.1.3, s
t
, r

t
, and d

t
 denote the state, reward, and termination flag at time step t. h

t
 refers to the hidden 

state at time t. Source: Duan et al. (2016)
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an RNN at every time step t. Recall that s, a, r, d denote the state, action, reward, and ter-

mination flag respectively. At every time step t, the RNN outputs an action and a hidden 

state. Conditioned on its hidden state h
t
 , the network outputs an action a

t
 . The goal is to 

maximize the expected reward in each trial. See Fig. 12 for a visual depiction. From this 

figure, it also becomes clear why these techniques are model-based. That is, they embed 

information from previously seen inputs in the hidden state.

Recurrent meta-learners have been shown to perform almost as well as asymptotically 

optimal algorithms on simple reinforcement learning tasks (Wang et al. 2016; Duan et al. 

2016). However, their  performance degrades in more complex settings, where temporal 

dependencies can span a longer horizon. Making recurrent meta-learners better at such 

complex tasks is a direction for future research.

Fig. 13  Workflow of memory-augmented neural networks. Here, an episode corresponds to a given task Tj . 

After every episode, the order of labels, classes, and samples should be shuffled to minimize dependence on 

arbitrarily assigned orders. Source: Santoro et al. (2016)

Fig. 14  Controller-memory interaction in memory-augmented neural networks. Source: Santoro et  al. 

(2016)
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4.3  Memory-augmented neural networks (MANNs)

The key idea of memory-augmented neural networks  (MANNs) (Santoro et  al. 2016) is 

to enable neural networks to learn quickly with the help of an external memory. The main 

controller (the recurrent neural network interacting with the memory) then gradually accu-

mulates knowledge across tasks, while the external memory allows for quick task-specific 

adaptation. For this, Santoro et  al. (2016) used Neural Turing Machines (Graves et  al. 

2014). Here, the controller is parameterized by � and acts as the long-term memory of the 

memory-augmented neural network, while the external memory module is the short-term 

memory.

The workflow of memory-augmented neural networks is displayed in Fig. 13. Note that 

the data from a task is processed as a sequence, i.e., data are fed into the network one by 

one. The support set is fed into the memory-augmented neural network first. Afterwards, 

the query set is processed. During the meta-train phase, training tasks can be fed into the 

network in arbitrary order. At time step t, the model receives input x
t
 with the label of the 

previous input, i.e., yt−1
 . This was done to prevent the network from mapping class labels 

directly to the output (Santoro et al. 2016).

The interaction between the controller and memory is visualized in Fig. 14. The idea is 

that the external memory module, containing representations of previously seen inputs, can 

be used to make predictions for new inputs. In short, previously obtained knowledge is lev-

eraged to aid the classification of new inputs. Note that neural networks also attempt to do 

this, however, their prior knowledge is slowly accumulated into the network weights, while 

an external memory module can directly store such information.

Given an input x
t
 at time t, the controller generates a key k

t
 , which can be stored in 

memory matrix M and can be used to retrieve previous representations from memory 

matrix M. When reading from memory, the aim is to produce a linear combination of 

stored keys in memory matrix M, giving greater weight to those which have a larger cosine 

similarity with the current key k
t
 . More specifically, a read vector wr

t
 is created, in which 

each entry i denotes the cosine similarity between key k
t
 and the memory (from a previous 

input) stored in row i, i.e., M
t
(i) . Then, the representation r

t
=
∑

i
w

r

t
(i)M(i) is retrieved, 

which is simply a linear combination of all keys (i.e., rows) in memory matrix M.

Predictions are made as follows. Given an input x
t
 , memory-augmented neural networks 

use the external memory to compute the corresponding representation r
t
 , which could be 

fed into a softmax layer, resulting in class probabilities. Across tasks, memory-augmented 

neural networks learn a good input embedding function f
�
 and classifier weights, which 

can be exploited when presented with new tasks.

To write input representations to memory, Santoro et al. (2016) propose a new mecha-

nism called Least Recently Used Access (LRUA). LRUA either writes to the least, or most 

recently used memory location. In the former case, it preserves recent memories, and in 

the latter, it updates recently obtained information. The writing mechanism works by keep-

ing track of how often every memory location is accessed in a usage vector wu

t
 , which is 

updated at every time step according to the following update rule: wu

t
∶= �w

u

t−1
+ w

r

t
+ w

w

t
 , 

where superscripts u, w and r refer to usage, write and read vectors, respectively. In words, 

the previous usage vector is decayed (using parameter � ), while current reads ( wr

t
 ) and 

writes ( ww

t
 ) are added to the usage. Let n be the total number of reads to memory, and 

�u(n) ( �u for ‘least used’) be the n-th smallest value in the usage vector wu

t
 . Then, the least-

used weights are defined as follows:
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Then, the write vector ww

t
 is computed as ww

t
= �(�)wr

t−1
+ (1 − �(�))w�u

t−1
 , where � is a 

parameter that interpolates between the two weight vectors. As such, if �(�) = 1 , we write to 

the most recently used memory, whereas when �(�) = 0 , we write to the least recently used 

memory locations. Finally, writing is performed as follows: M
t
(i) ∶= M

t−1
(i) + w

w

t
(i)k

t
 , for 

all i.

In summary, memory-augmented neural networks (Santoro et al. 2016) combine external 

memory and a neural network to achieve meta-learning. The interaction between a controller, 

with long-term memory parameters � , and memory M, may also be interesting for studying 

human meta-learning (Santoro et al. 2016). In contrast to many metric-based techniques, this 

model-based technique is applicable to both classification and regression problems. A down-

side of this approach is the architectural complexity.

4.4  Meta networks

Meta networks are divided into two distinct subsystems (consisting of neural networks), i.e., 

the base- and meta-learner (whereas in memory-augmented neural networks the base- and 

meta-components are intertwined). The base-learner is responsible for performing tasks, and 

for providing the meta-learner with meta-information, such as loss gradients. The meta-learner 

can then compute fast task-specific weights for itself and the base-learner, such that it can per-

form better on the given task Tj = (Dtr
Tj

, Dtest
Tj

) . This workflow is depicted in Fig. 15.

The meta-learner consists of neural networks u�, m� , and d
�

 . Network u� is used as an 

input representation function. Networks d
�

 and m
�
 are used to compute task-specific weights 

�∗ and example-level fast weights �∗ . Lastly, b
�
 is the base-learner which performs input pre-

dictions. Note that we used the term fast-weights throughout, which refers to task- or input-

specific versions of slow (initial) weights.

w
�u

t
(i) =

{

0 if wu

t
(i) > �u(n)

1 else
.

Fig. 15  The architecture of a Meta Network. Source: Munkhdalai and Yu (2017)
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In a  similar fashion to memory-augmented neural networks (Santoro et  al. 2016), meta 

networks (Munkhdalai and Yu 2017) also leverage the idea of an external memory module. 

However, meta networks use the memory for a different purpose. The memory stores for each 

observation x
i
 in the support set two components, i.e., its representation r

i
 and the fast weights 

�
∗

i
 . These are then used to compute an attention-based representation and fast weights for new 

inputs, respectively. 

The pseudocode for meta networks is displayed in Algorithm 1. First, a sample of the 

support set is created (line 1), which is used to compute task-specific weights �∗ for the 

representation network u� (lines 2-5). Note that u� has two tasks, (i) it should compute a 

representation for inputs (x
i
 (line 10 and 15), and (ii) it needs to make predictions for inputs 

(x
i
 , in order to compute a loss (line 3). To achieve both goals, a conventional neural net-

work can be used that makes class predictions. The states of the final hidden layer are then 

used as representations. Typically, the cross-entropy is calculated over the predictions of 

representation network u� . When there are multiple examples per class in the support set, 

an alternative is to use a contrastive loss function (Munkhdalai and Yu 2017).

Then, meta networks iterate over every example (xi, yi) in the support set Dtr
Tj

 . The base-

learner b
�
 attempts to make class predictions for these examples, resulting in loss values L

i
 

(line 7). The gradients of these losses are used to compute fast weights �∗ for example i 

(line 8), which are then stored in the i-th row of memory matrix M (line 9). Additionally, 

input representations r
i
 are computed and stored in memory matrix R (lines 10-11).

Now, meta networks are ready to address the query set Dtest
Tj

 . They iterate over every 

example (x, y) , and compute a representation r of it (line 15). This representation is 

matched against the representations of the support set, which are stored in memory matrix 

R. This matching gives us a similarity vector a , where every entry k denotes the similarity 

between input representation r and the k-th row in memory matrix R, i.e., R(k) (line 16). A 

softmax over this similarity vector is performed to normalize the entries. The resulting 



4510 M. Huisman et al.

1 3

vector is used to compute a linear combination of weights that were generated for inputs in 

the support set (line 17). These weights �∗ are specific for input x in the query set, and can 

be used by the base-learner b to make predictions for that input (line 18). The observed 

error is added to the task loss. After the entire query set is processed, all involved parame-

ters can be updated using backpropagation (line 20).

Note that some neural networks use both slow- and fast-weights at the same time. 

Munkhdalai and Yu (2017) use a so-called augmentation setup for this, as depicted in 

Fig. 16.

