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Abstract
Biologically inspired spiking neural networks are increasingly popular in the field of artificial
intelligence due to their ability to solve complex problems while being power efficient. They
do so by leveraging the timing of discrete spikes as main information carrier. Though, indus-
trial applications are still lacking, partially because the question of how to encode incoming
data into discrete spike events cannot be uniformly answered. In this paper, we summarise the
signal encoding schemes presented in the literature and propose a uniform nomenclature to
prevent the vague usage of ambiguous definitions. Therefore we survey both, the theoretical
foundations as well as applications of the encoding schemes. This work provides a foun-
dation in spiking signal encoding and gives an overview over different application-oriented
implementations which utilise the schemes.

Keywords Spiking neural networks · Neural coding · Neuromorphic computing · Rate
coding · Temporal coding

1 Introduction

Spiking Neural Networks (SNNs) use short “all-or-nothing” pulses to encode and transmit
information. Such networks consist of neurons which describe the action potential gener-
ation as mathematical non-differential equation to approximate the observed behaviour of
biological systems. This third generation of neural networks [54] promises a better processing
performance than classical networks based on activation functions [53]. Additionally, since
spikes are only exchanged when information is processed, the energy consumption of SNNs
can be a fraction of comparable networks of the earlier generations on specalised hardware
[8]. To make use of these principles, still many questions regarding data encoding, network
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architectures, training, and hardware realisations have to be answered. In this study, we focus
on the question of how to convert analog and digital data into spikes.

The human brain as the most complex and efficient spike processing computing device
might give some insights into the biological answer to this question. It uses various encoding
schemes to represent visual, acoustic, or somatic data from the different senses. Signals
containing motor commands executed by muscles again make use of further encodings. This
biological model suggests, that coding schemes exist which are better suited for particular
data forms than others, and that there are multiple schemes to choose from.

The implementations of artificial SNNs have shown a variety of different encoding
schemes. Comparable with the biological findings, two main coding approaches can be dif-
ferentiated: rate coding and temporal coding [29]. Rate codes embed the information in the
instantaneous or averaged rate of spike generation of a single or group of neurons. This leads
to a value which describes the activity of a neuron, which is comparable to the activation
value of ordinary non-spiking artificial neurons. For temporal coding techniques, the precise
timing of and between spikes is used to encode information. This includes the absolute timing
in relation to a global reference, the relative timing of spikes emitted by different neurons or
simply the order in which a population of neurons generate specific spikes.

As in the biological case, specific coding techniques are better suited than others depending
on the type of data to be dealtwith and the structure of the network.Networks analysing frame-
based two-dimensional images will need a different approach than architectures dealing
with audio streams. Systems, which rely on high processing speeds and fast responses on
stimulus onsetwill not use codeswhich are based on temporal averaging.And neurons driving
actuators will have to use different coding schemes than sensors retrieving a representation
of the environment.

In addition to the wide variety of coding techniques available, often the nomenclature and
categorisation used in the literature is not uniform amongst the publications. Some reports
use the same designation for fundamentally different schemes. Others categorise existing
techniques in many different ways. So far, there has been no publication which summarises
and standardises the different approaches of the research community.

In thiswork,wewill give anoverviewof existing coding techniques and establish a uniform
nomenclature and categorisation. We focus on the abstract description of the different coding
schemes to ensure generality. We thus do not closely consider distinct biological realisations
consisting of specialised input neurons. However, we include biological examples tomotivate
the biological relations. Subsequently, we give an overview of exemplary implementations
and applications of these schemes given in the literature. The network architectures used in
those applications range from reservoirs over deep feedforward structures to convolutional
implementations showing the large variety of available layer types and encoding scheme
combinations. In the discussionwe showcase differences and trade-offs between the encoding
techniques.

