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A Survey of Fault Management in Wireless
Sensor Networks
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Wireless sensor networks are resource-constrained self-organizing systems that are
often deployed in inaccessible and inhospitable environments in order to collect data
about some outside world phenomenon. For most sensor network applications, point-
to-point reliability is not the main objective; instead, reliable event-of-interest delivery
to the server needs to be guaranteed (possibly with a certain probability). The nature
of communication in sensor networks is unpredictable and failure-prone, even more
so than in regular wireless ad hoc networks. Therefore, it is essential to provide fault
tolerant techniques for distributed sensor applications. Many recent studies in this
area take drastically different approaches to addressing the fault tolerance issue in
routing, transport and/or application layers. In this paper, we summarize and compare
existing fault tolerant techniques to support sensor applications. We also discuss several
interesting open research directions.

KEY WORDS: sensor networks; fault management; fault detection; fault diagnosis;
fault tolerance.

1. INTRODUCTION

Continuing advances in computational power and radio components, as well as
reduction in the cost of processing and memory elements have led to the pro-
liferation of micro-sensor nodes (e.g., Mica motes from Crossbow, Tmote Sky
from Moteiv, the MKII nodes from UCLA, SunSpot from Sun, etc.) that inte-
grate computation, communication, and sensing capabilities into a single device.
Wireless sensor networks are self-organized networks that typically consist of
a large number of such sensing devices with severely limited processing, stor-
age and communication capabilities and finite energy supply. Sensor networks
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are now rapidly permeating a variety of applications domains such as avionics,
environmental monitoring, structural sensing, tele-medicine, space exploration,
and command and control. With multihop wireless communication, sensor nodes
have made it possible to build reactive systems that have the ability to monitor
and react to physical events/phenomena. In addition to resource constraints, sen-
sor networks are also failure-prone [1–4]. Therefore, fault tolerance is as critical
as other performance metrics such as energy efficiency, latency and accuracy in
supporting distributed sensor applications.

1.1. Sources of Faults

Data delivery in sensor networks is inherently faulty and unpredictable [1].
Failures in wireless sensor networks can occur for various reasons. First, sensor
nodes are fragile, and they may fail due to depletion of batteries or destruction by an
external event. In addition, nodes may capture and communicate incorrect readings
because of environmental influence on their sensing components. Second, as in any
ad hoc wireless networks, links are failure-prone [2], causing network partitions
and dynamic changes in network topology. Links may fail when permanently
or temporarily blocked by an external object or environmental condition. Packets
may be corrupted due to the erroneous nature of communication. In addition, when
nodes are embedded or carried by mobile objects, nodes can be taken out of the
range of communication. Third, congestion may lead to packet loss. Congestion
may occur due to a large number of nodes’ simultaneous transition from a power-
saving state to an active transmission state in response to an event-of-interest [5].

Furthermore, all of the above fault scenarios are worsened by the multihop
communication nature of sensor networks. It often takes several hops to deliver
data from a node to the sink; therefore, failure of a single node or link may lead
to missing reports from the entire region of the sensor network. Additionally,
congestion that starts in one local area can propagate all the way to the sink and
affect data delivery from other regions of the network.

1.2. The Need for Fault Tolerant Protocols and Design Challenges

Sensor networks share common failure issues (such as link failures and
congestion) with traditional distributed wired and wireless networks, as well as
introduce new fault sources (such as node failures). Fault tolerant techniques
for distributed systems include tools that have become industry standard such
as SNMP and TCP/IP, as well as more specialized and/or more efficient methods
researched in [6–9]. In [6] reliability is achieved through clustering SNMP agents
and replication of crashed agents by peer cluster. In [7] authors apply k-nearest
neighbor algorithm from data mining to identify poison message failure and to
calculate the probability distribution of poison message. Hong et al. [8] focuses
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on designing a simple network management tool and provides requirements and
implementation for a Web interface enterprise network monitoring using Multi-
Router Traffic Graphing. Policy-driven approach to fault management technique is
studied in [9], where authors describe a rule-based application that is able to mon-
itor a distributed network, identify problems and take corrective actions. Another
novel approach to fault management is introduced in [10] where the authors also
use web technologies to manage resources. Proposed web-based architecture uses
XML notation to specify dependencies between managed resources and provides
query facilities to retrieve dependency information between managed resources.
Filtered output can be used for further fault diagnosis and recovery.