In short, meta networks rely on a reparameterization of the meta- and base-learner for 

every task. Despite the flexibility and applicability to both supervised and reinforcement 

learning settings, the approach is quite complex. It consists of many components, each 

with its own set of parameters, which can be a burden on memory usage and computation 

time. Additionally, finding the correct architecture for all the involved components can be 

time-consuming.

4.5  Simple neural attentive meta-learner (SNAIL)

Instead of an external memory matrix, SNAIL (Mishra et  al. 2018) relies on a special 

model architecture to serve as memory. Mishra et al. (2018) argue that it is not possible to 

use Recurrent Neural Networks for this, as they have limited memory capacity, and cannot 

pinpoint specific prior experiences (Mishra et  al. 2018). Hence, SNAIL uses a different 

architecture, consisting of 1D temporal convolutions (Oord et al. 2016) and a soft attention 

Fig. 16  The layer augmentation 

setup used to combine slow and 

fast weights. Source: Munkhdalai 

and Yu (2017)
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mechanism (Vaswani et al. 2017). The temporal convolutions allow for ‘high bandwidth’ 

memory access, and the attention mechanism allows one to pinpoint specific experiences. 

Figure 17 visualizes the architecture and workflow of SNAIL for supervised learning prob-

lems. From this figure, it becomes clear why this technique is model-based. That is, model 

outputs are based upon the internal state, computed from earlier inputs.

SNAIL consists of three building blocks. The first is the DenseBlock, which applies a 

single 1D convolution to the input, and concatenates (in the feature/horizontal direction) the 

result. The second is a TCBlock, which is simply a series of DenseBlocks with an exponen-

tially increasing dilation rate of the temporal convolutions (Mishra et al. 2018). Note that the 

dilation is nothing but the temporal distance between two nodes in a network. For example, 

if we use a dilation of 2, a node at position p in layer L will receive the activation from node 

p − 2 from layer L − 1 . The third block is the AttentionBlock, which learns to focus on the 

important parts of prior experience.

In a similar fashion to memory-augmented neural networks (Santoro et al. 2016) (Sect. 4.3), 

SNAIL also processes task data in sequence, as shown in Fig. 17. However, the input at time t 

is accompanied by the label at time t, instead of t − 1 (as was the case for memory-augmented 

neural networks). SNAIL learns internal dynamics from seeing various tasks so that it can 

make good predictions on the query set, conditioned upon the support set.

A key advantage of SNAIL is that it can be applied to both supervised and reinforcement 

learning tasks. In addition, it achieves good performance compared to previously discussed 

techniques. A downside of SNAIL is that finding the correct architecture of TCBlocks and 

DenseBlocks can be time-consuming.

Fig. 17  Architecture and workflow of SNAIL for supervised and reinforcement learning settings. The input 

layer is red. Temporal Convolution blocks are orange; attention blocks are green. Source: Mishra et  al. 

(2018). (Color figure online)
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4.6  Conditional neural processes (CNPs)

In contrast to previous techniques, a conditional neural process (CNP) (Garnelo et al. 2018) 

does not rely on an external memory module. Instead, it aggregates the support set into a 

single aggregated latent representation. The general architecture is shown in Fig. 18. As we 

can see, the conditional neural process operates in three phases on task Tj . First, it observes 

the support set Dtr
Tj

 , including the ground-truth outputs yi . Examples (xi, yi) ∈ Dtr
Tj

 are 

embedded using a neural network h
�
 into representations r

i
 . Second, these representations 

are aggregated using operator a to produce a single representation r of Dtr
Tj

 (hence it is 

model-based). Third, a neural network g� processes this single representation r , new inputs 

x , and produces predictions ŷ.

Let the entire conditional neural process model be denoted by Q
�

 , where � is a set of all 

involved parameters {�,�} . The training process is different compared to other techniques. 

Let xTj
 and yTj

 denote all inputs and corresponding outputs in Dtr
Tj

 . Then, the first 

� ∽ U(0,… , k ⋅ N − 1) examples in Dtr
Tj

 are used as a conditioning set Dc
Tj

 (effectively split-

ting the support set into a true training set and a validation set). Given a value of � , the goal 

is to maximize the log-likelihood (or minimize the negative log-likelihood) of the labels yTj
 

in the entire support set Dtr
Tj

Conditional neural processes are trained by repeatedly sampling various tasks and values 

of � , and propagating the observed loss backwards.

In summary, conditional neural processes use compact representations of previously 

seen inputs to aid the classification of new observations. Despite its simplicity and ele-

gance, a disadvantage of this technique is that it is often outperformed in few-shot settings 

by other techniques such as matching networks (Vinyals et al. 2016) (see Sect. 3.3).

4.7  Neural statistician

A neural statistician (Edwards and Storkey 2017) differs from earlier approaches as it 

learns to compute summary statistics, or meta-features, of data sets in an unsupervised 

manner. These latent embeddings (making the approach model-based) can then later be 

(12)L(�) = −�Tj∽p(T)

[
�
�∽U(0,…,k⋅N−1)

(
Q

�
(yTj

|Dc
Tj

, xTj
)

)]
.

Fig. 18  A schematic view of 

how conditional neural processes 

work. Here, h denotes a network 

outputting a representation for 

an observation, a denotes an 

aggregation function for these 

representations, and g denotes 

a neural network that makes 

predictions for unlabelled obser-

vations, based on the aggregated 

representation. Source: Garnelo 

et al. (2018)



4513A survey of deep meta-learning  

1 3

used for making predictions. Despite the broad applicability of the model, we discuss it in 

the context of Deep Meta-Learning.

A neural statistician performs both learning and inference. In the learning phase, the 

model attempts to produce generative models P̂
i
 for every data set D

i
 . The key assump-

tion that is made by Edwards and Storkey (2017) is that there exists a generative process 

P
i
 , which conditioned on a latent context vector c

i
 , can produce a data set D

i
 . At inference 

time, the goal is to infer a (posterior) probability distribution over the context q(c|D).

The model uses a variational autoencoder, which consists of an encoder and decoder. 

The encoder is responsible for producing a distribution over latent vectors z : q(z|x;�) , 

where x is an input vector, and � are the encoder parameters. The encoded input z , which is 

often of lower dimensionality than the original input x , can then be decoded by the decoder 

p(x|z;�) . Here, � are the parameters of the decoder. To capture more complex patterns in 

data sets, the model uses multiple latent layers z1,… , z
L
 , as shown in Fig. 19. Given this 

architecture, the posterior over c and z1, .., z
L
 (shorthand z

1∶L
 ) is given by

The neural statistician is trained to minimize a three-component loss function, consisting 

of the reconstruction loss (how well it models the data), context loss (how well the inferred 

context q(c|D;�) corresponds to the prior P(c) , and latent loss (how well the inferred latent 

variables z
i
 are modelled).

This model can be applied to N-way, few-shot learning as follows. Construct N data 

sets for every of the N classes, such that one data set contains only examples of the same 

class. Then, the neural statistician is provided with a new input x , and has to predict its 

class. It computes a context posterior N
x
= q(c|x;�) depending on new input x . In a similar 

fashion, context posteriors are computed for all of the data sets Ni = q(c|Di;�) . Lastly, it 

assigns the label i such that the difference between N
i
 and N

x
 is minimal.

In summary, the neural statistician (Edwards and Storkey 2017) allows for quick learn-

ing on new tasks through data set modeling. Additionally, it is applicable to both super-

vised and unsupervised settings. A downside is that the approach requires many data sets to 

achieve good performance (Edwards and Storkey 2017).

(13)q(c, z1∶L|D;�) = q(c|D;�)
∏

x∈D

q(zL|x, c;�)

L−1∏

i=1

q(zi|zi+1, x, c;�).

Fig. 19  Neural statistician 

architecture. Edges are neural 

networks. All incoming inputs to 

a node are concatenated



4514 M. Huisman et al.

1 3

4.8  Model-based techniques, in conclusion

In this section, we have discussed various model-based techniques. Despite apparent differ-

ences, they all build on the notion of task internalization. That is, tasks are processed and 

represented in the state of the model-based system. This state can then be used to make pre-

dictions. Figure 20 displays the relationships between the covered model-based techniques.

Memory-augmented neural networks (Santoro et  al. 2016) mark the beginning of deep 

model-based meta-learning techniques. They use the idea of feeding the entire support set in a 

sequential fashion into the model and then making predictions for the query set inputs using 

the internal state of the model. Such a model-based approach, where inputs sequentially enter 

the model was also taken by recurrent meta-learners (RMLs) (Duan et al. 2016; Wang et al. 

2016) in the reinforcement learning setting. Meta networks (Munkhdalai and Yu 2017) also 

use a large black-box solution but generate task-specific weights for every task that is encoun-

tered. SNAIL (Mishra et al. 2018) tries to improve the memory capacity and ability to pin-

point memories, which is limited in recurrent neural networks, by using attention mechanisms 

coupled with special temporal layers. Lastly, the neural statistician and conditional neural pro-

cesses are two techniques that try to learn meta-features of data sets in an end-to-end fash-

ion. The neural statistician uses the distance between meta-features to make class predictions, 

while the conditional neural process conditions classifiers on these features.

