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Rodrigo C. Barros, Márcio P. Basgalupp, André C. P. L. F. de Carvalho and Alex A. Freitas

Abstract—This paper presents a survey of evolutionary algo-
rithms designed for decision tree induction. In this context, most
of the paper focuses on approaches that evolve decision trees
as an alternate heuristics to the traditional top-down divide-
and-conquer approach. Additionally, we present some alternative
methods that make use of evolutionary algorithms to improve
particular components of decision tree classifiers. The paper
original contributions are the following. First, it provides an up-
to-date overview that is fully focused on evolutionary algorithms
and decision trees and does not concentrate on any specific
evolutionary approach. Second, it provides a taxonomy which
addresses works that evolve decision trees and works that design
decision tree components using evolutionary algorithms. Finally,
a number of references is provided that describe applications of
evolutionary algorithms for decision tree induction in different
domains. The paper ends by addressing some important issues
and open questions that can be subject of future research.

Index Terms—Evolutionary algorithms, decision tree induc-
tion, soft computing classification, regression.

I. INTRODUCTION

A
DECISION tree is a classifier depicted in a flowchart-

like tree structure which has been widely used to rep-

resent classification models, due to its comprehensible nature

that resembles the human reasoning. Decision tree induction

algorithms present several advantages over other learning

algorithms, such as robustness to noise, low computational cost

for generating the model, and ability to deal with redundant

attributes. Besides, the induced model usually presents a good

generalization ability [1], [2].

Most decision tree induction algorithms are based on

a greedy top-down recursive partitioning strategy for tree

growth. They use different variants of impurity measures,

like, information gain [3], gain ratio [4], gini-index [5] and

distance-based measures [6], to select an input attribute to

be associated with an internal node. One major drawback of

greedy search is that it usually leads to sub-optimal solutions.

Moreover, recursive partitioning of the data set may result in

very small data sets for the attribute selection in the deepest

nodes of a tree, which in turn may cause data overfitting.

Several alternatives have been proposed to overcome these

problems, including the induction of an ensemble of trees.

Ensembles are created by inducing different trees from training
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samples and the ultimate classification is frequently given

through a voting scheme (see [7], [8]). However, a disadvan-

tage of ensembles is that the comprehensibility of analyzing

a single decision tree is lost. Indeed, classification models

being combined in an ensemble are often, to some extent,

inconsistent with each other; an inconsistency that is neces-

sary to increase the predictive accuracy of the ensemble [9].

Therefore, ensembles are not a good option for applications

where comprehensibility is crucial.

Hence, an approach that has been increasingly used is the

induction of decision trees through Evolutionary Algorithms

(EAs). Instead of local search, EAs perform a robust global

search in the space of candidate solutions. As a result, EAs

tend to cope better with attribute interactions than greedy

methods [10]. They are essentially algorithms inspired by the

principle of natural selection and genetics. In nature, individu-

als are continuously evolving, adapting to their living environ-

ment. In EAs, each “individual” represents a candidate solution

to the target problem. Each individual is evaluated by a fitness

function, which measures the quality of its corresponding

candidate solution. At each generation, the best individuals

have a higher probability of being selected for reproduction.

The selected individuals undergo operations inspired by genet-

ics, such as crossover and mutation, producing new offspring

which will replace the parents, creating a new generation of

individuals. This process is iteratively repeated until a stopping

criterion is satisfied [11], [12]. Figure I presents a common

algorithmic framework for both Genetic Algorithms (GAs) and

Genetic Programming (GP), well-known EAs.

1: Create initial population of individuals

2: Compute the fitness of each individual

3: repeat

4: Select individuals based on fitness

5: Apply genetic operators to selected individuals, creating

new individuals

6: Compute fitness of each new individual

7: Update the current population (new individuals replace

previous individuals)

8: until (stopping criteria)

Fig. 1. Generic algorithmic framework for both GA and GP [10].

The number of EAs for decision tree induction has grown in

the past few years, mainly because they report good predictive

accuracies whilst keeping the comprehensibility of decision

trees. In this context, we provide a detailed survey of EAs

to evolve decision trees for classification (Section IV) and

regression (Section V). Furthermore, we discuss EAs designed
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Fig. 2. Taxonomy of evolutionary algorithms for decision tree induction.

to improve specific components of decision tree classifiers

(Section VI). For instance, we discuss EAs for finding the

optimal hyperplane in oblique decision trees [13]–[16], and

for improving tree pruning [17], [18] and other components

related to decision tree induction [19], [20]. Finally, we re-

view applications of evolutionary algorithms for decision tree

induction in different domains, such as software estimation

[21], software modules protection [22] and cardiac imaging

data [23] (Section VIII). We end this paper by addressing

some important issues and open questions for future research

(Section IX).

It is important to stress that comprehensive surveys on deci-

sion trees have been previously published, such as the papers

by Safavian and Landgrebe [24], Murthy [25], and Rokach and

Maimon [26]. Also, another paper has been recently published

addressing EAs in classification [27]. Nevertheless, to the best

of the authors’ knowledge, none of them have been fully

devoted to address evolutionary induction of decision trees

for classification and regression, as well as their respective

applications.

II. TAXONOMY

We propose a taxonomy of EAs for decision tree induction

that is divided into two main threads: evolutionary induction

of decision trees and evolutionary design of decision tree

components. Regarding the former, each individual of the

evolutionary algorithm is a decision tree, whereas in the latter,

individuals are components of decision tree classifiers. This

taxonomy is presented in Figure 2.

Evolutionary induced decision trees for classification can

be either axis-parallel, when there is a single attribute that

splits the training data per node, or oblique, when there is a

(non-) linear combination of attributes per split. Decision trees

for regression can be divided into regression trees, when each

leaf-node assigns a value to a test instance, and model trees,

when the leaf-nodes contain (non-) linear regression models

that are used to predict a value for a new test instance.

Evolutionary design of components can be divided into:

• Hyperplane evolution, where, at each tree node, an EA

evolves a near-optimal (non-) linear combination of at-

tributes for oblique trees;

• Pruning method evolution, where an EA is used to handle

pruning over an induced decision tree;

• Evolution of other methods, such as parameters of the

impurity measure used to split nodes.

Throughout this paper, we will use the following notation.

A data set consists of a set of m instances. Each instance

x
j is a n-dimensional attribute vector x

j = [xj
1, x

j
2, ..., x

j
n],

(j = 1, 2, ...,m), (xj ∈ ℜn).

III. EVOLUTIONARY ALGORITHMS BACKGROUND

In this section we present some punctual remarks over EAs

which are important for the further discussion of using EAs

for decision tree induction.

A. Solution Encoding Issues

The type of solution encoding in an EA usually defines

the type of EA used. For instance, if solutions are encoded

in a fixed-length linear string a Genetic Algorithm (GA)

is normally used. Conversely, tree-encoding schemes usually

imply Genetic Programming (GP). Although solution encoding

can differentiate between GAs and GP, the main question is

not what the representation is (e.g. a linear string or a tree)

but rather how the representation is interpreted [28].

In this sense, Woodward [29] recommends defining GAs

and GP according to the genotype-phenotype mapping: if there

is a one-to-one mapping, the EA in question is a GA; if there

is a many-to-one mapping, the EA is a GP. Nevertheless, this

definition is tricky. For instance, assume a feature selection

problem in data mining, where an individual (chromosome)

consists of n genes, one for each attribute. Now assume that

each gene contains a real value in the range [0, 1], representing

the probability of the corresponding attribute being selected.

Assume also that, for decoding a chromosome, a threshold is

predefined, and an attribute is selected only if the value of its

gene is larger than that threshold. In this case, we have a many-

to-one mapping, because there are many different genotypes

(different arrays of probabilities) that may be decoded into

the same phenotype (the same set of selected features). This

particular many-to-one mapping does not indicate we are

dealing with GP. Actually, we can use the same set of genetic
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operators and remaining parameters of a typical GA for this

scenario.

We believe that a good distinction between GA and GP

is whether a solution encodes data only (GA) or data and

functions (GP). Notwithstanding this point, in this survey we

review both GAs and GPs indistinguishably.

B. Selection Methods and Genetic operators

Selection is a procedure that chooses which individuals

will undergo crossover and mutation. It is usually performed

with a bias towards higher fitness in the belief that good

solutions have higher potential of generating better individuals

for the next generation. Some well-known selection methods

are: tournament selection, roulette wheel selection and rank-

based selection.

Tournament selection works as follows: a predefined num-

ber of individuals (known as tournament size) is drawn from

the population, and the fittest of them is chosen to be a part

of the reproducers pool. This procedure is repeated until the

pool of reproducers is full.

The roulette wheel selection, also known as stochastic sam-

pling with replacement, is analogous to the use of a casino’s

roulette wheel, with each slice of the wheel proportional in

size to the fitness of an individual. As a result, the probability

of an individual being chosen is proportional to its fitness.

Rank-based selection, unlike fitness-proportional selection

(e.g., roulette wheel), rank individuals according to their fitness

(absolute fitness values are discarded). The individuals are

then selected based on the value of their rank positions. This

method overcomes the scaling problems of fitness-proportional

assignment, e.g. premature convergence when few individuals

with very high fitness values dominate the rest of the popula-

tion.

Crossover is the operator responsible for exchanging genetic

material - usually between two individuals - for the creation

of mixed individuals for the next population. Regarding the

fixed-length binary string encoding, a common approach for

crossover is the well-known 1-point crossover. Each parent

binary string selected to reproduce is split into two (in a

predefined position, the “1-point”) and the parents generate

two new offspring by concatenating the substrings before and

after this position from different parents.

Finally, mutation is the operator responsible for modifying

the genetic structure of a given individual to allow any solution

to be reached. In doing so, it reduces the chances of premature

convergence to local optima. Usually, the mutation operator

operates over a single randomly selected individual, changing

its genotype accordingly (e.g., flipping a bit in a binary string

or growing a new branch in a tree-based genotype).

C. Multi-Objective Optimization

A crucial issue in data mining is how to evaluate the quality

of a candidate model. EAs naturally allow the evaluation of a

candidate solution as a whole, in a global fashion, through the

fitness function. This is in contrast with data mining paradigms

which evaluate a partial solution [11]. For instance, a conven-

tional greedy decision tree induction algorithm incrementally

builds a decision tree by partitioning one node at a time. When

the algorithm is evaluating several candidate divisions, the tree

is still incomplete, being just a partial solution, so that the

decision tree evaluation function is somewhat shortsighted.

In decision tree induction, it is often desirable to maximize

both the predictive accuracy and the comprehensibility of the

induced tree [30]. Once again, EAs seem to be a natural

choice for this task, since they naturally allow the evaluation

of a candidate solution by simultaneously considering different

quality criteria. This is not so easily performed in other

data mining paradigms [11]. Three general approaches are

used multi-objective optmization: weighted-formula, Pareto

dominance, and lexicographic analysis.

In the weighted-formula approach, a weight (typically a

user-defined parameter) is assigned to each objective (mea-

sure) to be optimized, according to its importance within

the application domain. Next, these weighted objectives are

summed or multiplied accordingly, reducing multiple objec-

tives into a single objective.