2 Biological Background

Early research of biological neural systems suggested that rate coding is the predominant
technique to transmit information within nervous systems [2]. Later publications, in contrast,
showed that all sensory organs rather embed their perceptions into precise timings of action
potentials. While Thorpe proposed the idea of exact spike timings as coding scheme [97],
it took several years to find experimental evidence for this theory. It has been shown that
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Fig. 1 Exemplary coding schemes for a sequence of images over time. The intensity-time plot indicates the
changes of the pixel value in the red square as a continuous function. The dashed lines indicate the time
instances at which the images have reached the colour value. Digital, count, and TTFS spikes in correlation to
the local minima and maxima in the intensity curve. The TC emits spikes if the continuous intensity change
exceeds a certain threshold

the human visual system needs 150ms to process object recognition tasks, which supports
this suggestion since rate codes would be too slow to explain these fast responses [95].
Further research supports these findings for visual [27,30,57,72], audio [25], tactile [39],
and olfactory systems [1,55]. Additionally, the experiments show the trade-off between fast
responses after stimulus onset and accuracy of the result. Mice, for example, can discriminate
between simple odors within 200ms. If they are similar, the discrimination can take 100ms
longer, suggesting an integration over time [39].

3 Encoding

To illustrate the applicability of different encoding schemes on the same problem, consider
a video camera, which encodes visual information into spikes as depicted in Fig. 1. Digital
cameras expose the image sensor in a fixed rate for a short period of time and encode the
measured intensity of light at each pixel into an integer number. This frame-based approach
can also be applied to generate a spike representation of the video stream. The light intensity
can directly be translated into spike times, where a highly exposed pixel corresponds to a
fast spike time or vice versa (time-to-first-spike (TTFS)). Alternatively, the intensity can
be converted into the number of spikes generated within one frame (count). Here, a large
number of emitted spikes can correspond to a high intensity at the associated pixel. As a
third example, we could discard the approach of using frame-based measurements (temporal
contrast (TC)). Instead, we observe the light intensity at a certain pixel and emit a spike as
soon as the intensity change surpasses a distinct threshold.

In general, all encoding techniques can be divided into two main categories: rate and tem-
poral coding. All specialised encoding schemes can be separated into these two by answering
the question whether the exact timing and order of spikes is crucial for the information to be
submitted. The resulting taxonomy is depicted in Fig. 2. Population codes, which are often
referred to as third main category only add the information whether a single or multiple neu-
rons are used in the particular coding scheme. Though, this can be the case in both temporal
and rate codes and does not provide a unique differentiation.
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Fig. 2 Taxonomy of rate and temporal coding techniques
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Fig. 3 Visualisation of rate coding techniques with a wide pulse stimulus. The dashed line indicates the rising
and falling edge of the stimulus

3.1 Rate Coding

Rate codes can be further divided into three subcategories: count, density and population rate
codes. Figure 3 shows an example visualisation of rate coding of an arbitrary input stimulus.
For information exceeding the next sections, we refer to [28,29].

Count rate (average over time) is the most common rate coding scheme. It is defined by
the mean firing rate

v = Nspike

T
, (1)

with the spike count Nspike and the time window T . This scheme is also referred to as fre-
quency coding. In vivo, Adrian and Zotterman observed that stretching a frog muscle with
different weights affects the frequency of the firing rate [2]. In artificial applications, firing
rates can describe any slowly varying analog value, from pixel intensities to gas concentra-
tions.
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In a count rate code, the spike times can either be exact or random. The latter case is
often modelled by a Poisson distribution. When encoding an analog number, the remaining
reconstruction error due to the discretised number of spikes during a given time interval
decreases by the number of spikes 1/Nspikes. Due to the variations given in Poisson distributed
spike trains, the error decreases only by 1/

√
Nspikes [18].

