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ABSTRACT Blind image quality assessment (BIQA) methods aim to predict quality of images as perceived

by humans without access to a reference image. Recently, deep learning methods have gained substantial

attention in the research community and have proven useful for BIQA. Although previous study of deep

neural networks (DNN) methods is presented, some novelty DNNmethods, which are recently proposed, are

not summarized for BIQA. In this paper, we provide a survey covering variousDNNmethods for BIQA. First,

we systematically analyze the existingDNN-based quality assessmentmethods according to the role of DNN.

Then, we compare the prediction performance of various DNN methods on the synthetic databases (LIVE,

TID2013, CSIQ, LIVE multiply distorted) and authentic databases (LIVE challenge), providing important

information that can help understand the underlying properties between different DNN methods for BIQA.

Finally, we describe some emerging challenges in designing and training DNN-based BIQA, along with few

directions that are worth further investigations in the future.

INDEX TERMS Deep learning, blind image quality assessment (BIQA), deep neural networks (DNN)

model, deep features, quality prediction.

I. INTRODUCTION

With the development of social media and the increasing

demand for imaging services, an enormous amount of visual

data is making its way to consumers. Digital images are

likely to be inevitably degraded in the processes from con-

tent generation to consumption. The acquisition, processing,

compression, transmission, or storage of images is subject

to various distortions, resulting degradation in visual quality.

Therefore, methods for image quality assessment (IQA) have

been extensively studied for the purpose of maintain, control

and enhance the perceived image quality.

In principal, subjective assessment is the most reliable way

to evaluate the visual quality of images [1], [2]. But this

method is time-consuming, expensive, and difficult to imple-

ment in real-world systems. Therefore, objective assessment

of image quality has gained growing attention in recent

years. To what extent a reference image is used for quality

assessment, existing objective IQAmethods can be classified
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into three categories: full-reference (FR), reduced-reference

(RR) and no-reference/blind (NR/B) methods. The FR IQA

methods make full use of the undistorted reference images

to compare with distorted images and measure the difference

between them [3]–[5], while the RR IQA methods use partial

information in reference images [6]–[8]. However, in many

practical applications, it is difficult to obtain a reference

image of the distorted image to be assessed, making power-

ful FR and RR IQA methods inapplicable. On the contrary,

the BIQA methods have no access to the reference images to

evaluate image quality [9], [10]. Thus, it has become increas-

ingly important to develop effective BIQA methods which

can predict image quality without any additional information.

Most exiting BIQA methods follow the flowchart shown

in Fig. 1. Some BIQA methods is developed based on clas-

sical regression methods [11]. Researchers attempt to design

some hand-crafted features that could discriminate distorted

images, and then train a regression model to predict image

quality. Early BIQA methods are based on a distortion spe-

cific approach [78], [79], which commonly uses the prior

knowledge of the distortion types for quality prediction.
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FIGURE 1. The flowchart of existing BIQA methods.

In this approach, the distortion-specific features relevant to

quality perception are extracted and used for quality estima-

tion. Li et al. [78] propose a BIQA method based on the

blur distortion. They first calculate the gradient image to

characterize the blur distortion. Then, they divide the gradient

image into blocks and extract the energy features of each

block relevant to the blur distortion. Finally, the image quality

is obtained by normalizing the moment energy. However,

when image is distorted via unknown distortion channels,

it becomes much more difficult to find specific features to

measure image quality.

Recently, in order to assess the image quality without the

prior knowledge of distortions, the non-distortion-specific

BIQAmethods have been developed. The natural scene statis-

tics (NSS)-based methods are widely used to extract reli-

able features, which assume the natural images share certain

statistics and the occurrence of distortions may change these

statistics [14]–[16], [80]–[82]. In [14], [16], they aim to uti-

lize NSS model, including the multivariate Gaussian (MVG)

model [14] and the Generalized Gaussian distribution (GGD)

model [16], to extract low-level image features for quality

prediction. Although those methods have greatly improved

the BIQA performance, there still exists a large gap between

prediction scores and subjective scores. In order to further

improve prediction performance, Wu et al. [15] use the

multi-channel fused image features to simulate the hier-

archical and trichromatic properties of the human vision.

Then, the k-nearest-neighbor(KNN)-based model is used

to evaluate image quality. Similarly, Ji et al. [80] assume

that image quality is highly correlated with the degraded

visual information. Therefore, they use the joint entropy of

degraded features to assess image quality, which stimulates

the visual information of the images. Instead of studying

the quality-relevant image features, Wu et al. [81] focus on

exploring efficient learning models. They propose a novel

local learning method to improve the prediction performance,

which is beneficial to the training of the complex and large

data sets.

However, the obvious limitation of those BIQAmethods is

that the hand-crafted features may not be able to adequately

represent complex image structures and distortions. There-

fore, to improve prediction performance, attempts have been

made to adopt deep BIQA methods, recently. The motivation

is that the deep neural network (DNN) can automatically

capture more deep features relevant to quality assessment and

optimize these features to improve prediction performance by

using back propagation method. Therefore, the DNN can be

applied to various image quality assessment (IQA) methods

[83], [84] and provides a very promising option for address-

ing the challenging BIQA task.

It is well known that deep learning techniques have

achieved great success in solving various images recognition

and object detection tasks [17]–[20]. The main reason is that

it relies heavily on large-scale annotated data, like the image

recognition oriented ImageNet [21] dataset. Unfortunately,

for BIQA task, since there is a lack of sufficient ground truth

labels IQA data for training, it is difficult to straightforwardly

apply DNN to BIQA directly. This is because the DNN can

lead to overfitting phenomenon, which means the trained

model would have a perfect performance for training data

but the performance is unreliable for unseen data. Therefore,

researchers in the image quality community pay more atten-

tion to explore the useful DNN-based methods to solve this

problem.

Previous surveys have also been summarized for BIQA

methods, including classical methods [22]–[24] and DNN

methods [25], [32]. However, the surveys of classical meth-

ods lack the analysis of the popular DNNmethods [22]–[24].

And although some DNNmethods are reviewed in [25], these

methods can only be applied to the case where DNN input

is the image patch. At present, there are still many novel

DNN methods that have not been summarized [26]–[31].

In addition, a simple comparison of different DNNmethods is

represented in our previous work [32], but we have not made

a comprehensive analysis and evaluation of various DNN

methods, including the design strategy, network architecture,

network complexity, advantages and disadvantages.

Therefore, in this paper, we intend to systematically ana-

lyze the various DNN methods, which aims to summarize

the intrinsic relationship among various DNNmethods. First,

according to the different role of DNN, we divide the DNN

methods into two categories, which could distinguish differ-

ent DNNmethods easily. One is the support vector regression

(SVR)-based BIQAmethods, which use DNN to extract deep

feaures and SVR methods to predict image quality. The other

is the DNN-based BIQAmethods, which takes full advantage

of back-propagated capability of DNN to optimize predic-

tion accuracy. Moreover, we analyze the first type of DNN

methods according to whether the input of DNN is low-level

features or image/image patch data. Similarly, we analyze

the second type of DNN methods according to the difference

of DNN output. Fig. 2 shows the classification of different

DNN methods, which aims to better understand different

DNN methods easily. Finally, we summarize useful find-

ings and discuss the challenges of DNN methods for BIQA.

