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Abstract—The objective of this paper is to analyze free 

software for the design, analysis, modelling, and simulation of an 

unmanned aerial vehicle (UAV). Free software is the best choice 

when the reduction of production costs is necessary; nevertheless, 

the quality of free software may vary. This paper probably does 

not include all of the free software, but tries to describe or 

mention at least the most interesting programs. The first part of 

this paper summarizes the essential knowledge about UAVs, 

including the fundamentals of flight mechanics and 

aerodynamics, and the structure of a UAV system. The second 

section generally explains the modelling and simulation of a 

UAV. In the main section, more than 50 free programs for the 

design, analysis, modelling, and simulation of a UAV are 

described. Although the selection of the free software has been 

focused on small subsonic UAVs, the software can also be used 

for other categories of aircraft in some cases; e.g. for MAVs and 

large gliders. The applications with an historical importance are 

also included. Finally, the results of the analysis are evaluated 

and discussed - a block diagram of the free software is presented, 

possible connections between the programs are outlined, and 

future improvements of the free software are suggested. 
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I. INTRODUCTION 

UAVs are a relatively inexpensive alternative to manned 
aircraft for a variety of applications, including aerial 
reconnaissance, environmental monitoring, agriculture, 
surveying, defense, search and rescue, and detection of 
biological, chemical, or nuclear materials. [1] [2] [3] [33] [34] 
[36] [28] [24] [45] [46] [49] 

UAVs have a large number of important advantages. First 
of all, errors arising from the human element are minimized. 
This is of great significance in terms of reducing crashes; 
moreover, UAVs can be produced in smaller sizes which 

 
This paper is loosely based on [44]. 

contribute to their high performance maneuverability, wide 
range of use, ease of control and command. [35] [50] [52] 

The majority of missions are ideally suited to small UAVs 
which are either remotely piloted or autonomous. 
Requirements for a typical low-altitude small UAV include 
long flight duration at speeds between 20 and 100 km/h, cruise 
altitudes from 3 to 300 m, light weight, and all-weather 
capabilities. Although the definition of small UAVs is 
somewhat arbitrary, vehicles with wingspans less than 
approximately 6 m and weight less than 25 kg are usually 
considered in this category. [28] 

Because of the availability of very small sensors, video 
cameras, and control hardware, aerial systems as small as 15 
cm with a mass of 80 g are possible to use for some limited 
missions. These systems are referred to as micro aerial vehicles 
(MAVs). [28] [24] 

An extremely small (less than 15 cm), ultra-lightweight 
(less than 20 g) aerial vehicle systems, with the potential to 
perform indoor and outdoor missions, are known as nano aerial 
vehicles (NAVs). [24] 

Although the development and flight-testing of aircraft are 
well-documented engineering procedures, every UAV design, 
construction, implementation and test are unique and present 
different challenges to engineers, operators, and test teams. 
Because the performance of a UAV is dependent on both 
effective and highly responsive motor control as well as on 
aerodynamic efficiency, the high quality of the design and 
control of a UAV is increasingly required nowadays. 
Moreover, the criteria for UAVs may differ from those for 
manned aircraft; for example, the operation times of a UAV 
can be up to 10 times higher than a manned air vehicle, hence 
operation times of UAVs should be well considered. In 
addition, two important design parameters determine the power 
requirement of a UAV; range (based on the lift to drag ratio 
with fuel efficiency coefficient) and weight (based on total 
mass). [2] [4] [5] [36] [35] [30] [38] [46] 

There are three basic phases in aircraft design: conceptual, 
preliminary, and detailed. Each design phase has characteristics 
which drive the tools and methods used as the design 



progresses. While it may be desirable to have the same suite of 
tools and methods spanning the design process, the widely 
varying characteristics of each of the phases makes this 
extremely difficult. For those organizations whose activities 
span all of these phases, there is a strong desire to have tools 
and methods which also span all of the phases, and this is most 
evident in the area of geometry definition. [177] [180] 

II. FUNDAMENTALS OF FLIGHT MECHANICS AND 

AERODYNAMICS 

Flight mechanics is the application of Newton’s laws (1) 
and (2) to the study of vehicle trajectories (performance), 
stability, and aerodynamic control. [6] [3] 

 F = m  a (1)

 M = I   (2)

The equations of motion are composed of translational 
(force) equations (1) and rotational (moment) equations (2) and 
are called the six degree of freedom (6DOF) equations of 
motion. The 6DOF means that aircraft can move in three 
dimensions in space and can rotate around three axes. Motion 
caused by gravity, propulsion, and aerodynamic forces 
contribute to the forces and moments which act upon the body 
of the airplane. Fig. 1 shows the three axes and the forces and 
moments acting on an aircraft. The center of gravity of the 
aircraft is at the intersection of the axes. [1] [2] [3] [6] [7] 

For trajectory analysis (performance), the translational 
equations are uncoupled from the rotational equations by 
assuming that the airplane rotational rates are small and that 
control surface deflections do not affect forces. The 
translational equations are referred to as the three degree of 
freedom (3DOF) equations of motion. [6] [7] 

A. Forces and Moments 

The forces of lift, weight, drag, thrust, and side act along 
the axes and they force the aircraft to move in the axis 
direction. On the other hand, the three moments, yaw, roll, and 
pitch force the aircraft to turn around the axes. [1] [2] [3] [51] 

 

Fig. 1. The forces and moments acting on an aircraft [3] 

Table I. defines each of the state variables. Although the 
forces and moments are relative to the atmosphere, the state 
variables are defined relative to the earth. [2] 

TABLE I.  STATE VARIABLE DEFINITION [2] 

Variable Symbol 

Roll Rate (rad / sec) P 

Pitch Rate (rad / sec) Q 

Yaw Rate (rad / sec) R 

Velocity (m / sec) V 

Sideslip Angle (rad)  

Angle of Attack (rad) 

Bank Angle (rad) 

Flight-Path Angle (rad)  

Heading Angle (rad)  

North Position (m)  

East Position (m)  

Altitude (m) h 

 

V, χ, and γ represent the magnitude of the velocity vector, 
heading angle, and flight path angle. P, Q, and R represent the 
components of angular velocity; roll, pitch, and yaw. The 
position of the aircraft relative to the earth in Cartesian 
coordinates is expressed by ξ, η, and h. Body attitude relative to 
the velocity vector are μ, β, and α. [2] 

All longitudinal motion occurs in the xz-plane of the 
aircraft. Stability along the longitudinal axis is both static and 
dynamic. Longitudinal static stability is the tendency of the 
airplane to return to pitch equilibrium following an angle of 
attack disturbance. Static stability is the aircraft’s initial 
response to an input command. Aircraft is considered as 
statically stable when it immediately tends to return to its 
steady level flight condition. The aircraft is statically stable if 
the center of gravity is located at the wing aerodynamic center. 
When viewed over time, the aircraft is dynamically stable if it 
tends to return to steady level flight condition. [2] [6] [7] 

B. Airfoils and Reynolds Number 

The design of efficient airfoils and wings is critical. The 
proper functioning of the airfoil is the prerequisite to the 
satisfactory performance of the lifting surface itself. [24] [29] 
[28] 