Density rate (average over several runs) The neural activity is measured over different
simulations and the results of the neural responses are presented in a peri-stimulus-time
histogram to visualise the spike activity. The spike density is defined by

p(t) = 1

�t

Nspike(t; t + �t)

K
. (2)

The number of spikes Nspikes in a time interval [t; t+�t] averaged over all iterations divided
by the total number of iterations K and the duration�t , specifies the spike density p(t). This
scheme is not a biologically plausible encoding method. One imagines a frog which tries to
catch a fly by averaging over multiple computations over the exact same trajectory of the fly
[29]. In an artificial SNN however, it can be beneficial to average over multiple simulation
runs with the exact same inputs.

Population rate (average over several neurons) is based on similar properties of neurons
in a population. The firing rate is defined by

A(t) = 1

�t

Nspike(t; t + �t)

N
. (3)

The number of spikes Nspikes in the total population are summed together for the time interval
[t; t + �t] and divided by the duration �t and the total number of neurons N .

A population of neurons does not necessarily have to be uniform in the spike response
of neurons for a given input. If each neuron has a different (known) tuning curve describing
the spike count rate at any input current, the superposition in a large population can encode
single numbers, vectors or even function fields [21].

3.2 Temporal Coding

As depicted in Fig. 2, temporal codes can be divided into multiple subcategories. While tem-
poral contrast (TC) schemes focus on the signal’s derivative, globally referenced encodings
process the input in packets in reference to a periodical signal or oscillation. Inter-spike-
interval (ISI) codes interpret the relative timing between grouped blocks of spikes in contrast
to correlation codes, which rely on the simultaneous activity of several neurons. Filter and
optimiser based approaches base their spike patterns on the comparison of input and kernel
functions. Figure 4 demonstrates the temporal encoding schemes in relation to a stimulus.
Note that binary codes, Ben’s spiker algorithm (BSA), and TC use a different stimulus in the
illustration.

Global Referenced

The most basic temporal coding scheme is TTFS, which encodes information by the time
difference �t between stimulus onset and the first spike of a neuron. In the simplest case,
the firing time can be the inverse of the stimulus amplitude �t = 1/a or a linear relation
�t = 1 − a, with a being the normalised signal amplitude. In both cases, a large amplitude
leads to an early firing time whereas low amplitudes lead to a large interval or no spike at
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Fig. 4 Visualisation of temporal coding techniques with dashed line indicating the rising and falling edge of
the stimulus. �t describes the latency between the reference point and the spike. In (d) the order of spikes is
numbered on the right

all. As a biological example, Johansson and Birznieks discovered that the relative time of
the first spike in regard to a discrete mechanical fingertip event contains direction and force
information [39]. Gollisch and Meister observed TTFS in the retinal pathway and found
invariant relation to stimulus contrast and robustness to noise variations [30]. Though, they
called the coding scheme “latency coding”, which can be mistaken as ISI coding due to
the unclear definition of latency between spikes and a global reference or between multiple
spikes.

Instead of a single reference point, phase coding encodes information in the relative
time difference between spikes and a reference oscillation [36,42]. The phase pattern repeats
periodically if no changes between the cycles appeared. Each single neuron fires in respect to
the reference signal and encodes the data similar to TTFS. Such a behaviour was detected by
Gray, König, Engel, and Singer [31]. They analysed the firing probability of neurons in the cat
visual cortex and identified a relation between the firing pattern and a reference oscillation.

ROC (rank-order coding) is based on the firing order of a population of neurons in relation
to a global reference [26,96]. In contrast to TTFS, ROC encodes the information without
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considering the precise timing of the spikes. It functions as a discrete normalisation filter
with the loss of the absolute amplitude information. As a consequence, it is not possible to
reconstruct the absolute signal amplitude or an exactly constant signal. The scheme is further
limited by the distinction of the spikes and jitter due to a huge effect for small ISI. In the
basic version of ROC the precise spike time is not relevant but there are modified versions
which use the ISI to encode additional information.

