
A SURVEY OF DIFFERENCE SETS1

MARSHALL HALL, JR.

1. Introduction. A set of k distinct residues dx, d2, • • ■ ,dk modulo v

is called a difference set D if every residue ¿>^0 (mod v) can be ex-

pressed in exactly X ways in the form b=di — dj (mod v) with o*,-, d¡ED-

The v sets of residues dx+i, d2+i, • • • , dk+i (mod v), i = 0, • • • ,

o — l, will form the blocks of a symmetric block design with param-

eters v,k,\ satisfying k(k — l) = X(» — 1). The mapping x—>x + l (modo)

is an automorphism of the block design which is cyclic and regular on

both the elements and the blocks of the design, and conversely a

symmetric design with such an automorphism may be represented by

a difference set. Difference sets have been extensively studied and a

partial bibliography is given at the end of this paper. If there is a

residue t modulo v such that the mapping x—*xt (mod v) is an auto-

morphism of the design, then / is called a multiplier of the difference

set. The existence of multipliers has been one of the main tools in the

construction and study of difference sets.

In an attempt to study a reasonably large number of combinatorial

designs, a survey was made of all difference sets with parameters

v, k, X, with k in the range 3^k^50. The parameters must satisfy

k(k — 1) =X(» — 1) and taking k <v/2 (as we may since the complement

of a difference set is also a difference set) there were 268 choices of

parameters. Of these choices 101 correspond to no design because of

the criteria of Chowla and Ryser [2 ], and hence a fortiori to no differ-

ence set. Of the remaining 167, difference sets were found in 46 cases,

and in only twelve cases does the existence of a difference set remain

undecided.
This work involved a combination of theorems, some old and two

new ones given here, hand calculations and calculations on SWAC,

the digital computer at Numerical Analysis Research at the Univer-

sity of California in Los Angeles. The interplay of hand and machine

calculations should be remarked upon. In the case of the four non-

isomorphic solutions for » = 121, ¿ = 40, X = 13 the machine found

several solutions in three hours running time, finding a solution and

others isomorphic to it. But it would have taken several hundred

hours to complete the search at this rate. A careful study modulo 11
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by hand led to 42 judiciously chosen starts which would eliminate

most of the duplication and enormously shorten running time in

other respects. Each of these 42 cases was so fast on the machine that

the entire set was easily handled.

2. Two theorems on difference sets. The existence of multipliers is

one of the main tools in constructing difference sets or showing that

a difference set does not exist. The following theorem generalizes and

includes the previously known theorems. As usual the parameters are

v, k, X, n = k—\ where

(2.1) *(*- 1) - X(b - 1).

Theorem 2.1. Let «i be a divisor of n=k —X such that («i, v) = 1 and

«i>X. Also suppose that t is an integer such that for each prime p divid-

ing »i there is a j such that p' = t (mod v). Then t is a multiplier of a

difference set di, d2, • • • , dk (mod v).

Proof. Note that with ni = p, t=p this includes Theorem 3.1 of

[4]. It is also more general than the theorem enunciated there in

Example 4 which corresponds to the present theorem in the special

case in which wi is square-free. Also note that if «i = n, then certainly

«i>X. As in [4] we write

eix) = xdi + xd* + ■ ■ ■ + xdk

if di, d2, ■ ■ ■ , dk is a difference set modulo v. Then the properties of a

difference set yield

(2.2) eix)6ix-1) = n + XF(x) (mod x* - 1)

where F(x) = l+x+ • • • +x»-1 = (*»-l)/(a:-l). Let F(x)=/i(x)/2(x)

• • • fr(x) be the decomposition of F(x) into irreducible factors over

the rational field. Then the /¿(x) are distinct and the roots of /,(x)

are certain wth roots of unity. From the theory of cyclotomic fields

if/,-(») is of degree u and f is a root of/j(x), then 1, f, ■ • • , fu_1 form

an integral basis for the field 2£(f) whence we can associate the alge-

braic integers of 2£(f) with the residue classes of polynomials with

rational integral coefficients modulo/,(x).