The concept of Pareto dominance can be formally defined

as: A solution A = {a1, a2, ..., ao} is said to dominate solution

B (for a set of objectives o), symbolically expressed by A ≺
B, when the following conditions hold:

(A ≺ B) ⇔ (∀i)(ai ≤ bi) ∧ (∃i)(ai < bi) (1)

Thus, the Pareto optimal set is said to be the set of solutions

that are not dominated by any other solution, i.e.

{A = (a1, a2, ..., ao)|¬(∃B = (b1, b2, ..., bo),B ≺ A)} (2)

Unlike the weighted-formula approach, the Pareto dominance

provides a set of non-dominated solutions instead of a single

“best” solution.

The lexicographic approach determines priorities among the

objectives, and the best solution is the one that is significantly

better according to a higher-priority objective. If no such best

solution is found, the next objective is chosen following a

priority order. To better understand this approach, consider

the following example. Let x and y be two decision trees and

a and b two evaluation measures. Besides, consider that a has

the highest priority between the measures and that ta and tb
are tolerance thresholds associated with a and b respectively.

The lexicographic approach works according to the following

analysis: if |ax − ay| > ta then it is possible to establish

which decision tree is “better” considering objective a alone.

Otherwise, the lower-priority measure b must be evaluated.

In this case if |bx − by| > tb then the fittest tree between x
and y can be decided by considering measure b alone. If the

difference between values falls within the assigned threshold

tb, the best value of the highest-priority measure a is used to

determine the fittest tree.

For a critical review of the pros and cons of each multi-

objective strategy discussed in this section, see [30]. For

further information on multi-objective optimization, we rec-

ommend reading [31], [32].

IV. CLASSIFICATION

This section reviews EAs that evolve decision trees for

classification tasks, where each individual is a classification
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Fig. 3. Axis-parallel (a) and oblique (b) decision trees, and their respective
two-dimensional partitioning. (Adapted from [33].

)

tree. We divide this section into two parts: EAs that evolve

axis-parallel decision trees and EAs that evolve oblique de-

cision trees. The difference between these approaches is that

whereas axis-parallel trees make use of a single attribute to

split each node (e.g., wixi < 0), oblique trees use a linear

(or some times a non-linear) combination of attributes (e.g.,
∑n

i=1 wixi < 0). Figure 3 presents both axis-parallel (a) and

oblique (b) decision trees.

A. Axis-Parallel Decision Trees

Axis-parallel decision trees are the most common type

found in the literature, mainly because this type of tree is

usually much easier to interpret than an oblique tree. We

divide our analysis on axis-parallel decision trees according

to the main steps of the evolutionary process. That is, we

analyze how solutions are encoded; which methods are used

for initializing the population of decision trees; the most

common strategies for fitness evaluation; the genetic operators

that are designed to evolve individuals; and other related

issues.

1) Solution Encoding: In Section III-A, we have explained

some terminology issues which are usually dictated according

to the EA solution encoding scheme. Nomenclature aside,

decision tree encoding is usually either tree-based or non-tree

based. We comment on both next.

Tree-based encoding is the most common approach for

coding individuals in EAs for decision tree induction, and it

seems a natural choice when we are dealing with decision

trees. In [34], the author applies competitive co-evolution

for decision tree induction and uses a tree-encoding scheme.

The system designs binary decision trees where each node is

represented by a 4-tuple (Figure 4). Each component in Figure

4 is a numeric (integer or real) value that can be modified

during the evolutionary process. The first element of the 4-

tuple is an integer that indexes each data set attribute; the

second one is an integer that indicates whether the node is non-

terminal or terminal; the third one is an integer that indexes

Fig. 4. Node representation in tree-encoding [34]. A tuple of 4 elements
that defines (1) the data set attribute to be tested or predicted; (2) the type
of node (non-terminal or terminal); (3) the operator to be used; and (4) the
value to be tested by the attribute in (1) according to the operator in (3) or,
alternately, the binary classification value.

which operator is to be used (<,>,=); and the fourth one

is a real number that indicates the value to be tested (in a

non-terminal node) or the binary classification (in a terminal

node). It is not clear how the linkage of nodes is handled, but

we assume each node described in Figure 4 has two pointers

for the children nodes (which assume null values for terminal

nodes).

A similar approach is presented in [35]–[37], where the

authors use a tree-encoding solution in which each node is

a 7-tuple: node = {t, label, P, L,R,C, size}, where t is the

node number (t = 0 is the root node), label is the class label of

a terminal node (meaningful only for terminal nodes), P is a

pointer for the parent node, L and R are pointers to the left and

right children, respectively (null for terminal nodes), and C is

a set of registers, where C[0] stores the attribute id and C[1]
the threshold value for the test featureC[0] < C[1], whose

possible outcomes are “yes” (path to the left-child node) or

“no” (path to the right-child node).

Zhao’s genetic programming system [38] also encodes in-

dividuals as trees. Zhao defines terminal and function nodes.

Terminals can be integer (attribute ids), real (attribute values)

or binary (a class label or a function node) values. Each func-

tion node takes four arguments and returns a binary result. Its

signature is N : integer×real×binary×binary → binary.

It can be represented as a four-tuple, N = {a, v, L,R}, where

a is an attribute terminal, v is a value terminal, and L and R
are class terminals or node functions. Note that since both the

type of a class terminal and the output type of a node function

are binary, L and R can be either class terminals or function

nodes.

Papagelis and Kalles [39] defend the use of the tree-

encoding scheme in EAs for decision tree induction. They

state that whereas GAs use binary strings to represent points

in search space, such representations do not appear well

suited for representing the space of variable-size decision trees.

Furthermore, they affirm that it is natural to use a tree structure

to represent decision trees and that the mutation-crossover

operators can be efficiently altered to match this structure.

For other tree-encoding scheme examples, see [22], [28], [40]–

[47].

Even though the tree-encoding scheme is the most used ap-

proach for decision tree evolution, several works use different

approaches for coding individuals. Most of these approaches

adopt a fixed-length string representation, an inheritance from

the misconception that GAs are defined by their representa-

tions. Fixed-length string representations, also called “linear

chromosomes”, are typically tricky to implement for non-
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Fig. 5. Mapping decision trees in linear chromosomes [48]. a) decision tree.
b) subtrees mapped into caltrops. c) chromosome resulting from the union of
caltrops.

binary decision trees. Thus, most works propose EAs that

evolve binary decision trees, arguing, for instance, that any

non-binary decision tree can be converted into a binary tree.

In [48], linear chromosomes are composed by genes, named

caltrops, an allusion to the spiked devices used in medieval

warfare to disable charging horses. Caltrops are subtrees

formed by a root node and two child nodes. Each caltrop is

represented by three integers, where non-terminal nodes are

identified by an attribute index and terminal nodes by the value

0 (zero). Figure 5 shows how a decision tree (a) is divided into

subtrees, which in turn are mapped into triples of integers

named caltrops (b), genes that will form the individual’s

chromosome (c). Notice that caltrops do not encode tests over

the attributes. This representation assumes that each data set

attribute is boolean, and assigns the left (right) child node

when the attribute value is true (false).

Bandar et al. [49] provide a GA for induction of multiple

decision trees. Linear chromosomes are formed by integers

that correspond to attribute indexes. The total number of genes

in a chromosome is 2depth − 1, where depth is the maximum

number of attribute split levels, a variable parameter. To create

the decision tree, one must select the attribute corresponding

to the first gene of the chromosome. This attribute will be used

to split the root node in left and right children. Afterwards, a

binary branching is performed using the training set instances

contemplated by the node (for the root node, all instances are

used). The measure used to perform the binary branching is

not mentioned in their work. The procedure is recursive, and

the binary branching is performed until the tree has reached

its maximum depth.

Smith [50] also designs binary decision trees coded through

linear chromosomes. Even though his strategy for evolving

decision trees is domain-specific (RNA search acceleration),

it could easily be extended to a generic framework. Each gene

of the chromosome consists of two integers: a node type n (in

reality the correspondent to an attribute index), which varies

in the interval [1, 5] (domain constraint), and a type/index v,

which is the threshold value for which the test n ≥ v is

performed. Once again, the instances resulting from the test

are filtered to the left (right) node if the result is false (true).

In spite of the fact that decision trees encoded as linear

chromosomes seem to be easier to handle than those encoded

by tree-encoding schemes, fixed-length linear chromosomes

have some disadvantages, such as: (i) the need of constant

mapping between genotype and phenotype for fitness eval-

uation; (ii) difficulty in handling non-binary decision trees

and (iii) difficulty in defining a maximum number of genes

for fixed-length structures. For instance, chromosomes with

a large number of genes may have several genes with null

values, which can in turn harm operations like one-point

crossover. Conversely, structures with a low number of genes

can ultimately restrain the size of the trees to be discovered

in the evolutionary process. Dynamic-length string structures,

on the other hand, may add an unnecessary complexity to the

EA design. Genetic operations, like crossover, may have to

be modified when chromosomes with different sizes are to be

reproduced.

2) Population Initialization: An EA’s initial population has

to provide enough diversity of individuals so that the genetic

operators can search for solutions in a more comprehensive

search-space, avoiding local optima. Nonetheless, a large

search-space may result in very slow convergence, preventing

the EA from finding a near-optimal solution. In this case, task-

dependent knowledge constraints may speed-up convergence

by avoiding the search in “dead zones” of the solution space.

It is clear that there is a thin line between the precise amount

of diversification for avoiding local optima and task-dependent

knowledge constraints for speeding-up convergence.

Most works on evolutionary induction of decision trees

propose a partially random initialization of trees. We use

the term “partially” because the randomness of individuals is

constrained to the data set attributes and their possible values

within the training set. Some approaches propose additional

constraints during initialization in order to to guarantee the

logic validity of the created decision trees. For instance,

DeLisle and Dixon [51] state that their method initializes

decision trees “at random based upon the training set and given

mild constraints on the minimum number of observations

allowed in terminal or leaf nodes”.

For the cases where each decision tree is encoded as a

fixed-length string, a random initialization is often used ( [48],

[52], [53]). When the decision tree is encoded as a tree,

a common strategy for initialization is randomly choosing

attributes and split values from a predefined list and halting

the decision tree growth when the tree reaches a depth that is

randomly selected from an interval, typically [2,maxDepth].
This strategy usually creates fully balanced trees (the distance

from the root to any leaf node is the same). This generation

procedure is called the full method [35]–[38], [54]. The

full method has the disadvantage of not providing enough

diversification of tree shapes, which may demand an increased

number of generations for convergence to a good solution.

Trees can be generated with varying distances from root

to the leaves, namely the grow method [55]. Finally, the

population can be a mixture of trees generated by either the
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full or the grow method, a procedure named ramped half and

half [56]–[60]. Random initialization of decision trees encoded

as trees is further discussed in [40], [61]–[64].

Another approach for initializing decision trees in an EA is

to restrain the initial population to 2-level decision trees, i.e.,

a root node and its respective leaves [34], [39], [65], [66]. EAs

that implement this strategy rely on the further application of

genetic operators to obtain deeper trees.