A further subcategory of globally referenced schemes are (sequential) binary codes.
Here, each spike corresponds to a ”1” or ”0” in a bit stream. In relation to a fixed reference
clock, two schemes to encode the bits are possible: the presence or absence of a spike within
a given interval [110], or the timing of the spike within the interval [33]. In the former case,
a logical ”1” corresponds to a spike being present during one clock cycle. In the latter case,
the clock cycle is divided into two sub-intervals. If a spike is present in the first half, a ”0”
is encoded, if it is the case in the second half, a ”1” is present or vice versa. This ensures the
constant presence of spikes independent of the bit pattern to be encoded.

Often, thefirst spike of all global referenced coding schemes represents themost significant
element of the pattern, comparable to binary representations. This leads to an interesting
behaviour in the network parameter selection because the threshold of the output neurons
can be adjusted in regard to the speed-accuracy trade-off. This means the network can already
predict the output pattern before the whole input pattern has been processed [96].

ISI Coding

In ISI or latency coding the information is embedded into the relative time difference
(latency) between the spikes of a neuron group [71]. The dependency of the ISI with the
stimulus intensity was observed in pyramidal cells [64]. Li and Tsien [48] state that rare
events such as longer silence periods contain more information than periods of higher spike
activity.

A sub-category of ISI coding is burst coding which converts the input into various inter-
spike latencies. A burst is a group of spikes with a very small ISI [67]. If a spike is a part of
the burst depends on the ISI threshold and the expected number of spikes [99,108].

Correlation and Synchrony

Correlation and synchrony coding uses the temporal reference to other spiking neurons. The
input pattern is converted into a spatio-temporal spike representation. There, spike groups
with a relative short ISI represent specific input patterns [29]. Information is encoded by
the distinction of which neurons fire at the same time. Sparse distributed representations
(SDRs) [4,62] also fall into this category. Here, a subset of neurons inside a population
is active at any given point of time. This enables to represent a virtually infinite number
of patterns without significant errors [34]. In the extreme case, only one single neuron is
active at any given time. Then, every neuron is allocated to a specific input value. A spike
is generated as soon as this value is crossed. This scheme can be referred to as amplitude
coding, since the signal strength is directly encoded in the activity of one neuron at a time.

In vivo, the general synchronous coding scheme has been observed in the somatosensory
cortex of monkeys [88] or the visual cortex of cats [31,32]. There, the authors hypothesise
that synchrony can give evidence about the significance of the incoming stimulus. A further
biological example are grid and place cells [58,61] which encode spatial representations into
the synchronous firing of a specific subset of a population.
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Next to the already introduced sequential binary codes, the synchronous firing of neurons
can also be interpreted as the ones and zeros of a binary number. In these (parallel) binary
codes, each neuron encodes a specific bit within a larger word in contrast to the sequential
codes, where a single neuron encodes the information into the precise timing within a stream.

Filter and Optimizer-based Approaches

In both neuroscience and control theory, an often utilised method to find a description of a
system is to feed a known signal into it and to measure its output. In the neurological case,
the input is an arbitrary analog signal, the system is a single neuron or population, and the
output is a spike train. BSA [81] and its predecessor Hough spiker algorithm (HSA) [37]
reverse this idea and use a known filter to compute a spike train for a corresponding input
signal. A spike is generated as soon as the convolution of signal and filter exceeds a certain
threshold. Since this method can only process inputs of a specific range, the incoming signal
has to be normalised prior to conversion.

Sengupta, Scott, and Kasabov interpret the encoding process as a data compression
problem with background knowledge [83] and introduce the GaGamma scheme. Thereby,
information has to be maximised while minimising the spike density. By leveraging prior
knowledge of the signal to be encoded, specific optimal solutions can be found while solving
the mixed-integer optimisation problem.

Temporal Contrast

The last subcategory of temporal codes is TC coding. It converts an analog signal to
a spike train by observing the changes in the signal intensity [40]. It is separated into
three different algorithms: threshold-based representation (TBR), step-forward (SF), and
moving-window (MW). TBR compares the absolute signal change of an input signal with
a threshold and emits positive or negative spikes accordingly. The threshold depends on the
summation of the mean derivative with the multiplication of a factor and the derivative stan-
dard deviation. In contrast to TBR, SF just uses the next available signal value and checks
if the previous value and an additional threshold is exceeded. It sends out appropriate spikes
depending on the polarity of the signal difference. MW uses a base which is defined by the
mean of the previous signal in a time window. Again positive or negative spikes are emit-
ted if the current signal value exceeds the base and threshold. For further information and
implementations we refer to [70].

