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ABSTRACT 
 
The growing rate of technology improvements has caused dramatic advances in processor performances, 

causing significant speed-up of processor working frequency and increased amount of instructions which 

can be processed in parallel. The given development of processor's technology has brought performance 

improvements in computer systems, but not for all the types of applications. The reason for this resides in 

the well known Von-Neumann bottleneck problem which occurs during the communication between the 

processor and the main memory into a standard processor-centric system. This problem has been reviewed 

by many scientists, which proposed different approaches for improving the memory bandwidth and latency. 

This paper provides a brief review of these techniques and also gives a deep analysis of various memory-

centric systems that implement different approaches of merging or placing the memory near to the 

processing elements. Within this analysis we discuss the advantages, disadvantages and the application 

(purpose) of several well-known memory-centric systems. 

 

KEYWORDS 
 
Memory Latency Reduction and Tolerance, Memory-centric Computing, Processing in/near Memory, 

Processor-centric Computing, Smart Memories, Von Neumann Bottleneck.  

 

1. INTRODUCTION 
 
Standard computer systems implement a processor-centric approach of computing, which means 

that their memory and processing resources are strictly separated, [1], so the memory is used to 

store data and programs, while the processor is purposed to read, decode and execute the program 

code. In such organization, the processor has to communicate with the main memory frequently 

in order to move the required data into GPRs (general purpose registers) and vice versa, during 

the sequential execution of the program's instructions. Assuming that there is no final solution for 

overcoming the processor-memory bottleneck, [2], today`s modern computer systems usually 

utilize multi-level cache memory, [3], as a faster, but smaller memory which approaches data 

closer to the processor resources. For instance, up to 40% of the die area in Intel processors, [4], 

[5] is occupied by caches, used solely for hiding memory latency.  

 

Despite the grand popularity of the cache memory, we must emphasize that each cache level 

presents a redundant copy of the main memory data that would not be necessary if the main 

memory had kept up with the processor speed. Although cache memory can reduce the average 

memory access time, it still demands constant movement and copying of redundant data, which 

contributes to an increase in energy consumption into the system, [6]. Besides that, the cache 

memory adds extra hardware resources into the system and requires implementation of complex 

mechanisms for maintaining memory consistency.  
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Other latency tolerance techniques, [7], include combining large caches with some form of out-

of-order execution and speculation. These methods also increase the chip area and complexity. 

Other architecture alternatives, like wide superscalar, VLIW (very long instruction word) and 

EPIC (explicitly parallel instruction computing) suffer from low utilization of resources, 

implementation complexity, and immature compiler technology, [8], [9]. On the other hand, the 

integration of multiple processors on a single chip die brings even greater demands on the 

memory system, increasing the number of slow off-chip memory accesses, [10]. 

 

Contrary to the standard model of processor-centric computing, [11], some researchers have 

proposed alternative approaches of memory-centric computing, which suggest integrating or 

approaching the memory and the processing elements into a same chip die or closer to each other, 

[12]. This research resulted in creating a variety of memories that include processing capabilities, 

known as: computational RAM, intelligent RAM, processing in memory chips, intelligent 

memory systems, [13]-[23] etc. These smart chips usually integrate the processing elements into 

the DRAM memory, instead of extending the SRAM processor memory, basically because 

DRAM memory is characterized with higher density and lower price, [1], comparing to SRAM 

memory.  

 

The merged memory/logic chips have on-chip DRAM memory which allows high internal 

bandwidth, low latency and high power efficiency, eliminating the need for expensive, high speed 

inter-chip interconnects, [12]. Considering that the logic and storage elements are close to each 

other, smart memory chips are applicable for performing computations which require high 

memory bandwidth and stride memory accesses, such as fast Fourier transform, multimedia 

processing, network processing etc., [24], [25]. 

 

The aim of this paper is to explore the technological advances in computer systems and to discuss 

the issues of improving their performances, especially focusing on the processor-memory 

bottleneck problem. Therefore this paper reviews different techniques and methods, which are 

used to shorten memory access time or to reduce (tolerate) memory latency. Additionally, the 

paper includes a comparative analysis of the advantages, disadvantages and applications of 

several memory-centric systems, which provide a stronger merge between the processing 

resources and the memory. 