Accurate prediction of airfoil performance is especially 
necessary in the design of efficient low-speed airfoils. 
Parameters such as a wingspan and a chord length of the 
aircraft should be sized according to the shape and density of 
the structural model. The ideal shape of an airfoil depends 
profoundly upon the size and speed of the wing of which it is 
the core; in other words, different sizes of airfoils require 
different shapes. This dependence is called scale effect. [28] 
[31] [29] [38] [5] 



The scale effect relates to the phenomenon that an airfoil 
which has most excellent qualities on an insect or bird may not 
exhibit these advantages when scaled up for an airplane wing, 
and vice versa. The scale effect is characterized by the chord 
Reynolds number (Re) defined by equation (3), where V is the 
flight speed, c is the mean wing chord, and v is the kinematic 
viscosity of the fluid in which the airfoil is operating. A 
Reynolds number calculator can be found in [98]. [29] [28] [6] 
[38] [5] 

 
v

cV 
Re  (3) 

The Reynolds number quantifies the relative importance of 
the inertial (fluid momentum) effects on the airfoil behavior, 
compared with the viscous (fluid stickiness) effects. It is the 
latter effects that essentially control the airfoil performance 
since they dictate the drag or stream-wise resistance as well as 
limiting and controlling the maximum lift of the airfoil. 
Normally, these qualities are described by the lift and drag 
coefficients, CL and CD defined as (4) and (5), where L and D 
are the lift and drag per unit span, q is the flow dynamic 
pressure, and c is the wing chord. The lift and drag coefficients 
depend on the Reynolds number as well as on the angle of 
attack of the airfoil which represents its geometric inclination 
to the incoming flow. [29] [6] 

 
cq

L
CL 

  (4) 

 
cq

D
CD 

  (5) 

The chord length and the wingspan are based on the 
aircraft’s mass and payloads weight; for instance, increasing 
payloads also increases the mass of the aircraft where Reynolds 
number rises as well as the wing-span. [38] 

The combination of small length scale and low velocities 
results in a flight regime with low wing chord Reynolds 
numbers (i.e., chord Reynolds numbers ranging from 10,000 to 
500,000). [28] [29] 

The aerodynamics of fixed-wing UAVs is critically 
dependent on the Reynolds number and aspect ratio of the 
wing. Existing airfoil design methods produce good results 
down to Reynolds numbers of 200,000. When the aspect ratio 
decreases below 1.5, the nonlinear lift from the tip vortices 
dominates, especially at high angles of attack. For this reason, 
MAVs tend to cruise at higher angles of attack than higher 
aspect ratio vehicles. [28] 

Fig. 2 shows this huge scale range, which spans the 
Reynolds numbers from 10

2
 to 10

9
. Below the lower limit, 

viscous effects are dominant and it is unlikely that any airfoil-
like performance can occur. [29] 

 

Fig. 2. Flight Reynolds number spectrum [29] 

The insects and NAVs are in the range up to 10
4
, where the 

flow is characteristically strongly and persistently laminar. The 
range 30,000 ≤ Re ≤ 70,000 is of great interest to MAV 
designers. The range of flying animals, MAVs, and small 
UAVs is at somewhat higher Reynolds numbers up to 10

5
. [29] 

[28] [24] [53] 

In regime up to about 10
6
, the airfoil performance improves 

significantly because the parasite drag decreases. There is also 
the coexistence of a number of fascinating flight systems to 
support this claim; for instance, large soaring birds of quite 
remarkable performance, some small UAVs, foot-launched 
ultralight, man-carrying hang-gliders, the human-powered 
aircraft, and also the airfoils for small modern wind turbines. 
Sailplanes, light aircraft, and jet transports operate at Reynolds 
numbers up to and beyond 10

7
. [29] [28] [53] 

 A convenient parameter to measure the effectiveness of an 
airfoil (also known as aerodynamics efficiency) is its lift-to-
drag ratio (CL/CD); the maximum value of this quantity gives a 
good indication of the airfoil effectiveness. For design 
purposes, it is desirable that this maximum occur at a high lift 
coefficient so that the physical size of the lifting surface is 
minimized. [29] [24] [53] 

At the lower Reynolds number values the viscous effects 
are relatively large, causing high drags and limiting the 
maximum lift, while at the higher values the lift-to-drag ratio 
improves. There is a critical Reynolds number of ca. 70,000 at 
which this performance transition takes place. This dramatic 
increase can be seen the most intensively in Fig. 3. [29] [24] 

 

Fig. 3. Low Reynolds number airfoil performance [29] 



The striking change in performance for smooth airfoils is 
near the critical Reynolds number where the lift-to-drag ratio 
increases more than an order of magnitude. It is of great 
interest that a rough or turbulent airfoil does not exhibit this 
abrupt performance change with Reynolds number. It is 
important to know that this critical Reynolds number divides 
the airfoils of the insect class (less than 10

4
) from those of the 

large airplane class (above 10
6
) (as illustrated in Fig. 2). [29] 

[53] 

Some representative airfoil sections of this transitional 
range are shown in Fig. 4. At the low end, there are the insects 
with the interesting feature that it is not necessary to have a 
smooth surface; in fact, it is likely that the discontinuities are 
desirable to delay flow separation. For birds, however, 
smoothness begins to be important, as shown by the pigeon 
section. In the middle range is the Eppler 193, an airfoil with 
excellent performance at a Reynolds number of about 10

5
, and 

at the high end, the Lissaman 7769, the airfoil used on the 
Gossamer Condor and Albatross, and the Liebeck L 1003, an 
airfoil of striking performance which provided clues on which 
the design of the Lissaman 7769 was based. [29] 

 

Fig. 4. Representative low-Reynolds-number airfoils [29] 

1) Rotary Wing Airfoil 
There are two main types of the rotor blade: symmetrical 

and asymmetrical, as illustrated in Fig. 5. [41] 

 

Fig. 5. Symmetrical and asymmetrical airfoils [41] 

Symmetrical blades are very stable, which helps keep blade 
twisting and flight control loads to a minimum. This stability is 
achieved by keeping the center of pressure virtually unchanged 
as the angle of attack changes. [41] 

Asymmetrical airfoils normally would not be as stable, but 
this can be corrected by bending the trailing edge to produce 
the same characteristics as symmetrical airfoils; this correction 
is called “reflexing”. Using asymmetrical type of rotor blade 
allows the rotor system to operate at higher forward speeds. 
The advantages are more lift production at a given angle of 
attack than a symmetrical design, an improved lift-to-drag 
ratio, and better stall characteristics. The disadvantages are 
greater production costs and center of pressure travel of up to 
20% of the chord line (creating undesirable torque on the 
airfoil structure). [42] 

C. Weight and Power 

During the design process of a UAV, both the weight 
budget and the power budget should be carefully monitored. In 
particular, the total mass of the vehicle should be kept as low as 
possible, since added weight will increase power consumption. 
The minimum power required to keep a fixed-wing aircraft in 
level flight can be expressed as (6), where T is the thrust, V is 
the velocity, ηp is the propeller efficiency, m is the aircraft 
mass, g is the gravitational variable, S is the wing area, ρ is the 
density of fluid, L/D is lift-to-drag ratio, and CL is the lift 
coefficient. This means that doubling the weight nearly triples 
the power consumption. [24] [244] 