One could say the only task-dependent knowledge that the

previously commented EAs employ is related to the choice

of possible split values. Although most of them claim to

randomly choose split values, most of the times these values

are not really random, i.e. they are a set of observed values

from the training set. This is the most rudimentary use of

task-dependent knowledge in the initialization process. For

instance, Ma and Wang [67] reduce the impact of randomness

by backtracking a “bad” random choice and replacing it by

a “better” random choice. The definition of good and bad

choices, in this case, is given by the amount of training data

that are filtered to each child node of the currently generated

node. If no random choice is considered to be good enough,

a leaf node stops the growth of that particular path.

A more robust approach for generating task-dependent

knowledge-based initial trees is executing a greedy traditional

algorithm, e.g. C4.5 or CART, in samples from the training

set and incorporating the resulting decision trees in the initial

population. This strategy is implemented in [41], [44], [68],

where C4.5 is used for generating the initial population of

trees. Kretowski and Grzes [69]–[71] also implemented this

approach but instead of using a well-established split measure

such as the gain ratio or the gini index, they opted for a dipolar

split measure.

Basgalupp et al. [28], [45] also proposed a task-dependent

knowledge based initialization for their EA for decision tree

induction. It generates ten 2-level decision trees for each data

set attribute, where each one of these ten trees per attribute will

possibly have different split values, since they are calculated

using the information gain measure upon a different subsample

of the training set. After the generation of all 2-level decision

trees, they are combined according to the growing method

previously described.

3) Fitness Evaluation Methods: Evolutionary decision tree

induction algorithms can be roughly divided into two threads

regarding fitness evaluation: single-objective optimization and

multi-objective optimization.

EAs that perform single-objective optimization use a single

measure to guide the search for near-optimal solutions. The

most common measure for evaluating individuals in evolu-

tionary algorithms for decision tree induction is classification

accuracy (or its complement, classification error):

acc =
c

m
(3)

where c is the number of correctly classified instances and

m is the total number of instances. An accuracy-based fitness

function is used in [41]–[43], [49], [61], [67], [72].

In [55], [73], the authors propose using acc2 in the fitness

function, because it provides “a non- linear bias toward cor-

rectly classifying instances in decision tree T while providing

differential reward for imperfect decision trees”. Folino et al.

[62], [63] propose the use of the J-Measure, which is used to

measure the quality of the disjunction of rules (paths from the

root to the leaf) that describe each class. More specifically, for

a k-class problem, there are k rules of the kind (if Yi then ωi),

where Yi is a set of disjunctions among paths that are used to

label instances as belonging to class ωi. The J-Measure can

be thus defined as

J =

k
∑

i=1

p(Yi)p(ωi|Yi) log

(

p(ωi|Yi)

p(ωi)

)

(4)

where p(Yi) is the fraction of instances satisfying condition

Yi, p(ωi) is the fraction of instances belonging to class ωi,

p(ωi|Yi) is the fraction of instances that both satisfy Yi

and belong to class ωi divided by the fraction of instances

satisfying Yi, and k is the total number of classes. The higher

the J-Measure value, the higher the tree’s predictive accuracy.

Aitkenhead [34] proposes a distance score for evaluating

individuals which is a measure of how close a decision tree

came to the correct classification. We assume that this score

can only be applied to problems where the class attribute is

ordinal and is converted to sequential integers that preserve

the order among values. The distance score is given by

Dscore =
1

m

m
∑

i=1

1−
(

yi − y′i

ymax − ymin

)2

(5)

where m is the number of instances, yi is the actual class

value for the ith instance, y′i is the predicted value for the

same instance and ymax (ymin) is the maximum (minimum)

value of the class attribute (thus the necessity of converting

categories into integers).

Kennedy et al. [48] use the number of decisions necessary to

classify all the members of the instance set as a fitness measure

to be minimized. Finally, Fu et al. [44] propose a bilinear loss

function that, according to a given parameter, selects one of the

possible percentiles of the classification accuracy distribution

to estimate tree accuracy.

Works using a single-objective fitness function usually do

not defend this choice for decision tree induction against a

multi-objective strategy. A small number of works, however,

argue that a multi-objective approach that seeks a compromise

between predictive accuracy and solution complexity (tree

size) as a form of parsimony pressure is not as beneficial

as it may sound. Ma and Wang [67], for instance, argue

that this compromise reduces the search space and leads to a

slower overall increase in accuracy. Moreover, they reckon that

the search may get stuck in regions containing less accurate

trees of the same size as those produced without using the

complexity penalty in the multi-objective fitness function,

and that, as a result, the parsimony pressure would be a

disadvantage instead of an advantage.

In works where multi-objective optimization is performed, it

is argued that the balance between accuracy and parsimony is

very important for efficient evolutionary search. The argument

is centered on the fact that the use of accuracy alone may result

in an arbitrarily complex classifier that fits the noise within the

data set. Such a classifier would have high accuracy on the
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training set but would likely perform poorly on previously

unseen data. Based on this assumption, most EAs try to

optimize both predictive accuracy and simplicity (which is

usually assumed to be inversely proportional to the number

of nodes in a decision tree). Other works seek a compromise

between distinct measures, such as sensitivity and specificity in

cost-sensitive approaches, which also demands the application

of a multi-objective optimization strategy.

Three general approaches are used for coping with multi-

objective optimization in EAs for decision tree induction: (a)

weighted-formula; (b) Pareto dominance; and (c) lexicographic

analysis.

Works on (a) are by far the most common. A typical strategy

is to combine accuracy (acc(I)) and tree size (size(I)), as

follows:

f(I) = α× acc(I)− β × size(I) (6)

where α and β are weights and the formula has to be

maximized. This approach or minor variations of it are found

in [39], [60], [65], [66], [74].

Tsakonas and Dounias [75] also propose a weighted-

formula that combines accuracy and a simplicity component,

though the idea is to penalize for smaller-sized trees due to

domain constraints. Kretowski and Grzes [54] propose a small

variation of (6) where the complexity component takes into

account the number of leaves and the number of features

associated to each test in non-terminal nodes (for the case

of oblique decision trees). In [70], [71], the authors propose

a cost-sensitive approach that replaces accuracy in (6) by the

misclassification cost, which is summed to the tree size in an

equation whose value should be minimized. Other similar cost-

sensitive approaches, which usually consider measures like

sensitivity and specificity, are reported in [69], [76]–[81].

Haizhou and Chong [68] introduce a weighted-formula

that combines classification error, tree depth and number of

attributes used in each path of the tree. Similarly, Reynolds and

Al-Shehri [52] propose a fitness function based on accuracy,

number of nodes, number of attributes used and homogeneity

of each partition. Nikolaev and Slavov [82] offer a variation

of Quinlan’s pruning strategy presented in [83] as a stochastic

fitness function, and perform a detailed analysis of the fitness

landscape structure.

DeLisle et al. [51] propose the evaluation of accuracy and

complexity of decision trees by using minimum description

length (MDL) as fitness function, defined as follows:

MDL = errorCL + treeCL (7)

errorCL =
∑

l∈leaves

log2

(

ml

el

)

(8)

treeCL = (ni+ nt) + ni log2 s+ nt log2 k (9)

where ml is the number of instances in leaf node l, el is the

number of misclassified instances in leaf node l, ni is the total

number of internal nodes, nt is the total number of terminal

nodes (leaves), s is the total number of splits and k the number

of classes.

The error coding length (errorCL) is based upon the

binomial distribution and represents the number of possible

combinations given the total number of observations (m) and

the number of incorrectly predicted observations (e). This

relates to the likelihood of a particular (m, e) combination

arising by random chance, and this value should be minimized.

The tree coding length (treeCL) is dependent upon the overall

size of the decision tree and should also be minimized. The

authors of this particular application state that only the number

of nodes and the number of leaves were actually used in

the tree coding length component, since the removal of the

remaining terms resulted in no alterations in performance apart

from a reduced computational cost.

For the evaluation of each rule extracted from the evolved

decision tree, Garcia-Almanza and Tsang [59] propose a

fitness function based on recall and a slightly variation of

precision that severely penalizes the false positive cases. Since

no complexity penalty is proposed, the authors suggest a

pruning method to simplify the evolved decision trees.

A smaller number of works investigate the use of the two

other multi-objective strategies (namely Pareto dominance and

lexicographic analysis). In one of these works, Kim [64]

and Zhao [38] implement a Pareto dominance approach that,

instead of providing a single optimal solution based on the

weighted combination of objectives, provides an optimal set

of non-dominated solutions.

The Pareto multi-objective strategy proposed by Kim [64]

tries to minimize two objectives: classification error rate and

tree size (measured by the number of decision rules). For

ranking the individuals and discovering the Pareto optimal

set, Kim implements a dominating rank method [84], where

the rank of a given solution in a Pareto distribution is given

by the number of elements dominating that solution. Hence,

the highest possible rank is zero, for an element that has no

dominator. The Pareto optimal set is given by all elements

whose rank is zero. Each non-dominated solution in a discrete

space of tree size represents the minimized error fitness for

each number of decision rules.

Zhao [38] also proposes a Pareto dominance approach for

minimizing two conflicting objectives (e.g., false negative rate

vs. false positive rate). This approach allows the decision

maker to specify partial preferences on the two conflicting ob-

jectives in order to further reduce the number of alternative so-

lutions. This trade-off can be similarly adopted on other pairs

of performance measures, such as sensitivity vs. specificity or

recall vs. precision, which have been typically employed in

domains such as medical diagnosis and information retrieval.

The lexicographic approach for multi-objective optimization

has also been employed for evolutionary induction of decision

trees. Eggermont et al. [56], [57] propose a lexicographic

fitness1 whose highest-priority measure is misclassification

error, followed by tree size. In that work, there are no tolerance

thresholds, i.e., only in cases where the misclassification error

of two individuals is exactly the same the tree size measure

will be used to choose the best individual. Zhao et al. [35]–[37]

also propose a lexicographic fitness2 that evaluates accuracy

1In both references ( [56], [57]), the authors refer to the lexicographic
analysis as “multi-layer fitness function”.

2No mention of the term “lexicographic analysis” is made throughout the
three references ( [35]–[37]).
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(highest-priority measure) and tree size (total number of tree

nodes). Again, there are no tolerance thresholds.

Basgalupp et al. [28], [45] propose LEGAL-Tree (Lexico-

graphic Genetic Algorithm for decision Tree induction), a GA

whose fitness function implements the lexicographic approach.

Once again, the objectives that will guide the search for the

best individual are accuracy and tree size. The authors use both

validation-set and training-set accuracy (highest and second

highest priority measures, respectively), aiming to avoiding

both overfitting (validation-set) and underfitting (training-set).

The last objective in the priority rank is tree size, measured

by the total number of tree nodes.

4) Selection Methods and Genetic Operators: Selection is

the procedure that chooses which individuals will undergo

crossover and mutation. In evolutionary induction of decision

trees, the most frequently used approach for selection is

tournament selection.This selection method is used in [28],

[38], [45], [48], [51], [52], [56]–[59], [64], [66], [67], [75],

[76], [85].

Another popular choice in EAs for decision tree induction is

the roulette wheel selection.Works that implement this strategy

for evolving decision trees are [35]–[37], [42]–[44], [48], [51],

[55], [60]–[63], [73], [82], [86], [87].