Advantages of model-based approaches include the flexibility of the internal dynamics of 

the systems, and their broader applicability compared to most metric-based techniques. How-

ever, model-based techniques are often outperformed by metric-based techniques in super-

vised settings (e.g. graph neural networks (Garcia and Bruna 2017); Sect. 3.6), may not per-

form well when presented with larger data sets (Hospedales et al. 2020), and generalize less 

well to more distant tasks than optimization-based techniques (Finn and Levine 2018). We 

discuss this optimization-based approach next.

5  Optimization-based meta-learning

Optimization-based techniques adopt a different perspective on meta-learning than the pre-

vious two approaches. They explicitly optimize for fast learning. Most optimization-based 

techniques do so by approaching meta-learning as a bi-level optimization problem. At the 

Fig. 20  The relationships between the covered model-based meta-learning techniques. The neural statisti-

cian and conditional neural processes form an island in the model-based approaches
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inner-level, a base-learner makes task-specific updates using some optimization strategy (such 

as gradient descent). At the outer-level, the performance across tasks is optimized.

More formally, given a task Tj = (Dtr
Tj

, Dtest
Tj

) with new input x ∈ Dtest
Tj

 and base-learner 

parameters � , optimization-based meta-learners return

where f is the base-learner, g
�
 is a (learned) optimizer that makes task-specific updates to 

the base-learner parameters � using the support data Dtr

T
i

 , and loss function LTj
.

5.1  Example

Suppose we are faced with a linear regression problem, where every task is associated with a 

different function f(x). For this example, suppose our model only has two parameters: a and 

b, which together form the function f̂ (x) = ax + b . Suppose further that our meta-training set 

consists of four different tasks, i.e., A, B, C, and D. Then, according to the optimization-based 

view, we wish to find a single set of parameters {a, b} from which we can quickly learn the 

optimal parameters for each of the four tasks, as displayed in Fig. 21. In fact, this is the intui-

tion behind the popular optimization-based technique MAML (Finn et al. 2017). By exposing 

our model to various meta-training tasks, we can update parameters a and b to facilitate quick 

adaptation.

We will now discuss the core optimization-based techniques in more detail.

5.2  LSTM optimizer

Standard gradient update rules have the form

(14)
P(Y|x, Dtr

Tj
) = fg�(�,Dtr

Tj
,LTj

)
(x),

Fig. 21  Example of an optimiza-

tion-based technique, inspired by 

Finn et al. (2017)
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where � is the learning rate, and LTj
(�t) is the loss function with respect to task Tj and net-

work parameters at time t, i.e., �
t
 . The key idea underlying LSTM optimizers (Andrychow-

icz et al. 2016) is to replace the update term ( −�∇LTj
(�t) ) by an update proposed by an 

LSTM g with parameters � . Then, the new update becomes

This new update allows the optimization strategy to be tailored to a specific family of 

tasks. Note that this is meta-learning, i.e., the LSTM learns to learn. As such, this tech-

nique learns an update policy.

The loss function used to train an LSTM optimizer is:

where T is the number of parameter updates that are made, and w
t
 are weights indicating 

the importance of performance after t steps. Note that generally, we are only interested in 

the final performance after T steps. However, the authors found that the optimization pro-

cedure was better guided by equally weighting the performance after each gradient descent 

step. As is often done, second-order derivatives (arising from the dependency between the 

updated weights and the LSTM optimizer) were ignored due to the computational expenses 

associated with the computation thereof. This loss function is fully differentiable and thus 

allows for training an LSTM optimizer (see Fig. 22). To prevent a parameter explosion, the 

same network is used for every coordinate/weight in the base-learner’s network, causing 

the update rule to be the same for every parameter. Of course, the updates depend on their 

prior values and gradients.

The key advantage of LSTM optimizers is that they can enable faster learning compared 

to hand-crafted optimizers, also on different data sets than those used to train the optimizer. 

However, Andrychowicz et  al. (2016) did not apply this technique to few-shot learning. 

In fact, they did not apply it across tasks at all. Thus, it is unclear whether this technique 

(15)�t+1 ∶= �t − �∇
�t
LTj

(�t),

(16)�t+1
∶= �t + g�(∇�t

LTj
(�t)).

(17)L(�) = �LTj

[

T
∑

t=1

wtLTj
(�t)

]

,

Fig. 22  Workflow of the LSTM optimizer. Gradients can only propagate backwards through solid edges. ft 

denotes the observed loss at time step t. Source: Andrychowicz et al. (2016)



4517A survey of deep meta-learning  

1 3

can perform well in few-shot settings, where few data per class are available for training. 

Furthermore, the question remains whether it can scale to larger base-learner architectures.

5.3  LSTM meta-learner

Instead of having an LSTM predict gradient updates, Ravi and Larochelle (2017) embed 

the weights of the base-learner parameters into the cell state (long-term memory compo-

nent) of the LSTM, giving rise to LSTM meta-learners. As such, the base-learner param-

eters � are literally inside the LSTM memory component (cell state). In this way, cell 

state updates correspond to base-learner parameter updates. This idea was inspired by the 

resemblance between the gradient and cell state update rules. Gradient updates often have 

the form as shown in Eq. 15. The LSTM cell state update rule, in contrast, looks as follows

where ft is the forget gate (which determines which information should be forgotten) at 

time t, ⊙ represents the element-wise product, c
t
 is the cell state at time t, and c̄

t
 the can-

didate cell state for time step t, and �
t
 the learning rate at time step t. Note that if ft = 1 

(vector of ones), �
t
= � , c

t−1
= �

t−1
 , and c̄

t
= −∇

�
t−1

LT
t

(�
t−1

) , this update is equivalent to 

the one used by gradient-descent. This similarity inspired Ravi and Larochelle (2017) to 

use an LSTM as a meta-learner that learns to make updates for a base-learner, as shown in 

Fig. 23.

More specifically, the cell state of the LSTM is initialized with c
0
= �

0
 , which will be 

adjusted by the LSTM to a good common initialization point across different tasks. Then, 

to update the weights of the base-learner for the next time step t + 1 , the LSTM computes 

c
t+1

 , and sets the weights of the base-learner equal to that. There is thus a one-to-one cor-

respondence between c
t
 and �

t
 . The meta-learner’s learning rate �

t
 (see Eq. 18), is set equal 

to �(w
�
⋅ [∇

�
t−1

LT
t

(�
t−1), LT

t

(�
t
), �

t−1, �
t−1] + b

�
) , where � is the sigmoid function. Note 

that the output is a vector, with values between 0 and 1, which denote the the learning 

rates for the corresponding parameters. Furthermore, w
�
 and b

�
 are trainable parameters 

that part of the LSTM meta-learner. In words, the learning rate at any time depends on the 

loss gradients, the loss value, the previous parameters, and the previous learning rate. The 

(18)ct ∶= ft ⊙ ct−1 + �t ⊙ c̄t,

Fig. 23  LSTM meta-learner computation graph. Gradients can only propagate backwards through solid 

edges. The base-learner is denoted as M. (X
t
, Y

t
) are training sets, whereas (X, Y) is the test set. Source: Ravi 

and Larochelle (2017)
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forget gate, ft , determines what part of the cell state should be forgotten, and is computed 

in a similar fashion, but with different weights.

To prevent an explosion of meta-learner parameters, weight-sharing is used, in a simi-

lar fashion to LSTM optimizers proposed by Andrychowicz et al. (2016) (Sect. 5.2). This 

implies that the same update rule is applied to every weight at a given time step. The exact 

update, however, depends on the history of that specific parameter in terms of the previous 

learning rate, loss, etc. For simplicity, second-order derivatives were ignored, by assuming 

the base-learner’s loss does not depend on the cell state of the LSTM optimizer. Batch nor-

malization was applied to stabilize and speed up the learning process.

In short, LSTM optimizers can learn to optimize a base-learner by maintaining a one-

to-one correspondence over time between the base-learner’s weights and the LSTM cell 

state. This allows the LSTM to exploit commonalities in the tasks, allowing for quicker 

optimization. However, there are simpler approaches (e.g. MAML Finn et  al. 2017) that 

outperform this technique.

5.4  Reinforcement learning optimizer

Li and Malik (2018) proposed a framework that casts optimization as a reinforcement 

learning problem. Optimization can then be performed by existing reinforcement learning 

techniques. At a high-level, an optimization algorithm g takes as input an initial set of 

weights �
0
 and a task Tj with the corresponding loss function LTj

 , and produces a sequence 

of new weights �1,… ,�
T
 , where �

T
 is the final solution found. On this sequence of pro-

posed new weights, we can define a loss function L that captures unwanted properties (e.g. 

slow convergence, oscillations, etc.). The goal of learning an optimizer can then be formu-

lated more precisely as follows. We wish to learn an optimal optimizer

The key insight is that the optimization can be formulated as a Partially Observable 

Markov Decision Process (POMDP). Then, the state corresponds to the current set of 

weights �
t
 , the action to the proposed update at time step t, i.e., ��

t
 , and the policy to the 

function that computes the update. With this formulation, the optimizer g can be learned by 

existing reinforcement learning techniques. In their paper, they used a recurrent neural net-

work as an optimizer. At each time step, they feed it observation features, which depend on 

the previous set of weights, loss gradients, and objective functions, and use guided policy 

search to train it.