 

The paper is organized in five sections. Section two presents the reasons for occurrence of 

memory-processor bottleneck in modern processor-centric computer systems and discuss the 

problems that it can cause. Section three and four present an overview of the current state of 

research, related to overcoming the processor-memory performance gap.  Actually, section three 

discusses the progress of processor-centric systems, exploring several techniques for decreasing 

the average memory access time. On the other hand, section four reviews the architecture and the 

organization of other alternative solutions, which provide a closer tie between the processing 

resources and the memory, by utilizing a memory-centric approach of computing. The last section 

gives a summary of the research presented in the paper and points out the possible directions for 

continuation of this research. 

 

2. PROCESSOR-MEMORY PERFORMANCE GAP 
 
The technological development over the last decades has caused dramatic improvements in 

computer systems, which resulted in a wide range of fast and cheap single- or multi-core 

processors, compilers, operating systems and programming languages, each with its own benefits 

and drawbacks, but with the ultimate goal to increase the overall computer system performances. 

This growth was supported by the Moore`s law, [26], [27], which allowed doubling of the number 

of transistors on chip, roughly every 18 months. Although the creation of multi-core systems has 
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brought performance improvements in computer systems for specific applications, it has also 

caused even greater demands to the memory system, [26]. Actually, it is well known that the 

increase in computing resources without a corresponding increase in the on-chip memory leads to 

an unbalanced system. Therefore, a problem that arises here is the bottleneck in the 

communication between the processor and the main memory, which is located outside of the 

processor. Assuming the difference between the memory and processor speeds, each memory 

read/write operations can cause many wasted processor cycles, waiting for data to be transferred 

between the GPRs and the memory or vice versa.  

 

The main reason for the growing disparity of memory and processor speeds is the division of the 

semiconductor industry into separate microprocessor and memory fields. The former one is 

intended to develop fast logic that will accelerate the communication (by using faster transistors, 

according to the Moore`s law), while the latter one is purposed to increase the capacity for storing 

data, (by using smaller memory cells), [28]. Considering that the fabrication lines are tailored to 

the device requirements, separate packages are developed for each of the chips. Microprocessors 

use expensive packages that dissipate high power (5 to 50 watt) and provide hundreds of pins for 

external memory connections, while main memory chips employ inexpensive packages which 

dissipate low power (1 watt) and use smaller number of pins.  

 

DRAM technology has a dominant role in implementing main memory in the computer systems, 

because it is characterized with low price and high density. The technological development of the 

DRAM industry has shown that the capacity of DRAM memory is doubling every two or three 

years, during the last two decades, [1]. Therefore, we can say that not long ago, off-chip main 

memory was able to supply the processor with data at an adequate rate. Today, with processor 

performance increasing at a rate of about 70 percent per year and memory latency improving by 

just 7 percent per year, it takes a dozens of cycles for data to travel between the processor and the 

main memory. 

 

Several approaches, [7], have been proposed to help alleviate this bottleneck, including branch 

prediction algorithms, techniques for speculative and re-order instructions execution, wider and 

faster memory connections and multi-level cache memory. These techniques can serve as a 

temporal solution, but are still not able to completely solve the problem of increased memory 

latency. Even the development of a powerful superscalar, VLIW and EPIC processor, [29], 

(which are capable of executing several millions of instructions per second), didn't achieve the 

expected performance improvement as a result of the memory stalls, during the slow memory 

accesses.  

 

The processor-memory bottleneck problem is also called a memory wall problem, which was first 

introduced by V. Wolf in 1995, [2]. In order to emphasize the importance of this problem, in 

figure 1 we present the difference in time that is required for executing an instruction into the 

processor and other instruction that requires access to the DRAM memory. The comparison given 

in fig. 1 refers to the period of last several decades. According to fig. 1, we can say that the 

number of tact cycles required for executing memory access instructions increases over the time. 

This is result of the steady acceleration of the processor working speed in comparison with the 

DRAM memory speed. The presented dissimilarity can be also noticed in figure 2, which 

illustrates the processor's speed improvement, by measuring the execution time of standard 

SPECint benchmark programs on different generation of processors; and the rate of DRAM 

memory access time reduction, measured through RAS (Row access strobe) and CAS (Column 

access strobe) time parameters of DRAM components with different capacity; for the period of 

three decades, [1]. The results given in figure 2 present that DRAM memory speed is annually 

improved by 1,07 times, (twice in every 10 years), while processors reach an annual improvement 

of 1,25 times until 1986, 1,52 times until 2003 and 1,20 times starting from 2004, [3]. As a result 
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of the given trends, the gap between the achieved annual improvements in processor and DRAM 

memory speeds attains an exponential growth. 

 
Figure 1.  Number of tact cycles required for executing an instruction that accesses to DRAM memory and 

other instruction that is executed into the processor. 