A less-common selection method in EAs for decision tree

induction is rank-based selection. This selection method in

decision tree induction is used in [70], [71], [74], [77], [78],

[80], [81].

Two operators normally used to evolve a population of

individuals are crossover and mutation.

In EAs for decision tree induction, crossover is usually per-

formed in two different ways (with small variations) according

to the individual representation. For fixed-length binary string

encoding, it is a common approach to perform the well-known

1-point crossover. It is used in [48]–[50], [53], [68].

Nonetheless, the vast majority of EAs encode decision

trees in a tree representation, and as a result implement the

standard GP crossover. This crossover selects nodes in two

individuals and exchanges the entire subtrees corresponding to

each selected node, generating two offspring. This operator is

used in [28], [35]–[45], [51], [55]–[58], [61]–[67], [69], [73],

[77]–[82], [85]–[88]. Two small variations of this strategy are

found in the literature. In [74] the authors add the constraint

that selected nodes from the two parents must represent a test

over the same data set attribute in order to be exchanged.

Kretowski and Grzes [54], [70], [71] introduce a “test-only

exchange crossover”, in which instead of replacing the entire

subtrees, only the test represented by an attribute-value pair

is replaced. This type of crossover demands the number of

outcomes of the selected nodes to be the same in order to

preserve the original tree structure.

EAs for induction of decision trees usually implement more

than one mutation strategy. Recalling that most such EAs deal

with tree-based encoding, two strategies are most used: (i)

replacing a subtree by a randomly generated one; and (ii)

replacing information regarding the test corresponding to the

selected node. In (i), a randomly selected subtree is replaced

by a randomly generated one. Usually no further details are

given on how the new subtree is randomly generated. This

approach is used in [38], [51], [56]–[58], [61]–[64], [67],

[79], [81], [82], [85], [86]. In a more restricted version of this

approach a subtree is replaced by a random leaf node or a leaf

node is replaced by a random subtree [28], [45], [54], [64],

[69]–[71], [77], [78], [80], [82]. In (ii), instead of replacing

subtrees (a structural mutation), a test-based modification (a

semantical mutation) is performed. EAs implementing this

strategy usually allow the replacement of either the attribute,

the corresponding test value or both [35]–[37], [51], [54], [55],

[64], [66], [67], [69]–[71], [73], [77], [78], [80], [81], [87],

[88]. In [39], [65], [74], this strategy is restricted by allowing

mutation of the test-value only.

A few alternative mutation strategies are as follows. Fu et

al. [41]–[44] propose a “self-contained” mutation strategy, in

which a randomly selected (non-)terminal node is replaced

by another (non-)terminal node already present in the tree, so

there is no need for randomly generating a new subtree during

mutation, saving processing time. Sorensen and Janssens [40]

propose two types of mutation: switch and translocation. The

first switches children from the same parent and the second

exchanges children from different parents in the same tree

level. Both can be seen as special cases of self-contained

mutation, since nodes are replaced by nodes already present

in a tree. Rouwhorst and Engelbrecht [66] propose a relational

mutation, which modifies the test operator corresponding to the

randomly selected node. This strategy allows multiple types

of operators, not only the traditional ≤ and >. For instance,

suppose a node contains the test x > 5. A relational mutation

over this node could replace the operator > by 6=, resulting in

x 6= 5.

In fixed-length strings [48], [53], mutation is performed by

simply altering a randomly chosen value in the string, which

may change the attribute being used, its test value or both,

depending on the approach. Hence, mutation in fixed-length

strings is mainly semantical, i.e., it does not affect the decision

tree structure. Nevertheless, in cases where the node type (non-

terminal or terminal) is also encoded in the gene/chromosome,

it is possible that the structure of the decision tree is modified

by mutation.

5) Parameter Setting: The parameter values of an EA

can largely influence whether the algorithm will find a near-

optimum solution, and whether it will find such a solution

efficiently. Choosing correctly the parameters, however, is a

time-consuming task and considerable effort has been dedi-

cated to the development of good heuristics able to overcome

this problem [89]. Espejo et al. [27] state that the large number

of parameters that must be defined in order to have a working

system is in fact one of the pitfalls of GP-based classifiers (an

argument easily generalizable for other EAs).

The most common parameters in EAs for decision tree

induction are population size, number of generations, prob-

abilities of application of different genetic operators and

maximum size of decision trees at initialization or during the

evolutionary process. In practice, several preliminary runs are

usually required in order to tune these parameters. In some

works, parameters are fine-tuned to suit each data set employed

in the experiments [66], [67]. However, most authors prefer

to present a set of default parameter values followed by a
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sentence like “parameter values were empirically defined”. We

believe this is due to the fact that no work has exhaustively

investigated the influence of different parameter settings in

EAs for decision tree induction, like De Jong and Spears

have for function optimization [90]. A possible explanation

is that decision tree induction is data dependent, which means

different classification data sets may present very distinct error

surfaces, favoring particular sets of parameter values.

The population size parameter influences the number of

candidate solutions evaluated by the EA. Some values for this

parameter used in the literature are 50 individuals in [49],

[82]. 100 individuals in [41], [56]–[58], [66], 200 individuals

in [35]–[37], [39], [65], 400 individuals in [61]–[63], 500

individuals in [28], [45], [64], [85] and 1000 individuals in

[51], [59].

Another parameter, the number of generations, is usually the

EA’s stopping criterion. A popular choice in EAs for inducing

decision trees is evolving individuals for 1000 generations

[51], [64], [70], [71], [78]. However, in some EAs the number

of generations is as small as 10 [42], 30 [76] or 50 [41], [43],

[44], [49], whilst in other EAs it is as large as 5000 [36], [37]

or 10000 [38], [54]. A useful strategy is to set a secondary

stopping criterion to identifying cases of fast convergence. For

instance, if the EA does not improve the best individual during

a pre-determined number of generations, it can be stopped,

being assumed that it has already converged to the (near)

optimal solution. Once again, there is no consensus on the

most suitable value for this parameter. Values like 3% [28],

[45], 10% [54], 20% [70], [71] and 25% [60], [65] of the

number of generations have been used.

Crossover is the main genetic operator for evolving individ-

uals. Most EAs use a high probability of crossover, such as

60% [49], [64], [75], 80% [59], [60], [66], [82], [85] or 90%

[28], [39], [45], [56]–[58], [61], [65], [76]. Mutation, on the

other hand, usually occurs much less often. The most common

value for mutation rate is 1% [35]–[37], [41], [43], [43], [44],

[60], [61], [76]. Other popular values range from 2 to 10%

[28], [38], [39], [45], [49], [59], [64], [65], [78], [85].

In the popular tournament selection method, the size of

the tournament is yet another parameter that needs to be

set. Blickle and Thiele [91] claim that typical values for

tournament size are 2 and 3, and that there is a great loss

of diversity when the value is higher than 5. However, there is

no clear consensus on tournament size in EAs for decision tree

induction research. Some works seem to follow the suggestion

of Blickle and Thiele by setting a tournament size of up to

5 individuals [56]–[59], [64], [76]. Others choose arbitrary

values such as 6 [75], 7 [38], 8 [67], 10 [66], 30 [28], [45],

80 [36], [37] or 100 [35]. None of these works make a detailed

analysis on the effects of different tournament sizes.

Most EAs for decision tree induction are generational, i.e.,

individuals of the current population are replaced by their

offspring at each generation (iteration). In order to avoid losing

good solutions in this process, it is a common practice to keep

the best individual(s) from the current generation to the next,

which is named elitism. The number of individuals to be kept

is yet another parameter that needs to be set. A popular choice

is a small number of individuals to be part of the elite (1 to

5 individuals) [59], [67], [78].

Finally, most EAs use a maximum tree size at initialization

or during the evolutionary process. This maximum size is

usually defined in terms of tree depth. Trees are usually

size-limited during initialization in order to speed-up the

algorithms’ running time. Typical initialization size limits are

3 levels [28], [45], 4 levels [61]–[63], [76], 7 levels [60] and

10 levels [38]. Some EAs also limit the tree depth during

evolution; for instance, with a limit of 17 levels in [76] or 30

levels in [38] in 30 levels.

Note that parameter setting in EAs is itself a research field

and it goes way beyond trial and error analysis. However, none

of the EAs for decision tree induction reviewed so far make

a detailed analysis on parameter values. Ma and Wang [67]

suggest a heuristic method to set some EA parameters. The

idea is to use a neural network a priori of the EA execution. For

instance, the maximum number of generations can be defined

as the maximum number of iterations a feed forward neural

network needs in order to find an acceptable result. They also

state that setting parameters in an EA is no more difficult

than choosing the numbers of layers and hidden neurons in

feed forward neural networks.

B. Oblique Decision Trees

Oblique decision trees, also referred to as (non-) linear

decision trees, are a common alternative to the traditional axis-

parallel approach. Oblique decision trees are usually much

smaller and often more accurate than axis-parallel decision

trees, though at the expense of more computational effort

and loss of comprehensibility. In oblique decision trees, an

hyperplane that divides the feature space into two separate

regions can be formally defined as

H(w, θ) = {x : wT
x = θ} (10)

where w = [w1, w2, ..., wn]
T , w ∈ ℜn is a weight vector,

θ is a threshold and w · x is the inner product between the

weight vector and the data set instances. If wT
x
i − θ > 0, it

means that the instance x
i is in the positive side of hyperplane

H(w, θ). Conversely, wT
x
i − θ ≤ 0 means that the instance

is in the negative side of the hyperplane.

Several approaches based on EAs have been proposed to

evolve oblique decision trees. Bot and Langdon [33], [92]

propose a GP for evolving oblique decision trees. In this

work, each GP individual is encoded as a tree with function

nodes and terminals. A function node has as its children a

tuple ({wi, xi}, threshold, ifTrue, ifFalse), where wi and

xi are the ith weight constant and attribute pair, respectively.

Depending on the function node type, there can be n pairs

{wi, xi}. Still in this tuple, threshold is a constant terminal

and ifTrue (ifFalse) can be either classification terminals

or other function nodes. Terminals are either constants

(doubles), variables (integers) or classifications (integers).

Nodes are evaluated as follows:

if
∑n

i=1 wixi ≤ threshold then

return value of ifTrue branch

else
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return value of ifFalse branch

end if

This GP is strongly typed [93], i.e., the data types of

functions and terminals are specified to ensure that only valid

individuals are generated. A terminal of variable type is an

integer ranging from 0 to the number of data set attributes −1
(an attribute index). A terminal of constant type is a floating-

point within a predefined range. A terminal of classification

type is an integer ranging from 0 to the number of classes −1
(class index). The function set allows up to 3 attributes to be

tested within each node of the decision tree.

This GP has the following parameters. Individuals are

selected by tournament selection with size 7. A population

of 250 individuals evolve during 1000 generations. The initial

population is created through the ramped half and half method

[94], [95]. Crossover and mutation rates were empirically set

to 0.5 each. The fitness function is a weighted-formula that

includes validation set accuracy and a penalty factor to lower

the fitness value, multiplied by either the tree depth or the total

number of nodes. The penalty factor is used to alleviate the

bloat problem [96].