Similarly, for hovering flight, the power requirement is 
expressed as (7), where M is the figure of merit of the rotor and 
Vh is the induced velocity in hover. Similar to that described 
above, a doubling of the weight increases the required power 
by a factor of nearly 3. [24] [244] 
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III. THE STRUCTURE OF A UAV SYSTEM 

The study of structure, composition and function of the 
UAV system (UAS) is the premise. Any UAV system depends 
on its mission and range; however, most UAV systems include: 
airframe (physical and material structures) and propulsion 
systems, control systems, sensors for information collection, 
launch and recovery systems, communication links to get 
collected information from the UAV and send commands to it, 
and a ground control station. The typical UAV system is shown 
as Fig. 6. It is obvious that the health state of the whole system 
is dependent on the composed sub-systems. [3] [5] [34] [43] 
[38] [45] [48] [49] 

UAVs can also require additional sensors to avoid 
obstacles, i.e. power lines, birds, trees, buildings and other 
barriers. These types of avoidance sensors are called see-and-
avoid or sense-and-avoid. [38] [49] 



 

Fig. 6. The composition of a UAV system [43] 

Although human personnel are part of the overall system, 
UAV systems include different levels of autonomy, ranging 
from remote control to fully automated mission completion 
including adaptation and decision making in response to 
changing operational conditions. [25] [46] 

A. Airframe 

Fig. 7 shows the main components of fixed-wing aircraft. 
The airframe consists of fuselage, wings, horizontal stabilizer, 
elevator, vertical stabilizer, and rudder. The weight of the 
airframe does not only come from the wings (pylon, flaps, and 
ailerons), fuselage, empennage, and nacelle but also from 
propulsion, avionics, sensors, and other payloads. The payload 
of medium range light aircraft is usually about 40–50%. [3] 
[38] [5] 

 

Fig. 7. Fixed-wing aircraft components [3] 

The elevator is used to control the pitch of the aircraft. The 
rudder is used to control the yaw of the aircraft. The ailerons, 
which are movable surfaces on the outer trailing edge of the 
wings, are used to control the roll of the aircraft. The flaps, 
which are hinged parts on the inner trailing edge of the wings, 
are used to produce higher lift at low speed, and to increase 
drag on landing to get the required landing speed and approach 
angle. [3] 

The landing gears configurations are either tricycle landing 
gear, which has the main landing gears just behind the aircraft 
center of gravity and a steerable nose gear, or tail dragger, 
which has the main landing gear forward of the aircraft center 
of gravity and a small steerable gear at the tail. [3] 

Carbon fiber composites are the main materials used for 
UAV airframes, because they have high strength/weight ratio 
and are easily accessible. [24] 

B. Propulsion 

The propulsion system of a UAV consists of the following 
elements: [37] [38] 

 energy source; e.g. chemical fuels (fossil fuels, 
biofuels, and chemicals), electricity, solar energy (in 
conjunction with photovoltaic cells), hydrogen, 
methanol, and energy mechanics 

 storage media; e.g. tanks, batteries, capacitors, and 
metal hydrides 

 mechanical energy converter; e.g. internal combustion 
engine, and fuel cell + electric motor 

 lift/thrust converter; e.g. rotor, fan, propeller, and jet 
engine 

Lift/thrust conversion systems are closely linked to the type 
of aircraft (fixed wing, rotary, lighter than air, etc.). In addition, 
propulsion systems usually include power control, RPM 
control, heat management system, and an auxiliary electrical 
power generator. [37] 

Three main types of propulsion systems exist for UAVs: 
[37] 

 alternative thermal systems; where different 
thermodynamic cycles, fuel, or engine types can be 
used (e.g., spark-ignition reciprocating engines fuelled 
by gasoline) 

 electrical systems; where the required power is 
obtained through an electric motor and the power is 
generated or stored in different ways 

 hybrid systems; combining any of the systems listed 
above, even the same type (e.g. a combination of fuel 
cell and battery or Regenerative Fuel Cell Systems, 
RFC, which combine fuel cell, battery, and 
photovoltaic cells) 

Currently, mainly MAVs and small UAVs are powered by 
batteries and electric motors due to their high efficiencies, 
reliability, and ease of control. Electric motors convert 
electricity into mechanical energy by moving a propeller, fan, 
or rotor. They have the advantage of being the quietest and 
having one of the lowest thermal signatures. [37] [24] 

Since coreless motors are lighter and smaller than, for 
example, direct current (DC) iron-core motors, they are 
considered more suitable. In addition to the small dimensions 
and the low weight, another advantage of coreless motors is the 
lack of iron losses that are reflected in a higher efficiency. 
Furthermore, since the rotor is very light, it has a small inertia 
that allows extremely fast accelerations and decelerations. 
However, the lack of iron in the center reduces the motor heat 
dissipation. To avoid overheating and thermal problems, they 
are only used for small and low-power motors. [24] 



Innovations exist in small propulsion; for example, there 
are mini-ducted fan, mini-turboprop, mini-gas turbines, and 
mini-internal combustion engines. [24] [5] 

C. Energy Storage 

Electrical energy is supplied by a battery, photovoltaic or 
fuel cell. Although they are undergoing continuous 
improvement, electricity demand comes not only from the 
engine, but also from the electronic circuits, sensors, actuators 
and communication systems; consequently, the endurance or 
speed is limited. However, a large part of the electric energy is 
used for the electric motors. [37] [24] 

Since energy stored in batteries does not require any 
conversion to be useful for both the electronics and propulsion, 
batteries seem to be the most appropriate for an electric UAV. 
Furthermore, the energy density of the batteries has steadily 
increased during the last years as shown in Fig. 8. [24] [5] 

The most advanced batteries (intelligent batteries) include 
circuit that optimizes the cells’ discharge curves with respect to 
the loads. Despite these improvements, the most advanced 
batteries also provide much lower energy densities than 
sources, such as gasoline or methanol. [24] [5] 

Another alternative is fuel cells. A fuel cell system is 
conceptually a sort of battery in which the fuel is transformed 
into electric current trough an electrochemical process. There 
are several kinds of fuel cells which mainly differ with respect 
to the principle of energy conversion. Currently, the most 
promising fuel cells for a UAV are proton exchange membrane 
(PEM) fuel cell and direct methanol fuel cell (DMFC) which 
could be considered as a subcategory of the PEM. [24] [37] [5] 

Besides fuel cells, ultra-capacitors have become interesting 
the last few years. The latest improvements have made this 
power storage principle attractive also for UAVs, and they 
have already been used in some prototypes. [24] 

Since they are an evolution of normal capacitors, their main 
features are fast charging, high peak current, and virtually 
unlimited charge-discharge cycles. The main drawback 
consists of the output voltage that strongly depends on the 
charge status of the capacitor. Moreover, when compared with 
other energy sources, they have a relative low energy density as 
can be seen in Fig. 8. [24] 

 

Fig. 8. Energy densities of various energy storage systems [24] 

Although solar cells are also a potential useful energy 
source, photovoltaic systems cannot be used for every type of 
the UAV; for example, the small dimensions of NAVs, the 
weight constraints, the indoor application area (low light), and 
some UAV typologies limit the efficiency and the availability 
of this energy source. [24] 