In summary, Li and Malik (2018) made the first step towards general optimization 

through reinforcement learning optimizers, which were shown able to generalize across 

network architectures and data sets. However, the base-learner architecture that was 

used was quite small. The question remains whether this approach can scale to larger 

architectures.

5.5  MAML

Model-agnostic meta-learning (MAML) (Finn et  al. 2017) uses a simple gradient-based 

inner optimization procedure (e.g. stochastic gradient descent), instead of more com-

plex LSTM procedures or procedures based on reinforcement learning. The key idea of 

MAML is to explicitly optimize for fast adaptation to new tasks by learning a good set 

(19)g∗ = argming �Tj∽p(T),�0∽p(�0)
[L(g(LTj

,�0))]
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of initialization parameters � . This is shown in Fig. 24: from the learned initialization � , 

we can quickly move to the best set of parameters for the  task Tj , i.e., �∗

j
 for j = 1, 2, 3 . 

The learned initialization can be seen as the inductive bias of the model, or simply the set 

of assumptions (encapsulated in � ) that the model makes with respect to the overall task 

structure.

More formally, let � denote the initial model parameters of a model. The goal is to 

quickly learn new concepts, which is equivalent to achieving a minimal loss in few gradient 

update steps. The amount of gradient steps s has to be specified upfront, such that MAML 

can explicitly optimize for achieving good performance within that number of steps. Sup-

pose we pick only one gradient update step, i.e., s = 1 . Then, given a task Tj = (Dtr
Tj

, Dtest
Tj

) , 

gradient descent would produce updated parameters (fast weights)

specific to task j. The meta-loss of quick adaptation (using s = 1 gradient steps) across 

tasks can then be formulated as

where p(T) is a probability distribution over tasks. This expression contains an inner gradi-

ent ( ∇
�
LTj

(�j) ). As such, by optimizing this meta-loss using gradient-based techniques, we 

have to compute second-order gradients. One can easily see this in the computation below

(20)�
�

j
= � − �∇

�
LDtr

Tj

(�),

(21)
ML ∶=

∑

Tj∽p(T)

LDtest
Tj

(��

j
) =

∑

Tj∽p(T)

LDtest
Tj

(� − �∇
�
LDtr

Tj

(�)),

(22)

∇
�
ML = ∇

�

∑

Tj∽p(T)

LDtest
Tj

(��

j
)

=
∑

Tj∽p(T)

∇
�
LDtest

Tj

(��

j
)

=
∑

Tj∽p(T)

L
�

Dtest
Tj

(��

j
)∇

�
(��

j
)

=
∑

Tj∽p(T)

L
�

Dtest
Tj

(��

j
)∇

�
(� − �∇

�
LDtr

Tj
(�))

=
∑

Tj∽p(T)

L
�

Dtest
Tj

(��

j
)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

FOMAML

(∇
�
� − �∇2

�
LDtr

Tj

(�)),

Fig. 24  MAML learns an initiali-

zation point from which it can 

perform well on various tasks. 

Source: Finn et al. (2017)
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where we used L�

Dtest
Tj

(��

j
) to denote the derivative of the loss function with respect to the 

query set, evaluated at the post-update parameters �′

j
 . The term �∇2

�
LDtr

Tj

(�) contains the 

second-order gradients. The computation thereof is expensive in terms of time and mem-

ory costs, especially when the optimization trajectory is large (when using a larger number 

of gradient updates s per task). Finn et al. (2017) experimented with leaving out second-

order gradients, by assuming ∇
�
�
�

j
= I , giving us First-Order MAML (FOMAML, see 

Eq.  22). They found that FOMAML performed reasonably similarly to MAML. This 

means that updating the initialization using only first-order gradients 
∑

Tj∽p(T) L
�

Dtest
Tj

(��

j
) is 

roughly equal to using the full gradient expression of the meta-loss in Eq.  22. One can 

extend the meta-loss to incorporate multiple gradient steps by substituting �′

j
 by a multi-

step variant.

MAML is trained as follows. The initialization weights � are updated by continuously 

sampling a batch of m tasks B = {Tj ∽ p(T)}m
i=1

 . Then, for every task Tj ∈ B , an inner 

update is performed to obtain �′

j
 , granting an observed loss LDtest

Tj

(��

j
) . These losses across a 

batch of tasks are used in the outer update

The complete training procedure of MAML is displayed in Algorithm 2. At test-time, when 

presented with a new task Tj , the model is initialized with � , and performs a number of 

gradient updates on the task data. Note that the algorithm for FOMAML is equivalent to 

Algorithm  2, except for the fact that the update on line 8 is done differently. That is, 

FOMAML updates the initialization with the rule � = � − �
∑

Tj∽p(T) L
�

Dtest
Tj

(��

j
) . 

Antoniou et al. (2019), in response to MAML, proposed many technical improvements 

that can improve training stability, performance, and generalization ability. Improvements 

include (i) updating the initialization � after every inner update step (instead of after all 

steps are done) to increase gradient propagation, (ii) using second-order gradients only 

after 50 epochs to increase the training speed, (iii) learning layer-wise learning rates to 

improve flexibility, (iv) annealing the meta-learning rate � over time, and (v) some Batch 

Normalization tweaks (keep running statistics instead of batch-specific ones, and using 

per-step biases).

(23)
� ∶= � − �∇

�

∑

Tj∈B

LDtest
Tj

(��

j
).
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MAML has obtained great attention within the field of Deep Meta-Learning, perhaps 

due to its (i) simplicity (only requires two hyperparameters), (ii) general applicability, and 

(iii) strong performance. A downside of MAML, as mentioned above, is that it can be quite 

expensive in terms of running time and memory to optimize a base-learner for every task 

and compute higher-order derivatives from the optimization trajectories.

5.6  iMAML

Instead of ignoring higher-order derivatives (as done by FOMAML), which potentially 

decreases the performance compared to regular MAML, iMAML (Rajeswaran et al. 2019) 

approximates these derivatives in a way that is less memory-consuming.

Let A denote an inner optimization algorithm (e.g., stochastic gradient descent), which 

takes a support set Dtr
Tj

 corresponding to task Tj and initial model weights � , and produces 

new weights ��

j
= A(�, Dtr

Tj

) . MAML has to compute the derivative

where Dtest
Tj

 is the query set corresponding to task Tj . This equation is a simple result of 

applying the chain rule. Importantly, note that ∇
�
(��

j
) differentiates through A(�, Dtr

Tj

) , 

while L�

Dtest
Tj

(��

j
) does not, as it represents the gradient of the loss function evaluated at �′

j
 . 

Rajeswaran et al. (2019) make use of the following lemma.

If (I +
1

�
∇2

�
LDtr

Tj

(��

j
)) is invertible (i.e., (I +

1

�
∇2

�
LDtr

Tj

(��

j
))−1 exists), then

Here, � is a regularization parameter. The reason for this is discussed below.

Combining Eqs. 24 and 25, we have that

The idea is to obtain an approximate gradient vector gj that is close to this expression, i.e., 

we want the difference to be small

for some small tolerance vector � . If we multiply both sides by the inverse of the inverse, 

i.e., 

(

I +
1

�
∇2

�
LDtr

Tj

(��

j
)

)

 , we get

where �′ absorbed the multiplication factor. We wish to minimize this expression for gj , 

and that can be performed using optimization techniques such as the conjugate gradient 

algorithm (Rajeswaran et al. 2019). This algorithm does not need to store Hessian matrices, 

(24)∇
�
LDtest

Tj

(��

j
) = L

�

Dtest
Tj

(��

j
)∇

�
(��

j
),

(25)∇
�
(��

j
) =

(

I +
1

�
∇2

�
LDtr

Tj

(��

j
)

)−1

.

(26)∇
�
LDtest

Tj

(��

j
) = L

�

Dtest
Tj

(��

j
)

(

I +
1

�
∇2

�
LDtr

Tj

(��

j
)

)−1

.

(27)gj − L
�

Dtest
Tj

(��

j
)

(

I +
1

�
∇2

�
LDtr

Tj

(��

j
)

)−1

= �,

(28)gT
j

(

I +
1

�
∇2

�
LDtr

Tj

(��

j
)

)

gj − gT
j
L
�

Dtest
Tj

(��

j
) = �

�
,
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which decreases the memory cost significantly. In turn, this allows iMAML to work with 

more inner gradient update steps. Note, however, that one needs to perform explicit regu-

larization in that case to avoid overfitting. The conventional MAML did not require this, as 

it uses only a few number of gradient steps (equivalent to an early stopping mechanism).

At each inner loop step, iMAML computes the meta-gradient gj . After processing 

a batch of tasks, these gradients are averaged and used to update the initialization � . 

Since it does not differentiate through the optimization process, we are free to use any 

other (non-differentiable) inner-optimizer.

In summary, iMAML reduces memory costs significantly as it need not differentiate 

through the optimization trajectory, also allowing for greater flexibility in the choice 

of the inner optimizer. Additionally, it can account for larger optimization paths. The 

computational costs stay roughly the same compared to MAML (Finn et  al. 2017). 