The faults in sensor networks cannot be approached in the same way as in
traditional wired or wireless networks due to the following reasons: (1) tradi-
tional network protocols are generally not concerned with energy consumption,
since wired networks are constantly powered and wireless ad hoc devices can get
recharged regularly; (2) traditional network protocols aim to achieve point-to-point
reliability, whereas wireless sensor networks are concerned with reliable event de-
tection; (3) in sensor networks, node failures occur much more frequently than
in wired, where servers, routers and client machines are assumed to operate nor-
mally most of the time; this implies that closer monitoring of node health without
incurring significant overhead is needed; (4) traditional wireless network proto-
cols rely on functional MAC layer protocols that avoid packet collisions, hidden
terminal problem and channel errors by using physical carrier sense (RTS/CTS)
and virtual carrier sense (monitoring the channel); in wireless sensor networks,
MAC layer protocols [11] have to meet other challenges (such as coordinating
a node’s sleeping and wake times), and can only mitigate the packet collision
problem, not completely solve it. These observations indicate that new fault tol-
erant protocols are necessary for sensor applications to operate successfully and
that these protocols should ensure reliable data delivery while minimizing energy
consumption.

1.3. Taxonomy of Fault Tolerant Techniques

Recent research has developed several techniques that deal with different
types of faults at different layers of the network stack. To assist in understanding
the assumptions, focus, and intuitions behind the design and development of these
techniques, we borrow the taxonomy of different fault tolerant techniques used in
traditional distributed systems [12]:

• fault prevention: this is to avoid or prevent faults;
• fault detection: this is to use different metrics to collect symptoms of

possible faults;
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• fault isolation: this is to correlate different types of fault indications
(alarms) received from the network, and propose various fault hypotheses;

• fault identification: this is to test each of the proposed hypotheses in order
to precisely localize and identify faults;

• fault recovery: this is to treat faults, i.e., reverse their adverse effects.

Note that there do exist some techniques that address a combination of all
these aspects. In fact, these techniques operate at different layers of the network
protocol stack. Most fault avoidance techniques operate in the network layer,
adding redundancy in routing paths; a majority of fault detection and recovery
techniques operate at the transport layer; and a few fault recovery techniques
perform at the application layer, concealing faults during off-line data processing.
In this paper, we use the above taxonomy to systematically summarize and compare
the fault tolerant techniques that are potentially useful.

The rest of the paper is organized as follows. Section 2 discusses fault preven-
tion by discussing a few network layer techniques for avoiding failures. Section 3
discusses fault detection. Section 4 describes root causing and tracing failures for
fault identification and isolation. Section 5 discusses fault recovery techniques for
data collection and data dissemination in sensor networks. Section 6 introduces
management frameworks for wireless sensor networks. Section 7 highlights open
research questions and concludes the paper with suggested future directions.

2. FAULT PREVENTION

Fault prevention techniques aim to prevent faults from happening by (1)
ensuring full network coverage and connectivity at the design and deployment
stages, (2) constantly monitoring network status and triggering reactive actions if
deemed necessary, or (3) enforcing redundancy in the data delivery path, hoping
that at least one of the paths will survive and fulfill the task of data delivery.

2.1. Sensor Network Deployment

Sensor deployment plays an important role in ensuring network connectivity
and sensing coverage, and consequently, network resilience to faults. Network
coverage refers to how well the sensor network covers the area of the phenom-
ena being monitored. Connectivity refers to the ability of active nodes to stay
connected. Designing and deploying a sensor network with considerations about
connectivity in mind will provide fault tolerance without the need for fault detec-
tion or recovery functionality.

The relationship between connectivity and coverage is quantified by previous
work [13]. The authors define k-coverage as any location in the network being
monitored by at least k nodes. The network is said to be k-connected if the network
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remains connected even if any k − 1 nodes fail. Two protocols to provide coverage
and connectivity guarantees are designed. Coverage Configuration Protocol (CPP)
allows the dynamic configuration of the network for various degrees of coverage,
assuming that the unnecessary nodes can power down to save energy. It is shown
that in the case of the communication range being at least double the sensing range,
if the network is at least 1-covered, it is also connected. In the case of the communi-
cation range being smaller than two times the sensing range, SPAN, a connectivity
maintenance protocol, is used in addition to CPP. Sensor network coverage in the
worst and the best case for a given network has also been evaluated [14].

Authors in [15] explore the problem of the number of one-hop neighbors per
node necessary for the network connectivity as a function of the network size. The
study concludes that the number of neighbors has to grow as O(log n) with the
network size n. Specifically, the number of neighbors per node can be expressed
as c log n, where asymptotic disconnectivity results for c = 0.074 and asymptotic
connectivity is achieved for c = 5.1774 with the critical value of c being close to 1.

Sensor networks are often deployed in remote and hazardous areas with
sometimes extreme conditions. Depending on the nature of monitored environ-
ment and obstacles, it is not always possible to plan deployment a-priori. To
provide coverage and connectivity in a given area with the least number of sen-
sors possible, two sampling based deployment approaches [16] are considered:
(1) concurrent deployment, i.e. the number and location of the nodes are decided
prior to deployment itself; and (2) incremental deployment, i.e. the feedback about
current coverage and connectivity after a sensor is placed is used to decide the
location of the next node. For concurrent deployment, it is shown that d

ε
log d

ε

sensor nodes will provide coverage for a unit area with high probability where ε is
the sensing radius and d is VC-dimension. In the case of incremental deployment,
nodes are placed based on random sampling; however, random sampling without
replacement is used—i.e. the areas already covered cannot be randomly picked
again. The area covered by sensing range but not covered by the communication
range of any sensor is added to the sampling domain.