We hope that this study will be beneficial for the researchers

to better understand this field.

Our contributions can be summarized as follows.

1)According to the different roles of DNN, we propose

a new classification method, which could distinguish and

improve understanding different DNN methods.
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FIGURE 2. The classification of DNN methods for BIQA.

2)We analyze the DNN methods proposed in recent

years, in terms of the contributions, the network architec-

ture, the complexity, and the advantages and disadvantages.

Especially, we also summarize many novel DNN methods

that have not been discussed in previous literature surveys.

3)We systematically evaluate the prediction performance

in difference DNN methods and obtain some interesting con-

clusions. Meanwhile, we also discuss some potential chal-

lenges and solutions for future research.

The rest of this paper is organized as follows. In Sec. II,

we reviews the methods of SVR-based image quality pre-

diction using deep features extracted by DNN. In Sec. III,

we reviews the methods of DNN-based image quality pre-

diction in detail and compare the implementations of these

methods. The prediction performance and complexity of dif-

ferent DNN methods are analyzed in Sec. IV. In Sec. V,

we provide some notable challenges of DNN-based BIQA

methods. Conclusions are given in Sec. VI.

II. SVR-BASED IMAGE QUALITY PREDICTION USING

DEEP FEATURES EXTRACTED BY DNN

Since the deep features from DNN can capture more useful

information related to image distortions and human percep-

tions [25], the straightforward approach to employing DNN

models is to extract discriminative deep features for various

distorted images, and then evaluate the image quality using

conventional SVR method. Recent work in the literature

using DNN to extract deep features can be classified into

two major schemes: 1) extracting from low-level features of

image and 2) extracting from data of image/image patch.

Figure 3 shows the flow diagram of these methods [33]–[35],

[37]–[39].

A. DEEP FEATURES EXTRACTED FROM

IMAGE LOW-LEVEL FEATURES

This kind of method aims to feed a large number of low-

level image features relevant to quality perception into

a DNN to evaluate image quality. Commonly, the low-level

features are based on the NSS and other complementary

features, which can accurately describe the structure features

of distorted images. Then, these low-level features can be

fed into the pre-trained DNN, including deep belief network

(DBN) or stacked auto-encoder (SAE) network [33]–[35],

to extract deep features. Especially, the unsupervised train-

ing method [36] is adopted to pre-train the DBN or SAE

network. The goal is to overcome small IQA database prob-

lem and initialize each layer parameters of the pre-trained

the DBN or SAE network. Afterwards, the parameters of

entire network are fine-tuned with the labeled image features.

Finally, the deep features extracted from the DBN or SAE

model, along with the corresponding subjective scores are

used to evaluate image quality by SVRmethod. Table 1 shows

the details of these methods.

Tang et al. [33] extract three types of low-level features,

including NSS, texture, and blur/noise features. The NSS

and texture features include the univariate and cross-scale

histograms and statistics of complex wavelet transform of

images (the real part, absolute value, and phase). These fea-

tures aim to describe image global and local distortions. The

blur/noise features include the patch PCA singularity [86],

the two color model coefficient histograms [87], and the step

edge based blur/noise estimation [88]. The blur/noise features

can be added because these distortions are fundamental to

various distortion types. Then, all of these low-level features

are used to pre-train each layer of the DBN. And, the low-

level features of IQA database with ground truth scores are

used to fine-tune the entire DBN. Finally, a Gaussian process

regression is used to obtain synthetic image quality score.

Ghadiyaram et al. further extend this work in [34] by

combining DBN with SVR to predict authentically distorted

images’ quality. They adopt FRIQUEE method to extract

low-level features of authentic images. FRIQUEE [77] first

constructs several feature maps in multiple color spaces

and transform domain, including luminance feature maps,

LAB feature maps, and LMS feature maps. Then, the GGD,

AGGD, and wrapped Cauchy models are used to fit feature
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TABLE 1. The details of these methods [33]–[35].

maps and extract statistical features. Finally, these low-level

features can be fed into a DBN model with extracted deep

features and image quality scores are predicted by using SVR

method.

In addition, Lv et al. [35] further improved the prediction

accuracy and generalization ability. The authors select the

multi-scale difference of Gaussian (DoG) features that are

highly correlation with perceptual quality. This is because

DoG is believed to simulate the neural processing procedure

of how eye extracts details from images and convey them

to the brain. Then, the SAE model is used to obtain deep

features. Finally, these deep features are used to train an SVM

regression model to predict image quality.

Compared with traditional BIQA methods, the major

advantage is deep features extracted from low-level features

is highly related to quality degradation. But the limitation is

hand-crafted low-level features need to be carefully designed

as the input to DNN, which does not take full advantage

of DNN.

B. DEEP FEATURES EXTRACTED FROM

IMAGE/IMAGE PATCHES

It is also observed that the deep features can be effectively

mined by feeding data of image or image patches into the

pre-trained DNN [37]–[39] for classification or recognition

task, such as AlexNet [17], GoogleNet [18], RestNet [19],

VGGNet [20]. Since the IQA is the human visual per-

ception of the high-level semantics [40], the methods of

image or image patches as DNN input can avoid the limitation

of selecting low-level features to represent image high-level

semantics accurately.

More specifically, some methods use image patches to

extract deep features and these deep features derived from

image patches are aggregated or pooled. Then, the predicted

quality of images is obtained by SVR method. In [37],

the authors use multiple overlapping image patches as input

to represent the whole image. They select the optimal layer of

the pre-trained DNN model to extract deep features of each

patch. Then, three kinds of statistical methods can be adopted

to aggregate high-level semantic features of different patches.

These aggregated features related to the whole image are fed

into a linear regression model to predict image quality.