Writing n = «i«2 we have

(2.3) ô(x)9(x"1) sa mn2 (mod/<(*)),

which we may regard as a factorization of » in 2£(f). Now if p is a

prime ideal divisor of ö(f-1) and also the rational prime p dividing

«1, then the automorphism of the field 2f(f) determined by f—>fp

leaves p unchanged. We note that this is an automorphism because
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(p, ») = 1. Also since tmpi (mod ») and f* = l, it follows that f—»£'

gives an automorphism of 7i(£) which takes p into itself. Since this

holds for every prime ideal divisor of 0(£_1) and nx it will follow that,

since 0(£)0(£-1) was divisible by nx, 0(£)0(£-') is also divisible by nx.

In terms of congruences this becomes

(2.4) dix)6ix->) =- niSiix) (mod/,•(*)).

There will be such a congruence for each irreducible factor of Tix).

We wish to deduce a similar congruence with 7"(x) as a modulus.

Suppose

(2.5) B(x)6(x-i) = nxRj(x) + A(x)Fjix),

where 7V(x) =/i(x)/2(x) • ■ -/,-(x). This is immediate for j = \ from

(2.4). Also from (2.4) with i=j+l we have

(2.6) d(x)6(x->) = mSj+iix) + B(x)fi+X(x).

We will have for some integral polynomials C(x) and D(x)

(2.7) C(x)Fj(x) + Dix)fi+Xix) = w,

where the integer w is the resultant of F¡ix) and/J+i(x). Now w can

be expressed as a product of factors a— ß where a is a root of 7"3(x)

and ß is a root of /,-+i(x). But a and ß will be different »th roots of

unity and if £ is a primitive »th root of unity then for appropriate

exponents y, s, a— ß = £"(£" — 1). Now £"is a unit and £* —1 is a root of

(2.8) [(2 + 1)" - l]/a = a—1 +•••+» = 0,

and so £* — 1 is a divisor of ». Hence w will be a divisor of an appropri-

ate power of » and since («1, ») = 1 by hypothesis then also («1, w) — \.

Multiplying (2.5) by D(x)fj+X(x) and (2.6) by C(x)Fy(x) and adding
we have

(2.9) w0(x)0(x-<) = nxSix) + G(x)F,+i(x).

This may be combined with the trivial relation Wi0(x)0(x-i) =«i77(x)

using («1, w) = 1 to yield

(2.10) e(x)6(x->) = nxRi+xix) + Aix)Fj+xix).

Continuing we find

(2.11) 0(x)0(x-') = nxRix) + Aix)Tix).

From here on the argument is essentially the same as that in [4].

We take (2.11) modulo x"-l noting that ^(x)7"(x)s^(l)7,(x)

&¡AT(x) mod (x"-l).
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(2.12) 0(x)0(3C-') s niRix) + ATix) (mod xv - 1).

Putting x = l in (2.12) we have

(2.13) k2 = MiF(l) + Av.

But k2— \v = k— X = w whence

(2.14) k2 m Av s \o (mod m)

and so since im, î») = 1

(2.15) A = X(mod«i).

Hence in (2.12) we may replace A by X if we change 2?(x) appropri-

ately. We now have

(2.16) 0(x)0(x-') =- mRix) + \Tix) (mod x* - 1).

From the left-hand side of this every coefficient is non-negative and

from the right-hand side every coefficient is congruent to X modulo m.

Since Wi>X by hypothesis, every coefficient is therefore at least X and

so in 2?(x) all coefficients are non-negative. Since (2.16) is an identity

we may replace x by x_1 to obtain

(2.17) eix-^dix') = niRix'1) + XT(x) (mod x" - 1).

Now since t is prime to v we have both relations

(2.18) 0(x)0(x"x) s mm + XF(x) (mod x" - 1),

(2.19) 0(x')0(x-') = «iMj + XF(x) (mod x" - 1).

With x = l in (2.16) we have

k2 = mRi\)+\v

whence since k2—\v = n we have

(2.20) F(l) = n2.

The product of the left-hand sides of (2.16) and (2.17) is the same as

that of (2.18) and (2.19). Equating the product of the right-hand

sides, using (2.20) and simplifying we have

(2.21) Rix)Rix~') = n\ (mod x'l-ll).

But since 2?(x) has non-negative coefficients this requires that 2?(x)

has only a single nonzero term and so for some power x~*

(2.22) Rix) = mxr' (mod x- - 1).