Future work could investigate more inner optimization procedures (Rajeswaran et  al. 

2019).

5.7  Meta-SGD

Meta-SGD (Li et al. 2017), or meta-stochastic gradient descent, is similar to MAML (Finn 

et al. 2017) (Sect. 5.5). However, on top of learning an initialization, Meta-SGD also learns 

learning rates for every model parameter in � , building on the insight that the optimizer can 

be seen as trainable entity.

The standard SGD update rule is given in Eq. 15. The meta-SGD optimizer uses a more 

general update, namely

where ⊙ is the element-wise product. Note that this means that alpha (learning rate) is now 

a vector—hence the bold font— instead of scalar, which allows for greater flexibility in the 

sense that each parameter has its own learning rate. The goal is to learn the initialization � , 

and learning rate vector � , such that the generalization ability is as large as possible. More 

mathematically precise, the learning objective is

where we used a simple substitution for �′

j
 . LDtr

Tj

 and LDtest
Tj

 are the losses computed on the 

support and query set respectively. Note that this formulation stimulates generalization 

(29)�
�

j
← � − � ⊙ ∇

�
LDtr

Tj

(�),

(30)min
�,�

�Tj∽p(T)[LDtest
Tj

(��

j
)] = �Tj∽p(T)[LDtest

Tj

(� − � ⊙ ∇
�
LDtr

Tj

(�))],

Fig. 25  Meta-SGD learning process. Source: Li et al. (2017)
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ability (as it includes the query set loss LDtest
Tj

 , which can be observed during the meta-train-

ing phase). The learning process is visualized in Fig.  25. Note that the meta-SGD opti-

mizer is trained to maximize generalization ability after only one update step. Since this 

learning objective has a fully differentiable loss function, the meta-SGD optimizer itself 

can be trained using standard SGD.

In summary, Meta-SGD is more expressive than MAML as it does not only learn an 

initialization but also learning rates per parameter. This, however, does come at the cost of 

an increased number of hyperparameters.

5.8  Reptile

Reptile (Nichol et al. 2018) is another optimization-based technique that, like MAML (Finn 

et al. 2017), solely attempts to find a good set of initialization parameters � . The way in which 

Reptile attempts to find this initialization is quite different from MAML. It repeatedly samples 

a task, trains on the task, and moves the model weights towards the trained weights (Nichol 

et al. 2018). Algorithm 3 displays the pseudocode describing this simple process. 

Nichol et al. (2018) note that it is possible to treat (� − �
�
j
)∕� as gradients, where � is the 

learning rate of the inner stochastic gradient descent optimizer (line 4 in the pseudocode), 

and to feed that into a meta-optimizer (e.g. Adam). Moreover, instead of sampling one task 

at a time, one could sample a batch of n tasks, and move the initialization � towards the 

average update direction �̄ =
1

n

∑n

j=1
(��

j
− �) , granting the update rule � ∶= � + ��̄.

The intuition behind Reptile is that updating the initialization weights towards updated 

parameters will grant a good inductive bias for tasks from the same family. By performing 

Taylor expansions of the gradients of Reptile and MAML (both first-order and second-

order), Nichol et al. (2018) show that the expected gradients differ in their direction. They 

argue, however, that in practice, the gradients of Reptile will also bring the model towards 

a point minimizing the expected loss over tasks.

A mathematical argument as to why Reptile works goes as follows. Let � denote the ini-

tial parameters, and �∗

j
 the optimal set of weights for the task Tj . Lastly, let d be the Euclid-

ean distance function. Then, the goal is to minimize the distance between the initialization 

point � and the optimal point �∗

j
 , i.e.,

The gradient of this expected distance with respect to the initialization � is given by

(31)min
�
�Tj∽p(T)[

1

2
d(�,�

∗

j
)2].
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where we used the fact that the gradient of the squared Euclidean distance between two 

points x
1
 and x

2
 is the vector 2(x

1
− x

2
) . Nichol et al. (2018) go on to argue that performing 

gradient descent on this objective would result in the following update rule

Since we do not know �∗

Tj
 , one can approximate this by term by k steps of gradient descent 

SGD(LTj
,�, k) . In short, Reptile can be seen as gradient descent on the distance minimiza-

tion objective given in Eq. 31. A visualization is shown in Fig. 26. The initialization � is 

moving towards the optimal weights for tasks 1 and 2 in an interleaved fashion (hence the 

oscillations).

In conclusion, Reptile is an extremely simple meta-learning technique, which does 

not need to differentiate through the optimization trajectory like, e.g., MAML (Finn et al. 

2017), saving time and memory costs. However, the theoretical foundation is a bit weaker 

due to the fact that it does not directly optimize for fast learning as done by MAML, and 

performance may be a bit worse than that of MAML in some settings.

5.9  LEO

Latent Embedding Optimization (LEO) was proposed by Rusu et al. (2018) to combat an 

issue of gradient-based meta-learners, such as MAML (Finn et al. 2017) (see Sect. 5.5), in 

few-shot settings (N-way, k-shot). These techniques operate in a high-dimensional param-

eter space using gradient information from only a few examples, which could lead to poor 

generalization.

LEO alleviates this issue by learning a lower-dimensional latent embedding space, 

which indirectly allows us to learn a good set of initial parameters � . Additionally, the 

embedding space is conditioned upon tasks, allowing for more expressivity. In theory, LEO 

could find initial parameters for the entire base-learner network, but the authors only exper-

imented with setting the parameters for the final layers.

(32)
∇

�
�Tj∽p(T)[

1

2
d(�,�

∗

j
)2] = �Tj∽p(T)[

1

2
∇

�
d(�,�

∗

j
)2]

= �Tj∽p(T)[� − �
∗

j
],

(33)
� = � − �∇

�

1

2
d(�,�

∗

j
)2

= � − �(�∗

j
− �).

Fig. 26  Schematic visualization of Reptile’s learning trajectory. Here, �∗

1
 and �∗

2
 are the optimal weights for 

tasks T
1
 and T

2
 respectively. The initialization parameters � oscillate between these. Adapted from Nichol 

et al. (2018)
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The complete workflow of LEO is shown in Fig. 27. As we can see, given a task Tj , the 

corresponding support set Dtr
Tj

 is fed into an encoder, which produces hidden codes for each 

example in that set. These hidden codes are paired and concatenated in every possible man-

ner, granting us (Nk)2 pairs, where N is the number of classes in the training set, and k the 

number of examples per class. These paired codes are then fed into a relation network 

(Sung et  al. 2018) (see Sect.  3.5). The resulting embeddings are grouped by class, and 

parameterize a probability distribution over latent codes z
n
 (for class n) in a low dimen-

sional space Z . More formally, let x�
n
 denote the �-th example of class n in Dtr

Tj

 . Then, the 

mean �e

n
 and variance �e

n
 of a Gaussian distribution over latent codes for class n are com-

puted as

where �
r
,�

e
 are parameters for the relation network and encoder respectively. Intuitively, 

the three summations ensure that every example with class n in Dtr
Tj

 is paired with every 

example from all classes n. Given �e

n
 , and �e

n
 , one can sample a latent code 

zn ∽ N(�e
n
, diag(�e2

n
)) for class n, which serves as a latent embedding of the task training 

data.

The decoder can then generate a task-specific initialization �
n
 for class n as follows. 

First, one computes a mean and variance for a Gaussian distribution using the latent code

These are then used to sample initialization weights �n ∽ N(�d
n
, diag(�d2

n
)) . The loss from 

the generated weights can then be propagated backwards to adjust the embedding space. 

In practice, generating such high-dimensional set of parameters from a low-dimensional 

embedding can be quite problematic. Therefore, LEO uses pre-trained models, and only 

generates weights for the final layer, which limits the expressivity of the model.

A key advantage of LEO is that it optimizes in a lower-dimensional latent embedding 

space, which aids generalization performance. However, the approach is more complex 

than e.g. MAML (Finn et  al. 2017), and its applicability is limited to few-shot learning 

settings.

(34)�e
n
,�e

n
=

1

Nk2

k
∑

�p=1

N
∑

m=1

k
∑

�q=1

g�r

(

g�e
(x

�p

n ), g�e
(x

�q

m )

)

,

(35)�d
n
,�d

n
= g�d

(zn).

Fig. 27  Workflow of LEO, adapted from Rusu et al. (2018)
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5.10  Online MAML (FTML)

Online MAML (Finn et al. 2019) is an extension of MAML (Finn et al. 2017) to make it 

applicable to online learning settings (Anderson 2008). In the online setting, we are pre-

sented with a sequence of tasks T
t
 with corresponding loss functions {LT

t

}T

t=1
 , for some 

potentially infinite time horizon T. The goal is to pick a sequence of parameters {�
t
}T

t=1
 that 

performs well on the presented loss functions. This objective is captured by the RegretT 

over the entire sequence, which is defined by Finn et al. (2019) as follows

where � are the initial model parameters (just as MAML), and �′

t
 are parameters resulting 

from a one-step gradient update (starting from � ) on task t. Here, the left term reflects the 

updated parameters chosen by the agent (�
t
) , whereas the right term presents the minimum 

obtainable loss (in hindsight) from a single fixed set of parameters � . Note that this setup 

assumes that the agent can make updates to its chosen parameters (transform its initial 

choice at time t from �
t
 to �′

t
).