In addition, the deep features involving high-level seman-

tic information of images are often used to evaluate image

quality [38], [39], which is more consistent with human

perception of images [41]. Sun et al. [38] proposed a BIQA

framework, which is inspired by the human visual perception

of image quality that involves the integrated analysis of

global high-level semantics and local low-level characteris-

tics. They use the first fully-connected (FC) layer of pre-

trained AlexNet architecture to extract deep features, which

aim to represent high-level semantic features associated with

global image content. In addition to considering the high-

level semantics, they also utilize the saliency detection and

Gabor filters to perform local low-level features relevant to

local image content. These features are combined to evalu-

ate overall image quality by using SVR method. Similarly,

Wu et al. [83] hypothesize that different levels of distor-

tion generate individual degradations on hierarchical fea-

tures. Therefore, they propose a BIQA framework based

on hierarchical feature degradation. They first extract the

low-level image features based on the orientation selectivity

mechanism in the primary visual cortex, and then they use

the last layer of the residual network (ResNet50) to extract

deep features of visual content. Combining with the low-

level image features and deep features, the image quality

score is predicted by SVR methods. To further improve the

prediction accuracy, Gao et al. [39] exploit multi-level deep

feature fusionmethod to evaluate image quality. They assume

that using only the last few layers’ deep features may unduly

generalize over local artifacts. Therefore, multi-level features

representation compensates for local degradations. A DNN

model formed by the pre-trained VGGNet is used to extracted

image deep features over each layer. Afterwards, they utilize

the SVR method to estimate the quality score from each

layer’s feature vector. The image quality is estimated by

averaging layer-wise predicted score.

Considering that training a deep network is typically dif-

ficult for the small IQA database, these methods tackle the

insufficient IQA database by extracting deep features from

the pre-trained DNN model. Meanwhile, instead of selected

low-level features as network input, the mehtods of deep

features extracted from image or image patch data directly

are more accurate. However, since the deep features extracted

from the pre-trained DNN aims to deal with classifica-

tion or recognition tasks, applying these features directly to

our IQA task may not all be useful.

III. DNN-BASED BIQA USING DEEP FEATURES AND

QUALITY PREDICTION TOGETHER

Instead of using DNN models to extract deep features related

to quality degradation, this method directly uses the DNN

model to predict image quality. According to different eval-

uation metrics for quality prediction, there are two kinds of
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FIGURE 3. The flowchart of extracting deep features methods from DNN in [33]–[35], [37]–[39].

FIGURE 4. The flowchart of predicting image quality categories’ methods in [43]–[46].

popular evaluation methods in recent years: predicting image

quality categories and predicting image quality scores.

A. PREDICTING IMAGE QUALITY CATEGORIES

The DNN methods of predicting image quality catagories

can be used to predict image quality categories, such as

excellent, good, fair, poor or bad [42]. These labels have

explicit semantic meanings in different quality ranges, so the

category results can be directly used to describe the image

quality. Meanwhile, the categorical quality assessment is a

natural and viable way for human perception and can poten-

tially reduce the randomness of the quality scores. Therefore,

this kind of method treats BIQA as a classification problem

to satisfy human visual behaviors. [43]–[47]. The general

flowchart of these methods is shown in Figure 4.

Hou et al. [43] design deep network to classify images to

five grades-excellent, good, fair, poor, or bad corresponding

to the five point quality scale recommend by the Interna-

tional Telecommunication Union. The low-level features of

NSS relevant to gray images can be extracted in the wavelet

domain and fed into the DBN for layer-by-layer pre-training.

Then, they recast image quality into five grades by using

subjective method. Finally, they fine-tune the DBN to classify

image grades by maximizing the probabilistic distribution.

Further, considering not every region contributes to image

quality perception, Hou and Gao [44] also propose saliency-

guided deep framework to improve prediction performance.

First, they extract salient patches of natural image and adopt

independent component analysis (ICA) method to learn basic

filters. The same procedure can be applied to encoder salient

patches of distortion image. The image-level features are

a histogram that represents the frequency of learned ICA

filters. Second, the DBN is pre-trained by layer-wise learning

method and is fine-tuned by discriminative learning method,

which makes the deep network can classify image grades.

The previous works pay attention to describe how to con-

struct deep network but ignore to provide a clear under-

standing of why their framework performs so well. In [45],

the authors not only propose a SAE method to classify image

grades but also try to give a visualization explanation of how

it works and why it works well. This is the first time to

analyze and visualize deep network framework. Similar to the

methods in [43], [44], they derive NSS-based features from

shearlet-transformed RGB images and use the SAE model to

classify seven quality grades that the train process is similar

to DBN. In addition, they visualize the progression of training

features to understand the DNN framework in the fine tuning

stage.

The disadvantage of these methods is that the handcrafted

features as network input cannot completely represent image

distortions and contents. In order to overcome this problem,

Bianco et al. [46] propose the end-to-end DNN framework

to improve the prediction performance. They first pre-train

AlexNet for classification task, which use 3.5 million images

to pre-training from the ImageNet and Places databases. Then

the pre-trained AlexNet is fine-tuned to classify the five
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image quality grades. Further, the prediction performance is

better than the previous methods [43], [44].

In [47] a vector regression DNN model is proposed to

obtain image quality grades. They divide image scores into

five ordered intervals in response to five different grades.

A belief score vector is computed by (1) to describe the

probabilities of an image being assigned to different quality

grades.

ES = {s1, s2, s3, s4, s5} sk = y− uk k = 1, 2 . . . , 5 (1)

where ES is a belief score vector, which collects five quality

grade; sk is the defined belief score to describe quality grade;

y is the mean opinion score (MOS) of an image.

The DNN is trained to capture the associated belief score

vector. It suggests that the smaller the value of |sk | is,

the image quality is closer to the k-th grade. Finally, they

propose an object pooling strategy to convert image quality

grade into score, which fully takes into account the influence

of the salient objects on image quality.

Although prediction grade methods are much more nat-

ural to evaluate image quality, the drawback is that dif-

ferent definitions of grades of subjective opinions can sig-

nificantly impact the prediction performance of algorithms.

Meanwhile, in order to make a fair comparison with other

algorithms, the qualitative evaluations are converted into

numerical scores by using different methods. Different

conversion methods will also affect the final evaluation

performance.

B. PREDICTING IMAGE QUALITY SCORES

The methods of predicting image quality scores are the most

popular for BIQA. The characteristic of this method is purely

data-driven and allows for end-to-end optimization of feature

extraction and regression. It means that these DNN meth-

ods can be used to predict image quality scores, such as

DMOS=72.34, DMOS=25.2. This gives a specific scalar as

a score to measure image quality. Especially, most of DNN

methods adopt this approach to predict image quality, because

many of IQA databases use scalar scores to describe image

quality. Therefore, in order to keep the predicted results in

consistent with the IQA databases, this kind of method can

be treated as a regression problem. Although previous work

has summarized this method [25], it only introduce the meth-

ods using image patch as DNN input and some novel DNN

methods that have been appeared recently are not analyzed

[26]–[31], [53], [54], [57]. Thus, we will systematically sum-

marize and analyze the existing methods. According to dif-

ferent input in DNN, we propose a classification method: the

patch-input methods and the image-input methods.

1) THE PATCH-INPUT METHODS

The performance of DNN heavily depends on the number of

training data. However, the currently available IQA databases

are much smaller compared to the classification or recog-

nition tasks [17], [18]. Moreover, obtaining large-scale reli-

able human subjective labels is very difficult. To expand

the training database, the patch-input method aims to divide

image into multiple patches as DNN input to increase training

samples.