Hence (2.17) becomes
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(2.23) 0(arl)0(*') * »*' + *T(X) (mod x» - 1).

Multiplying by 0(x), using (2.2) and simplifying we have

(2.24) dix') as x'dix) (mod x" - 1)

and this says that t is a multiplier of the difference set, saying that

tdx, td2, • • ■ , tdk are dx„ • • • , dke in some order. This proves the

theorem.

When nx = n a further property of algebraic numbers is relevant

which does not depend on inequalities. This we note here although

it adds nothing to the above proof since w>X always. Thus in (2.4)

we have

(2.25) 0(x)0(x-') = nSi(x) (mod/,(x)) wherein #(f),

5<(£) is a unit. Now

(2.26) 0(xO0(x-') m n (mod/<(*))

for every/ prime to ». Thus as 0(£') and 0(£~O are complex conjugates

10(£') I =»1/2. Hence in (2.25), 5¿(f 0 is an algebraic integer of absolute

value 1 for all/ prime to ». But an algebraic integer all of whose con-

jugates have absolute value 1 is a root of unity and in 7i(£) the roots

of unity are of the form +£'. Hence (2.25) becomes

(2.27) d(x)6(x-') =- ± nx' (mod/,(x)).

In several instances this method gave information not covered by the

theorem. With » = 221, k = 45, X = 9 we have f=16 = 24 = 340 (mod 221)
as a multiplier, but applying the method to

d(x)0(x-1) =- 36 + 117r17(x)Kmod x17 - 1)

we find that 2 = 3U (mod 17) is a multiplier at least so far as the

modulus 17 is concerned. Here if 0(x) =■ y,q,-x» (mod x17 —1) we have

ai = ar if r is a quadratic residue of 17 and a, = am if m is a nonresidue.

Here ao + 8ai + 8a3 = 45, a% + 8a\ + 8al = l53. As these have no solu-

tion in non-negative integers no difference set exists.

In calculating difference sets of the Hadamard type with » = 4<—1,

k = 2t — 1,X = / — 1 it was found that for » = 31 and » = 43 not only the

quadratic residues but also residues with indices =0, 1, 3 (mod 6)

gave difference sets. On investigation these turned out to be instances

of a general theorem.

Theorem 2.2. A set of residues forming a difference set modulo a

prime p = 6/+1 which includes the sextic residues as multipliers may

consist of (1) the quadratic residues when p = 3 (mod 4) or (2) residues
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with indices congruent to 0, 1, or 3 modulo 6 for an appropriate choice2

of primitive root when p is of the form p = 4-x2 + 27. The only possibili-

ties are equivalent to one of the above.

Proof. We note that the second case always duplicates the param-

eters v, k, X of the first so that if there are infinitely many primes of

the form £=4x2 + 27, this yields infinitely many cases of parameters

with two distinct difference sets belonging to them.

Modulo a prime p = 6f+l the sextic residues form a cyclic group

under multiplication. If t is a generator of this group then since

(/ — 1, p) = 1 there is an equivalent difference set fixed by the multi-

plier t and hence by all sextic residues. This set will consist of all

residues whose indices are congruent to specified values modulo 6

and may also include in addition the residue 0. If p = \ (mod 12) then

— 1 is a sextic residue. In this case since dt — ¿y=(— d¡) — (— di), a

residue modulo p not of the form 2d, will be given an even number of

times as a difference and one of the form 2¿, an odd number of times.

Hence we may assume p = 7 (mod 12). For such primes the cyclotomic

numbers (¿, j) are the number of solutions x = g6u+i, y = 6t,+> (mod p) of

(2.28) $««+* + 1 = g«'+'' (mod p)

where g is a fixed primitive root of p. Following the methods of Dick-

son [3 ] Emma Lehmer found the values to depend on the quadratic

representations

(2.29) p = A2 + 3B2,       ip = L2 + 27 M2 = E2 + 3F2.

The numbers satisfy the relations

(2.30) (¿, j) = (j + 3, i + 3) = (6 - i, j - i).

Thus with i, j = 0, • • • , 5 (mod 6) we have the following table ex-

pressing the 36 constants in terms of ten where ii, j) is in row i and

column j.