Finn et al. (2019) propose FTML (Follow The Meta Leader), inspired by FTL (Fol-

low The Leader) (Hannan 1957; Kalai and Vempala 2005), to minimize the regret. The 

basic idea is to set the parameters for the next time step ( t + 1 ) equal to the best param-

eters in hindsight, i.e.,

The gradient to perform meta-updates is then given by

where pt(T) is a uniform distribution over tasks 1, ..., t (at time t).

Algorithm 4 contains the full pseudocode for FTML. In this algorithm, MetaUpdate 

performs a few ( N
meta

 ) meta-steps. In each meta-step, a task is sampled from B, 

together with train and test mini-batches to compute the gradient gt in Eq. 37. The ini-

tialization � is then updated ( � ∶= � − �gt(�) ), where � is the meta-learning rate. Note 

that the memory usage keeps increasing over time, as at every time step t, we append 

tasks to the buffer B, and keep task data sets in memory. 

(36)RegretT =

T
∑

t=1

LTt
(��

t
) − min

�

T
∑

t=1

LTt
(��

t
),

(37)�t+1
∶= argmin

�

t
∑

k=1

LTk
(��

k
).

(38)gt(�) ∶= ∇
�
�Tk∽pt(T)

LTk
(��

k
),
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In summary, Online MAML is a robust technique for online-learning (Finn et  al. 

2019). A downside of this approach is the computational costs that keep growing over 

time, as all encountered data are stored. Reducing these costs is a direction for future 

work. Also, one could experiment with how well the approach works when more than 

one inner gradient update steps per task are used, as mentioned by Finn et al. (2019).

5.11  LLAMA

Grant et  al. (2018) mold MAML into a probabilistic framework, such that a probability 

distribution over task-specific parameters �′

j
 is learned, instead of a single one. In this way, 

multiple potential solutions can be obtained for a task. The resulting technique is called 

LLAMA (Laplace Approximation for Meta-Adaptation). Importantly, LLAMA is only 

developed for supervised learning settings.

A key observation is that a neural network f
�
′

j
 , parameterized by updated parameters �′

j
 

(obtained from few gradient updates using Dtr
Tj

 ), outputs class probabilities P(yi|xi,�
�

j
) . To 

minimize the error on the query set Dtest
Tj

 , the model must output large probability scores for 

the true classes. This objective is captured in the maximum log-likelihood loss function

Simply put, if we see a task j as a probability distribution over examples pTj
 , we wish to 

maximize the probability that the model predicts the correct class yi , given an input x
i
 . 

This can be done by plain gradient descent, as shown in Algorithm 5, where � is the meta-

learning rate. Line 4 refers to ML-LAPLACE, which is a subroutine that computes task-

specific updated parameters �′

j
 , and estimates the negative log-likelihood (loss function) 

which is used to update the initialization � , as shown in Algorithm 6. Grant et al. (2018) 

approximated the quadratic curvature matrix Ĥ using K-FAC (Martens and Grosse 2015).

(39)
LDtest

Tj

(��

j
) = −

∑

xi,yi∈Dtest
Tj

log P(yi|xi,�
�

j
).
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The trick is that the initialization � defines a distribution p(��

j
|�) over task-specific 

parameters �′

j
 . This distribution was taken to be a diagonal Gaussian (Grant et al. 2018). 

Then, to sample solutions for a new task Tj , one can simply generate possible solutions �′

j
 

from the learned Gaussian distribution. 

In short, LLAMA extends MAML in a probabilistic fashion, such that one can obtain 

multiple solutions for a single task, instead of one. This does, however, increase the com-

putational costs. On top of that, the used Laplace approximation (in ML-LAPLACE) can 

be quite inaccurate (Grant et al. 2018).

5.12  PLATIPUS

PLATIPUS (Finn et  al. 2018) builds upon the probabilistic interpretation of LLAMA 

(Grant et  al. 2018) but learns a probability distribution over initializations � , instead of 

task-specific parameters �′

j
 . Thus, PLATIPUS allows one to sample an initialization 

� ∽ p(�) , which can be updated with gradient descent to obtain task-specific weights (fast 

weights) �′

j
 . 
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The approach is best explained by its pseudocode, as shown in Algorithm 7. In contrast 

to the original MAML, PLATIPUS introduces five more parameter vectors (line 1). All 

of these parameters are used to facilitate the creation of Gaussian distributions over prior 

initializations (or simply priors) � . That is, �� represents the vector mean of the distribu-

tions. �2

q
 , and v

q
 represent the covariances of train and test distributions respectively. �

x
 for 

x = q, p are learning rate vectors for performing gradient steps on distributions q (lines 6 

and 7) and P (line 11).

The key difference with the regular MAML is that instead of having a single initializa-

tion point � , we now learn distributions over priors: q and P, which are based on query and 

support data sets of task Tj respectively. Since these data sets come from the same task, we 

want the distributions q(�|Dtest
Tj

) , and p(�|Dtr
Tj

) to be close to each other. This is enforced by 

the Kullback–Leibler divergence ( D
KL

 ) loss term on line 12, which measures the distance 

between the two distributions. Importantly, note that q (line 7) and P (line 11) use vector 

means which are computed with one gradient update step using the query and support data 

sets respectively. The idea is that the mean of the Gaussian distributions should be close to 

the updated mean �� , because we want to enable fast learning. As one can see, the training 

process is very similar to that of MAML (Finn et al. 2017) (Sect. 5.5), with some small 

adjustments to allow us to work with the probability distributions over �.

At test-time, one can simply sample a new initialization � from the prior distribution 

p(�|Dtr
Tj

) (note that q cannot be used at test-time as we do not have access to Dtest
Tj

 ), and 

apply a gradient update on the provided support set Dtr
Tj

 . Note that this allows us to sample 

multiple potential initializations � for the given task.

The key advantage of PLATIPUS is that it is aware of its uncertainty, which greatly 

increases the applicability of Deep Meta-Learning in critical domains such as medical 

diagnosis (Finn et al. 2018). Based on this uncertainty, it can ask for labels of some inputs 

it is unsure about (active learning). A downside to this approach, however, is the increased 

computational costs, and the fact that it is not applicable to reinforcement learning.
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5.13  Bayesian MAML (BMAML)

Bayesian MAML (Yoon et  al. 2018) is another probabilistic variant of MAML that can 

generate multiple solutions. However, instead of learning a distribution over potential solu-

tions, BMAML simply keeps M possible solutions and jointly optimizes them. Recall that 

probabilistic MAMLs (e.g., PLATIPUS) attempt to maximize the data likelihood of task 

Tj , i.e., p(ytest
j

|��

j
) , where �′

j
 are task-specific fast weights obtained by one or more gradient 

updates. Yoon et al. (2018) model this likelihood using Stein Variational Gradient Descent 

(SVGD) (Liu and Wang 2016).

To obtain M solutions, or equivalently, parameter settings �m , SVGD keeps a set of M 

particles � = {�m}M

i=1
 . At iteration t, every �

t
∈ � is updated as follows

Here, k(x, x
�) is a similarity kernel between x and x′ . The authors used a radial basis func-

tion (RBF) kernel, but in theory, any other kernel could be used. Note that the update of 

one particle depends on the other gradients of particles. The first term in the summation 

( k(�m
t

,�t)∇�
m
t
log p(�m

t
) ) moves the particle in the direction of the gradients of other parti-

cles, based on particle similarity. The second term ( ∇
�

m

t

k(�m

t
,�

t
) ) ensures that particles do 

not collapse (repulsive force) (Yoon et al. 2018).

These particles can then be used to approximate the probability distribution of the 

test labels

where �m

Tj
 is the m-th particle obtained by training on the support set Dtr

Tj

 of task Tj.

Yoon et  al. (2018) proposed a new meta-loss to train BMAML, called the Chaser 

Loss. This loss relies on the insight that we want the approximated parameter distribu-

tion (obtained from the support set pn
Tj

(�Tj
|Dtr,�0) ) and true distribution 

p∞
Tj

(�Tj
|Dtr ∪ Dtest) to be close to each other (since the task is the same). Here, n denotes 

the number of SVGD steps, and �
0
 is the set of initial particles, in a similar fashion to 

the initial parameters � seen by MAML. Since the true distribution is unknown, Yoon 

et  al. (2018) approximate it by running SVGD for s additional steps, granting us the 

leader �n+s

Tj
 , where the s additional steps are performed on the combined support and 

query set. The intuition is that as the number of updates increases, the obtained distribu-

tions become more like the true ones. �n

Tj
 in this context is called the chaser as it wants 

to get closer to the leader. The proposed meta-loss is then given by

(40)�
t+1

= �
t
+ �(�(�

t
))

(41)where �(�t) =
1

M

M
∑

m=1

[

k(�m
t

,�t)∇�
m
t
log p(�m

t
) + ∇

�
m
t
k(�m

t
,�t)

]

.