2.2. Sensor Network Monitoring

Communication in wireless sensor networks is affected by many factors such
as environment, network topology, and transmission power. Hence, packet delivery
performance may vary dramatically. Researchers have tried to get a quantitative
understanding of communication patterns by performing a set of experiments in
an office building, a natural habitat, and an open parking lot [1]. Performance of
packet delivery at both physical and MAC layers was measured.

• At the physical layer, controlled variables were signal strength, coding
scheme, and distance from the transmitter. It was found that up to a certain
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distance from the transmitter (about 20 m indoors using high transmis-
sion power), packet reception rate is consistently high (between 90 and
100%); after a certain distance (about 30 m indoors using high power
transmission), the packet reception rate is consistently 0%. However, for
any distance in between (from 20 to 30 m indoors using high power),
packet reception rate is highly unpredictable. This range is referred to
as a “gray area.” The size and the starting point of this “gray area” de-
pends on (1) the environment (e.g., it is similar for indoors and outdoors,
but the “gray area” is very large in the natural habitat), (2) the transmis-
sion power (lower transmission power actually performed better due to
reduced likelihood of interference), and (3) the physical layer encoding
scheme.

• At the MAC layer, controlled variables were density of deployment and
work load. Two metrics were used: packet loss rate and packet delivery
efficiency (the ratio of distinct packets). The results indicated that 35%
of the links at the low traffic load (less than one packet per second) and
50% of the links at the high traffic load (more than one packet per second)
had 50% or more packet loss rate. The efficiency was found to be 50 and
20% for the low traffic load and the high traffic load, respectively. Another
important observation was the asymmetry of the links: even indoors more
than 10% of the links had a packet loss difference of more than 50% for
packets traveling in different directions on the same link.

In addition, empirical studies [4] found that links with very high or very low recep-
tion rates tend to be highly symmetrical, while links with intermediate reception
rates appear to be much more asymmetric.

Monitoring network health in wireless sensor networks, as in any tradi-
tional networks, provides a fundamental support for efficient network manage-
ment. The captured network status can be used by network administrators to
detect or even predict abnormal behaviors and take remedial actions. Generally,
we can divide all the monitoring techniques into active and passive monitoring.
Active monitoring typically injects probes into the network, and network-internal
performance can then be inferred from the measurement parameters. In addi-
tion to the techniques purely based on probing, other active monitoring relies
on event reports from the managed nodes. Probing packets or event reports
can overload the network; therefore, careful calibration of probing frequency
and selection of parameters are often needed for active monitoring. In contrast,
passive monitoring observes the traffic already present and then infers network
condition. We next discuss how node conditions, link status and network con-
gestion level are monitored in sensor networks without incurring significant
overhead.
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2.2.1. Monitoring Node Status
Since energy is the most scarce resource for sensor nodes, residual energy

level provides a good indication of possible node failures. eScan [17] is an ac-
tive monitoring technique that monitors remaining energy levels using localized
algorithms for in-network aggregation of local representations of energy levels.
The algorithm starts with each node creating a local scan of its residual energy
level expressed as a range of (min, max) instead of a single value. When a user
requests a global view of residual energy, individual local scans are transmitted
back towards the sink. Reports from neighboring nodes are aggregated en route
to the sink if they have similar approximations of residual energy. As a result, the
user receives an energy level map of the sensor network. eScan requires the user to
issue the request first, which limits the ability of this monitoring tool. In fact, the
nodes can be programmed as event-driven and notify the user when energy level
drops suddenly for any unpredicted and undetected reasons. In addition, there is
an eScan update after each major sensing event, which suggests that each major
sensing event would be twice as expensive for transmission of event data and the
eScan update.

Alternatively, a prediction based approach has been proposed for generating
an energy map [18]. Each node sends the parameters of the dissipation model to
the sink. The sink uses this information to locally update the energy level at each
node. Nodes will send an update to the sink only if the difference between their
actual energy level and the predicted value exceeds a certain threshold. Not having
to constantly update energy levels yields great energy savings, however, it comes
at the price of lower precision and higher computational overhead on the nodes.

2.2.2. Monitoring Link Quality
Link quality can be measured by the percentage of undamaged packets re-

ceived. Tracking the quality of channels at the link layer may enable higher level
protocols to adapt to changes in link quality by changing routing structures. One
technique designed for link quality monitoring is based on snooping [2], by pas-
sively listening to the channel and inferring the loss and success rates via tracking
of link sequence numbers. This method does not require any extra messages to be
exchanged. However, it does involve overhead in listening to the channel. With
recent advances in low-power listening technologies, it is possible to keep the cost
of snooping low.