D. Transmission 

For a UAV system, two different kinds of signals have to 
be transmitted: control signals and data signals. The control 
signals are needed for take-off, landing and for piloting the 
vehicle in general while the data signals are the data collected 
by onboard sensors of a UAV system (such as camera, 
microphones, gas sensors, and other devices). Control signals 
are mainly transmitted from the ground station to the vehicle 
while the data signals are sent from the vehicle to the ground 
station. [24] [5] [48] 

Currently, the only system known to be operative is 
communication by radio, directly or via satellites or other 
means of radio relay. [5] 

The specifications for communications performance 
include two fundamental parameters: [5] 

 data rate; which is the amount of data transferred per 
second by a communications channel and is measured 
in bytes per second (Bps) 

 bandwidth; which is the difference between the 
highest and lowest frequencies of a communications 
channel, i.e. the width of its allocated band of 
frequencies, and is measured in MHz or GHz as 
appropriate 

When reducing the UAV system dimensions, the major 
challenges for the communications parts are represented by the 
weight and size of the antennas, filters, and resonators. 
Antenna shape strongly depends on the operating frequencies 
and, thus, will depend on external factors, such as application 
(military frequencies are different from civilian frequencies), 
distances, bit rate, and other factors. This requires the 
application specific antenna design. [24] 

The loss of communication during operations may result 
from: [5] 

 failure of all or part of the system due to lack of 
reliability 

 loss of line-of-sight (LOS) due to geographic features 
blocking the signals 

 weakening of received power due to the distance from 
the UAV to the control station becoming too great 

 intentional or inadvertent jamming of the signals 

UAV system should have an ability to safely 
complete/cancel a mission in case the communication is lost, 
e.g. the UAV can fly to the base or to the last position where 
the communication was in order. It also must be ensured that 
the transient loss of communication will not affect the UAV 
functions. 



E. Sensors 

Sensors can roughly be divided into two categories. The 
first one contains the sensors that are necessary for flight 
control, the second is sensors that are a part of the payload and 
provide mission-specific information. [24] 

A UAV system should theoretically be able to fly only with 
a 3-D accelerometer and a 3-D gyroscope. Ideally, if the initial 
position is known, all the later positions can be calculated only 
by integrating the resulting vector acceleration two times to 
find the position, while 3-D gyroscope signal is used to 
maintain flight stability. However, since all gyroscopes and 
accelerometers suffer from offsets and drifts, for instance with 
time and temperature, the accuracy of the calculated position 
will decrease over time. [24] 

The currently popular method of position fixing and 
navigation between points is by use of the Global Positioning 
System (GPS). GPS is available as two services, the Standard 
Positioning System (SPS) for civilian users and the Precise 
Positioning Service (PPS) for military users. Both signals are 
transmitted from all satellites. The accuracy of GPS position 
fixes varies with the receiver’s position and the satellite 
geometry. Height is also available from GPS, but to a lower 
accuracy. [5] 

The other class of sensors is the data-collecting sensors that 
provide useful information for the users. Examples are 
cameras, microphones, gas sensors, biological sensors, 
radiation sensors, and other sensors. [24] 

IV. THE MODELLING AND SIMULATION OF A UAV 

As known, flight modelling and simulation have many 
advantages; for instance, energy and finance saving, security, 
and no limitation of locality and weather. Moreover, some hard 
and risky tasks can be simulated. [34] 

However, the accurate modelling and simulation of a UAV 
is not an easy task, due to the need to calculate many 
parameters either by physical measurements, experiments, or 
estimation from available data of similar UAV or by software 
tools. One of the big challenges is calculating aerodynamic 
coefficients. Aerodynamic coefficients characterize the 
response of the proposed vehicle based on its geometry. [1] [3] 

UAVs typically consist of sets of sophisticated and 
different entities including several categories of human 
personnel. A comprehensive simulation environment must 
model all these components and include specific characteristics 
related to system intelligence, complexity, autonomous 
operation, and collaborative operation. [25] 

Several major assumptions are often made for the 
modelling and simulation of the aircraft. First, the aircraft is 
rigid. Although aircraft are truly elastic in nature, modelling the 
flexibility of the UAV should not contribute significantly to the 
research. Second, the earth is an inertial reference frame. Third, 
aircraft mass properties are constant throughout the simulation. 
For UAV modelling, it can be assumed the aircraft has constant 
mass over a flight. Finally, the aircraft has a plane of 
symmetry. The first and third assumptions allow for the 

treatment of the aircraft as a point mass. This assumption is a 
satisfactory approximation for UAV models. [1] [2] 

For the modelling and simulation of a UAV at least the 
following items must be created: [3] [34] 

 A Flight Dynamics Model (FDM) 

 A UAV mathematical model 

 A 3D graphical model (only if the 3D visualization of 
the UAV is needed) 

 A control system 

 A flight route identification 

 Autonomous flight simulation 

FDM is the physics/math model which defines the 
movement of an aircraft under the forces and moments applied 
to it using the various control mechanisms and from the forces 
of nature. FDM includes development of a physical, inertial, 
and aerodynamic model representing the UAV. FDM processes 
parameters from all input information. By manipulating input 
variables mathematically, FDM predicts the future states of an 
aircraft. The FDM accuracy determines the fidelity of the 
simulator. [1] [2] [3] [34] 

With a generic FDM implementation in mind, the 
Aerodynamic Coefficients are not provided by the FDM and 
hence need to be determined by other ways. As long as the 
aerodynamic coefficients are available, the FDM may model 
the motion of any vehicle configuration, from a ball to a 
transonic fighter. [1] 

FDM, like any other dynamics model, is a data driven 
program. Hence the accuracy of its outputs depends on the 
quality of the input information supplied. FDM takes initial 
conditions of the vehicle, and other inputs including aircraft 
properties (e.g. inertia and gravity), aerodynamic coefficients, 
control inputs and relative wind conditions. After calculations, 
FDM sends the vehicle dynamic responses to the output. Fig. 9 
illustrates the internal data flow of FDM. [1] 

 

Fig. 9. The schema of a flight dynamics model [1] 

As indicated, wind modelling has a significant role in the 
design and certification of aerial vehicles. It helps to study and 
analyze the behavior of the aircraft facing the wind. [40] [1] 

The best equations to use to completely and accurately 
model a UAV’s true motion are nonlinear fully coupled 
ordinary differential equations. With these equations of motion, 



UAV response to any commanded inputs or wind disturbances 
is accurately modeled. [2] [33] 

However, a software model developed from first principles 
has unknown accuracy. The accuracy of model is ensured 
through a verification and validation process. [1] [25] [26] 

Verification is the process of determining that a model 
implementation accurately represents the developer’s 
conceptual description of the model and the solution to the 
model. [26] [27] 

Validation is the process of determining the degree to 
which a model is an accurate representation of the real world 
from the perspective of the intended uses of the model. [26] 
[27] 

The 3D graphical model is necessary only if 3D 
visualization of the UAV is needed. 3D Visualization can give 
us a better view of the simulation than numbers and graphs 
alone. [3] 

UAVs promise greater precision; however, autonomous 
flight and stability of the UAV depend on the control system. 
The ability to test control systems in a virtual environment is 
significant for development. A reliable UAV simulation 
process which can be adapted for different aircraft would 
provide a platform for developing control systems with reduced 
dependence on expensive field trials. In many cases, testing 
newly developed control systems in a virtual environment is 
the only way to guarantee absolute safety. [1] [2] [4] [34] 