4 Applications

As shown in the introductory example, one single type of input data for a given problem can
be translated into spikes in several ways. The following implementations demonstrate this
further and should give an overview of the variety of problems which can be solved with
SNNs. Additionally, it further indicates that a universal answer to neural coding has not been
found yet.

123



A Survey of Encoding Techniques for Signal Processing… 4701

4.1 Rate Coding

Early work on SNNs is mainly based on rate coding. Until 2012 multiple authors presented
fully connected feedforward networks which achieved up to 94% for digit recognition on
the MNIST handwritten digits dataset [11,22,47,91]. Unsupervised spike-timing-dependent
plasticity (STDP)-based models improved the accuracy to 95% in 2015 [19] and over 97%
in 2019 [92]. A similar approach could classify the iris dataset with an accuracy of 97% and
the Wisconsin breast cancer dataset with 94% [79].

Interestingly, the best results were achieved by training non-spiking artificial neural net-
works (ANNs) and subsequently converting them into the spiking domain. Whereas using
sigmoid as an activation function turned out to be suboptimal for translating it into spiking
neurons [73]. Today’s default activation function ReLU can almost directly be translated into
the spiking rate, by only normalizing the weight for a near-lossless accuracy conversion [20].
Through this approach the accuracy on MNIST could be leveraged to over 98% [20,38,59]
and achieving the best performance of 99.42% by Esser, Appuswamy, Merolla, Arthur, and
Modha [23].

Similarly for convolutional neural networks (CNNs), whereas earlier work relied on STDP
achieving over 98% [43,92,93], conversion-based approaches could easily attain more than
99% [20,76]. A significantly larger discrepancy can be found by training on the more chal-
lenging CIFAR-10 dataset [46], which could only achieve 75.42% [65] without, but 90.85%
with conversion methods [76].

Some research also focuses on how to obtain those rate-coded signals. Besides the highly
popular applications in image processing, Liu, Schaik, Mincti, and Delbruck proposed an
event-based cochlea, which encodes the amplitude of specific frequencies within a signal
into a rate code [51]. These “pulse-frequency modulators” emit a higher event rate the larger
the corresponding frequency component is.

Besides classification tasks, rate-coded information are often used in robotic applications
[7]. Most implementations make use of Poisson-distributed spike trains to closely emulate
the properties of real neurons.

To overcome the limitation of rate-based networks of producing large amounts of spikes,
Zambrano and Bohte [107] presented a method for adapting the firing rate, resulting in a
significant reduction of spike events. A different approach uses a global referenced binary
coding to reduce the number of spikes. Together with neuron models with exponential input
characteristics, the same activation of the neuron can be reached as with a count rate code
but with far less spikes [110].

4.2 Temporal Coding

Global Referenced

The idea of converting ANNs was historically based on rate coding schemes, but there
are also temporal based methods. Rueckauer and Liu used the coding scheme TTFS for the
classification of theMNIST datasetwith less operations and an error ratewithin 2%. The SNN
implementation decreases the computational cost by factor 7 for the LeNet5 architecture on
MNIST [75]. Zhang,Zhou,Zhi,Du, andChen [109] also utiliseTTFSencodingon a converted
network; but in contrast, they apply the scheme reversed. Here, the first spike encodes the
weakest feature whereas the last spike has the largest influence. A further approach uses
phase coding to represent information inside a converted ANN [44]. The authors show that
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this reduces the overall number of spikes and the inference latency while preserving the
accuracy of the image recognition tasks.