 

Figure 2.  Yearly improvement of processor and DRAM memory speeds, for a time period of three 

decades. 

3. OVERVIEW OF TECHNIQUES FOR IMPROVING MEMORY LATENCY IN 

PROCESSOR-CENTRIC SYSTEMS 
 

Today's computer systems are based on the Von Neumann architecture, [11], implemented as a 

stored-program machine with a strict separation of the memory resources intended to store data 

and programs and the central processing unit dedicated to perform control and execute 

arithmetical/logical operations. Considering that the processor has the main role in this kind of 

processor-centric system, computer designers have spent a great amount of time researching 

processor architectures, in order to  propose some novelties that will improve the internal 

processor organization and its instruction set, and also will provide high level of parallelism, [1]. 

Besides the evolvement of different techniques for parallel computing on instruction, thread or 

data level, computer systems have been developing towards creating a multi-level memory 

hierarchy intended to decrease the average memory access time, [3]. Moreover, a transition from 

one-processor to multiprocessor/core systems which integrate several processors/cores on a single 

chip was increasingly coming to the fore. This type of multi-processing has brought even greater 

requirements to the memory system. As a result, the capacity and area of cache memory on chip 
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has been constantly increasing, as shown in figure 3. Actually, fig. 3 presents that Intel's 65nm 

processors use up to 40% of the processor chip's surface to implement 10MB of on-chip cache 

memory. 

 

Figure 3.  Evolution of on-chip cache memory for Intel microprocessors 

The performances of the computing system mainly depend on the communication between the 

processor and the main memory. This behaviour is defined with the parameters: memory latency 

and memory bandwidth, [30]. Memory latency is the time between the initiation of a memory 

request and its completion, while the bandwidth is the rate at which data can be transferred to or 

from the memory system. According to that, the computer system may achieve maximal 

performances, only in the case when memory latency is approximately zero, and memory 

bandwidth is almost infinite. Such characteristics describe an ideal memory system, which cannot 

be achieved in practice. Considering that memory components use packages with small number 

of pins (limited bandwidth), computer architects have focused their research in the direction of 

investigating novel methods and techniques for improving memory latency, [6]. Therefore, two 

major groups of techniques for latency reduction and latency tolerance have been introduced. 

The latency reduction group includes different techniques, which intend to decrease the time 

between the issuing of a memory request and getting the requested data as a response. The most 

widely used method from this group is the creation of multi-level memory hierarchy. The basic 

idea of this approach is to place several high-speed cache memory levels inside and close to the 

processor, in order to avoid the slow off-chip memory accesses. Other scientists have suggested 

innovations into DRAM memory architecture itself, [31]. This research has resulted with several 

DRAM solutions, including: asymmetric DRAM (provides non-uniform access to DRAM banks), 

Reduced Latency DRAM (RLDRAM), Fast Cycle DRAM (FCRAM divides each row in several 

sub-rows), SALP systems (Subarray-Level Parallelism System allows overlapping of different 

components of the bank access latencies of multiple requests that go to different subarrays within 

the same bank), Enhanced DRAM and Virtual Channel DRAM add a SRAM buffer to DRAM 

memory in order to cache the mostly accessed data, Tiered-Latency DRAM (TL-DRAM uses 

shorter bit lines with fewer cells), hybrid memory cube (places several memory modules dies on 

top of each other in a 3D cube shape) and embedded DRAM (eDRAM is integrated on the same 

chip die with the processor), [23], [32]-[35].  

The latency tolerance group consists of different techniques, [28] which allow the processor to 

execute other operations while a memory request is being processed. One of the most popular 

techniques in this group is multithreading, [3], which is used to change the processor control 

flow, by starting an execution thread when some memory instruction has caused a miss in the 

cache memory. On the other hand, non-blocking cache memory, [36], allows execution of other 

requests in cache memory while a miss is being processed. In addition to that, other technique, 
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Figure 4.  Memory address space division between on-chip Scratchpad SRAM memory and 

DRAM memory outside of the chip. 

known as pre-fetching allows placing data or instructions in cache memory before they are 

actually needed, [1]. However, the research has shown that the usage of the previous techniques 

contributes to reducing memory latency, but causes increased memory traffic (higher instruction 

rate and need for operands). As a result of the limited bandwidth on the memory interface, 

additional latency is caused. This introduces more intensive work with the memory resources, 

causing a bottleneck in the system again.  