(42)p(ytest
j

|��

j
) ≈

1

M

M∑

m=1

p(ytest
j

|�m

Tj
),

(43)LBMAML(�0) =
∑

Tj∈B

M∑

m=1

||�n,m

Tj

− �
n+s,m

Tj

||2
2
.
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The full pseudocode of BMAML is shown in Algorithm 8. Here, �n

Tj
(�

0
) denotes the set 

of particles after n updates on task Tj , and SG means “stop gradients” (we do not want the 

leader to depend on the initialization, as the leader must lead). 

In summary, BMAML is a robust optimization-based meta-learning technique that 

can propose M potential solutions to a task. Additionally, it is applicable to reinforce-

ment learning by using Stein Variational Policy Gradient instead of SVGD. A downside 

of this approach is that one has to keep M parameter sets in memory, which does not 

scale well. Reducing the memory costs is a direction for future work (Yoon et al. 2018). 

Furthermore, SVGD is sensitive to the selected kernel function, which was pre-defined 

in BMAML. However, Yoon et al. (2018) point out that it may be beneficial to learn the 

kernel function instead. This is another possibility for future research.

5.14  Simple differentiable solvers

Bertinetto et  al. (2019) take a quite different approach. That is, they pick simple base-

learners that have an analytical closed-form solution. The intuition is that the existence of 

a closed-form solution allows for good learning efficiency. They propose two techniques 

using this principle, namely R2-D2 (Ridge Regression Differentiable Discriminator), and 

LR-D2 (Logistic Regression Differentiable Discriminator). We cover both in turn.

Let g� ∶ X → ℝ
e be a pre-trained input embedding model (e.g. a CNN), which outputs 

embeddings with a dimensionality of e. Furthermore, assume that we use a linear predictor 

function f (g�(xi)) = g�(xi)W , where W is a e × o weight matrix and o is the output dimen-

sionality (of the label). When using (regularized) Ridge Regression (done by R2-D2), one 

uses the optimal W, i.e.,

where X ∈ ℝ
n×e is the input matrix, containing n rows (one for each embedded input 

g�(xi) ), Y ∈ ℝ
n×o is the output matrix with correct outputs corresponding to the inputs, 

and � is a regularization term to prevent overfitting. Note that the analytical solution con-

tains the term (XT
X) ∈ ℝ

e×e , which is quadratic in the size of the embeddings. Since e can 

become quite large when using deep neural networks, Bertinetto et al. (2019) use Wood-

burry’s identity

(44)
W

∗ = arg min
W

||XW − Y||2
2
+ �||W||2

= (XT
X + �I)−1

X
T
Y ,
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where XX
T
∈ ℝ

n×n is linear in the embedding size, and quadratic in the number of exam-

ples, which is more manageable in few-shot settings, where n is very small. To make pre-

dictions with this Ridge Regression model, one can compute

where � and � are hyperparameters of the base-learner that can be learned by the meta-

learner, and X
test

∈ ℝ
m×e corresponds to the m test inputs of a given task. Thus, the meta-

learner needs to learn �, �, � , and � (embedding weights of the CNN).

The technique can also be applied to iterative solvers when the optimization steps are 

differentiable (Bertinetto et al. 2019). LR-D2 uses the Logistic Regression objective and 

Newton’s method as solver. Outputs y ∈ {−1,+1}n are now binary. Let w denote a param-

eter row of our linear model (parameterized by W). Then, the i-th iteration of Newton’s 

method updates w
i
 as follows

where �
i
= �(wT

i−1
X) , s

i
= �

i
(1 − �

i
) , z

i
= w

T

i−1
X + (y − �

i
)∕s

i
 , and � is the sigmoid func-

tion. Since the term XT diag (s
i
)X is a matrix of size e × e , and thus again quadratic in the 

embedding size, Woodburry’s identity is also applied here to obtain

making it quadratic in the input size, which is not a big problem since n is small in the few-

shot setting. The main difference compared to R2-D2 is that the base-solver has to be run 

for multiple iterations to obtain W.

In the few-shot setting, the base-level optimizers compute the weight matrix W for a 

given task T
i
 . The obtained loss on the query set of a task L

D
test

 is then used to update the 

parameters � of the input embedding function (e.g. CNN) and the hyperparameters of the 

base-learner.

Lee et al. (2019) have done similar work to Bertinetto et al. (2019), but with linear Sup-

port Vector Machines (SVMs) as base-learner. Their approach is dubbed MetaOptNet, and 

achieved state-of-the-art performance on few-shot image classification.

In short, simple differentiable solvers are simple, reasonably fast in terms of computa-

tion time, but limited to few-shot learning settings. Investigating the use of other simple 

base-learners is a direction for future work.

5.15  Optimization-based techniques, in conclusion

Optimization-based aim to learn new tasks quickly through (learned) optimization pro-

cedures. Note that this closely resembles base-level learning, which also occurs through 

optimization (e.g., gradient descent). However, in contrast to base-level techniques, opti-

mization-based meta-learners can learn the optimizer and/or are exposed to multiple tasks, 

which allows them to learn to learn new tasks quickly. Figure 28 shows the relationships 

between the covered optimization-based techniques.

As we can see, the LSTM optimizer (Andrychowicz et al. 2016), which replaces hand-

crafted optimization procedures such as gradient descent with a trainable LSTM, can be 

seen as the starting point for these optimization-based meta-learning techniques. Li and 

(45)W
∗ = X

T (XX
T + �I)−1

Y ,

(46)Ŷ = �X
test

W
∗
+ �,

(47)w
i
= (XT diag (s

i
)X + �I)−1

X
T diag (s

i
)z

i
,

(48)w
i
= X

T (XX
T + � diag (s

i
)−1)−1

z
i
,



4533A survey of deep meta-learning  

1 3

Malik (2018) also aim to learn the optimization procedure with reinforcement learning 

instead of gradient-based methods. The LSTM meta-learner (Ravi and Larochelle 2017) 

extends the LSTM optimizer to the few-shot setting by not only learning the optimiza-

tion procedure but also a good set of initial weights. This way, it can be used across tasks. 

MAML (Finn et al. 2017) is a simplification of the LSTM meta-learner as it replaces the 

trainable LSTM optimizer by hand-crafted gradient descent. MAML has received consid-

erable attention within the field of deep meta-learning, and has, as one can see, inspired 

many other works.

Meta-SGD is an enhancement of MAML that not only learns the initial parameters, but 

also the learning rates (Li et al. 2017). LLAMA (Grant et al. 2018), PLATIPUS (Finn et al. 

2018), and online MAML (Finn et al. 2019) extend MAML to the active and online learn-

ing settings. LLAMA and PLATIPUS are probabilistic interpretations of MAML, which 

allow them to sample multiple solutions for a given task and quantify their uncertainty. 

BMAML (Yoon et al. 2018) takes a more discrete approach as it jointly optimizes a dis-

crete set of M initializations. iMAML (Rajeswaran et al. 2019) aims to overcome the com-

putational expenses associated with the computation of second-order derivatives, which 

is needed by MAML. Through implicit differentiation, they also allow for the use of non-

differentiable inner loop optimization procedures. Reptile (Nichol et al. 2018) is an elegant 

first-order meta-learning algorithm for finding a set of initial parameters and removes the 

Fig. 28  The relationships between the covered optimization-based meta-learning techniques. As one can 

see, MAML has a central position in this network of techniques as it has inspired many other works
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need of computing higher-order derivatives. LEO (Rusu et al. 2018) tries to improve the 

robustness of MAML by optimizing in lower-dimensional parameter space through the 

use of an encoder-decoder architecture. Lastly, R2-D2, LR-D2 (Bertinetto et al. 2019), and 

Lee et al. (2019) use simple classical machine learning methods (ridge regression, logistic 

regression, SVM, respectively) as a classifier on top of a learned feature extractor.

A key advantage of optimization-based approaches is that they can achieve better per-

formance on wider task distributions than, e.g., model-based approaches (Finn and Levine 

2018). However, optimization-based techniques optimize a base-learner for every task that 

they are presented with and/or learn the optimization procedure, which is computationally 

expensive (Hospedales et al. 2020).

Optimization-based meta-learning is a very active area of research. We expect future 

work to be done in order to reduce the computational demands of these methods and 

improve the solution quality and level of generalization. We think that benchmarking and 

reproducibility research will play an important role in these improvements.

6  Concluding remarks

In this section, we give a helicopter view of all that we discussed, and the field of Deep 

Meta-Learning in general. We will also discuss challenges and future research.

6.1  Overview

In recent years, there has been a shift in focus in the broad meta-learning community. Tra-

ditional algorithm selection and hyperparameter optimization for classical machine learn-

ing techniques (e.g. Support Vector Machines, Logistic Regression, Random Forests, etc.) 

have been augmented by Deep Meta-Learning, or equivalently, the pursuit of self-improv-

ing neural networks that can leverage prior learning experience to learn new tasks more 

quickly. Instead of training a new model from scratch for different tasks, we can use the 

same (meta-learning) model across tasks. As such, meta-learning can widen the applicabil-

ity of powerful deep learning techniques to domains where less data is available and com-

putational resources are limited.