There are many methods based on image patches as DNN

input. According to the different labels of training patches,

we discuss thesemethods in twoways. One is to use the image

subjective score (SS) as image patch label [30], [48]–[53].

The other is to use FR as image patch label [54]–[57].

a: SS AS IMAGE PATCH LABEL METHODS

In [48], this is the earliest method that integrates feature

learning and patch quality prediction into an end-to-end

network. They divide gray images into 32 × 32 patches.

Each image patch with image subjective score as input is

used to train DNN, which consists of 1 convolutional (C),

2 pooling (P) and 3 full-connected (FC) layers. The image

quality is estimated by the average score of all image patches.

Nevertheless, the problem is that they ignore that the visual

quality of different local regions is often different and humans

tend to concentrate on the regions of saliency when eval-

uating an image. Therefore, the salient patches of images

can be considered to predict image quality in the following

methods [49]–[51].

In [49], the authors design a seven-layer DNN architec-

ture to capture patch-level quality prediction focusing on

color images. They then perform the saliency detection with

free energy based neural theory to obtain image saliency

map [58]. After that, they define the weights of image

patches by the corresponding saliency map. The final image

quality score is yielded with the weighted average of each

image patch. To further improve prediction performance,

in [50], [51], they consider only the salient patches to eval-

uate image quality score. First, they also split the image

into patches and use typical saliency detection methods to

obtain image saliency map. Further, they assign a threshold

to remove non-salient patches. The remaining salient patches

are reweighted into the range of [0, 1]. The whole image

quality score is calculated by the weighted average over

salient patches. The general flowchart is shown in Figure 5.

However, the previous weights of saliency maps are set

artificially, which is inaccurate to image quality. Some

methods study the use of end-to-end DNN to simultane-

ously obtain patches’ scores and corresponding weights. The

weights obtained by DNN learning method more accurately

respond to the image perception. In [52], the distorted image

patches can be fed into DNN, which consists of 9 C layers, 5 P

layers for feature extraction and 2 FC layers for regression.

The role of first FC layer of DNN architecture is used to learn

patches’ weights and the second FC layer is used to learning

patches’ scores. The image quality score is calculated by

weighting average of all patches’ scores. Compared with the

models employing simple average pooling or artificial setting

weight pooling, this method improves prediction accuracy

and has well generalization ability. Similarly, in [53], they

also divide image into 100 image patches and fed them into

the DNN to obtain patch score and weight. Considering the
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FIGURE 5. The general flowchart of SS as image patch label methods in [49]–[51].

FIGURE 6. The overall framework in [30].

relationship between image contents and patches’ weights,

the global regression layer is used to optimize image predic-

tion score.

In addition, in order to learn the complicated relation-

ship between visual appearance and the perceived quality,

Yan et al. propose a novel two-stream DNN architecture,

which takes the raw image and the gradient image as input

visa two sub-networks [30]. The motivation of this design is

to integrate input information from different domains to rep-

resent the quality of distorted images. Each image is divided

into different patches as the inputs of the image stream sub-

network. Each of the sub-network consists of ten layers to

extract image features. Especially, the region-based full con-

volutional layer is used to handle the locally non-uniform

distortions of images. The gradient stream sub-network is

similar to image stream and the input is gradient patches.

Then, a concatenate layer is used to fuse features from the two

streams and the followed three FC layers are used to predict

patch quality. Finally, the quality score of the whole image

is calculated by averaging all patches’ scores. The overall

framework of the algorithm is presented in Figure 6.

Table 2 compares the implementation of reported patch-

input algorithms, which the path label is the ground truth

score. It is worth nothing that C, P and F mean convolutional

layer, pooling layer and full-connected layer, respectively. wi
means the weight of the i-th patch. M means the number

of all patches of an image. K means the number of salient

patches of an image. qi is the prediction patch score from

DNN model. In table 2, we find that because of the increase

of training samples, the patch-input algorithms can design a

deeper network to evaluate image quality score. Meanwhile,

these methods mainly pay attention to the effect of salient

patches on image quality. However, the labeling of image

patches with the whole image subjective score is problematic,

because the ground truth score for each patch does not exist.

In addition, the whole image quality score is calculated by the

sample mathematical method, which may affect the accuracy

of image quality prediction.

b: FR AS IMAGE PATCH LABEL METHODS

To overcome the problem of inaccurate patch label, the strat-

egy that FR methods are used to calculated proxy score of

image patch has been studied [54]–[57]. Figure 7 shows the

flowchart of these methods.

In [54], it is a novel completely blind DNN methods.

By taking the large scale of image patches as the training set,

the authors design a feature fusion DNN in different layers

and use FSIM as the label to train DNN architecture. The

DNN consists of 6 C layers, 1 P layer, 2 sum (SU) layers

and 2 FC layers. The role of the sum layer is to fuse different

layer features to prevent gradient vanishing [19]. Especially,

the training patch label is calculated by using the FR method,

which is an accurate method to calculate patch label without

subjective scores.

In [55], J. Kim et al. propose a two-stage DNN-based to

evaluate image quality. The patch quality score generated by
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TABLE 2. The comparison of DNN methods by using SS as patch label in [30], [48]–[52].

FIGURE 7. The flowchart of FR as image patch label methods in [54]–[57].

TABLE 3. The comparison of DNN methods by using FR as patch label.

FSIM method are used as proxy patch label in the first stage

of training. In the second stage, the feature vectors obtained

from image patches are aggregated using statistical moments

and then a global regression layer is used to predict image

quality score. Rather than using complex DNN to produce

proxy scores, the same authors develop a novel DNN, which

aims to regress into objective error maps [56]. In the first

stage, the objective error maps are used as proxy regression

targets to train DNN, which is calculated by the absolute

difference between the reference image patch and distortion

image patch. In the second stage, the extracted feature maps

from DNN are fed into the global average pooling layer, then

regress onto ground-truth scores by using two fully connected

layers. The prediction accuracy is competitive with the state-

of-the-art methods.

To further improve prediction performance, Pan et al.

propose a novel framework for BIQA, which consists of

a generative quality map network and a quality pooling

network [57]. They employ MDSI [59] to generate patches’

quality maps as labels and select U-Net [60] as a base of

generative network to train image patch quality map. The

output quality maps are fed directly into the pooling network

to regress patches’ scores. Finally, the final score of the whole

image is obtained by using the average of all image patches’

scores.

Table 3 compares these algorithms to obtain patch label

by using the FR methods. Compared with the methods of

subjective score as patch label, the FR metrics are used as

intermediate local targets for each image patch, which reduce

the error of using the whole image subjective score as patch

label. In addition, instead of the simple mathematical calcu-

lation to obtain image quality score, the global optimization

method is more accurate for DNN.Whereas, the disadvantage

of using FR methods as patch label is that it is very hard to

obtain reference images in many practical applications for the

FR metrics.
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2) THE IMAGE-INPUT METHODS

Rather than using image patches as the input, the image-input

methods aim to train a prediction model by using the whole

image and its associated ground truth, which can effectively

overcome the difficulty of being able to obtain the ground

truth of image patches. However, there has been limited

effort towards end-to-end optimized BIQA using DNN, pri-

marily due to the lack of sufficient ground truth labels of

images.