The way to identify flight route means to simulate system 
similar to the GPS or the GPS itself. [3] 

Autonomous flight simulation depends on all things above; 
in addition, use cases and activity diagrams of simulation 
should be designed to define what should be found and how it 
should be found. Next, the settings of simulation parameters 
(e.g. density, gravity, airspeed, and altitude) must be defined 
and then the simulation itself can be run with or without 
visualization. [2] [3] 

An example of the hierarchy of a UAV simulation system 
can be seen in Fig. 10. This UAV simulation system is divided 
into three layers based on function. In the simulation system, 
the objects on top layer have more responsibilities and manage 
the objects on low layer; for instance, they provide the 
instantiation of object, the calling of methods, communication 
and operation management. In contrast, the objects on low 
layer are focused more on functionality. [34] 

The simulation system includes an environment model, an 
aircraft system model and an equipment model. Each 
subsystem model has the independent function; for example the 
aircraft system model is the core of the system and is formed of 
flying control model, engine model, kinematics model, sensor 
model, data channel model and other models. [34] [25] 

 

Fig. 10. The structure of a UAV simulation system [34] 

V. FREE SOFTWARE 

Modelling and simulation software has been developed to 
assist in the design, development, test, and validation of 
complex aircraft systems. The fidelity and precision of the 
software ensure the reliability and efficiency of flying 
simulation system and can decrease the time and costs needed 
to development of any UAV. [39] [34] 

Simulation program can run in two modes: [34] 

 real-time mode (used in real-time systems) 

 script mode (used in test process) 

A large amount of freeware and open-source software for 
the modelling and simulation of aircraft exists on the Internet. 
Fortunately, much of the software can also be used for UAVs. 
As noted, this section probably does not include all of the free 
software, but tries to mention, describe, or analyze the most 
interesting applications. 

A. JSBSim Flight Dynamics Model 

JSBSim is an open-source 6-DOF nonlinear flight 
dynamics model which is used as the default FDM for 
FlightGear Flight Simulator and for OpenEaagles Simulation 
Framework. JSBSim is generally considered as a very accurate. 
[1] [3] [12] [13] [14] [52] [55] [56] 

The accuracy of JSBsim has been proved by a large number 
of studies; for example, it was tested on Cessna-182 UAV by 
University of Sheffield in the United Kingdom [3], and on 
Shadow UAV by Purdue University in Indiana, USA [58]. 
Moreover, a full 6-DOF simulator for flight simulation and 
pilot training was constructed at the University of Naples using 
JSBSim as its physics engine. JSBSim is also used to drive the 
motion-based research simulators in the Institute of Flight 
System Dynamics and Institute of Aeronautics and 
Astronautics at RWTH Aachen University in Germany. 
Furthermore, U.S. Department of Transportation developed a 
human pilot math model by using JSBSim as the 6-DOF 
simulation core. [1] [3] [12] [57] [52] [56] 



JSBSim is written in the C++ programming language and 
can be run as a stand-alone application, or as an integrated part 
of the flight simulator which provides visual output. It also 
supports many data output formats such as socket and file. [3] 
[12] [13] [55] [56] 

JSBSim can model aircraft, missile, rotorcraft, and lighter-
than-air systems, and may take into consideration the rotational 
earth or wind effects on the equation of motion. Particular 
aircraft flight control systems, propulsion, aerodynamics, 
landing gears, and autopilot are defined in eXtensible Markup 
Language (XML) format files. [3] [12] [13] [59] [55] [56] 

JSBSim allows algebraic functions (e.g. sum, random, 
average, difference, sinus, power and other operations) to be 
defined in configuration files. All currently supported 
operations are listed in [57]. 

Despite JSBSim uses imperial units (e.g. feet, pounds, etc.) 
for internal calculations almost exclusively, it is also possible 
to use international units (e.g. meters, kilograms, etc.). In fact, 
to avoid confusion, the unit should always be specified using 
the “unit” attribute as shown in Fig. 11. [57] 

 

Fig. 11. An example of the unit attribute 

1) Configuration Files and Aeromatic 
JSBSim requires creating JSBSim aircraft configuration 

files to model and simulate an autonomous UAV; for instance, 
by using the Aeromatic. Aeromatic is a free PHP-based web 
application and is also included in source code of JSBSim. 
However, Aeromatic uses templates for the generation of the 
configuration file (e.g. the template for the glider, light twin, 
subsonic racer/aerobatic, etc.) and provides only rough values. 
As a result, the next step is to perform educated guesses to 
improve important sections in the created configuration files 
with the assistance of available data of a similar UAV or with 
the assistance of appropriate software tools. [3] [13] 

Aeromatic takes input conditions from the user i.e. used 
units (imperial/international), a name, type, and length of the 
aircraft, maximum take-off weight, wingspan, wing area, a 
landing gear layout, a number of engines, an engine type, and 
an engine layout. Some values can be estimated by Aeromatic, 
e.g. wing chord, wing area, inertia, and other parameters. A 
part of Aeromatic application can be seen in Fig. 12. [3] [13] 

 

Fig. 12. The aircraft configuration file creation by using Aeromatic 

For the test of Aeromatic, the glider type was used, the 
metric system of measurement, a maximum take-off weight of 
2 kilograms, a wingspan of 2.5 meters, a length of 1 meter, one 
electric motor, and an after-fuselage engine layout. The other 
parameters were automatically estimated by Aeromatic, for 
example a wing chord was calculated as 0.0243 m, a wing area 
as 0.0585 m

2
, and wing loading as 34.177 kg/m

2
. 

However, because the wing loading seemed to be extremely 
high, it was necessary to set the wing chord and wing area to 
higher values i.e. to 0.25 meters and 0.58 m

2
. After this 

modification, the wing loading decreased to 3.467 kg/m
2
 which 

should be acceptable. In conclude, the estimated values may 
not always be suitably calculated by Aeromatic; thus educated 
guesses must be performed. 

Aircraft’s metrics, airframe geometry, mass and inertia 
properties, landing gear positions and their ground reactions, 
flight control system, and aerodynamic characteristics are 
specified in the aircraft configuration file whose structure is 
shown in Fig. 13. [3] [57] [56] 

 

Fig. 13. The structure of the aircraft configuration file 



The file-header section of the configuration file includes the 
author’s name, date of creation, a version of the model, a 
license type, references, notes, and limitations. [57] 

The metrics section of the configuration file defines the 
characteristic measurements of the vehicle and the locations of 
key points. A Vehicle Reference Point (VRP) is usually placed 
at the nose of the aircraft; X-axis is along the aircraft body 
(positive towards the tail), Y-axis is along the wings (positive 
towards the right wing tip), and Z-axis is in the vertical axis 
(positive downward). The VRP is an agreed upon point on the 
aircraft, for which the flight model will provide the 
latitude/longitude/altitude. The VRP is not so important to 
flight dynamics but it is very important to 3D visualization. It 
helps with the placement of the 3D aircraft model where the 
flight model exactly specifies aircraft components. [3] [57] 

The mass-balance section specifies the empty weight of the 
aircraft, the moments and products of inertia, the location of 
the center of gravity, and definitions for any point masses that 
are included such as Payloads. [57] 