4. OVERVIEW OF MEMORY-CENTRIC SYSTEMS 

Computer architects have perceived the complex relationship between memory latency and 

bandwidth and have decided to create "smart memories", which will be able to achieve 

simultaneous latency reduction and memory bandwidth increase. According to that, several 

memory-centric approaches of integrating or placing the memory near to the processing elements 

have been introduced, including: register less processor which uses only cache memory (inside 

and outside of the processor) to communicate with the main memory, [37], systems which extend 

the on-chip cache memory with separate and small software-managed high-speed Scratchpad 

memory, [38], [39], chips that integrate processing and memory into the same chip die 

(Mitsubishi М32R/D, Terasys, DIVA, intelligent RAM, parallel processing RAM and 

DataScalar), [12] - [21], and intelligent memory systems, like the active pages model, [22], which 

adds reconfigurable logic blocks to each virtual page in the memory. 

4.1. Scratchpad memory 

The Scratchpad memory maps into a memory address space which is independent of the main 

memory, (see Figure 4), and is basically used for storing in-between results and most frequently 

used data, [39]. The main difference between Scratchpad and cache memory is that the 

Scratchpad memory guarantees access time of one tact cycle, while the cache access time 

depends on hit (1 cycle) or miss (10-20 tact cycles) occurring, [38]. Actually, the Scratchpad 

memory is software-managed, while the cache memory is hardware-managed. Therefore, 

implementing Scratchpad memory introduces more complications from a software point of view 

and requires developing of complex compiler methods for efficient data allocation. 

4.2. Performance enhanced register less processor 

PERL is a performance enhanced register less processor which operates directly with the 

memory, breaking the standard memory hierarchy model. In fact, the PERL processor excludes 

the use of registers, and implements only on-chip cache memory inside the processor, as shown in 

figure 5, [37]. This is so called memory-to-memory architecture, and it allows the processor to 
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address the data directly, without the use of explicit register namespace. As a consequence, PERL 

instructions are 128 bits wide and include 32-bit memory addresses of both input operands and 

the result. Given that all the operands are directly addresses, the PERL instruction set does not 

need to include explicit load and store instructions. As a result, the programs instructions number 

is decreased, so the program's execution time is also reduced.  

 

Figure 5.  PERL Datapath. 

 

Figure 6.  IRAM architecture. 

4.3. Intelligent RAM 

Intelligent RAM [17], [18], is a merged DRAM-logic processor, designed at the Berkeley 

University of California by a small group of students, led by Professor D. Patterson. An 

implementation of IRAM, known as VIRAM (vector IRAM) is a processor that couples high 

bandwidth on-chip DRAM with vector processing unit which provides high level of fine-grained 

data parallelism, [19]. VIRAM instruction set consists of standard MIPS instructions, extended 

with special vector instructions used for performing floating-point, integer and load/store 

operations. The VIRAM architecture is shown in figure 6, where it can be seen that it is consisted 

of MIPS general purpose processor, attached to a vector register file, which is connected to an 
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external I/O network and a 12MB DRAM memory organized in 8 banks. The vector register file 

includes 32 general purpose vector registers, each holding up to 32 64-bit elements and allowing 

parallel execution of vector operations over all the elements in the vector register. Actually, the 

VIRAM architecture is divided into four 64-bit lanes (pipelines) that can be further subdivided, 

resulting in eight 32-bit lanes. Every lane has two integer functional units, whereas one of them 

can be also used as a floating-point functional unit. According to that, the theoretical peak 

performance of VIRAM is 3.2 GFLOPS (Giga floating point operations per second) when 

operating with 32-bit floating-point operands and 6.4 GOPS (Giga operations per second) when 

operating with 32-bit integer operands.  

4.4. Comparative Analysis 

The technology of integrating processing logic in memory (PIM) defines merging of processor 

and memory resources into a single CMOS chip. Within this organization, the processor can be 

implemented as some sophisticated standard superscalar processor and may contain a vector unit, 

as is the case with the intelligent RAM (IRAM), [17]. The integrated memory into the chip can be 

realized as SRAM or embedded DRAM, which is basically accessed through the processor's 

cache memory, [23]. Considering that the processor and the memory are physically close, the 

integrated chip can achieve higher memory bandwidth, reduced memory latency and decreased 

power consumption, compared to today's conventional memory chips, and cache memories in 

multi-processing systems, [12]. Further and more detailed analysis of the most important features 

of several processing in memory chips is given in Table I. Besides that, this table also present the 

features of several approaches, [37] - [39], which modify the common multi-level memory 

hierarchy and provide nonstandard faster access to the main memory. 