In [97], Bot expanded his work from [92] by introducing

limited error fitness (LEF) [98], Pareto scoring and fitness

sharing [99]. LEF is a technique for speeding up fitness calcu-

lation in supervised learning problems where each individual

is evaluated on a number of training cases. If the error score

achieved by the individual in these training cases is above a

given threshold, all the remaining training cases are counted

as errors. This is to prevent poorly-designed individuals to

be tested over the entire training set, wasting computational

time. Individuals whose number of errors is below the given

threshold are evaluated over the entire training set.

Pareto scoring and fitness sharing are also introduced. Since

the use of Pareto scoring leads to populations that tend to

converge to a few (and possibly suboptimal) solutions [99],

fitness sharing is used to ensure that more different local

minima are found. It is a niching technique that avoids

premature convergence by penalizing solutions with many

“neighbors”, i.e. individuals very similar to others. For such,

a sharing function s(i) =
∑

j s(i, j) is calculated for each

individual i in the Pareto front. The distance (similarity) of

individual i to every other individual is computed and, the

more similar an individual j is to i, the higher the value of

s(i, j) and thus of s(i). Finally, the individual of the Pareto

front with the lowest value of s(.) is selected to reproduce.

Another work, by Kretowski and Grzes [100], introduced

GEA-ODT (Global Evolutionary Algorithm for Oblique De-

cision Tree induction). GEA-ODT encodes each decision tree

as a tree with splitting hyperplanes in non-terminal nodes

and class labels in the leaves. Each hyperplane is represented

by a (n + 1)-dimensional table, accounting for w and θ.

The population of individuals is initialized by generating

each individual through a top-down algorithm that searches at

each node for the best hyperplane. Hyperplanes are randomly

generated based on randomly chosen mixed dipole (xi,xj). A

dipole [101] is a pair of instances (xi,xj), and it is referred as

a mixed dipole if and only if its instances belong to different

Fig. 6. Initializing a hyperplane with randomly selected mixed dipole.
Adapted from [100].

classes. Thus, a hyperplane H(w, θ) splits the dipole (xi,xj)

if and only if:

(wT
x
i − θ)× (wT

x
j − θ) < 0 (11)

which means that x
i and x

j are on opposite sides of the

dividing hyperplane.

For generating random hyperplanes, a dipole (xi,xj) is

randomly selected and the Hij(w, θ) hyperplane is generated

by setting w and θ as:

w = x
i − x

j (12)

θ = δ(wT
x
i) + (1− δ)(wT

x
j) (13)

where δ ∈ {0, 1} is a random coefficient that scales the

distance to the opposite ends of the dipole. Figure 6 presents

this rationale.

The fitness function in GEA-ODT is a weighted-formula

that penalizes model complexity (tree size). It is given by

f(I) = Q(I)− (α× size(I)) (14)

where Q(I) is the quality measure over the training set

(we assume accuracy is a suitable quality measure for the

purpose of maximizing f(I)), and size(I) is the size of

individual I (total number of nodes). The parameter α scales

the importance of the penalty term.

In GEA-ODT, mutation occurs with a 1% probability. It can

either alter the node role or its corresponding hyperplane. More

specifically, a non-terminal node can be pruned to a leaf or

have its hyperplane modified. A hyperplane can be modified by

either standard mutation (perturbation of the weights that form

the hyperplane) or by the dipole operator. The dipole operator

is a task-dependent knowledge based operator that seeks to

shift the hyperplane in order to divide mixed dipoles or unite

pure dipoles. Finally, when dealing with a leaf node, the

mutation operator can swap this node for a new non-terminal

node. Standard one-point crossover in trees is performed.

Selection is performed through linear ranking with elitism.

V. REGRESSION

Decision trees for regression are an effective approach for

predicting continuous values while enabling the analysis of

the variables responsible for that particular prediction. They

are usually regarded as either regression trees or model trees,

according to the content of their leaf nodes. We review EAs

for inducing regression or model trees next.
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A. Regression Trees

A regression tree is a special type of decision tree where

the target attribute is continuous. Thus, each leaf node of the

regression tree holds a continuous value instead of a class

label. This continuous value is the average value for the target

attribute of all instances that reach that particular leaf node.

TARGET (Tree Analysis with Randomly Generated and

Evolved Trees) [102], [103] is an EA that evolves regression

trees where each candidate solution is an axis-parallel regres-

sion tree of variable size and shape. The initial population

consists of 25 randomly created trees. The authors report that

experiments performed with forest sizes between 10 and 100

trees, showed no apparent impact on the outcome. The random

generation of trees starts with a single root node, that has a

probability psplit of becoming a split. Otherwise, it will be a

leaf. If the node bocomes a split, an attribute from the data set

and a split value are randomly chosen from a pool of candidate

attributes and split values and two child nodes are created. This

procedure is repeated until no more nodes can be split.

For evaluating the trees, TARGET measures their fitness by

using the Bayesian information criterion (BIC), a statistical

model selection criterion based on likelihood [104]. It is a

weighted-formula that penalizes model complexity (size of the

tree). It is expressed as

BIC = −m

2
ln 2π − m

2
ln

SSE

m
− m

2
− 1

2
p logm (15)

where p is the effective number of parameters in the tree

model, m is the size of the training set and SSE is the residual

sum of squares. The last term in (15) is the model complexity

penalty, which is a function of both the effective number of

parameters p and the training sample size m.

One critical problem of using the BIC criterion in TARGET

is determining the value of p, an essential part of the model

complexity penalty term. Large values of p may lead to smaller

trees with less predictive performance. The authors defined

p = nt + 1 to account for estimating the constant error

variance term and a mean parameter within each of the nt
terminal nodes. Even though they acknowledge the fact that

the effective number of parameters estimated is actually much

higher than nt + 1, due to split rule selections made during

the tree construction process, they state that further research is

required to determine the appropriate adjustment of the model

complexity penalty term.

Kretowsky and Czajkowski [105] propose an EA for re-

gression tree induction called GRT (Global induction of Re-

gression Trees). Each candidate solution is an axis-parallel

regression tree. The trees in the initial population are initialized

through traditional top-down regression tree algorithms such

as M5 [106], [107] and CART [5] on random subsamples from

the original data set. The recursive partitioning of the initial

trees stops when: (i) all training objects in a node have the

same predicted value; (ii) the number of instances in a node is

lower than a predefined value; or (iii) the predefined maximum

tree depth is reached.

GRT’s crossover operation has three variants: (i) subtrees

are swapped between two individuals, with random selection

of nodes; (ii) the split test between two non-terminal nodes of

different individuals are swapped, though keeping their subtree

structures; and (iii) branches from two randomly selected

nodes in two different individuals whose subtrees have the

same size are swapped.

Mutation is stochastically performed (the default probability

is 0.8) in either non-terminal nodes or leaves. In non-terminal

nodes, nodes in higher levels of the tree are mutated with a

lower probability than those in lower levels. Among nodes in

the same level, the absolute error is calculated for the node

subtree in order to rank nodes: a higher value of absolute

error increases the probability a node being mutated. The

same ranking procedure is applied to leaf nodes (except for

pure nodes). For non-terminal nodes, mutation can assume the

following variants: (i) replacement of a split test according

to a traditional split search mechanism; (ii) shifting splitting

thresholds (for continuous attributes) or regrouping attribute

values (for nominal attributes); (iii) replacement of a split test

by a pre-existing test; (iv) replacement of a subtree by another

subtree from the same node; (v) replacing a subtree by a leaf

node. Mutation may transform leaf nodes into non-terminal

nodes if the instances contemplated by that particular node

are heterogeneous.

The selection mechanism adopted by GRT is linear ranking,

and the best individual of each generation is kept to the

next (elitism). The fitness function searches for a compromise

between mean absolute error and tree size, as follows:

f(I) =
MAE(I)

MAEmax

+ α(size(I)− 1) (16)

where MAE(I) stands for the mean absolute error of in-

dividual I over the training set, MAEmax is the mean

absolute error of the entire learning set, and size(I) is the

size of individual I . The parameter α weights the relative

importance of the complexity penalty and subtracting 1 from

the complexity term eliminates the penalty factor for trees that

consist of a single leaf.

Hazan et al. [108], [109] propose a strongly-typed GP

approach (STGP)3 for axis-parallel regression tree induction.

Although they focus on inducing regression trees for modeling

expressive performance (musical computation), their approach

is easily generalized to any domain. In STGP function nodes

can be either a test over an attribute (e.g., a “less than”

operator, hereby called LT), an if-then-else construct (IF)

or a constant generator of either attribute or regression val-

ues, namely EFV and ERV, respectively. The LT construct

operates over two arguments of fixed types: FeatValue and

RegValue, and returns a boolean value. IF operates over three

arguments: a boolean, resulting from the constructor LT and

two arguments of RegValue type. IF returns a RegValue value,

that can be either a constant or any other construct. Terminal

nodes are constants representing either attribute values or

regression values (target attribute outputs), generated by either

EFV or ERV functions. Figure 7 demonstrates a typical tree

from STGP.

3STGP was designed within the Open Beagle Framework for evolutionary
computation [110].
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Fig. 7. STGP regression tree example. Typed connections are presented.
Adapted from [109].

The population size of STGP is fixed in 200 individuals, and

the algorithm halts when either the limit of 500 generations has

been reached or the best solution fitness is ≥ 0.95. Tournament

selection is the strategy for selecting individuals to reproduce.

A typical subtree swap crossover is performed with a 0.9 rate.

Mutation can either swap a subtree with a newly generated one

(0.01 rate), replace a branch by one of its children (0.05), swap

subtrees from the same individual (0.1) or disturb constant

values (rate not informed). A maximum depth of 10 levels is

set, though the authors state that they do not search for low

complexity (smaller sized) solutions.

STGP’s fitness function is given by the inverse of RMSE

(root mean squared error), f(I) = 1/1 + RMSE(I), where

RMSE is taken over the training set and predicted duration

ratio, averaged over the notes of a musical fragment, itself

averaged over all the training fragments. For more conven-

tional applications, the RMSE could be taken directly over the

predicted values of the individual I . The authors also present

domain-specific fitness functions not presented here due to

space constraints.

B. Model Trees

Model trees are a special case of decision trees also devel-

oped for regression problems. The main difference between

a model tree and a regression tree is that whereas each leaf

node in a regression tree outputs a single continuous value, in

model trees each leaf node holds a (non-) linear model whose

output is the final prediction value.

GPMCC [111] (Genetic Programming approach for Mining

Continuous-valued Classes) is a framework proposed to evolve

model trees with non-linear models in their leaves. Its structure

is divided into three different parts: (1) GASOPE [112], a

GA that evolves polynomial expressions; (2) K-Means [113],

a traditional clustering algorithm used to sample the training

set; and (3) a GP to evolve the structure of model trees. Trees

are generated by randomly expanding a node and randomly

selecting attributes and split values. Tree growth is dictated

by a parameter that indicates the maximum tree depth. The

fitness function used by GPMCC is an extended form of the

adjusted coefficient of determination (17)

R2
a = 1−

∑m

i=1(y
i − y′i)2

∑m

i=1(y
i − y)2

× m− 1

m− d
(17)

where m is the size of the set, yi is the actual output of the

ith instance, y′i is the predicted output for the same instance,

y is the average output of all instances and d is a complexity

factor that penalizes both the size of an individual (number

of nodes) and the complexity of each model of the terminal

nodes (number of terms and their corresponding order). The

higher the value of complexity factor d, the lower the value

of R2
a. The best individuals are those with the higher values

of R2
a.