Recently, the image-input methods are developed

[26]–[29], [31], [61]. The novelty is that, despite a lack of

image databases, the DNN based on image as input can

also evaluate image quality very well. This is because the

image expansion techniques are used to solve insufficient

IQA database. According to the different extended objects,

we classify these methods into two sub-categories: expanding

distorted images and expanding reference images.

a: EXPANDING DISTORTED IMAGES’ METHODS

For expanding distorted images’ methods, two expanded

ways are shown: large databases, such as the ImageNet [21],

Places2 [62], and the artificial generation images [26]–[29].

The DNN then is trained by the transfer learningmethod [63].

This is a common way to overcome the small database

task.

When the distorted images come from the large database,

these distorted images can be used to pre-train a DNN. Then,

the small IQA database is used to fine-tune the pre-trained

DNN to evaluate image quality score. In [61], Li et al. uti-

lize Network in Network (NIN) [64] and transfer learning

technique to deal with BIQA problem. The first step is that

the NIN is pre-trained for the classification task on the large-

scale ImageNet database. Through this pre-training process,

the good initial weights can be obtained, which is much

better than randomly initialized weights. In the second step,

they modify the pre-trained NIN architecture, which the final

layer is replaced by regression layers. In the third step, only

the small IQA images with ground truth scores are used to

fine-tune the pre-trained NIN. However, for synthetic IQA

database, such as LIVE [65], TID2013 [66], CSIQ [67], LIVE

multiply distorted (MD) [68], the prediction performance is

not accurate. This is because the pre-trained NIN learns the

features of authentic distortions of the ImageNet database,

which is different from synthetic distortions.

In [31], they assume that various kinds of distortions exist

in different IQA databases, which requires different level

features to predict visual quality. Therefore, they propose

a DNN model using multiple levels of features simultane-

ously to achieve a consistent performance over different IQA

databases. The ResNet-50 [19] model which is pre-trained

on the ImageNet database is adopted as baseline. In the

fine-tuning stage, they divided all ResNet blocks into four

groups and extract each group’s features. Then, they define

an encoder layer to unify the feature size from different

levels. Finally, these multiple levels of features are combined

and fed into the FC layer to evaluate image quality score.

This method shows the state-of-the-art accuracy on different

IQA databases.

Besides, the artificial generation method [26], [27], [29]

can be used to construct the large-scale pre-training distor-

tion images, which is similar to the IQA database. It is far

from realistic to carry out a full subjective test to obtain a

MOS/Difference MOS (DMOS) for each image. Whereas,

the challenge of this method is how to obtain the ground truth

labels of generated images in the pre-training stage.

To overcome this problem, the motivation of Rank [26]

is to design a new strategy to generate the large-scale dis-

tortion images without laborious human labeling. According

to the rule that the image quality decreases with the increase

of the distortion levels, they synthetically generate the ranked

image pairs with five different distortion levels from Water-

loo Exploration database [69]. The Waterloo Exploration

database contains 4744 pristine images and covering var-

ious image contents. Especially, the generated distortion

image pairs are similar to the IQA database. In the LIVE

database, they exclude fast fading (FF) distortion type and

generate the remaining four distortion types: JPEG compres-

sion (JPEG), JPEG2000 compression (JPEG2000), additive

while Gaussian noise (WN), Gaussian blur (GB). In the

TID2013 database, they generate 17 out of a total of 24 dis-

tortion types. Moreover, we do know for any pair of images

which is of higher quality. Then, using the pairs of the

ranked images, we pre-train a Siamese network [70] to learn

image distortion levels by using the proposed Siamese back-

propagation technique. Finally, they fine-tune a branch of

Siamese network to predict image score, which aims to trans-

fer image distortion levels to quality scores. Figure 8 shows

the flowchart of Rankmethod. Compared with existing BIQA

methods, the prediction performance is the best in LIVE

database and even outperforms the state-of-the-art in FR

methods.

However, the limitation of the Rank method is that it

can only simulate distortion images in artificially synthetic

IQA database, but it is difficult to apply this method to

authentic IQA database. This is because we cannot know

the priori information of authentic distortion images. There-

fore, to improve performance of different IQA databases,

Zhang et al. design an end-to-end DB-CNN solution for

BIQA that works for both synthetically and authentically

distorted images [27]. First, they describe the generation

process of the large-scale database in the pre-training step.

They use two large-scale databases: Waterloo Exploration

database and PASCAL VOC 2012 [71] to generate distorted

images. Considering the distortion types of the synthetic IQA

databases, they produce nine distortion types related to the

LIVE, TID2013, CSIQ and LIVEMD databases, i.e., JPEG,

JPEG2000, WN, GB, pink noise, contrast stretching, image

quantization with color dithering (ICQD), over-exposure

and under-exposure. Especially, the first six distortion types

cover the entire CSIQ database. Meanwhile, they synthe-

size distorted images with five distortion levels except for

over-exposure and under-exposure, for which only two levels
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FIGURE 8. The flowchart of rank method in [26].

FIGURE 9. The flowchart of DB-CNN method in [27].

are generated. In summary, the pre-training database contains

852891 distorted images. The ground truth label is presented

as a 39-class indicator vector to encode underlying distortion

types at the specific distortion level. The dimension of ground

truth vector comes from the fact that there are seven distortion

types with five levels and two distortion types with two

levels.

Then, they design the architecture of the S-CNN for syn-

thetically distorted images, which consists of 9 C layers, 1 P,

3 FC layers and a softmax (S) layer. It aims to classify the

probability of each distortion type at the specific degrada-

tion level. Considering this DNN model is not beneficial for

authentic IQA databases, they select the pre-trained VGG-16

network for the classification task on ImageNet as another

branch to extract relevant features for authentically distorted

images. This is because the distortions in ImageNet occur as a

natural consequence of photography rather than simulations.

Finally, in the fine-tuning step, they tailor the pre-trained

S-CNN and VGG-16 and introduce bilinear pooling module

to combine the S-CNN for synthetic distortions and VGG-16

for authentic distortions into a single model, which aims to

discriminate synthetic or authentic distortions. The FC layer

follows the bilinear pooling layer to predict image quality

score. The flowchart of DB-CNN can be shown in Figure 9.