Hot air balloons, buoyancy-assisted vehicles, and zeppelins 
can be modeled through the use of gas cells and ballonets. The 
buoyant-forces section has to be added for these types of 
systems.  The type of gas contained in the gas cell can be 100% 
pure hydrogen, helium or air. The initial fullness fraction of the 
cell is normally in the interval (0-1); the fullness value greater 
than 1.0 initialize the cell at higher than ambient pressure. The 
maximum allowed cell overpressure with respect to the 
surrounding atmosphere, the capacity of the manual valve, and 
the heat flow from the atmosphere and surrounding 
environment into the gas cell can also be defined. However, 
automatic valves with limited capacity, cell failure from 
overpressure, more realistic center of buoyancy, and more 
realistic and complete inertia moment are still missing. [57] 
[59] 

Ground reactions section specifies the wheels location, and 
the coefficients associated with each wheel. Contacts between 
the aircraft and the ground can be modelled so that the aircraft 
can realistically take-off and land. Contacts can also be used to 
model the interaction between the ground and any part of the 
aircraft structure such as the wing tip. JSBSim does not make 
any guess for the contact points location from the geometry 
data provided in the metrics section. It is advisable to have at 
least 3 unaligned contacts so that the aircraft can have a stable 
position when resting on the ground. [3] [57] 

JSBSim can model two types of contacts: [57] 

 BOGEY which is used for landing gears 

 STRUCTURE which is used for any location on the 
aircraft other than the landing gears (typically wing 
tips, nose and tail) 

Both of these contact types basically result in a force which 
resists the penetration of the ground by the aircraft. The main 
difference between the two types of contacts is how the ground 
reaction force is computed. Furthermore the BOGEY type 
includes features which are typical to landing gears such as 
brake and steering. [57] 

The ground reactions are computed as forces that support 
the aircraft above the ground, and affect the motion over the 
ground; thus, these forces can be split into two components: 
[57] 

 the ground normal reaction (computed by a 
spring/damper model) 

 the ground tangential reaction (computed by the 
Coulomb friction law) 

Aerodynamic forces and moments in JSBSim are defined in 
the aerodynamics section of the aircraft configuration file, or in 
a separate file. Within the aerodynamics section there are six 
axis sections corresponding to three translational and three 
rotational axes. Many factors affect each of the forces and 
moments. The total force or moment is the sum of the 
individual effect. [3] [57] [55] [56] 

Optionally two other coordinate systems may be used: [57] 

 body coordinate system (x, y, z) 

 axial-normal coordinate system (axial, normal, side) 

JSBSim can model externally or arbitrarily applied forces 
and moments. Such a capability might be needed to model a 
catapult, hook and wire capture device, tow rope, or parachute. 
External forces are defined in the external reactions section. 
[57] 

JSBSim can model different types of engines i.e. electric, 
turbine, turboprop, piston, and rocket engines. Nowadays, there 
is no battery model available for electric engine; thus it does 
not consume any energy in simulations. [3] [13] 

The aircraft’s propulsion system is specified in two files, 
one for an engine and the other for a thruster. This technique 
allows researchers to assign different kinds of engines and 
thrusters to the aircraft. These files are referred to in the 
propulsion section of the aircraft configuration file. 
Additionally, other parameters (e.g. the location, orientation, 
and energy consumption) of the engine, thruster, and fuel tank 
are specified in this file. [3] [13] [55] [56] [58] 

For the creation of an engine or propeller, Aeromatic takes 
the engine type, engine power or thrust, maximum engine 
RPM, pitch condition, and propeller diameter from the user 
while the orientations of engines and propellers have to be 
edited in file if it is needed. [3] [13] [58] 

Aeromatic does not have the ability to create an electric 
engine; however, there is no problem to make the file manually 
because of small complexity. An example of the electric engine 
file is shown in Fig. 14. 

 

Fig. 14. The configuration file of the 2 kW electric engine 

It was found that Aeromatic is not appropriate for creating 
the propeller of small measurements because, for example, the 
rotational inertia (<ixx> element in file) of generated propeller 



is almost always zero. The problem is probably in the rounding 
of the value to 2 decimal places. However, after appropriate 
editing, the generated file may be usable. 

JSBSim provides components which can be connected 
together to model a flight control system for an aircraft. The 
control of the channels such as Pitch, Roll, Yaw, Flaps, 
Landing Gear, and Speed Brake can be performed in the flight 
control section. The flight control surfaces are elevator, right 
and left ailerons, and rudder. [3] 

Mechanization of components can be defined by properties.  
Properties are like variables which are categorized into a tree 
structure, and accessible from the configuration file. Properties 
refer to various values within the simulation which represent 
such physical parameters as roll rate, air density, drag force, 
and others. [57] 

Almost all control system components have some common 
features. Unless otherwise specified, the common elements are: 
input, output, delay, and clipto (the last one permits limiting of 
the output of a component). The possible components to use 
are: Filter, Switch, Sample and Hold, Sum (named as 
“summer”), Gain, Scheduled Gain, Aero-surface Scaling, 
Deadband, Limiter, Positive or Negative Value, Absolute 
Value, Kinematic, FCS (Flight Control System) Function, 
Actuator, Sensor, Translational Accelerometer, and PID 
(Proportional-Integral-Derivative) controller. [57] 

JSBSim can be scripted to run automatically by using a 
script file in XML format. Commands are specified using the 
scripting directives for JSBSim. A test condition (or 
conditions) can be set in an event in a script and when the 
condition evaluates to true, the specified action (or actions) is 
taken. An event can be persistent, which means that at all times 
when the test condition evaluates to true the specified actions 
are executed. When the set of tests evaluates to true for a given 
condition, an item may be set to another value. This value may 
be a value, or a delta value, and the change from the current 
value to the new value can be either via a step function, a ramp, 
or an exponential approach. The speed of a ramp or approach is 
specified via the time constant. The basic structure of the script 
file is shown Fig. 15. [57] [55] [56] 

 

Fig. 15. The basic structure of the script file 

B. FlightGear Flight Simulator 

FlightGear is an open-source flight simulator, written in the 
C++ programming language, to model and simulate a wide 
variety of aircraft and, reportedly, also a soft-wing and 
flapping-wing vehicles (ornithopters). FlightGear has probably 

the ability to model all these kind of vehicles and their hybrids. 
[1] [3] [14] [15] [60] [45] [47] [48] [49] [52] [58] 

Data visualization is another aspect considered while 
building the flight dynamics model. FlightGear supports many 
different 3D file formats, for example VRML1, DXF and 
AC3D. AC3D is the standard used in most FlightGear models. 
FlightGear can produce a 3D graphic animation in real time 
and is connected to FDM. The animation facility allows the 
UAV to be viewed from any angles, and provides absolute 
visual information on the UAV attitude and stability. 
Moreover, it models real world instrument behavior, and 
system failures. [1] [3] [14] [15] [60] [62] [45] [47] [50] [58] 

FlightGear allows the user to access the internal properties 
and monitor any of its internal state variables. By editing 
configuration files, it is possible to create sound effects, model 
animations, instrument animations and network protocols for 
nearly any situation. FlightGear can communicate with external 
flight dynamics models, GPS receivers, external autopilot, 
control modules, other instances of FlightGear, and other 
software. FlightGear could also be used for the simulation of 
multi-agent cooperation. [3] [15] [62] [47] [48] [49] [58] 