The artificial microelectronic nose by Chen, Ng, Bermak, Law, and Martinez uses ROC
andTTFS to detect gases like ethanol, carbonmonoxide and hydrogen [13]. The sensor output
is sampled and converted to a spike train in a microcontroller. The data are then inserted to
an SNNwhich identifies the gas type. Encoding the samples with rank order coding achieved
an classification accuracy of 95.2% and with TTFS 100%. This difference arises from the
fact that in ROC the spikes are really close together and a small spike jitter has a large effect
on the classification accuracy.

In [9], the authors implemented an unsupervised network which can compute and learn
clusters from realistic high-dimensional data. They used a sparse temporal coding scheme
which they called population coding. We would define this coding as sparse TTFS coding,
because the relative time difference between the spikes and the stimuli contains the crucial
information. The input neurons cover the whole data-range and use Gaussian receptive fields
to map the continuous input values to specific delay times. Significant data will have small
delays and non-relevant data will not emit an action potential in the defined time interval
which introduces sparsity. A similar coding was implemented with a deep SNN for image
classification with data-sets like Caltech 101, ETH-80, and MNIST [43]. The first network
layer detects the contrasts in the input image with a Gaussian filter and encodes the contrast
into spike latencies. Higher contrast has shorter delay and too low contrast will be neglected.
This convolutional SNN achieved an accuracy of 98.4% in the MNIST data-set. Similar
encoding idea was implemented on the iris data-set with an accuracy of 92.55% in [105,106].
It was extended by observing two different input connection schemes. First by connecting
each receptive field row with a neuron and the second with sparse random connections
between the receptive fields and the input neurons. During learning the random connection
achieves faster and higher accuracy rates compared to the structured connections. [79] also
implemented the temporal coding based on the Gaussian receptive field and accomplished an
accuracy of 99% for the iris data-set and 90% for the Wisconsin breast cancer data-set with
a single layer (comparable to the state-of-the-art). During the learning process the network
tries to memorise patterns for future feature predictions.

Delorme and Thorpe propose a network for image recognition which operates entirely in
the spiking domain [16,17]. The input layer of the network consists of pairs of ON and OFF
center cells which indicate the intensity difference across the cells. Based on this activity, the
spike code is generated. This process resembles the operation of biological eyes. The second
and third layer of the network consist of neurons selective on edges of different orientations
and the final class label, respectively. A comparable approach has later been described by
Wysoski, Benuskova, and Kasabov [104] where face recognition of stream data is performed
by accumulating different opinions over several views.

A further interesting approach is presented by Liu and Yue. The authors combine the
feature extraction capabilities of classical neural networkswith the fast unsupervised learning
of spiking neural networks [50]. In their proposed network, features are extracted from image
data using a simplified convolutional hierarchical max-pooling model [85], and encoded into
spikes using the ROC scheme. Subsequently, the spikes are fed into the second (spiking) half
of the network which utilises the unsupervised STDP learning method to identify different
classes.

The network implementations dealingwith audio input for speaker identification or speech
recognition utilise the frequency domain representation of the incoming audio signal [52,102,
103]. The transform between time and frequency domain is realised using general filter banks
or mel-cepstral coefficients. The resulting feature vectors represent the frequencies present
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during a fixed measurement time encoded with ROC. In each frame, the amplitudes of each
frequency are then encoded into spike latencies. In most cases, two succeeding measurement
frames have an overlap of 50 %.

ISI Coding

Implementations of pure ISI coding schemes are not widely used. Sharma and Srinivasan
implemented a time series forecasting network by encoding the data into the latency between
consecutive spikes [87]. The network achieved higher accuracy than traditional networkswith
a smaller architecture size, leveraging ISI coding and an evolutionary learning algorithm.

The subcategory of burst coding indicates to be a fast and energy-efficient information
coding technique. This was shown on the MNIST and CIFAR classification problems with
a deep SNN architecture [67]. Furthermore, Chen and Qiu implemented burst coding for
real-time anomaly detection on the IBM TrueNorth processor [14]. The input consists of
a continuous stream from the intrusion detection DARPA dataset. They observed that burst
coding increases the detection accuracy while decreasing the hardware complexity compared
to rate coding.