A closely related work to DB-CNN [27] is MEON [29],

a cascaded multi-task DNN framework for BIQA. This

method also pays attention to the influence of distortion

types and levels on quality degradation. Figure 10 shows the

flowchart of MEON method. The subtask I aims to pre-train

a distortion type identification network, for which large-scale

training samples are readily available. They select 840 high-

resolution natural images to generate C distortion types’

images and each distortion type images has five distortion

levels. The ground truth label is a C-dimensional vector to

encode distortion types. This network consists of 4 C layers,

4 P layers, 2 FC layers and 1 S layer. Especially, they

choose biologically inspired generalized divisive normaliza-

tion (GDN) instead of rectified linear unit as the activation

function of C layers and FC layers. The sub-task II network

appends two FC layers after the shared DNN architecture

from sub-task I. Then, they define a fusion layer (FS) that

combines the distortion types’ features from sub-task I and

the distortion levels’ features from sub-task II to yield an

overall quality score.
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FIGURE 10. The flowchart of MEON method in [29].

TABLE 4. The comparison of the image-input DNN methods.

FIGURE 11. The flowchart of the HIQA method in [28].

Table 4 summarizes the expanding distorted images’

methods. LM means the learn method, GT means the ground

truth of generation images and NGI means the number of

generation image. We clearly see that the transfer learning

method is used to overcome the small IQA databases. The

pre-training DNN aims to resolve the classification problem,

because the ground truth labels can be easily known instead

of humans’ subjective judgment. Especially, the depth of

network is proportional to the number of pre-trained samples.

Moreover, in order to deal with authentic images, they add

the sub-network to meet the prediction of authentic IQA

database.

b: EXPANDING REFERENCE IMAGES’ METHODS

This is a novel topic to use generative adversarial network

(GAN) to augment images. Since the distortion images and

corresponding non-distortion reference images are typically

absent in IQA databases, it leads to the prediction perfor-

mance of image quality being not accurate. Thus, the HIQA

method [28] aims to address this problem by combining the

GAN and the GAN-guided quality regression (R) networks.

The Fig.11 shows the flowchart of the GAN method. First,

the quality-aware generative (G) network can be used to over-

come the absence of reference image, which aims to generate

the hallucinated reference image Ih conditioned on the dis-

torted image Id . In order to reduce the difference between the

hallucinated image and the corresponding reference image,

the loss function of G network can be designed by using the

pixel-wise error and the perception-wise difference. Second,

they propose a IQA-Discriminator (D) network to adjust the

loss of G to produce high perceptual outputs, even when G

fails to generate hallucination images, the predicted scores

of R network should still be reasonable value. Finally, the
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distorted images and their discrepancy maps between halluci-

nated images and its corresponding distortion images are fed

into the R network and the high-level features fusion scheme

is adopted to optimize R network. Especially, the training

strategy is set. The GAN network is trained to generate a large

number of the hallucinated images, which is similar to the

reference images in IQA database. And then, the R network

is trained to predict image quality score. In GAN network,

the D network is first trained to distinguish the fake reference

images from the reference images of the IQA database. Then,

the G network is trained to generate images, which is similar

to the real reference images in the IQA database. Finally,

the image quality score can be predicted by optimizing the

loss of the R network.

IV. THE PERFORMANCE OF DIFFERENT DNN METHODS

A. DESCRIPTION OF PUBLIC DATABASES

AND EVALUATION METRICS

The choice of a database for training is important for

deep-learning-based models, since their performance highly

depends on the size of the training set. We briefly describe

several popular public databases for BIQA, including

LIVE [65], TID2013 [66], CSIQ [67], LIVE MD [68], LIVE

In theWild Image Quality Challenge Database (LIVEC) [72].

1) The LIVE database [65] includes 29 reference images

and 779 distorted images degraded by five types of distor-

tions (JPEG, JP2K, WN, GB, Rayleigh fast-fading channel

distortion (FF)). Subjective quality scores are provided in

the form of difference mean opinion score (DMOS) ranging

from 0 to 100, where a lower score indicates better image

quality.

2) The TID2013 database [66] contains the largest number

of distorted images. It consists of 25 reference images and

3000 distorted images with 24 different distortion types at

five levels of degradation. The database also provides the

MOS, ranging from 0 to 9. A higher value of MOS indicates

higher quality. The distortion types include a range of noise,

compression, and transmission artifacts.

3) The CSIQ database [67] consists of 30 reference images

and 866 distorted images corrupted by six types of distor-

tions: JPEG, JP2K, WN, GB, pink Gaussian noise and global

contrast decrements. Each image is distorted by five different

distortion levels. Subjective quality scores are provided in the

form of DMOS ranging from 0 to 1.

4) The LIVE MD database [68] was the first to include

multiple distorted images. Images are distorted by two types

of distortions in two combinations: simulated GB followed by

JPEG and GB followed by additive WN. It contains 15 ref-

erences and 450 distorted images, and the DMOS of each

distorted image is provided, ranging from 0 to 100.

5) The LIVE In the Wild Image Quality Challenge

Database (LIVEC) [72] comprises 1162 images, which are

captured using modern mobile devices and contain diverse

authentic image distortions. In addition, no undistorted ref-

erence images are available in LIVEC. Subjective scores are

obtained in the form ofMOS in an online crowdsourcing plat-

form. MOS values lie in the range [0, 100]. The summary of

the above databases is shown in Table 5. Note that Ref means

the number of reference images. Dist means the number of

distorted images. DT means the number of distortion types.

SST and SR mean subjective score’s type and range.

TABLE 5. Comparison of different IQA databases.

Two commonly used metrics [73], Spearman Rank-Order

Correlation Coefficient (SROCC) and Pearson Linear Corre-

lation Coefficient (PLCC) are used for performance evalua-

tion. These metrics are to measure the correlation between a

set of estimated visual quality scores Qest and a set of human

subjective quality scores Qsub, as:

SROCC(Qest ,Qsub) = 1 −
6

∑
di

m(m2 − 1)
(2)

PLCC(Qest ,Qsub) =
cov(Qsub,Qest )

σ (Qsub)σ (Qest )
(3)

where m is the number of images in the evaluation database;

di is the rank difference of i th evaluation sample in Qest and

Qsub; cov(.) represents the covariance betweenQest andQsub;

σ (.) represents the standard deviation. The PLCC measures

the prediction accuracy and the SROCCmeasures the predic-

tion monotonicity. For both correlation metrics a value close

to 1 indicates high performance of a specific quality measure.

B. PERFORMANCE COMPARISON

ON INDIVIDUAL DATABASE

We compare the performance of a number of state-of-the-

art BIQA and FR-IQA methods, including: FR-IQA meth-

ods (PSNR, SSIM [3], FSIMc [74], DeepQA [76]) and

classic BIQA methods (BRISQUE [75], BWS [16], COR-

NIA [12], GMLOG [13] and IL-NIQE [14]), current lead-

ing various BIQA methods based on DNN (MGDNN [35],

FRIQUEE [34], GLCP [38], BLNDER [39], DLIQA [43],

SESANIN [45], VPOR [47], CNN [48], Pre-SM [50],

VIDGIQA [53], DIQaM [52], TSCN [30], BIECON [55],

DIQA [56], BPSQM [57], MFIQA [31], RANK [26],

DB-CNN [27], MEON [29], HIQA [28] ).