Table 1.  A comparison between different memory-centric systems. 

System Features 

PERL 

processor 

without 

registers,[37] 

• Advantages: doesn't use explicit load and store instructions; lower instruction's 

count in a program, compared to DLX; shorter or similar program execution 

time, compared to DLX;  

• Drawbacks: long instructions (128b = 16B); twice bigger program size, 

compared to DLX; uses a C cross compiler (based on GCC), instead of dedicated  

compiler for the system; 

• Application: general purpose; 

Scratchpad 

memory, 

[38], [39] 

• Advantages: high speed;; smaller chip area and lower energy consumption in 

comparison with cache memory; uses separate part of the  memory address space 

• Drawbacks: small capacity (several KB); software complexity (software - 

managed data allocation  in memory); complex techniques for data allocation in 

scratchpad SRAM on-chip memory and DRAM main memory; 

• Application: embedded processing systems; 
 

SUN PIM 

chip, [12] 

• Advantages: high memory bandwidth; low price; scalability; decreased number 

of cache conflicts, by using a victim cache; shorter program execution time, 

compared to a superscalar processor which uses multi-level cache memory;  

• Drawbacks: limited amount of memory in the chip; the victim cache introduces 

additional complexity on hardware level; complex techniques for maintaining the 

coherence of shared cache memory in a distributed multiprocessor environment; 

• Application: general purpose; 

Mitsubishi 

М32R/D 

chip, [14] 

• Advantages: wide data bus in the chip (128 bits); low power consumption; uses 

a specific multiply and accumulate unit; flexibility (two modes: data and 

programs in DRAM on chip and programs in RОМ outside of chip); uses an 

optimized C compiler; 
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System Features 

• Drawbacks: limited amount of memory in the chip (16Mb); slow memory 

access to the ROM outside of the chip; intended only for applications whose data 

sets can be placed in the DRAM memory embedded inside the chip; 

• Application: embedded systems (PDA devices, multimedia equipment), digital 

signal processing; 

DIVA 

system, [15] 

• Advantages: flexibility; DIVA PIM chips improve memory bandwidth from 10 

up to a 100 times and decrease memory latency, compared to DRAM; DIVA 

PIM chips are the first smart memory devices that support virtual addressing and 

can execute several parallel threads; provide direct communication between 

DIVA PIM chips without main processor interaction; DIVA PIM nodes 

implement 256-bit wide data path; program execution time in DIVA system with 

one PIM chip is 3,3 times shorter, compared to a standard processor which uses 

standard DRAM main memory; 

• Drawbacks: limited amount of memory in a DIVA PIM node (several MB); the 

ring topology, which is used for the PIM-PIM interconnects is not very suitable 

for expansion of the system; adds dedicated hardware and page tables in every 

PIM node in order to support virtual addressing; the mechanisms for maintaining 

coherence between PIM chips and cache memory adds extra complexity into the 

system; requires parallel model of programming and design of specific compiler; 

• Application: algorithms witch perform regular (image processing) and irregular 

data accesses (databases); 

Terasys 

system, [16] 

• Advantages: high memory bandwidth; flexible design; massive parallelism; 

implements specific mechanisms for communication between the processing 

elements; uses dbC high-level programming language (data-parallel bit C); 

• Drawbacks: requires development of specific software support for the system; 

requires defining a new (parallel) programming model; more expensive (higher 

price, compared to DRAM); inefficient utilization of computing resources; 

• Application: algorithms that include many data-parallel calculations, low-level 

image processing, matrix algorithms; 

Intelligent 

RAM, [17], 

[18], [19] 

• Advantages: 5-10 times shorter memory latency and 50 - 100 times higher 

memory bandwidth, than standard DRAM; 2-4 times lower energy consumption; 

wide data bus; the vector coprocessor achieves maximum performance of 

1,6/3,2/6,4 GOPS (64b/32b/16b) while processing integers and 1.6 GFLOPS 

(32b) while processing floating-point numbers;  

• Drawbacks: limited amount of memory in IRAM chip; divergence of speed and 

cost depending on the production process; insufficient utilization of the vector 

coprocessor; testing time is longer compared to a standard DRAM; problems 

with chip overheating; difficulties with acceptance, because currently processors 

and DRAM memory are produced separately (different industries);  

Intelligent 

RAM, [17], 

[18], [19] 

• Application: embedded systems and portable devices, multimedia (image, video 

and audio processing), databases (sorting, searching, data mining), cryptography 

(RSA, DES/IDEA, SHA/MD5), data-level parallelizable algorithms; 