Deep Meta-Learning techniques are characterized by their meta-objective, which allows 

them to maximize performance across various tasks, instead of a single one, as is the case 

in base-level learning objectives. This meta-objective is reflected in the training procedure 

of meta-learning methods, as they learn on a set of different meta-training tasks. The few-

shot setting lends itself nicely towards this end, as tasks consist of few data points. This 

makes it computationally feasible to train on many different tasks, and it allows us to evalu-

ate whether a neural network can learn new concepts from few examples. Task construction 

for training and evaluation does require some special attention. That is, it has been shown 

beneficial to match training and test conditions (Vinyals et al. 2016), and perhaps train in a 

more difficult setting than the one that will be used for evaluation (Snell et al. 2017).

On a high level, there are three categories of Deep Meta-Learning techniques, namely 

(i)  metric-, (ii)  model-, and (iii)  optimization-based ones, which rely on (i) computing 

input similarity, (ii) task embeddings with states, and (iii) task-specific updates, respec-

tively. Each approach has strengths and weaknesses. Metric-learning techniques are simple 

and effective (Garcia and Bruna 2017), but are not readily applicable outside of the super-

vised learning setting (Hospedales et al. 2020). Model-based techniques, on the other hand, 
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can have very flexible internal dynamics, but lack generalization ability to more distant 

tasks than the ones used at meta-train time (Finn and Levine 2018). Optimization-based 

approaches have shown greater generalizability, but are in general computationally expen-

sive, as they optimize a base-learner for every task (Finn and Levine 2018; Hospedales 

et al. 2020).

Table 2 provides a concise, tabular overview of these approaches. Many techniques have 

been proposed for each one of the categories, and the underlying ideas may vary greatly, 

even within the same category. Table 3, therefore, provides an overview of all methods and 

key ideas that we have discussed in this work, together with their applicability to super-

vised learning (SL) and reinforcement learning (RL) settings, key ideas, and benchmarks 

that were used for testing them. Table 5 displays an overview of the 1- and 5-shot classifi-

cation performances (reported by the original authors) of the techniques on the frequently 

used miniImageNet benchmark. Moreover, it displays the used backbone (feature extrac-

tion module) as well as the final classification mechanism. From this table, it becomes 

clear that the 5-shot performance is typically better than the 1-shot performance, indicating 

that data scarcity is a large bottleneck for achieving good performance. Moreover, there is 

a strong relationship between the expressivity of the backbone and the performance. That 

is, deeper backbones tend to give rise to better classification performance. The best per-

formance is achieved by MetaOptNet, yielding a 1-shot accuracy of 64.09% and a 5-shot 

accuracy of 80.00%. Note however that MetaOptNet used a deeper backbone than most of 

the other techniques.

6.2  Open challenges and future work

Despite the great potential of Deep Meta-Learning techniques, there are still open chal-

lenges, which we discuss here.

Figure 1 in Sect. 1 displays the accuracy scores of the covered meta-learning techniques 

on 1-shot miniImageNet classification. Techniques that were not tested in this setting by the 

original authors are omitted. As we can see, the performance of the techniques is related 

to the expressivity of the used backbone (ordered in increasing order on the x-axis). For 

example, the best-performing techniques, LEO and MetaOptNet, use the largest network 

architectures. Moreover, the fact that different techniques use different backbones poses 

a problem as it is difficult to fairly compare their classification performance. An obvious 

question arises to which degree the difference in performance is due to methodological 

improvements, opposed to the fact that a better backbone architecture was chosen. For this 

reason, we think that it would be useful to perform a large-scale benchmark test where 

techniques are compared when they use the same backbones. This would also allow us to 

get a more clear idea of how the expressivity of the feature extraction module affects the 

performance.

Another challenge of Deep Meta-Learning techniques is that they can be susceptible 

to the memorization problem (meta-overfitting), where the neural network has memorized 

tasks seen at meta-training time and fails to generalize to new tasks. More research is 

required to better understand this problem. Clever task design and meta-regularization may 

prove useful to avoid such problems (Yin et al. 2020).

Another problem is that most of the meta-learning techniques discussed in this work 

are evaluated on narrow benchmark sets. This means that the data that the meta-learner 

used for training are not too distant from the data used for evaluating its performance. As 

such, one may wonder how well these techniques are able to adapt to more distant tasks. 



4536 M. Huisman et al.

1 3

Chen et al. (2019) showed that the ability to adapt to new tasks decreases as they become 

more distant from the tasks seen at training time. Moreover, a simple non-meta-learning 

baseline (based on pre-training and fine-tuning) can outperform state-of-the-art meta-

learning techniques when meta-test tasks come from a different data set than the one used 

for meta-training.

In reaction to these findings, Triantafillou et al. (2020) have recently proposed the Meta-

Dataset benchmark, which consists of various previously used meta-learning benchmarks 

Table 5  Comparison of the accuracy scores of the covered meta-learning techniques on 1- and 5-shot mini-

ImageNet classification

Scores are taken from the original papers. The ± indicates the 95% confidence interval. The backbone is the 

used feature extraction module. The classifier column shows the final layer(s) that were used to transform 

the features into class predictions. Used abbreviations: “sim.”: similarity, “Adj.”: adjusted, and “dist.”: dis-

tance, “log.”: logistic, “regr.”: regression, “ml.”: meta-learner, “opt.”: optimization

Name Backbone Classifier 1-shot 5-shot

Metric-based

Siamese nets – – – –

Matching nets 64-64-64-64 Cosine sim. 43.56 ± 0.84 55.31 ± 0.73

Prototypical nets 64-64-64-64 Euclidean dist. 49.42 ± 0.78 68.20 ± 0.66

Relation nets 64-96-128-256 Sim. network 50.44 ± 0.82 65.32 ± 0.70

ARC – 64-1 dense 49.14 ± − –

GNN 64-96-128-256 Softmax 50.33 ± 0.36 66.41 ± 0.63

Model-based

Recurrent ml. – – – –

MANNs – – – –

Meta nets 64-64-64-64-64 64-Softmax 49.21 ± 0.96 –

SNAIL Adj. ResNet-12 Softmax 55.71 ± 0.99 68.88 ± 0.92

CNP – – – –

Neural stat. – – – –

Opt.-based

LSTM optimizer – – – –

LSTM ml. 32-32-32-32 Softmax 43.44 ± 0.77 60.60 ± 0.71

RL optimizer – – – –

MAML 32-32-32-32 Softmax 48.70 ± 1.84 63.11 ± 0.92

iMAML 64-64-64-64 Softmax 49.30 ± 1.88 –

Meta-SGD 64-64-64-64 Softmax 50.47 ± 1.87 64.03 ± 0.94

Reptile 32-32-32-32 Softmax 48.21 ± 0.69 66.00 ± 0.62

LEO WRN-28-10 Softmax 61.76 ± 0.08 77.59 ± 0.12

Online MAML – – – –

LLAMA 64-64-64-64 Softmax 49.40 ± 1.83 –

PLATIPUS – – – –

BMAML 64-64-64-64-64 Softmax 53.80 ± 1.46 –

Diff. solvers –

R2-D2 96-192-384-512 Ridge regr. 51.8 ± 0.2 68.4 ± 0.2

LR-D2 96-192-384-512 Log. regr. 51.90 ± 0.20 68.70 ± 0.20

MetaOptNet ResNet-12 SVM ��.�� ± �.�� ��.��±�.��
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such as Omniglot (Lake et  al. 2011) and ImageNet (Deng et  al. 2009). This way, meta-

learning techniques can be evaluated in more challenging settings where tasks are diverse. 

Following Hospedales et al. (2020), we think that this new benchmark can prove to be a 

good means for the investigation and development of meta-learning algorithms for such 

challenging scenarios.

As mentioned earlier in this section, Deep Meta-Learning has the appealing prospect 

of widening the applicability of deep learning techniques to more real-world domains. For 

this, increasing the generalization ability of these techniques is very important. Addition-

ally, the computational costs associated with the deployment of meta-learning techniques 

should be small. While these techniques can learn new tasks quickly, meta-training can 

be quite computationally expensive. Thus, decreasing the required computation time and 

memory costs of Deep Meta-Learning techniques remains an open challenge.

Some real-world problems demand systems that can perform well in online, or active 

learning settings. The investigation of Deep Meta-Learning in these settings (Finn et  al. 

2018; Yoon et al. 2018; Finn et al. 2019; Munkhdalai and Yu 2017; Vuorio et al. 2018) 

remains an important direction for future work.

Yet another direction for future research is the creation of compositional Deep Meta-

Learning systems, which instead of learning flat and associative functions x → y , organize 

knowledge in a compositional manner. This would allow them to decompose an input x 

into several (already learned) components c1(x), ..., c
n
(x) , which in turn could help the per-

formance in low-data regimes (Tokmakov et al. 2019).

The question has been raised whether contemporary Deep Meta-Learning techniques 

actually learn how to perform rapid learning, or simply learn a set of robust high-level 

features, which can be (re)used for many (new) tasks. Raghu et al. (2020) investigated this 

question for the most popular Deep Meta-Learning technique MAML and found that it 

largely relies on feature reuse. It would be interesting to see whether we can develop tech-

niques that rely more upon fast learning, and what the effect would be on performance.

Lastly, it may be useful to add more meta-abstraction levels, giving rise to, e.g., 

meta-meta-learning, meta-meta-...-learning (Hospedales et al. 2020; Schmidhuber 1987).
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