For the classic BIQA methods and FR-IQA methods,

we conducted experiments by utilizing the respective codes

released by the authors. It is, however, difficult to reproduce

the BIQAmethods based on DNN.We therefore first adopted

the results reported in the respective literature. Especially, for

the cases where experimental results are not given, we use the

released codes to conduct experiments and generate results,

such as CNN, DIQaM, BIECON, RANK.
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TABLE 6. The SROCC and PLCC comparison on the five databases.

As shown in table 6, the SROCC and PLCC values are

reported to various methods. The best three performances

among the BIQA methods are shown in bold. The weighted

average of the SROCC and PLCC over the five databases

is shown in the last column of table 6. The weight of each

database is proportional to the number of distorted images in

the database. Especially, in table 6, NR1 means the classic

BIQA methods. NR2 and NR3 mean the extracting deep fea-

tures from low-level features and image/image patch meth-

ods, respectively. NR4means the prediction grades’ methods.

NR5 means the SS as patch label’s methods and NR6 means

the FR as patch label’s methods. NR7 and NR8 mean the

expanding distorted images’ methods and the expanding ref-

erence images’ method, respectively.

We can see that the DNN methods generally perform bet-

ter than the classic BIQA methods. The fundamental dif-

ference between DNN methods and classic BIQA methods

is that, rather than using hand-crafted features and shallow

regression for classic BIQA, DNN methods search for highly

optimized features automatically and can significantly reduce

prediction errors by the deep network. Meanwhile, we also

show the RMSE performance in table 7. It can be clearly

seen the RMSE performance of the DNN methods is better

than the classical methods in LIVE database. In other IQA

databases, the DNN methods are better than the classical

BWS method. This is because the DNN methods can learn

image deep features related to perception and use the back

propagation method to train the deep network. Therefore,

it is why the DNN methods have been developed rapidly

to improve IQA performance in recent years. In addition,

DNN methods are highly competitive with the FR methods.

However, DNN methods do not use any prior information of

reference for image quality assessment.

We compare the extracting deep features methods from

DNN models [34], [35], [38], [39]. Although some methods

do not give all the experimental results in the five databases,

we clearly see that the methods of directly extracting from

data of image/image patch [38], [39] are better than the

methods of extracting image low-level features [34], [35].

The main reason is that the selected low-features are limited

and cannot adequately describe the image distortions and

contents. However, compared with other end-to-end DNN
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TABLE 7. The RMSE comparison on the five databases.

models, thesemethods are simple by using shallow regression

method.

Compared with the methods of predicting quality

grades [43], [45], [47]. The VPOR method significantly

outperforms the DLIQ and the SESANIN methods in LIVE

database. First, the image grade labels, which are defined

in a belief score vector method, are more accurate than

the subjective grades in DLIQ and the SESANIN methods.

Second, when converting the image quality grade to the image

score, the VPOR method take into account the influence of

object saliency on image quality. It makes the prediction

performance is better than the DLIQ and SESANIN meth-

ods. Therefore, we find that although qualitative classifica-

tion methods are much natural to human visual behaviors,

the classification of grades and the strategy of converting

image score will affect the final prediction performance.

For the patch-input methods, there is a competition

between SS as image patch label methods [30], [48], [50],

[52], [53] and FR as image patch label methods [55]–[57].

When only the image subjective score is used to obtain image

patch label, the prediction accuracy is inferior to the methods

of using FR as patch label. It is clearly see that the BIECON,

DIQA and BPSQM are all better than CNN. This is because

FR method considers the visual sensitivity of the different

image patch, so that the obtained patch label is more accurate

than the whole image subjective score as label. However,

after adding the saliency of the image patch, the subjective

score methods is highly competitive with the FR methods to

obtain image patch label. This is easy to understand because

the differences can be highlighted after considering salient

image patches. Whereas, although the FR methods and the

image patches’ saliency methods can approximately obtain

the quality of different image patches, the obtain labels are

not the real ground truth of image patches, because the ground

truth quality of each patch does not exist.

For image-input methods, we clearly see that in the syn-

thetic IQA databases, the methods of expanding distorted

images [26]–[28] are more benefit than that of directly

using large database methods [31]. In the LIVE database,

the RANK, DB-CNN methods perform superior to the

MFIQA, because artificial generation method can simulate

images with similar distortion types and levels in synthetic

IQA database. Hence, the DNN can roughly learn the fea-

tures of similar distortion images with IQA database in the

pre-training stage. On the contrary, in the LIVEC database,

MFIQAmethod is better than RANK, because the pre-trained

DNN in the large database learn the real distortion features.

However, due to the limitation of synthetic distortion images,

it cannot meet the needs of various databases, which leads

to poor generalization ability in different databases. In order

to overcome this problem, the DB-CNN method design two

sub-networks that can satisfy both synthetic and authentic dis-

tortion, thus improving the prediction accuracy. In addition,

the expanding distorted images’ methods compete with the

expanding reference images. However, it is worth noting that

the popular GAN method is first used to solve insufficient

IQA database problem.

C. PERFORMANCE ON CROSS-DATABASE

It is expected that a robust BIQA model that has learned

on one image quality database should be able to accurately

assess the quality of images in other databases. Therefore,

in table 8, we compare the results of generalizability of

the classic BIQA methods and DNN methods only in the

synthetic distortion databases. But we do not consider train

the DNN model on the authentic image distortion database

(LIVEC). On the one hand, this is because some DNN meth-

ods need to use the reference images or simulated distortions

method to train DNNmodel, such as DIQA [56], RANK [26],

while the LIVEC is the authentic image distortions without

the reference images or prior distortion types. On the other

hand, because of the largely difference between synthetic

and authentic images, many DNN methods do not discuss

cross dataset test between synthetic and authentic datasets.

Therefore, the compared BIQA methods are trained using

all the images from one synthetic database, and then tested

on another database. In the CSIQ and TID2013 databases,

four overlapping distortion types (WN, GB, JPEG, JP2K) are

used.

In table 8, it can be seen that the DNN method is the

best performance when LIVE database is trained and other

subset databases are tested. TheMFIQA andDIQA obtain the
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TABLE 8. The SROCC comparison of the cross dataset test.

better performance than other methods when CSIQ subset

and TID2013 subset are trained, respectively. Therefore,

the generalization ability of the end-to-end DNN methods

is generally better than the classic BIQA methods and the

extracted deep features’ BIQA methods. This is because the

end-to-end methods can use images/image patches data to

learn deep features and reduce the prediction errors by back

propagation method. However, the classic BIQA methods

are limited in extracting hand-crafted features, which cannot

completely represent the image structures and distortions.