2.2.3. Monitoring Congestion Level
Congestion can be one of the causes for packet loss. A straightforward policy

is to evaluate the growth rate of the buffer length [19]. If the sum of the current
buffer level and the increment in buffer length during the last time period is higher
than the buffer capacity, congestion is detected. Alternatively, CODA [20] uses a
combination of the present and past channel loading conditions, and the current
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buffer occupancy to infer accurate detection of congestion at each receiver with
low cost. Listening to the channel at all times may incur high energy costs; hence,
in order to minimize overhead, CODA only activates local channel monitoring
when buffer levels suggest that congestion may be present.

2.2.4. Discussion
Sensor network monitoring should not be limited to just one metric such

as residual energy level, link quality, or congestion level. Other metrics such as
buffer occupancy level, topology changes, etc., are equally important and should
also be tracked. We cannot rely on an administrator to discover and repair failures;
instead, sensor network monitoring should be more adaptive and self-configurable.
In other words, sensor networks should be able to respond to a certain observed
degradation of the network conditions on a local level. Furthermore, the control
data packets used for network monitoring should not add substantial additional
overhead, so it may be desirable to piggyback as much control data as possible on
top of application requested data.

An issue related to network monitoring is “response implosion” [21]—when
a large number of nodes respond to a monitoring request simultaneously and
thus create bottlenecks in the area of the sink. Three policies are suggested to
address this problem: (1) sampling for densely populated sensor networks, where
the sink sends a probability p with the diagnostics query, and each node decides
whether to report or not with probability p; (2) self-orchestrated operation that
schedules responses from all the nodes for sparse sensor networks; and (3) diffused
computation where readings are aggregated as the responses move towards the
sink. Out of these three suggested methods, diffused computation outperforms the
other two in terms of the number of responses received and the overhead incurred.

2.3. Multipath Routing

Multipath routing has been used in traditional wired networks to provide load
balancing and route redundancy. Both of these notions are applicable to sensor
networks: load balancing leads to a balance in energy consumption among sensor
nodes, hence avoiding power depletion of a particular set of nodes; route redun-
dancy increases the chances of messages to reach the destination, thus improving
reliability of data delivery. We next discuss three different approaches to utilizing
multipath routing.

Meshed Multipath Routing such as Gradient Broadcast (GRAB) technique
[22] creates a forwarding mesh from the source to the sink based on the “cost”
of delivering the packet at each node. Nodes farther away from the sink have the
highest cost of delivering the message. Packets only propagate along the path of
least cost towards the sink. To improve the robustness of the protocol, the resulting
mesh is widened based on a credit system. The amount of credit assigned by the
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source node to the packet determines the width of mesh. GRAB works well in
dense networks.

Node-Disjoint Multipath [23] relies on a number of alternate paths that do
not share any nodes (other than the source and the destination nodes) with the
primary path or other alternate paths. This mechanism ensures that failures in any
or all nodes on the primary path do not affect alternate paths. Creating multiple
disjoint paths would be easier if the global topology is known.

Braided Multipath [23] is a relaxation of node-disjointedness. It uses braided
(or partially disjoint) paths. For each node on the primary path, an alternate path not
including that node is found. Such alternate paths are not much more expensive
than the primary path in terms of latency and overhead. This setup guarantees
recovery when only one or a few nodes on the primary path fail. When all or most
of the nodes on the primary path fail, new path discovery is required, introducing
significant additional overhead.

2.3.1. Comparison
Multipath routing techniques discussed above utilize density of node deploy-

ment for reliable data delivery in different ways. Mesh forwarding techniques such
as GRAB provide higher reliability than disjoint paths because they use multiple
interleaving alternate paths. Consider a scenario where two disjoint paths have
failures at different hops. Disjoint multipath would not be able to recover from
this fault without constructing a brand new path. Forwarding mesh would reliably
deliver data if there was at least one complete forwarding path between source and
destination. Forwarding mesh imposes higher overhead because the message is
broadcast by more nodes irrespective of whether there are failures or not. On the
other hand, under that scheme only one node generates a report about the event so
fewer redundant packets are generated.

3. FAULT DETECTION

Since sensor network conditions undergo constant changes, network moni-
toring alone may be insufficient. Even with fault prevention mechanisms, failures
will still occur, so fault detection techniques need to be in place to detect po-
tential faults. Fault detection in sensor networks largely depends on the type of
applications and the type of failures.