One important remark is that GPMCC has a total of 42 con-

figurable initialization parameters that control several steps of

the algorithm. The authors claim that the influence of GPMCC

parameter values on the performance obtained was empirically

investigated and that it was shown that the performance was

not significantly affected by different parameter values. Based

on these results, it is not clear the real utility of so many

configurable options. As a second point of criticism, GPMCC

seems to be overly-complex, and the results do not seem to

justify all the choices made during its development.

Barros et al. [46], [47] propose an EA called E-Motion

(Evolutionary MOdel Tree InductiON) for axis-parallel model

tree induction, where each individual is represented as a tree

of variable shape and size.The initialization of individuals is

domain knowledge-based, as it combines single nodes whose

attribute tests are dictated by the expectation of standard

deviation reduction (SDR), given by

SDR = sd(D)−
k
∑

i=1

|Di|
|D| × sd(Di) (18)

where sd(.) stands for the standard deviation, D is the data

set that reaches the node to be divided, Di is the data resulting

from the ith split (in a total of k splits) and |.| is the size of

a specific data partition. It is easy to notice that the split rule

that yields the lower standard deviation values for the child

nodes will maximize (18). E-Motion generates a split rule for

each data set attribute that maximizes (18). The initial trees

are random combinations of these basic trees that consist of a

single node (attribute + split rule).

E-Motion allows the user to choose between two types

of multi-objective optimization in the fitness function. The

first one is a weighted-formula that accounts for RMSE (root

mean squared error), MAE (mean absolute error) and tree size,

where each measure has a user-defined weight. The second one

involves a lexicographic analysis, where these three measures

are ranked based on the user’s priorities. In this case, user-

defined thresholds may define whether the highest-priority

measure is enough to select the best individual or if the

subsequent measures should also be evaluated.

E-Motion implements standard one-point crossover in trees.

Two different mutation strategies are used to variate individ-

uals’ sizes: a shrinking mutation, where a subtree is replaced

by a leaf node, and an expanding mutation, where a leaf node

is replaced by a two-level subtree. Finally, a filter is applied to

guarantee consistency of the linear models at each leaf node.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART C: APPLICATIONS & REVIEWS , VOL. X, NO. X, JANUARY 20XX 13

VI. DECISION TREE COMPONENTS

All EAs reviewed so far evolve individuals which represent

decision trees. In this section, we discuss EAs with a different

purpose: to improve a decision tree classifier’s component.

Hence, they do not evolve decision trees per se, but compo-

nents of decision tree classifiers. We divide such EAs into 3

groups, according to the type of component being evolved: (i)

Hyperplanes; (ii) Pruning Methods; (iii) Other Components.

A. Hyperplanes

EAs evolving full oblique trees were reviewed in Section

IV-B. However, some EAs evolve only a hyperplane for each

node of the oblique tree. More specifically, each individual in

these EAs is a combination of attributes and constants that

define a hyperplane.

In [13], [14], Chai et al. propose a binary linear decision tree

approach for piecewise linear classification, named BTGA.

At each non-terminal node of the tree, a GA searches for a

linear decision function, optimal in the sense of maximum

impurity reduction. We can formalize the impurity reduction

as follows. Assume Xt = {x1,x2, ...,xmt} as the training

subset that falls at the current node t with sample size mt and

x
i = {xi

1, x
i
2, ..., x

i
n, 1}

T
the augmented attribute vector with

dimension n. Besides, assume that Xt = Xt1∪Xt2∪...∪Xtk ,

where k represents the total number of classes and Xti

represents all instances in Xt that belong to class ωi. Thus

the impurity of subset Xt can be defined as:

i(Xt) =
k
∑

i=1

∑

j 6=i

p(ωi|Xt)p(ωj |Xt) (19)

where

p(ωi|Xt) =
|Xti |
|Xt| . (20)

Notice that a pure division, i.e. i(Xt) = 0, will only happen

when all instances in Xt belong to a same class. Assume now

that a linear decision function w
T
x is responsible for splitting

Xt into two subsets, XtL and XtR , i.e.,

Xt = XtL ∪XtR (21)

and

XtL = {x|x ∈ Xt ∧w
T
x < 0} (22)

XtR = {x|x ∈ Xt ∧w
T
x ≥ 0} (23)

where w = {w1, w2, ..., wn, wn+1}T is the weight vector with

dimension n + 1. The total impurity of splitting Xt in XtL

and XtR is

i′(Xt,w) = p(XtL |Xt)i(XtL ,w)

+p(XtR |Xt)i(XtR ,w) (24)

where

p(XtK ) =
|Xtz |
|Xt| , for z = {L,R}. (25)

The impurity reduction is finally defined as

∆i(Xt,w) = i(Xt)− i′(Xt,w). (26)

Hence, we can formalize the problem of inducing a binary

linear decision tree as finding the vector w
∗ that maximizes

the impurity reduction at node t, i.e.,

w
∗ = argmax

w
∆i(Xt,w). (27)

A GA is applied to globally search the solution-space for

the best possible combination of values in w, which is w
∗. In

this GA, w is encoded as a binary-string, such that the gene

Ai encodes the ith possible value of w and the chromosome

A consists of the union of genes, i.e., A = A1∪A2...∪An+1.

The fitness function is given by the impurity reduction (26),

calculated for each chromosome. The selection scheme is the

roulette wheel, where chromosome Aj is assigned a selection

probability f(Aj)/
∑nc

i=1 f(Ai), where nc is the total number

of chromosomes and f(.) is the fitness function. The selected

chromosomes participate in a two-point crossover, an effective

alternative to the traditional one-point crossover, since more

chromosome substructures can be preserved and combined.

Mutation is given by simply bit-flipping genes with a low-

probability.

Palaniappan et al. [114] extended BTGA (BTGA+) by

implementing three different impurity measures (namely Gini

index, information gain and twoing rule). Besides, they inves-

tigated a Bayesian initialization of the individuals (weights)

with randomization process. The Bayesian initialization uses

the common covariance weighted vector between the means

of the dominant class, ω0, and the remaining node examples,

ω1, with w = Σ−1(µ0 − µ1) and an independent parameter,

w0, given by:

w0 = −1

2
[(µT

0 × Σ−1 × µ0)− (µT
1 × Σ−1 × µ1)]

+ ln
p(ω0)

p(ω1)
(28)

where Σ−1 is the inverse covariance matrix (concentration

matrix).

Kim et al. [15], [16] propose a hybrid approach that uses a

GA for selecting hyperplanes in each node of a binary oblique

decision tree. In this work, the GA performs feature selection

so as to reduce the classification error rate in a binary decision

tree. The GA looks for the optimal linear combination of

features able to divide the instances in two disjunct subsets.

This process is carried out at each node of the binary tree that

is being created. Thus, for each node, a linear combination

of features selected by the GA divides the attribute space into

two different subsets until each subset has instances belonging

to a unique class.

Each individual in the GA is a n-dimensional linear decision

function. A binary string representation encodes the linear

decision function, and each string has n2 × γ bits, where n is

the number of dimensions and also the number of segments

necessary to encode a single feature, and γ is the length of

each segment. The fitness function is given by:

f(I) =
1

1 + (we × error) + (wb × balance)
(29)
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and

balance =

√

∑2
j=1 (mj − m

2 )
2

(m2 )
2

(30)

where m is the total number of instances, mj is the number

of instances that reach the jth node, error is the classification

error and we and wb are weights associated to error and bal-

ance, respectively. In these equations, balance is the balance

coefficient whose values tend to decrease when the number of

instances in each group become similar.

Cantu-Paz et al. [115], [116] also investigate the use of EAs

for designing optimal hyperplanes. They propose two different

strategies for expanding OC1 [117] (an oblique decision tree

induction algorithm): (i) a (1+1) evolution strategy (ES) with

self-adaptive mutations (named OC1-ES); and (ii) a GA with

real-valued genes (named OC1-GA).

OC1-ES evolves a single individual4, a vector of real-valued

coefficients, w1, w2, ..., wN+1, for a n-dimensional data set.

The individual is initialized with the best axis-parallel split

found by OC1. For each hyperplane coefficient, there is a

corresponding mutation rate, σ1, σ2, ..., σn+1, initially set to

1. At each iteration of the evolution strategy, the mutation

rates are updated and so are the coefficients, according to the

following rule:

υ = N(0, 1)

σt+1
i = σt

iexp(τ
′υ + τυ) (31)

wt+1
i = wt

i + σt+1
i υ

where N(0, 1) is a realization of a unitary normal variate,

τ = (
√

2
√
n)−1 and τ ′ = (

√
2n)−1. The ES is run for 1000

iterations.

OC1-GA evolves a population of individuals represented

by a real-valued set of coefficients (the same used in OC1-

ES). Tournament selection without replacement selects the

individuals that will be subjected to uniform crossover (prob-

ability of 100% to happen). No mutation is implemented

in OC1-GA. The population size is set to 20
√
n, along the

lines of a population-sizing theory described in [118]5. To

generate the initial population of individuals, the best axis-

parallel hyperplane is assigned to 10% of the individuals,

and the remaining 90% are randomly generated in the range

[−200, 200]. The fitness is evaluated by the calculus of the

impurity measure twoing (Itwo) [5], given by:

Itwo =
mL

m
× mR

m
×
(

k
∑

i=1

Li

mL

− Ri

mR

)2

(32)

where m is the total number of instances under consideration

in each node, mL (mR) is the number of instances in the

left (right) portion of the split, and Li (LR) is the number of

instances belonging to class i on the left (right) portion of the

split.

4Note that this ES, unlike GAs or GP, evolves a single individual instead
of a population

5Harik et al. state that the population size required to reach a solution of a
particular quality is O(

√
n)

Kretowsky [119] proposes an EA that evolves hyperplanes

for oblique decision trees. The proposed approach is based on

the dipole concept (see Section IV-B). The oblique decision

tree is built through a top-down approach, and the ”optimal”

decision functions is selected at each tree node. For evolving

decision functions, a fixed-length real-valued chromosome of

size n+1 represents the hyperplane (n weights and θ). For gen-

erating the initial population, a random mixed dipole (xi,xj) is

selected and the hyperplane Hij(w, θ), which is perpendicular

to the segment that connects the opposite sides of the dipole

(placed in halfway), is formed by setting w = x
i − x

j and

θ = 1/2[(wT
x
i +w

T
x
j)]. The fitness function is given by

f(x) = f(w, θ)× [(1− β) + β
n′

n
], where (33)

f(w, θ) = fmixed + α(1− fpure) (34)

where fmixed (fpure) is the fraction of divided mixed (pure)

dipoles, α controls the importance of pure dipoles, β ∈ {0, 1}
defines the complexity of the test (in terms of number of

parameters), n′ is the number of non-zero weights and n is

the dimensionality of the problem.