Parallel 

processing 

RAM, [20] 

• Advantages: high internal memory bandwidth; shorter memory latency 

compared to a standard DRAM; lower energy consumption; flexibility and 

scalability; high-level of parallelism; 2,22 times better performances compared to 

a corresponding superscalar system; the possibility of selecting an optimal 

PPRAM configuration, depending on the application requirements; 

• Drawbacks: limited amount of memory in a PPRAM node; difficulties in 

maintaining the logic speed and DRAM density in chip; increased design and test 

time; use of PPRAM link interface, as complex communication mechanism;  

• Application: any kind of usage, depending on the chip configuration; 
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System Features 

DataScalar 

system, [21] 

• Advantages: the main memory is distributed between MOP elements, so each 

MOP accesses fast to its local memory; reduced number of accesses outside of 

the chip due to one-way communication between МОP elements; reduction of 

communication delay and traffic between MOP elements; faster execution time 

of programs that are not parallelizable 

• Drawbacks: limited amount of memory in МOP element; higher hardware 

complexity, compared to a single-processor system; problems with 

synchronization; requires complex mechanisms for maintaining cache 

consistency; the ring bus topology which interconnects the MOP elements adds 

complexity to the system;  

• Application: programs that can't be parallelized and whose data sets can't be 

placed in the internal on-chip memory granted to one processor; 

Active pages 

model, [22] 

• Advantages: intelligent memory system; flexibility; data-level parallelism; 

support for virtual addressing; use of  reconfigurable logic in active pages; use of 

synchronization variables as a specific mechanism for coordination between 

active pages and the processor; 1000 times faster program execution, compared 

to an identical system with standard memory hierarchy; 

• Drawbacks: reconfigurable logic is characterized with lower speed than ASIC 

(application specific integrated circuit); requires supplementing the programming 

model with support for synchronization variables; requires developing of a 

specific compiler and operating system; the active pages model uses hand-coded 

libraries instead of a compiler; insufficient utilization of the active pages; 

programs with a big data set make the main processor bottleneck in the system; 

• Application: general purpose; 

 

5. CONCLUSION & FUTURE WORK 

Generally, the biggest problem in the reviewed memory-centric systems is the limited amount of 

integrated or coupled memory to the processor chip, as well as the divergence of the processing 

speed and chip cost, depending on the production process (memory process - lower speed and 

cost, processor process - higher speed and cost). Although the processing in/near memory brings 

latency and bandwidth improvement, still the system has to perform unnecessary copying and 

movement of data between the on-chip memory, caches and GPRs. Besides that, it is an even 

greater challenge to develop suitable compiler support, which will recognize the program 

parallelism and will provide effective utilization of the internal memory bandwidth, by generating 

specific instructions (ex. vector instructions in IRAM). 

Having in mind that modern processors are lately dealing with both technical and physical 

limitations, while the memory capacity is constantly increasing, it seems that now is the right 

moment to reinvestigate the idea of placing the processor closer to the memory in order to 

overcome their speed difference. The latest research in that field is held from the HP (Hewlett 

Packard) international information technology company, which suggests novel computer 

architecture, called the Machine, [40]. This proposal presents a computer system which utilizes 

non-volatile memory (NVM) as a true DRAM replacement. 

Considering that some of the previously discussed approaches (ex. PERL, Machine) break the 

standard memory hierarchy, we can say that the extension or revision of their work can be a 

promising direction for further research. First of all, we can assume that the relatively small 

number of fast GPRs in the processor is the major obstacle for achieving high data throughput. 

This is especially expected in the case of executing a program that works with large amount of 

data that need to be placed into the processor for a short time period. Examples for such 
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applications are: processing of data flows, calculating vast logical-arithmetical expressions and 

traversing complex data structures. In such cases, the high speed of access to GPRs doesn't bring 

many advantages, because all the required data cannot be placed into the register set at the proper 

time. After that, we can consider that cache memory brings unpredictability in the timing of the 

program, which is not very suitable for real-time systems. This means that the exclusion of these 

redundant resources (GPRs and caches) will simplify the memory access, will remove the 

unnecessary data copying and block transmissions into the cache memory, and will avoid the use 

of complex mechanisms for memory management. Therefore, our research will continue into the 

direction of developing a novel memory-centric architecture similar to PERL, which will provide 

direct access to the memory that is integrated into the processor chip (without the use of GPRs 

and cache memory).   
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