Correlation and Synchrony

Sparse representations as one subcategory of synchrony coding are implemented in the hier-
archical temporal memory (HTM) model [35]. The goal of this model is to understand and
mimic the human neocortex and utilise it in several scientific and industrial applications.
The implementation of HTM by Numenta is a clocked system consisting of a spatial pooler
learning sparse representations of input neurons which fire together, and a temporal memory
where temporal pattern sequences are determined. The system is well suited for applica-
tions dealing with anomaly detection or prediction of recurring sequences. The developers
show this at examples from different domains like GPS surveillance or monitoring the CPU
utilisation in computer centres [3].

An application of amplitude coding is given in [5]. There, the authors encode images by
sequentially iterating over all pixels and converting each pixel’s grey-value to a spike event
of the neuron associated with the same intensity threshold.

Filter and Optimizer-based Approaches

Filter and optimizer-based approaches are primarily used to encode data streams. Examples
are the utilisation of BSA for electroencephalography (EEG) classification [60] or speech
recognition [80]. Additionally, BSA is implemented in the NeuCube simulator as one of
the proposed encoding schemes [40]. GAGamma encodes functional magnetic resonance
imaging (fMRI) data using an optimizer-based approach by leveraging the prior knowledge
of the signal properties [82].

Temporal Contrast Coding

A prominent example of temporal contrast coding in hardware applications are event-based
cameras. Lichtsteiner, Posch, and Delbruck implemented the first asynchronous event based
camera which can detect changes in light intensity with a high dynamic range [15,49]. For
each pixel of the camera sensor, a positive or negative spike event is emitted as soon as the
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Table 1 Overview and comparison between different MNIST classification implementations with different
coding schemes which are capable to handle frame based inputs

Coding group Coding scheme Technique Accuracy References

Rate Count rate Conversion based 99.42% [23]

Temporal TTFS Conversion based 98.06% [75]

Temporal Phase Spiking CNN 99.2% [44]

Temporal Burst Spiking CNN 99.25% [67]

Temporal ROC Spiking CNN 98.4% [43]

Temporal SDR HTM 95% [98]

relative change surpasses a threshold. Because the relative change is evaluated per pixel even
scenes with uneven lighting conditions can be perceived with high detail. These biologically
inspired cameras send out data packets containing the coordinates of the respective pixel and
the time stamp of the event. Accordingly, in contrast to classical image-based cameras, only
pixels which are subject to intensity changes transmit information. These type of optical
sensors are often used in robotics [6,56] or classification tasks. Datasets for classification
applications containing event camera-based recordings of MNIST, Caltech101, poker cards,
or human postures are readily available [12,63,73,84].

A CNN-based evaluation of the different datasets is given in [90]. Paulun, Wendt, and
Kasabov present the processing of spike trains generated by event cameras using theNeuCube
simulator [68]. The simulator additionally implements the temporal contrast schemes for
other types of input data. Kasabov, Scott, Tu, et al., for example, used TBR to encode
real valued weather data to predict the population of a species in relation to weather and
climate factors and achieved a state-of-the-art accuracy [40]. Many further applications and
methodical background information in close relation to the NeuCube simluator can be found
in [41].

5 Discussion

After presenting the concepts and applications, the remaining question is which encoding
scheme to use for a specific application. Many publications discuss this question and com-
pare different sub-sets of the presented coding schemes [45,69,77,79,86,89,94,100]. Most
of them report a comparison of rate and temporal codes. In general, the coding schemes
differ in accuracy, dynamics, latency, noise vulnerability, energy consumption, hardware
requirements, and many more.