Similar to wired networks, sensor networks can use packet loss as an indi-
cation of faults. In data dissemination protocols which deliver large segments of
data to the entire (or part of the) network, the destination nodes are responsible
for detecting the missing packet or the window of missing packets, and com-
municating the feedback to the source using NACK messaging such as in PSFQ
[24] and GARUDA [25]. The potential disadvantage of NACK messaging is that
the packets need to be cached indefinitely at the intermediate nodes in case the
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recovery is requested by the downstream nodes. To address this, PSFQ uses on-
demand reporting: the source or any intermediate node sets the report bit to 1 in the
outgoing packet when it needs to know the latest status of the downstream nodes.
The nodes at the farthest hops initiate the report by sending their ID and current
packet sequence number upstream. Each subsequent upstream node piggybacks
their ID and sequence pair. Upon receiving the report, the source or intermediate
node can dispose of the unnecessary packets in cache. In data collection protocols,
due to redundancy in sensor nodes and hence the huge amount of reported sensing
values, individual packet loss is rarely detected. Instead, a cumulative metric such
as packet delivery rate or fault rate is considered [19, 26]. If a certain threshold is
exceeded, communication is considered faulty and appropriate recovery actions
are taken as discussed in Section 5.

In addition to packet loss, other metrics such as interruption, delay or lack
of regular network traffic are also considered as symptoms of faults [27, 28].
Alternatively, buffer occupancy level and channel loading conditions [19, 20] are
used for fault detection (specifically, congestion).

Sensor nodes may also permanently fail. Tools such as “ping” or “traceroute”
use ICMP messages to check whether a node is alive or not in wired networks. This
approach can also be applied to evaluate the health of sensor nodes. In addition,
since sensor nodes are energy-constrained and energy depletion often causes node
death, remaining energy level can also be used as a warning of node failure [17,
18].

4. FAULT ISOLATION AND IDENTIFICATION

With detected alarms, fault isolation and identification processes will diag-
nose and determine the real causes. When the sink does not hear from a particular
part of the routing tree, it is unknown whether it is due to failure of a key routing
node, or failure of all nodes in a region. A fault tracing protocol has been proposed
[27] to differentiate between these two cases. This is achieved in two steps. Each
individual node first piggybacks its neighbor nodes’ IDs to the sink along with its
own readings so that the sink can have a complete network topology. Failed nodes
can then be traced by using a divide-and-conquer strategy based on adaptive route
update messages. The sink broadcasts a route update to determine whether the
silent nodes are dead. This approach does not perform well in a large scale sensor
network: if there are constant failures, the sink would be frequently broadcasting
routing updates, which would cause significant overhead. It is desirable that nodes
can make some local decisions about fault severity.

Sympathy [28] considers three possible sources of failures for a node: self,
path and sink. Sympathy monitors regular network traffic which is assumed to
be frequently generated by each healthy node: sensor readings, synchronization
beacons, routing updates, etc. Sympathy treats absence of monitored traffic as an
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indication of faults. It uses metrics traffic generated at the nodes to localize the
failure. These metrics include connectivity metrics (e.g., routing table, neighbor
list), flow metrics (e.g., packets transmitted and received per node and per sink),
and node metrics (e.g., uptime). The measurements expire if they are not updated
for a certain period of time. Sympathy determines whether the cause of failure is
in node health, bad connectivity/connection, or at the sink by using an empirical
decision tree.

5. FAULT RECOVERY

Having discussed various techniques for fault avoidance, detection, and iden-
tification, we next discuss how faults can be treated. In general, faults can be (1)
discovered and recovered within the sensor network; or (2) concealed at the sink
after collecting and analyzing the readings. Our following discussion will focus
on the former with a brief discussion on fault masking.

Faults can be recovered independent of applications. For instance, CODA
[20] uses two mechanisms to mitigate congestion. When congestion first occurs, a
hop-by-hop backpressure message is propagated to the sources. Nodes that receive
backpressure signals can adjust their sending rates or drop packets based on the
local congestion policy. In case of persistent congestion, the sink suppresses ACKs
for a certain period of time. Lack of ACKs is used as an indication for the nodes
to reduce their reporting rates. This type of application-independent recovery
does not differentiate between important (e.g., a new report) and unimportant
packets (e.g., redundant reports, control packets). On the other hand, application-
aware fault tolerant protocols try to achieve application specified metrics (e.g.,
the percentage of distinct packets delivered), which requires the nodes to analyze
packets and take different actions based on packet types. We next discuss existing
fault tolerant protocols for sensor data collection (i.e., upstream delivery from
sensor nodes to the sink) and sensor data dissemination (i.e., downstream delivery
from the sink to sensor nodes).

5.1. Reliable Data Collection

Depending on the sensor application needs, either raw or aggregated data
need to be collected. Ensuring reliability in collection of raw or aggregated data
is provided in different ways.

5.1.1. Collection of Raw Data
A lot of applications do not utilize node computational capabilities; instead,

they collect original sensor reports at the sink for current event detection or
archiving for future analysis. Therefore, large amount of data is sent to the sink
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and usually individual packet loss cannot be tracked. However, if enough readings
are received to detect an event, the communication is considered reliable.