FlightGear contains many special features, some of which 
are not obvious to the new user, e.g. aircraft carrier with 
launching of aircraft from a catapult, Atlas (“moving map" 
application), multiple displays, multiple computer, recording 
and playback, and air-air refueling. [60] 

It is possible to choose between three primary FDMs: 
JSBSim (described in previous subchapter), YASim, and 
UIUC. It is also possible to add new dynamics models or even 
interface to external proprietary flight dynamics models. [15] 
[16] [60] [61] [62] 

YASim is an integrated part of FlightGear and uses a 
different approach than JSBSim by simulating the effect of the 
airflow on the different parts of an aircraft. The advantage of 
this approach is that it is possible to perform the simulation 
based on geometry and mass information combined with more 
commonly available performance numbers for an aircraft. This 
allows for quickly constructing a plausibly behaving aircraft 
which matches published performance numbers without 
requiring all the traditional aerodynamic test data. [15] [60] 

UIUC is based on LaRCsim originally written by the 
NASA. UIUC was initially geared toward modelling aircraft in 
icing conditions, but now encompasses nonlinear 
aerodynamics, which result in more realism in extreme 
attitudes, such as stall and high angle of attack flight. [15] [16] 
[60] [61] 

FlightGear tries to replicate the real navigation system 
around the world; thus a flight path which contains a number of 
waypoints can be constructed. FlightGear uses fixed waypoints 
such as airports and navigation aids such as radio stations for 
navigation. In order to use the selected waypoints with 
FlightGear navigation system, a unique ID can be assigned to 
each waypoint, and the FlightGear database can be altered to 
include the new waypoints with their IDs. [3] 

The fixed waypoints are determined by latitude and 
longitude. When a waypoint is entered in the aircraft route 



during the simulation time, FlightGear checks the database to 
see if it is a valid fixed point or not. This database is stored in 
the compressed file called fix.dat which can be found in the 
directory FG_ROOT\ FlightGear\data\Navaids. This file can be 
edited by using, for example, Notepad++. [3] 

FlightGear was tested, for example, on Cessna-182 UAV 
[3], Shadow UAV [58], Pioneer UAV [61], and ArduCopter 
[63]. 

1) Configuration Files 
Except of FDM configuration files, other files are required 

for use with FlightGear which include the electric-system file, 
autopilot file, and 3D graphical model specification file. The 
final required file ties the previous files together. [3] [47] 

The electrical-system file specifies the battery 
characteristics, the lights and other parameters. A part of an 
example of an electrical-system configuration file can be seen 
in Fig. 16. [3] 

 

Fig. 16. A part of the electrical-system configuration file 

To fly the modelled UAV autonomously, a tuning process 
should be made for the built-in PID autopilot which has the 
ability to hold aircraft velocity, vertical aircraft speed, altitude, 
pitch angle, angle of attack, bank angle, and true heading. [3] 

FlightGear implements a PID algorithm in a flexible way 
which makes it reusable with similar aircraft. Typically a PID 
controller manipulates one control output to force a current 
value (or process value) towards a target value (or reference 
point). However, any number of PID controllers can be defined 
in the autopilot configuration file. Moreover, a process value, 
reference point, any number of output values, and other tuning 
constants can be assigned to each controller. Cascading 
controllers can be implemented by specifying multiple PID 
controllers in which the output of the current stage is used as 
the input to the next stage. [3] 

To construct an autopilot configuration file (whose example 
can be seen in Fig. 17) for a modelled aircraft, an suitable idea 
may be to copy an autopilot configuration file from an existing, 
similar aircraft, and tuning the autopilot parameters to adapt to 
the modelled aircraft. The most basic method of tuning 
autopilot parameters is the trial and error method. In this 
method, the proportional gain, integral time, and derivative 
time are adjusted until the performance is acceptable. [3] 

 

Fig. 17. A part of the autopilot configuration file 

In order to perform a visual simulation, a 3D graphical 
model should be specified. The animated control surfaces and 
their kind of animation are specified in a graphical-model 
configuration file as shown in Fig. 18. [3] [47] [62] 

 

Fig. 18. A part of the graphical-model configuration file 

The set configuration file ties all the previous files together 
by specifying their names and paths and is the first processed 
file in the simulation. Fig. 19 illustrates an example of the set 
configuration file. [3] [50] [62] 



 

Fig. 19. A part of the set configuration file 

C. OpenEaagles Simulation Framework 

OpenEaagles is an open-source multi-platform simulation 
framework targeted to help simulation engineers and software 
developers rapidly prototype and build robust, scalable, virtual, 
constructive, stand-alone, and distributed simulation 
applications. OpenEaagles is written in the C++ programming 
language and has been used extensively to build applications 
which demand deterministic real-time performance or 
execution as fast as possible. This includes applications used to 
conduct human factor studies, operator training, or the 
development of complete distributed virtual simulation 
systems. OpenEaagles has also been used to build stand-alone 
and distributed constructive applications oriented at system 
performance analysis. Constructive-only simulation 
applications which do not need to meet time-critical deadlines 
can use models with even higher levels of fidelity. [17] [18] 
[57] 

It should be emphasized that OpenEaagles is a cycle or 
frame-based system, not a discrete-event simulator. This 
approach satisfies the requirements for which it is designed; 
namely, support for models of varying levels of fidelity 
including higher-level physics-based models, digital signal 
processing models and the ability to meet real-time 
performance requirements. Model state can be captured with 
state machines and state transitions can use the message 
passing mechanisms provided by the framework. [19] [20] [57] 

The framework embraces the Model-View-Controller 
(MVC) software design pattern by partitioning functional 
components into packages as can be seen in Fig. 20 (packages 
with white/clear background indicate the use of a third party 
open-source tool). This concept is taken a step further by 
providing an abstract network interface; thus, custom protocols 
can be implemented without affecting system models. The 
framework supports a number of other third party open-source 
tools such as FLTK, Fox and wxWidgets for cross-platform 
GUI applications, and JSBSim as a high quality flight 
dynamics model. [18] [19] [20] 

 

Fig. 20. OpenEaagles Package Hierarchy [18] 

The simulation section provides a wealth of capabilities 
including abstract classes for representing a variety of entity 
types such as aircraft, ships, tanks, ground vehicles, space 
vehicles and even lifeforms. Moreover, a complete radar 
modelling environment is included. [20] 

The graphics hierarchy provides a collection of classes 
which can be used to render instruments which are commonly 
used in operator‐vehicle interface displays. The available 
instruments include, for example, analog dials for altimeters, 
dials for direction finders, speedometer dials, and landing gear 
indicators. [20] 

Distributed applications can interoperate with other systems 
and simulations through Distributed Interactive Simulation 
(DIS) and/or High Level Architecture (HLA) interfaces. 
Numerous DIS compliant distributed simulation applications 
have been built using this framework as the foundation. [17] 
[18] [19] 

Specific applications using the framework to support 
simulation activities include a UAV ground control station 
(Predator MQ-9), representative F-16 cockpits, Integrated Air 
Defense Systems (IADS) and a futuristic battle manager. 
OpenEaagles is also suitable for use in multi-agent 
applications. [19] 

The framework is routinely compiled with Microsoft Visual 
Studio for the Windows environment and GCC for Linux. 
Applications probably perform best when they are executed on 
dual-core or dual-CPU systems. [19] 

However, the project files for Codelite and Codeblocks 
development environments can be generated by 
OE_source_ROOT\build\premake\make.bat file. For the 
generating of the Codelite project files, “%Premake% codelite” 
has to be added to the end of the make.bat file. 