Meanwhile, the prediction performance of shallow regres-

sion, such as SVR, is not as good as that of deep regres-

sion network. Similarly, although the extracted deep features

methods can further extract the deep features from the limited

low-level features, the shallow regression restricts the gener-

alization ability.

Furthermore, in DNN methods, the generalizability of the

patch-input methods [48],[52],[56] is better than the image-

input methods [26], [31]. The main reason is the patch-input

methods use the images of IQA database to expand training

samples to train DNN network, but the image-input methods

expand the IQA database by using exterior images. These

exterior images can be fitted as IQA images to expand IQA

database. Because the difference between the fitted images

and IQA images, it reduce the generalization ability of the

DNN model.

D. THE COMPLEXITY OF DIFFERENT DNN METHODS

We calculate the complexity of different DNN methods as

shown in table 9, including CNN, DIQaM, BIECON, RANK,

DB-CNN. Especially, WPs and BPs mean the weight param-

eters and basis parameters, respectively. ATPs means the

total parameters of the DNN. CTs means the parameters of

all C layers and FTs means the parameters of all F layers.

Since C and F layers are used to update network parameters,

the complexity of algorithm is closely related to the C and

F layers’ parameters. In table 9, we clearly see that the

complexity of CNN is lower than the DIQaM, BIECON,

RANK, DB-CNN, because the number of layers of the DNN

is smaller than that of other methods. Further, the complexity

of F layers is higher than that of C layers expect for DIQaM.

Especially, in the DB-CNN, RANK, although the number of

F layer is much smaller than that of C layer, the complexity

of F layer is still higher than the C layer. This is because the

F layer optimizes all local features jointly, while the C layer

only optimizes local features. Compared with DIQaM and

BIECON, since the number FC layers of BIECONmethods is

much larger than the DIQaM, it is easy to understand that the

complexity of BIECON method is higher than the DIQaM.

Therefore, F layer has higher effect on DNN complexity than

C layer. It is worth noting that when designing the deep

network, we need to consider the number of layers and the

proportion of C and F layers.

E. DISCUSSION OF DIFFERENT DNN METHODS

As shown in table 10, we compare the implementations and

of different DNN methods. The first three DNN models are

based on the patch-input methods and the last two DNN

methods are based on the image-input methods. Note that SS

means image subjective score (SS). DL and DTmean the dis-

tortion level (DL) and type (DT), respectively. The compre-

hensive performance is presented in five different databases

(LIVE, TID2013, CSIQ, LIVEMD, LIVEC). In table 10,

we find that the prediction performance is not only related

to the complexity of DNN, but also to the strategy of the

design algorithm. Although the complexity of DB-CNN is

not the highest, the prediction performance is the best in

these methods. The reason is that DB-CNN jointly considers

three factors. First, they select the image-input method, which

can obtain rich distortion information. Second, they consider

the distortion types and levels as labels to describe synthetic

images in the first stage. Finally, in the second stage, they add

a sub-network to predict authentic images.

In addition, since the RANK and DB-CNN methods fix

input image size, images need to be cropped or resized as

input to meet requirement. It leads to input image is not

enough to cover the whole image information and easy to

introduce geometric deformation. Therefore, the intermediate

label and image size will also be considered to improve

prediction performance. Similarly, compared with the patch-

input methods, the DIQaM method is superior to others,

because the patch saliency is used to solve the inaccurate

patch label. Therefore, in order to improve the prediction

accuracy, patch size and proxy score will be considered.

In practical application, we need to find a balance

between the algorithm complexity and prediction accuracy.

For example, in the application of medical images, we pay

more attention to the prediction accuracy. On the contrary,
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TABLE 9. The complexity of different DNN methods.
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TABLE 10. The comparison of implementations of different DNN methods.

in real-time image evaluation system, we will give priority to

the algorithm complexity.

V. CHALLENGES OF DNN METHODS

In the previous sections, we present a comprehensive review

of the recent literature in DNN models for BIQA. Although

DNN-based BIQA methods can achieve outstanding perfor-

mance due to their strong representation capability, there are

several challenges at the same time. Meanwhile, we provide

some solutions to these challenges.

1) Creating the large-scale IQA database The number of

training samples is critical to the success of DNN models.

Currently, the lack of large training data sets is often men-

tioned as a challenge. Although both the image-inputmethods

and the patch-input methods overcome the problem of insuf-

ficient IQA database to some extent, these methods have their

own shortcomings to the label accuracy of generation images.

Therefore, understanding how to successfully create reliable,

very large-scale databases is still an open question.Therefore,

the online crowdsourcing system is one possible solution,

which aims to gather very rich human data in term of subjec-

tive testing. In addition, if a large social media company were

to engage their customers to provide image quality scores,

it would also ensure the aggregate quality of the collected

human data.

2) Exploring unsupervised DNN methods The current

DNNmodels mainly use the supervised end-to-end optimiza-

tion to evaluate image quality. However, the lack of sufficient

ground truth labels is a serious problem for BIQA. Therefore,

we expect that training an end-to-end DNN model in a com-

pletely unsupervised manner is worth further investigations

in the future. This is because obtaining large amounts of

unlabeled data is generally much easier than labeled data

and human learning is largely unsupervised: we discover

the structure of the word by observing it, not by being told

the specific labels. Thus,we could try to design two branch

networks to the unsupervisedmethod. The one is used to learn

the features of reference images and the other is used to learn

the distorted images’ features. Then, the most important is we

need to establish a loss mechanism to quantify the difference

between the two branch networks. In addition, the proxy

mechanism may be designed to replace the image subjective

scores.

3) Explaining the theoretical basis of DNN methods

Although DNN thoroughly understands the data distribution

and results, for human, there is no theoretical analysis

explaining why it works well to the designed DNN architec-

ture and how to further improve the prediction performance.

Therefore, it is meaningful to explore the theoretical guar-

antee of DNN model, in order to guide further researches in

this field. The two methods may be selected to explain DNN

algorithms. One approach could analyze DNN architecture

by using visual method [85]. The visualization of layer-by-

layer features helps understand how the DNN learns useful

features for IQA task. Another is to explain the functions of

DNN according to the algorithms’ requirements so that the

functions of DNN could deal with the IQA problems.

VI. CONCLUSION

This paper presents a systematic survey of various DNN-

based methods for BIQA. We discussed and analyzed the

state-of-the-art DNN methods according to different strate-

gies of DNN models. This classification strategy explicitly

shows the characteristics, advantages and disadvantages of

different DNN methods for BIQA. Especially, some novel

DNN methods, which are not present in previous study,

are also discussed. Then, we compare the performance and

complexity of various DNN models, yet the state of research

in this field is far from mature. Meanwhile, we summarize

the intrinsic relationship among different DNN methods and

obtain some interesting findings, which can help us design

DNN for BIQA. Furthermore, we provide several challenging

issues of using DNN methods for BIQA, which should be

noticed. We hope this survey of DNN methods can serve

as a useful reference towards a better understanding of this

research field.
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