Standard two-point crossover is employed and the mutation

operator is slightly modified in order to increase the chances

a gene can be set to 0. Since the weights are real-valued,

chances of eliminating the importance of one attribute (i.e.,

setting it to 0) are slim, so the mutation operator is modified

to enhance the chances of feature selection (eliminating at-

tributes). Additionally, a dipolar operator is implemented, as

follows. First, the dipole type is drawn (mixed or pure). If

the mixed type is selected, one dipole is drawn from the set

of non divided mixed dipoles and the hyperplane is shifted to

separate the pair of instances. The new position is obtained by

modifying only one randomly chosen attribute. If it is the pure

type, one dipole is drawn from the set of divided pure dipoles.

The hyperplane is shifted to avoid separation of objects from

the same class by once again modifying one randomly chosen

weight. Selection is made through linear ranking and the best

individual from a generation is kept to the next (elitism).

Shali et al. [120] propose a GP, named GIODeT for evolving

combinations of attributes for each node split. The C4.5

algorithm [4] is used for constructing the decision tree in a top-

down fashion, but instead of using the typical univariate tests

at each node, a GP evolves a set of relations for combining the

data set attributes. The authors propose the following functions

for the internal nodes of GIODeT:

• Mathematical: +,−,×, /, log,
√

• Relational: ≤
• Logical: nand, not

An expression generator component is responsible for com-

bining these unary and binary functions with the set of nominal

and numeric attributes, generating a mathematical expression

with arbitrary size. Note that the GP is run once for each node

of the decision tree. Tournament selection is performed on 15

randomly selected individuals in order to choose those that

will undergo crossover and mutation. Standard GP crossover

and mutation are applied with probabilities of 0.65 and 0.2,
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respectively. The fitness function is given by

f(I) = GainRatio×
(

GainRatio+
1

size(I)

)

(35)

where GainRatio is the standard split criterion implemented

in C4.5 [4] and size(I) is a function that returns the total

number of nodes of the GP individual I .

B. Pruning Methods

Pruning is an important component of decision tree induc-

tion algorithms, because it can avoid model overfitting. Given

a hypothesis space H , a hypothesis h ∈ H is said to overfit

the training data if there exists some alternative hypothesis

h′ ∈ H such that h has a smaller error than h′ over the

training examples, but h′ has a smaller error than h over the

entire distribution of instances.

Overfitting is particularly critical in decision tree induction,

since decision trees can perfectly classify the training exam-

ples. If there is noise in the training set, the induced decision

tree will learn how to classify it and thus will perform poorly

on unseen data. Lack of representative samples in the training

data can also lead to model overfitting, because the resulting

decision tree will make its classification based on small num-

ber of instances. Common approaches for avoiding overfitting

are prepruning (halting the algorithm before generating a fully

grown tree that perfectly fits the data) and post-pruning (grow a

full decision tree and later pruning subtrees according to error

estimates). Evolutionary alternatives to decision tree pruning

are reviewed next.

Chen et al. [17] propose a GA for decision tree pruning

where each individual is a fixed-length linear chromosome.

Each gene dictates whether a subtree should be pruned or not.

More specifically, a decision tree is fully grown by a traditional

decision tree induction algorithm (ID3 [3]) and then linear

chromosomes with size equal to the number of edges of the

full tree are randomly generated. One-point crossover and bit-

flip mutation are implemented (rates are not informed). The

fitness function to be minimized is given by the sum of the

total number of nodes and the error rate. Surprisingly, during

fitness evaluation, the error rate is said to be calculated over

the test set (a serious experimental mistake, since the test set

class labels are supposed to be unknown, and can only be

used to validate the best individual of the EA, and not every

individual in each generation).

Shah and Sastry [18] propose a new pruning algorithm for

oblique decision trees in binary classification problems using

either an automata learning model (LA) or a GA. They map the

decision tree pruning as boolean-vector learning problem. For

such, each decision tree is mapped into a 3-layer feedforward

neural network. Each node in the first hidden layer consists

of one hyperplane (split rule) and its complement. Each node

in the second layer represents a leaf node labeled as class 1.

The third layer consists of a single OR unit.

Formally, the first layer has M units, and the ith unit repre-

sents a hyperplane Hi, parametrized by wi = [wi0, ..., win] ∈
ℜn+1, 1 ≤ i ≤ M , assuming an n-dimensional space of

attributes. The output of the ith unit over a given input instance

Fig. 8. Three-layer feedforward neural network representation. Adapted from
[18].

x = [x1, x2, ..., xn] ∈ ℜn is yi = 1 if
∑n

j=1 wijxj + wi0 > 0
and yi = 0 otherwise.

The second layer has L units, each one implementing an

AND function. The lth unit is connected to all first-layer units

through a weight vector vl = [vl1, vl2, ..., vlM ], where vli ∈
{0, 1}∀i, 1 ≤ i ≤ L.

The output for the lth unit is al = 1 if ∀i, yi = 1 and

vli = 1, otherwise al = 0. The third layer outputs 1 if at

least one of the second-layer unit outputs is 1, and 0 if all

second-layer outputs are 0 (OR operation).

Each second-layer unit is connected (with weight 1) to

all hyperplanes in the first layer that appear on the path

from the root to the leaf node corresponding to this unit.

All the other connections will have weight 0. It is easy to

see that the final output of the network will be 1 on all

patterns classified as belonging to class 1 by the decision

tree. Given this framework, pruning a decision tree consists of

learning the boolean-vector Vl that maximizes some measure

(e.g., accuracy). Figure 8 presents the proposed 3-layer neural

network.

Note that the hyperplanes in the first-layer are those dis-

covered during the full growth of a decision tree by any

oblique decision tree induction algorithm. Besides, note that

the number of second-layer units (L) can be fixed heuristically

according to the desired level of pruning. Different values for

Vl will lead to different ways to restructure the decision tree.

This strategy is much more sophisticated than simply replacing

a subtree by a leaf node, because it can lead to a more drastic

restructuring of the original tree. A GA is used to evolve a

set of fixed-length binary strings that represent the Vl vector.

The authors mention that they applied “standard” crossover

and mutation operations (no further details were informed).

C. Other Decision Tree Components

Turney [19] proposes a hybrid approach, ICET (Inexpensive

Classification with Expensive Tests), where a GA is used to

evolve a population of biases for a decision tree induction

algorithm (variation of Quinlan’s C4.5). ICET considers both
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the cost of tests (i.e., cost of attributes) and the cost of

classification errors.

In ICET, instead of using C4.5’s gain ratio, attributes are

evaluated by the information cost function (ICF) [121], defined

for each attribute i as follows:

ICFi =
2∆Ii − 1

(Ci + 1)α
(36)

where ∆Ii is the information gain associated to the ith

attribute when splitting a given portion of the data set, Ci

is the cost of measuring the ith attribute and α = [0, 1] is the

strength of the bias towards lower cost attributes. Note that

α = 0 means the attribute cost is ignored and maximizing

ICF is equivalent to maximizing ∆Ii, whereas α = 1 means

ICF is strongly biased by cost.

ICET evolves a population of individuals encoded as a fixed-

length binary string consisting of 12 × n + 16 bits, where

n is the number of data set attributes. Each attribute cost

Ci in (36) is encoded as a 12-bit value. In addition, each

string also encodes the parameter α in (36) and the pruning

confidence factor for C4.5, both as 8-bit values. ICET uses

a random initialization of individuals, a crossover rate of 0.6

and a mutation rate of 0.001.

The fitness function is the average cost of classification. To

calculate the cost of a particular instance, we follow its path

down the decision tree. We add up the cost of each attribute

that is chosen (i.e., each test that occurs in the path from

the root to the leaf). If the same test appears twice, we only

charge for the first occurrence of the test. The leaf of the

tree specifies the tree?s guess for the instance class. Given the

actual instance class, we use the cost matrix to determine the

cost of the classification. This cost is added to the costs of

the tests, determining the total cost of classification for the

instance. The total cost of classification of all instances are

summed, and then divided by the total number of instances,

resulting in the average cost of classification.

Bratu et al. [20] propose extending ICET by modifying com-

ponents of the original GA. By introducing elitism, increasing

the search variability factor, and extending the number of

iterations, the proposed extension manages to outperform other

cost-sensitive algorithms, even for data sets on which the

initial implementation yielded modest results. Results appear

to suggest there is an urge for a more comprehensive analysis

on the impact of varying the GA parameters, as it is empir-

ically demonstrated that such changes can lead to significant

performance improvements.

VII. PERFORMANCE ANALYSES

Many of the papers that we review include performance

comparisons of decision trees obtained by means of evolu-

tionary algorithms and other traditional approaches. The most

well-known greedy decision tree induction algorithms used

in these comparisons are ID3 [3], C4.5 [4], CART [5], M5

[106], [122], REPTree [123] and OC1 [117]. Other algorithms

used for comparison purposes include Bayesian CART [124],

[125], EG2 [121], CS-ID3 [126]–[128] and IDX [129]. Most

of these comparisons make use of public data sets from the

UCI repository [130].

TABLE I
APPLICATION AREAS OF EAS FOR DECISION TREE INDUCTION.

Application area References

Astronomy [133]
Cold Mill Strip [15], [16]
Character Recognition [35]–[37], [87], [88]
Finance [134]
Marketing [40], [42]
Medicine [23], [50], [78], [80], [135]–[138]
Natural Language Processing [139]
Software Engineering [22], [77], [140]–[142]

As it would have been expected, no work reviewed in this

paper has been shown to be superior than other methods for

every tested data set. This is coherent with the no free lunch

theorem [131], which states that learners which excel in a

certain data set will perform poorly in others.

Nevertheless, many works affirm to present similar pre-

dictive performance to baseline algorithms while providing

smaller trees (e.g., [17], [46], [47], [100], [102], [103], [105],

[111]). Only one work [120] states that the proposed EA

generates larger trees than its baseline algorithm (C4.5). The

ability of generating smaller trees is mainly due to the fitness

functions of the EAs, which usually incorporate a size penalty

for avoiding large trees. This explicit mechanism for reducing

tree size is indeed one of the advantages of using EAs for

decision tree induction.

Regarding computational time analyses, most of the re-

viewed works state that the proposed approaches are much

more time-consuming than the greedy strategy, as it is the

case of most evolutionary algorithms. Notwithstanding, very

few papers report runtimes. Among those few works, some

report a difference of seconds for growing the decision tree

(e.g., [41]), whilst others report differences of minutes (e.g.,

[42], [43], [70], [97]) or hours (e.g., [38], [44], [100]). The

time complexity of EAs for evolving decision trees is not

detailed in the reviewed papers, but it is estimated to be much

higher than the complexity of typical top-down decision tree

induction algorithms. For more details on the time complexity

of traditional algorithms such as C4.5 please refer to [132].

VIII. APPLICATIONS OF EAS FOR DECISION TREE

INDUCTION

Considering that most works focus on the EAs ability for

dealing with the drawbacks of the greedy strategy, usually

these approaches are validated on public benchmark data sets

for comparison purposes, instead of focusing on a specific

application domain. Nevertheless, there are some papers that

limit their scope to a specific domain. In these cases, we can

highlight the application areas listed in Table I, whose EAs

are briefly reviewed next.