The specific reliability metric used is slightly different for various reliable
protocols. In ESRT [19], desired reliability R is defined as the actual number of
reports received sufficient to reliably detect the event. Observed reliability r has
to be within the tolerance range R ± ε. ESRT adjusts the sensor reporting rate
based on observed reliability and congestion status to maintain the network in the
optimal operating range: sufficient reliability and no congestion.

Alternatively, reliability can be defined as the percentage of the distinct
packets received as in PERG [26]. The protocol aims to guarantee reliability in the
expected sense. PERG increases or decreases the number of data re-transmissions
based on discrepancy between observed and desired reliability. Different from
ESRT, PERG does not take any precautions against congestion at all, so PERG
exacerbates the situation if congestion does occur. Both protocols do not use
feedback from any intermediate nodes; instead, they rely on end-to-end feedback
from the server.

5.1.2. Collection of Aggregated Data
When aggregated data needs to be collected, in-network aggregation has been

accepted as a standard way to reduce communication overhead by pushing part
of the aggregation to some intermediate sensor nodes. TAG [29] uses a routing
tree for in-network aggregation. Two techniques are used by TAG to improve
tolerance to loss. First, the intermediate nodes cache the most recent data from
their children and reuse it when the children do not report the current results.
Second, aggregated values are transmitted to multiple parents, reducing the effects
of independent single failures. Different from TAG, SKETCH [30] uses a DAG
instead of a tree for data delivery. Given that most nodes have multiple parents in a
DAG, an individual link or node failure has limited effects. A robust technique for
computing duplicate sensitive aggregates was proposed by combining multi-path
routing and duplicate insensitive sketches.

5.2. Reliable Data Dissemination

Downstream data transmission is used for re-tasking sensors or reprogram-
ming sensor nodes; this implies that downstream delivery reliability has to be
100%. To ensure robust delivery to each sensor node in a region, the following
approaches have been proposed.

5.2.1. Hop-by-Hop Reliability
PSFQ [24] (Pump Slowly Fetch Quickly) ensures reliable delivery of data

at each hop. PSFQ consists of two basic operations: message relay (pump) and
error recovery (fetch). During “pump” operation, packets are slowly paced from
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the source towards the sink. After receiving a packet, each node stores it in its
cache and waits for a random small period of time before forwarding the packet
to its neighbors by broadcasting. Adding this waiting period prevents packet
redundancy and collision. If loss is detected, a fetch operation is triggered. A node
that experiences packet loss tries to recover the missing packets from neighboring
nodes. It broadcasts a NACK message to its neighbors that contains the IDs of
missing packets. The first node to respond retransmits the missing data.

5.2.2. Minimum Dominating Set
GARUDA [25] ensures reliable data delivery using a core, an approximation

of a minimum dominating set of nodes. Each node with a hop count that is
a multiple of three becomes a core node. This ensures that each node in the
network is one hop away from the core. The core is constructed on a per-message
basis. GARUDA uses out-of-sequence forwarding; i.e., packets of higher sequence
than expected are not suppressed, but forwarded onward. In addition, availability
bitmaps of available packets (A-maps) are exchanged between core nodes. This
ensures that core nodes only request a missing packet from an upstream node
when it is available, preventing an unnecessary chain of NACK’s. Lost packets are
recovered first on core nodes and then on the rest of the network. This mechanism
is problematic if the first packet’s reliability cannot be guaranteed. GARUDA
addresses this by using a Wait-for-First-Packet pulse, which is a series of short
pulses with a higher amplitude and a smaller period than regular traffic. Shortly
after the pulse is sent out, the sink broadcasts the first packet. Nodes stop pulsing
when they receive the first packet. The pulse serves as an implied NACK for those
nodes that still have not received the first packet.

5.2.3. Combining Source and Local Recovery
ReACT [31] is a reliable multicast data dissemination protocol designed for

multi-hop wireless ad hoc networks. The essence of ReACT is to distinguish
between localized and global fault sources and to apply local or source recovery,
respectively. In ReACT, nodes monitor their queues to determine congestion status.
A special flag is set by intermediate nodes to notify the downstream nodes when
congestion is present. Each node maintains a neighbor table with congestion
information, which will be used to determine whether a packet drop is caused
locally or by network congestion. Either local or source recovery is then triggered
accordingly. In local recovery, only one non-congested nearby node is needed. In
source recovery, nodes send a NACK to the source with missing packet numbers.
The source then multicasts the missing packet to all nodes that miss it. The source
also reduces the transmission rate if the congestion is persistent. ReACT can be
modified to take into account energy constraints and the high failure rate of wireless
sensor networks, which are a subset of multi-hop wireless ad hoc networks.
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Table 1 Comparison of Fault Recovery Techniques

Parameter ESRT PERG PSFQ GARUDA

Data flow Upstream Upstream Up- and
downstream

Downstream

Goal App. specified
reliability

Prob. guarantee 100% reliability 4 notions∗

Topology Direct
communication

Tree Chain or tree Sink in the middle

Method Reporting rate Retransmission
rate

Hop-by-hop
recovery

Min dominating set

Congestion Prevention and
recovery

Not addressed Prevention Prevention

Assumption Direct
communication

No congestion No congestion Reliable 1st message

∗100% reliability, probabilistic reliability, subregion, minimum network coverage.