00     01      02      03      04     05

10      20      12      04      02      12

20      21      10     05      12     01
(2.31)

00      10      20      00      10      20

10     05      12      01      20     21

20      12      04      02      12      10

2 This will be a choice which puts the residue 3 in the class with indices congruent

to 1 modulo 6.
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The values will depend on the cubic character of 2.

2 cubic residue Ind 2 = 2(mod 3) Ind 2=1 (mod 3)

L-2A, 3B=E+A, 3B=-(E+A),

E=2A, F=A+B, F=-A+B,

F=-2B, L=A+3B, L=A-3B,

3M=2B 3M=A-B 3M=-(A+B)

36 (00)    p - 11 - 84 p - 11 - 2A p - 11 - 2A

36 (01)    p + 1 - 2A + 125 P + Í-2A-12B p + 1 + 44

36 (02)    P + 1-2A + 12B p + 1 - &A + 12B p + Í - 2A + Y2B

36 (03)    P + 1 + 16A p + i + WA + UB p + 1 + 10A - 12B

36 (04)    p + 1 - 2A - 12B p + 1 - 2A - 12B p + 1 - &A - 12B

36 (05)    P + 1-2A-Í2B p + 1 + 4A p + 1 - 2.4 + 12B

36 (10)    p- 5+4,A+6B p - 5+4A+6B p - 5 - 2A + 6B

36 (20)    p- 5 + 4A -6B p - 5 - 2A - 6B p - 5 + 4A - 6B

36 (12)    P + 1-2A p + l+AA P + 1+4A

36 (21)    P + 1-2A P + 1-8A + 12B p + 1 - 8A - 12B

From (2.28) we see that ii, j) is the number of solutions of

(2.33) y - x = 1 (mod p)

with y in class/ and x in class i. Multiplying by d in class s we have

(2.34) yi - xi = d (mod p)

with yi in class j+s and Xi in class i+s. Thus

(2.35) y — x » d (mod p)

has for a fixed d in class 5 (i—s,j — s) solutions with y in class/ and x

in class i. This enables us to tell how often each difference arises from

sets composed of classes of given sextic character. With a set whose

characters are 0, 1, 3 we find that for y — x = d (mod p) with d in class

5 the number of solutions is

N. = (-s, -s) + (1 - s, -s) + (-s, 1 - s) + (1 - s, 1 - s)

(2.36) + i-s, 3 - s) + (3 - s, -s) + (1 - s, 3 -5)

+ (3 - s, 1 - s) + (3 - s, 3 - s).

The values for 5 = 3, 4, 5 will repeat those for 5 = 0, 1, 2. Using (2.31)

and (2.32) we find in the three cases.

First: 2 is a cubic residue

N.

5 = 0       (9/> - 45 + 6£)/36

(2.37) 5=1       (9p - 27)/36

5 = 2       (9p-9- 6B)/36.
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Second: Ind 2 = 2 (mod 3)

s = 0       i9p - 45 + 6A -   6B)/36

(2.38) 5=1       i9p - 27 - 6A - 125)/36

s = 2       (9/> - 9 + 185)/36.

Third: Ind 2 = 1 (mod 3)

s = o       i9p - 45 - 185)/36

(2.39) s=l       i9p - 27 - 6A + l2B)/36

s = 2       i9p -   9 + 6A+   6B)/36.

For the first case the three values will be equal when B=3. For the

second case we need .4=2, B= — 1 which gives P = 7. For the third

we must have A = —2, B= — 1 which again gives p = 7. Modulo 7

the residues 1, 5, 6 satisfy these requirements but these are equivalent

to the quadratic residues 1, 2, 4.

In the first case with B=3 we have p=A2+27, and A must be

even A = 2x and so p = 4x2+27. For such a prime 2 is a cubic residue

and also p = 7 (mod 12) and (2.31) and (2.32) apply. If B = -3 classes

0, 5, 3 form a difference set, but this differs from the previous case

only in the choice of primitive root. Since the cubic class of the

residue 3 is given by M (mod 3) and since 3 is a quadratic nonresidue

of p, in either case the difference set will consist of cubic residues and

the sextic class including 3.

The remaining combinations of sextic classes when calculated as

above fail to yield difference sets.