One approach to quantify the differences of coding schemes is by applying information
theory on the topic of neural coding. Here, it has been tried to compare coding schemes with
respect to the number of bits which can be encoded by a specific number of neurons or spikes
[10,66,101]. Count rate codes for example encode log2(Nspikes + 1) bit of information into
Nspikes spikes [77]. ROC-coded signals encode log2(Nspikes!) bit [96] since the order of the
respective spikes carries the information. Reducing the coding schemes to a single number of
bits enables a quantitative comparison but lacks the consideration ofmanyother aspectswhich
influence the efficiency of a code. Foremost, the developed processing architecture must
match the chosen coding scheme. Even though having a highly efficient coding schemewhich
can encodedatawith a lownumber of spikes accurately does not necessarily lead to an efficient
system. Hence, wemust rely on qualitative analyses of the coding schemes or comparisons of
whole systems. Some publications provide these quantitative system comparisons [13,79] by
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evaluating classification accuracy or energy consumption at specific tasks. Table 1 provides
an overview of MNIST classification accuracies for different coding techniques. Though
the differences are not only linked to the encoding scheme since the publications describe
various learning methods and network architectures. Consequently, the accuracies provide
information on the general system performance but not on the coding schemes themselves.
In the next few paragraphs we try to summarise some of the important qualitative differences
between the schemes.

While rate coding was seen as the only meaningful code in populations [86], current
research focuses more on those coding schemes which are based on precise spike times.
Though, rate codes are also utilised in different applications. Count rate codes are often
used in applications which convert ANNs into SNNs due to their equivalence to activation
values. Researchers show a lossless conversion while reducing the power consumption of the
network by decades, given optimised neuromorphic hardware is used [76]. Another strength
of rate codes is their robustness and their behaviour towards noise [21].

Temporal codes, however, have been shown to offer a higher information capacity com-
pared to rate codes [78], faster reaction times, and higher transmission speeds. Furthermore,
they favour the utilisation of local learning rules like STDP. Rullen and Thorpe state that ROC
is biologically more realistic than TTFS due to the fact that the brain cannot know the exact
start of a stimulus [77]. The same argument is used by Rolls, Franco, Aggelopoulos, and Jerez
against both ROC and TTFS [74]. The authors analysed the information content of spikes in
the inferior temporal visual cortex and propose that count rate is fast in short time windows
and transports more information than TTFS or ROC from a biological perspective due to the
effect of spontaneous neuronal firing. Li and Tsien argue that this spontaneous spike activity
is related to the ISI which carries more information than expected and should not be ignored
[48]. This shows that there are still different opinions on the encoding techniques.

Rate and Temporal coding provide different benefits and combining these schemes could
have a huge impact in the system performance. The fast temporal coding can be used for fast
systems and the rate coding for methods with less strict time constraints [39,78]. Fairhall,
Lewen, Bialek, and de Ruyter van Steveninck suggest a multi-layer coding scheme where
spike trains represent information in different channels of various encoding schemes depend-
ing on the timescale [24]. Similar ideas are called hybrid coding where the neural encoding
scheme varies between network layers [67] or the neuron switches between coding tech-
niques [77]. The topic of hybrid neural code is not yet clearly defined and needs further
investigations.

6 Conclusion

In biological systems there exist several techniques to encode sensory information into spike
trains. Probably many more yet to explore. In this work, we summarised those schemes
together with less biologically plausible encoding schemes for the utilisation in applications
based on artificial SNNs. In summary, there are two main categories of encoding schemes.
Rate-based schemes average the spike activity over time, populations, or several runs and
do not rely on the precise timing of every single spike event. They convince through their
robustness against fluctuations and noise as well as their simplicity due to the equivalence to
the activation value of current ANNs. Temporal encoding schemes on the other hand rely on
the precise timing of every single spike and can thus achieve higher information densities and
efficiencies. However they involvemore complex architectures and lacking trainingmethods.
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It is expected that more applications for SNNs will arise with the perspective of more
advanced architectures, better learning algorithms and the development of energy-efficient
neuromorphic hardware. To assist this growing field, further investigations on neural coding
techniques in system contexts need to be made.
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