5.2.4. Discussion
To summarize fault recovery protocols discussed in this section, we com-

piled Table 1 to highlight main features and limitations of each solution. One
important difference is the reliability notion used. When dealing with re-tasking
or reprogramming nodes, 100% data delivery is necessary; while for event de-
tection, 100% sensor readings delivery may be wasteful of energy. ESRT and
PERG try to achieve only a certain degree of reliability, while PSFQ provides
100% reliable delivery. GARUDA defines four different notions of reliability:
delivery to all nodes in the entire network, delivery to all nodes in a subregion,
delivery to a minimal number of sensors to cover the entire field, and delivery
to a probabilistic subset of sensors. Consequently, different methods are used to
ensure desired reliability. ESRT and PERG adjust reporting/retransmission rate
for all nodes in the entire network. PSFQ and GARUDA use more localized and
more fine-grained methods for reliable delivery, such as hop-by-hop recovery or
2 stage recovery (i.e, first core node, then non-core nodes). Finally, it is important
to note that ESRT is the only one of the studied methods that provides congestion
resolution.

The fault tolerant data collection and data dissemination techniques discussed
above function as transport layer protocols; and hence, operate with the assistance
of the sensor nodes from where the data originates. An alternative is to completely
relieve the nodes from the burden of recovery from faults, and perform all the
necessary treatment at the sink. Typically, a model of sensor data is needed and
missing data can be interpolated using spatial and temporal correlations among
sensor readings [32–36].
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6. FAULT MANAGEMENT FRAMEWORKS

Fault management frameworks address faults as part of a larger network
management structure. Such solutions approach fault management at a higher
level; e.g. by designing the management infrastructure and information model.
These frameworks can be complemented by the specific fault detection and re-
covery techniques discussed previously. A number of such frameworks have been
introduced for either ad hoc networks or wireless sensor networks.

Guerilla [37] describes a distributed network management architecture with
SNMP agents residing on every node. Along a similar line, a probe-based archi-
tecture and an information model (both node-scale and network-scale) [38] are
proposed for managing ad hoc networks. Nodes calculate local individual network
metrics, such as the MAC layer contention derived from the number of RTS pack-
ets sent and CTS packets received, and the node routing participation derived from
the number of packets that originate at the node and the number of routed packets.
These metrics can be used to build the entire network model in order to evaluate
the network behavior and take actions if needed. In the probe-based architecture,
a set of probes spread out across the network (as opposed to each individual node)
capture packets in their range, calculate the above metrics and send the metrics
to a network manager. The network manager then builds the global network view
combining the views of different network areas received from the probes.

While Simple Network Management Protocol (SNMP) has been one of the
dominating management protocol used in wired networks, studies exist on the
design of management protocols for ad hoc networks. For instance, Ad Hoc Net-
work Management Protocol (ANMP) [39] uses hierarchical clustering to reduce
the number of messages exchanged between the manager and the agents.

Although underlying principles of managing ad hoc networks can also be
applied to sensor networks, there are a number of management systems that have
been designed and developed specifically for wireless sensor networks. These sys-
tems include Digest [40], Sympathy [28, 41], NOSY [42], SNMS [43], AgletBus
[44, 45], and MANNA [46]. More specifically, Digest [40] is an architecture to
monitor wireless sensor networks with different levels of detail, and it focuses on
the design of continuous computing summaries of network properties. Sympathy
[28, 41] is a tool for debugging and detecting failures in sensor networks. NOSY
[42] is a centralized network monitoring system that keeps track of the progress of
code dissemination, adjusts the sensor reporting frequency, pulls information from
an individual sensor if needed, and reboots a node if no messages are received for
an extended period of time. SNMS [43] is a middleware layer that provides a set
of core management services, such as enumerating sensor nodes, remote power
management, monitoring physical parameters of sensor nodes, etc. AgletBus [44,
45] is a management centric middleware that provides a consistent and transparent
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framework for both inter- and intra-nodal coordination and management. Similar
to SNMS, AgletBus also includes a set of services such as leader election, event
forwarding and power management service.