3. Known difference sets. With k <v/2, and in the range 3 ^k ^50,

there are 268 choices of v, k, X satisfying

(3.1) kik - 1) - X(o - 1).

Of these choices 101 do not satisfy the conditions of Chowla and

Ryser [2] which are:

(3.2.1) If v is even, n = k— X is a square.

(3.2.2) If v is odd, z2 = rax2 + ( — l)(i> — l)/2y2 has integer solutions

x, y, z not all zero. Of the remaining 167 choices, difference sets have

been found in 46 cases. Of these 46 cases, in three there are two non-

isomorphie solutions and in one case, t; = 121, £ = 40,X = 13, there are

four nonisomorphic solutions. In 109 cases it has been established

that no difference set exists, and in 12 cases it remains undecided

whether or not one exists.

In all known difference sets every divisor of « = k —X is a multiplier.
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Emma Lehmer [6] has shown that this is true for the residue differ-

ence sets and for those given by Theorem 2.2 above. When every

divisor of n is also a divisor of v, there are no logical candidates for

multipliers. But by the methods of Theorem 2.1 we can sometimes

find a multiplier modulo some divisor of v. Thus for t/=177, k = 33,

X = 6 we have « = 27 and find that 3 is a multiplier modulo 59. From

this it readily follows that no difference set exists. The 12 undecided

cases are given by the following parameters:

v

45

36

96

64

175

(3.3) 171

120

288

100

208

189

176

In the range surveyed there are exactly two instances in which

Theorem 2.2 applies. These difference sets are

v = 31,       k = 15,       X = 7,       n = 8,

1, 2, 3, 4, 6, 8, 12, 15, 16, 17, 23, 24, 27, 29, 30 (mod 31)

„ = 43,        Ä = 21,       X = 10,        n = 11,

1, 2, 3, 4, 5, 8, 11, 12, 16, 19, 20, 21, 22, 27, 32, 33, 35, 37, 39, 41, 42
(mod 43).

For these parameters the quadratic residues in each case yield the

only other solution.

Further classes of difference sets are given by certain residues

modulo p. These were treated by Emma Lehmer [5] and include

(1) Ouadratic residues of primes p = 3 (mod 4) when we will have

v=p = it — 1, k = 2t — l,X = i — 1. In this search the values of v covered

were 7, 11, 19, 23, 31, 43, 59, 67, 71, 79, 83 and these were the unique

k X n

12 3 9

15 6 9

20 4 16

28 12 16

30 5 25

35 7 28

35 10 25

42 6 36

45 20 25

46 10 36

48 12 36

50 14 36
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solutions for the parameters except for » = 31 and 43 which had also

the solutions above as cases of Theorem 2.2.

(2) Biquadratic residues of primes £=4x2 + l, x odd. Here v=p

= 4x2 + l, k = xi, X = (x2-l)/4. » = 37, 101, 197 were covered in this

search, and solutions for these parameters were unique.

(3) Biquadratic residues and zero for primes p = 4x2 + 9, x odd.

Here » = 4x2+9, k = x2 + 3, X = (x2+3)/4. Here » = 13 and 109 were

included and gave unique solutions for the parameters.

(4) Octic residues of primes p = Sa2 + i = 64&2 + 9, with a, b odd.

Here v=p, k=a2, X = i>2. The only case arising was » = 73, k = 9, X = l

and the solution was unique for these parameters.

(5) Octic residues and zero for primes £ = 8a2+49 = 64è2+441,

a odd, b even. Here v = p, k=a2 + 6, X = Z>2 + 7. No cases arose in the

range studied.

By the results of Singer [9], finite Desarguesian projective geom-

etries have collineations which are cyclic on the points and hyper-

planes. The points of a hyperplane will form a difference set. We will

have for an 5-dimensional space » = (/*+1 — \)/(t — \),k = (t' — \)/(t — 1),

X= (t'~l — l)/(i — 1). When 5 = 2 a solution will yield a plane and

whenever t = pr a prime power there is certainly the Desarguesian

plane with coordinates from the field with pr elements. There are

conceivably non-Desarguesian cyclic planes but so far none has been

found [4; 7; 8]. Herewith «=¿ = 2,3,4,5,7,8,9,11,13,16,25,27,32
the solution is unique and so of course Desarguesian.