In [133], a GA for decision tree induction is applied to an

astronomy problem, the classification of galaxies with a bent-

double morphology. This EA is the same proposed in [115] for

inducing oblique decision trees. Kim et al. [15], [16] present a

method for recognizing various defect patterns of a cold mill

strip by using evolutionary binary decision trees.
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Several EAs evolve binary decision trees for character

recognition (classification). Works like [35]–[37], [87], [88]

evolve binary decision trees using GAs and later apply the

evolved decision tree to digit recognition tasks. Kuo et al.

[134] evolve decision trees through GP and analyze their

performance over a credit card data set.

Several EAs evolve decision trees for specific medical prob-

lems. For instance, Podgorelec and Kokol [135] investigate a

multi-objective weighted-formula based on GAs for decision

tree induction for detecting cardiac prolapse. Its fitness func-

tion incorporates domain knowledge by not considering all

errors equally. The most costly errors are made when a patient

with cardiac prolapse or silent prolapse is classified as with no

prolapse. Conversely, it is not so costly when healthy patients

are classified as with prolapse or silent prolapse.

In [78], the authors propose an integrated computerized

environment, DIAPRO, which is a computer tool based on

EAs for medical diagnosis. DIAPRO attempts to improve

accuracy, sensitivity and specificity for decision making using

evolutionary generated decision trees. In [80], a real-world

orthopedic fracture data set is investigated through multiple

approaches of decision tree induction, and it is shown that the

evolutionary approach presents the best compromise among

the measures evaluated.

In [136], the authors present a new outlier prediction system

for improving the classification performance in medical data

mining. Two cardiovascular data sets are investigated. The

method introduces the class confusion score metric that is

based on the classification results of a set of classifiers. These

classifiers are generated by the EA proposed in [22], and

the main idea is to verify if there is any inconsistence when

classifying a specific example through different classifiers. In

[23] a GP evolves decision trees for cardiac diagnoses. The GP

was tested by using cardiac single proton emission computed

tomography images.

In [137], a GP evolves decision trees to detect interactions in

genetic variants. Preliminary experiments using GPDTI have

been able to find a 3-marker interaction in a data set of

1000 markers and a sample size of 600 subjects. Smith [50]

evolved decision trees in a bioinformatics application, where

they used a GA for finding RNA family-specific decision

trees. This work is well adapted to the application domain, i.e.

both individual representation and fitness function are domain-

specific.

Siegel [139] proposes evolving decision trees for the prob-

lem of word sense disambiguation. The approach Siegel takes

to word sense disambiguation is to evolve decision trees which

attempt to establish word sense by looking only at immediate

context, i.e., the tokens, (words and punctuations marks)

which are located within a small distance of the word to be

disambiguated. The words being disambiguated are discourse

cue words. Results indicate that evolved decision trees often

include rules that provide insightful hints for linguists.

Many works propose evolving decision trees for software

engineering tasks. For instance, in [143] an EA for deci-

sion tree induction is used as a software fault predictive

approach. It is shown that software complexity measures can

be successfully used to evolve decision trees for predicting

dangerous modules (with many undetected faults). The authors

recommend redesigning the fault-detected modules or devoting

more testing or maintenance effort to them in order to enhance

the software quality and reliability. In [22], Podgorelec and

Kokol present a self-adapting EA for decision tree induction

and its application for predicting faults in dangerous software

modules. Khoshgoftaar et al. [140] present an automated and

simplified GP-based decision tree modeling technique for the

software quality classification problem. The proposed tech-

nique is based on multi-objective optimization using strongly

typed GP. In the context of industrial high-assurance software

system, two fitness functions are used: one for minimizing the

predictive error and another for parsimony.

Khoshgoftaar and Liu [141] propose a GP-based multi-

objective optimization modeling technique for calibrating a

goal-oriented software quality classification model geared to-

ward a cost-effective resource utilization. It is shown that the

proposed model achieves good performance in the context of

optimization of the three modeling objectives: 1) minimizing

a modified expected cost of misclassification measure for

software quality classification models; 2) enabling the number

of predicted fault-prone modules to be equal to the number of

modules which can be inspected by the allocated resources;

and 3) controlling the size of the decision tree to facilitate com-

prehensibility in model interpretation, and providing faster GP-

runs. In [142], the authors present an evolutionary approach

for decision tree induction and its application for classifying

software modules as defective or defect-free. A set of 21

predictive attributes, containing various software complexity

measures and metrics for each software module was used. The

authors concluded that the discovered decision rules are useful

for developing new rules in software defect identification.

IX. REMARKS ON EVOLUTIONARY INDUCTION OF

DECISION TREES

Decision trees are one of the most frequently used rep-

resentations for classifiers. A very large number of articles

have been devoted to their study. Whereas most well-known

algorithms for decision tree induction rely on a greedy divide-

and-conquer strategy for partitioning the tree, alternative ap-

proaches have become more and more common in the past

few years. More specifically, a fairly large amount of studies

have been dedicated to the evolutionary induction of decision

trees.

We presented in this paper a survey of articles that combine

evolutionary algorithms and decision trees. We proposed a tax-

onomy to better organise the works in this area, conveniently

separating studies that evolve decision trees from those that

evolve components of decision tree classifiers. Moreover, we

documented important steps of an evolutionary algorithm for

decision tree induction and component evolution, which can

support interested readers in the design of their own EAs for

decision tree induction according to an extensive enumeration

of design options and strategies. We presented, when suitable,

criticism over specific choices and guidelines for handling

problems that will eventually come up when designing EAs for

decision tree induction. In this section, we make a brief critical
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analysis on the advantages and disadvantages of evolutionary

induction of decision trees. We finalize this paper by pointing

out tendencies of future work in the area.

A. The Benefits of EAs for Decision Tree Induction

The main benefit of evolving decision trees is the EAs’

ability to escape from local optima. EAs are able to perform

a robust global search in the space of candidate solutions, and

thus they are less susceptible to convergence to local optima.

In addition, as a result of this global search, EAs tend to cope

better with attribute interactions than greedy methods [10],

which means that complex attribute relationships which are

not detected during the greedy evaluation can be discovered

by an EA when evolving decision trees.

Another advantage of evolving decision trees is the pos-

sibility of explicitly biasing the search space through multi-

objective optimization. EAs can naturally optimize multi-

objectives, which may be crucial in several application do-

mains. For instance, cost sensitive classification - which is the

case of most medical classification problems - can be enhanced

by explicitly optimizing measures that address different error

costs. Parsimony pressure is yet another important feature that

is easily implemented in a multi-objective EA for decision tree

induction.

B. The Drawbacks of EAs for Decision Tree Induction

The main disadvantage of evolutionary induction of decision

trees is related to time constraints. EAs are a solid but

computationally expensive heuristic. Nevertheless, progres-

sively faster computational resources have allowed EAs to be

increasingly used in a variety of applications over the years.

Advances on parallel processing have also enabled EAs to be

better explored in acceptable execution times. It should also be

noted that, in real-world problems, the time spent preparing

the data for data mining purposes tends to be much longer

than the time spent by inducing a classification or regression

model. Hence, in real-world problems, the long processing

time of evolutionary algorithms tends not to be the bottleneck

of the entire knowledge discovery process.

Another disadvantage is the large number of parameters that

must be tuned in order to run a full execution of an EA. Espejo

et al. [27] acknowledge this problem in GP-based classifiers,

though they reckon it is a secondary one. The same difficulty

occurs for genetic algorithms, since GAs and GP share much

of the same parameters.

C. What is Next on Evolutionary Induction of Decision Trees?

The theoretical assumption that evolved decision trees can

provide better predictive accuracy than greedily-designed ones

has been confirmed empirically in most of the works reviewed

in this paper. Nevertheless, this advantage comes with a price.

Most strategies reviewed here point out that evolving decision

trees is a costly, time-consuming task. Not much is said on how

this can be alleviated. Parallel implementations are usually

the suggestion for speeding up decision tree evolution, even

though very few works actually implement parallel algorithms

or care to make a comparison on the time savings. We believe

that a future trend on evolutionary induction of decision trees is

the analysis of techniques able to speed up evolution. A recent

work by Kalles and Papagelis [144] proposes time savings

in evolutionary decision tree induction algorithms through

fitness inheritance. They reckon that storing instance indices

at leaf nodes is enough for fitness to be piecewise computed

in a lossless fashion, thus leading to substantial speed-ups

within the evolutionary cycle. They show the derivation of the

expected speed-up on two bounding cases and their claims

are supported by an extensive empirical analysis. We believe

that further exploration of this kind of analysis is beneficial in

order to establish EAs for decision tree induction as a strong

alternative to greedy methods.

Evaluation of EAs on synthetic data is a methodology that

could be more investigated by researchers of the field. It allows

for a more theoretical exploration that is complementary

to the prevailing empirical evaluation of EAs for decision

tree induction. Examples of works that make use of such a

methodology are [39], [48], [54], [64], [73], [145]. In [145],

for example, instances were artificially generated in order

to produce data sets with specific characteristics, such as

representative enough categorical distributions and extreme

cases of easiness or hardness for decision tree induction.

Another future trend is the development of data-based

parameter guidelines. Researchers in the area should start

establishing the relationship between EAs’ parameter settings

and data sets’ features. For that, we believe that the study of

data set complexity measures, such as those proposed by Ho

et al. [146], [147], may be beneficial for understanding the

geometrical shape of classification data sets. Once the com-

plexity of classification data is better-understood, we believe

it would be possible for researchers to recommend parameter

values for decision tree evolution backed up by theoretical and

empirical evidence.

Finally, we believe that an important and challenging future

trend in this area concerns evolving decision tree induction

algorithms. In such an approach, the EA evolves a full

decision tree algorithm (with loops and procedures for grow-

ing, pruning and evaluating candidate decision trees), rather

than just evolving a decision tree classifier. Considering the

different procedures for growing the trees (top-down, bottom-

up, hybrid), and also the large number of splitting criteria and

pruning techniques, we believe it is possible to develop an EA

able to automatically design brand new decision tree induction

algorithms. One of the advantages of this strategy is the

possibility of tailoring an algorithm for a given domain, and

instead of using a generic decision tree induction algorithm

(such as C4.5), we can make use of an algorithm that was

explicitly designed to be efficient in specific data sets.
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de Carvalho is Full Professor at the Department
of Computer Science, Universidade de São Paulo,
Brazil. He has published around 60 Journal and 200
Conference refereed papers. He has been involved in
the organization of several conferences and journal
special issues. His main interests are Machine Learn-

ing, Data Mining, Bioinformatics, Evolutionary Computation, Bioinspired
Computing and Hybrid Intelligent Systems.

Alex A. Freitas obtained his BSc in Computer
Science from FATEC-SP , Brazil, in 1989; his
MSc in Computer Science from UFSCar, Brazil, in
1993; and his PhD in Computer Science from the
University of Essex, UK, in 1997. He is a Reader
(position equivalent to Associate Professor) at the
School of Computing, University of Kent, UK. He is
a member of the editorial board of four international
journals, has (co)-authored three research-oriented
books on data mining, and has published more
than 130 refereed papers in journals and conference

proceedings. His current research interests are data mining and knowledge
discovery, biologically-inspired algorithms, bioinformatics and the biology of
ageing.