MANNA [46] is a policy-based network management system for wireless
sensor networks. Depending on the network topology and characteristics (homo-
geneous vs. heterogeneous), MANNA assigns different roles (network managers
or agents) to various sensor nodes. These nodes exchange request or response
messages with each other for management purposes. MANNA forms a basis for
fault management [47], one of several network management services supported
by this architecture. Fault management in MANNA mainly relies on the coverage
area maintenance service and the failure detection service. Faults are detected in
two phases in MANNA. In the installation phase, nodes report their location and
energy level to the manager via the agents. The network manager builds coverage
and energy models based on the initial information. During the operational phase,
nodes update their location or energy whenever there is a change in their state.
The network manager periodically performs network auditing by retrieving a node
state. If a node which has enough remaining energy according to the energy model
does not respond to the auditing, a fault is detected.

7. OPEN RESEARCH ISSUES

The future vision of wireless sensor networks is to embed numerous tiny
sensor nodes in unattended places or systems to monitor and interact with physical
world phenomena. These nodes coordinate among themselves to create a network
that performs higher level tasks irrespective of all types of interruptions.

The protocols studied in this paper differ from each other in terms of the types
of faults they address, the way they address those faults, and the notion of relia-
bility. Ideally, a fault tolerant protocol works for both upstream and downstream
data delivery across different underlying topologies. Although the performance
of these protocols reviewed in this paper is promising in terms of robustness and
energy efficiency, further research is needed to address the scalability and network
dynamics in designing fault tolerant protocols.

• Scalability: the number of sensor nodes deployed in the sensing area may
be on the order of hundreds or thousands, or more. Techniques developed
or tested in smaller networks may simply not scale well, because of the
overhead involved.

• Network dynamics: sensor nodes as well as the observed phenomena can
be mobile, which introduces another dimension of complexity and also
another possible source of failures. This illustrates the need for the network
self-configuration and reconfiguration, which is essential to support sensor
applications in a dynamic and energy constrained environment.
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We next suggest several open research issues in designing fault tolerant
protocols in sensor networks.

7.1. A Cross Layer Approach to Fault Tolerance

When there exist severe faults in sensor networks, MAC and routing protocols
must accommodate formation of new links and routes to the destination, transport
protocols must adaptively decide how to retransmit, and application layer protocols
must determine which part of the missing data is critical and what level of loss
is tolerable. Therefore, multiple levels of redundancy may be needed and a cross-
layer approach exploring the interactions among different layers is desirable.

7.2. Recovery from Composite Faults Including Congestion

As can be seen from our previous discussions, none of the protocols can
recover from all different types of faults. Especially, only ESRT [19] addresses
congestion in an efficient manner. We believe that there is a need for a more
robust transport layer solution that can recover from node failures, link failures
and network congestion. Ideally, the method combines the winning features of the
studied protocols in an elegant manner, including quick node-by-node recovery
from PSFQ [24], simple congestion detection and handling from ESRT [19], and
various reliability notions [25].

7.3. Composition of Fault Tolerance and Timeliness Requirements

All the protocols discussed in this paper only consider reliability of data
delivery as a performance metric. In fact, timeliness is also critical for many sen-
sor applications, such as disaster response, fire controlling, earthquake response,
military surveillance, and intrusion detection. The introduction of timeliness com-
plicates the problem furthermore. Additional issues to consider to consider are:
(1) the tradeoffs between reliability, timeliness, and energy efficiency; and (2)
the applications’ preferences if reliability and timeliness needs cannot be satisfied
simultaneously.

7.4. Data Semantics in the Presence of Faults

The presence of faults in sensor networks introduces uncertainty into standard
operations such as answering queries. We should not aim to extract some data from
the network in a purely best-effort manner, but rather, to produce results with a
clearly defined formal meaning. For instance, it is possible that only a subset of the
sensor readings satisfies the application query. Therefore, the network only reports
part of the readings filtered by the query. However, the sink does not know whether
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the remaining reports were not received because of the network faults or because
the results were filtered by the query. If we can provide a metric that indicates the
completeness of the returned answer, the sink would be better informed. Therefore,
it is essential to develop informative quality metrics for sensor applications.

8. CONCLUSIONS

This paper reviewed current techniques for dealing with faults in wireless
sensor networks. We started with a taxonomy of the sources of faults in wireless
sensor networks. We then discussed the algorithms that prevent, detect, identify,
isolate, and treat faults. Next, several management infrastructures for sensor net-
works and ad hoc networks were summarized. Based on our understanding, we
also highlighted several possible future research directions. The resource limita-
tion and unattended feature of sensor networks renders the network very faulty,
and this survey aims to help us further understand the challenges in designing fault
tolerant protocols for distributed sensor applications.

Most fault management techniques in sensor networks have been integrated
with application requirements, differently from fault management in traditional
networks. The primary reason for this is that sensor networks are resource con-
strained and direct application of traditional fault management techniques would
incur significant overhead. Design of a generic fault management technique for
sensor networks must take into account a wide variety of sensor applications with
diverse needs, different sources of faults, and various network configurations. In
addition, scalability, mobility, and timeliness may have to be considered.
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