For s>3 if the solution is a geometry then the geometry is surely

Desarguesian but some solutions were found for the above param-

eters which are not geometries. The survey covered the following:

Planes in 3 spaces. Solutions unique » = 15, k = 7, X = 3.

0, 1, 2, 4, 5, 8, 10 (mod 15).

v = 40,        k = 13,        X = 4,

1, 2, 3, 5, 6, 9, 14, 15, 18, 20, 25, 27, 35 (mod 40).

v = 85,       k = 21,       X = 5,

0, 1, 2, 4, 7, 8, 14, 16, 17, 23, 27, 28, 32, 34, 43, 46, 51, 54, 56, 64, 68
(mod 85).

v = 156,        k = 31,        X = 6,

0, 1, 5, 11, 13, 25, 28, 39, 46, 55, 58, 65, 68, 74, 76, 86, 87, 91, 111, 117,

118, 119, 122, 123, 125, 127, 134, 140, 142, 143, 147 (mod 156).

3 spaces in 4 spaces.
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r - 31,       * = 15,       X = 7.

We have already noted the only two solutions for these parameters.

The geometry is given by the example above arising from Theorem

2.2. The quadratic residues do not yield the geometry. This is easily

seen since if r< are the quadratic residues modulo 31 the sets {r,-},

[ri + l], {rt + 3} intersect in the four values 5, 8, 10, 19, while in the

geometry there is no subspace with exactly 4 points. This shows in-

cidentally that not only are the difference sets nonisomorphic but

that the designs which they define are nonisomorphic.

» = 121,        k = 40,        X = 13

(1) 1, 3, 4, 7, 9, 11, 12, 13, 21, 25, 27, 33, 34, 36, 39, 44, 55, 63, 64,
67, 68, 70, 71, 75, 80, 81, 82, 83, 85, 89, 92, 99, 102, 103, 104, 108, 109,
115, 117, 119.

There are however three further solutions which are not geometries.

(2) 1, 3, 4, 5, 9, 12, 13, 14, 15, 16, 17, 22, 23, 27, 32, 34, 36, 39, 42,
45, 46, 48, 51, 64, 66, 69, 71, 77, 81, 82, 85, 86, 88, 92, 96, 102, 108,
109, 110, 117.

(3) 1, 3, 4, 7, 8, 9, 12, 21, 24, 25, 26, 27, 34, 36, 40, 43, 49, 63, 64,
68, 70, 71, 72, 75, 78, 81, 82, 83, 89, 92, 94, 95, 97, 102, 104, 108, 112,
113,118,120.

(4) 1, 3, 4, 5, 7, 9, 12, 14, 15, 17, 21, 27, 32, 36, 38, 42, 45, 46, 51,
53, 58, 63, 67, 68, 76, 79, 80, 81, 82, 83, 96, 100, 103, 106, 107, 108,
114, 115, 116, 119.

These are all the difference sets with these parameters.

4 spaces in 5 spaces

k = /* + t* + t2 + t + 1,        X = t* + t2 + I + 1,

v = í« + t* + t% + t2 + t + 1.

k - 31,        X = 15,        v = 63

There are two solutions.

The geometry:

(1) 0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 18, 19, 24, 26, 27, 28, 32,
33, 35, 35, 38, 41, 45, 48, 49, 52, 54, 56 (mod 63).

A second solution :

(2) 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 23, 24, 27, 29, 32,
33, 34, 36, 40, 43, 45, 46, 48, 53, 54, 58 (mod 63).
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The author has found only two instances of difference sets which do

not have parameters belonging to the categories listed. The first is:

k = 17,        X = 8,       » = 35

0, 1, 3, 4, 7, 9, 11, 12, 13, 14, 16, 17, 21, 27, 28, 29, 33 (mod 35).

This belongs to the general category of Hadamard designs with pa-

rameters » = 4w — l,k = 2m — 1, \ = m — 1, as do those of the second

and seventh classes. The other difference set found still defies classi-

fication:

k = 33,       X = 8,        v = 133

1, 4, 5, 14, 16, 19, 20, 21, 25, 38, 54, 56, 57, 64, 66, 70, 76, 80, 83, 84,
91, 93, 95, 98, 100, 101, 105, 106, 114, 123, 125, 126, 131 (mod 133).
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