D. MIT and ESOTEC Software 

This chapter contains an analysis of MIT (Massachusetts 
Institute of Technology) and ESOTEC (Esoteric Technology) 
open-source software. ESOTEC software, written by Carter 
[134], is an extension of MIT software, which was developed 
mainly by Drela and Youngren [135]. 



In addition to described software, it is also worth 
mentioning the Transport Aircraft System OPTimization 
(TASOPT). TASOPT is a program for optimizing the airframe 
of a wing-tube transport aircraft, together with the engine 
parameters and operating parameters. However, despite there 
may be found some parts which can be useful, this software as 
a whole is probably inappropriate for UAVs. [136] 

1) Athena Vortex Lattice (AVL) 
AVL (whose logo is illustrated in Fig. 21) is a program for 

the aerodynamic and flight-dynamic analysis of rigid aircraft of 
arbitrary configuration. It employs an extended vortex lattice 
model for the lifting surfaces, together with a slender-body 
model for fuselages and nacelles. [132] [109] [53] 

General nonlinear flight states can be specified. The flight 
dynamic analysis combines a full linearization of the 
aerodynamic model about any flight state, together with 
specified mass properties. [132] 

 

Fig. 21. The logo of AVL [132] 

AVL has a large number of features intended for rapid 
aircraft configuration analysis.  The major features are as 
follows: [133] [132] [53] 

 Aerodynamic Components (Lifting surfaces, and 
Slender bodies) 

 Configuration definition (Keyword-driven geometry 
input file, Defined sections with linear interpolation, 
Section properties, Scaling, translation, rotation of 
entire surface or body, and Duplication of entire 
surface or body) 

 Singularities (Horseshoe vortices - surfaces, Source 
plus doublet lines - bodies, and Finite-core option) 

 Discretization (Uniform, Sine, Cosine, and Blend) 

 Control deflections (Via normal-vector tilting, Leading 
edge or trailing edge flaps, and Flaps independent of 
discretization) 

 General Freestream description (alpha, beta flow 
angles; p, q, r aircraft rotation components; Subsonic 
Prandtl-Glauert compressibility treatment) 

 Aerodynamic outputs (Aerodynamic forces and 
moments, in body or stability axes, Trefftz-plane 
induced drag analysis, and Force and moment 
derivatives w.r.t. angles, rotations, controls) 

 Trim Calculation (Operating variables such as alpha, 
beta, p, q, r, and control deflections, Constraints such 

as direct constraints on variables and indirect 
constraints via specified CL and moments, and 
multiple trim run cases which can be defined, saved, 
recalled) 

 Optional mass definition file for trim setup and 
Eigenmode analysis (User-chosen units, and Itemized 
component location, mass, inertias) 

 Trim setup of constraints (level or banked horizontal 
flight, and steady pitch rate (looping) flight) 

 Eigenmode analysis (Predicts flight stability 
characteristics, Rigid-body, quasi-steady aero model, 
Eigenvalue root progression with a parameter, Display 
of Eigenmode motion in real time, and Output of 
dynamic system matrices) 

AVL utilizes the extended vortex lattice method to 
determine the aerodynamic loads along the span of all 
aerodynamic surfaces, interprets the geometric configuration of 
the aircraft, and discretizes the wing into a finite element mesh. 
An AVL aircraft model and the corresponding static lift 
distribution can be seen in Fig. 22. [31] [53] 

AVL allows the user to obtain individual lift forces for each 
element in the mesh. The total lift load on each segmented 
portion of the wing is calculated by summing the elemental lift 
forces that are located within the geometric bounds defined by 
the segmented plate control surfaces. [31] 

 

Fig. 22. An AVL model and the lift distribution of an aircraft [31] 



AVL works with three input files, all in plain text format 
with the following extensions: [133] [109] 

 .avl - required main input file defining the 
configuration geometry 

 .mass - optional file giving masses and inertias, and 
dimensional units 

 .run - optional file defining the parameter for some 
number of run cases 

AVL was tested, for example, on Odyssey UAV [31], and 
MAV prototype in [109] and [53]. 

However, like any computational method, AVL has some 
limitations. A vortex-lattice model like AVL is best suited for 
aerodynamic configurations which consist mainly of thin 
lifting surfaces at small angles of attack and sideslip.  These 
surfaces and their trailing wakes are represented as single-layer 
vortex sheets, discretized into horseshoe vortex filaments, 
whose trailing legs are assumed to be parallel to the x-axis. 
[133] [53] 

AVL provides the capability to model also slender bodies 
such as fuselages and nacelles via source plus doublet 
filaments.  The resulting force and moment predictions are 
consistent with slender-body theory, but the experience with 
this model is relatively limited, and hence modelling of bodies 
should be done with caution.  If a fuselage is expected to have 
little influence on the aerodynamic loads, it is simplest to just 
leave it out of the AVL model. However, the two wings should 
be connected by a fictitious wing portion which spans the 
omitted fuselage. [133] 

AVL assumes quasi-steady flow, meaning that unsteady 
vorticity shedding is neglected. More precisely, it assumes the 
limit of small reduced frequency, which means that any 
oscillatory motion (e.g. in pitch) must be slow enough so that 
the period of oscillation is much longer than the time it takes 
the flow to traverse an airfoil chord. This is true for virtually 
any expected flight maneuver. Also, the roll, pitch, and yaw 
rates used in the computations must be slow enough so that the 
resulting relative flow angles are small. This can be judged by 
the dimensionless rotation rate parameters, which should fall 
within the following practical limits: [133] [53] 

 -0.10 < pb/2V (Roll rate) < 0.10 

 -0.03 < qc/2V (Pitch rate) < 0.03 

 -0.25 < rb/2V (Yaw rate) < 0.25 

These limits represent violent aircraft motion and are 
unlikely to be exceeded in any typical flight situation, except 
perhaps during low-airspeed aerobatic maneuvers. However, if 
any of these parameters falls outside of these limits, the results 
should be interpreted with caution. [133] 

Compressibility is treated in AVL using the classical 
Prandtl-Glauert (PG) transformation, which converts the PG 
equation to the Laplace equation, which can then be solved by 
the basic incompressible method. This is equivalent to the 
compressible continuity equation, with the assumptions of the 
state without rotation, and linearization about the freestream.  

The forces are computed by applying the Kutta-Joukowsky 
relation to each vortex, which remains valid for compressible 
flow. [133] 

The linearization assumes small perturbations (thin 
surfaces) and is not completely valid when velocity 
perturbations from the free-stream become large. The relative 
importance of compressible effects can be judged by the PG 
factor (8), where M is the freestream Mach number. A few 
values are given in Table II, which shows the expected range of 
validity. [133] 

 
21

11

MB 
  (8) 

TABLE II.  THE EXPECTED RANGE OF THE VALIDITY OF PRANDTL-GLAUERT 

TRANSFORMATION [133] 

M 1/B Validity 

0.0 1.000 

PG 
expected 

valid 

0.1 1.005 

0.2 1.021 

0.3 1.048 

0.4 1.091 

0.5 1.155 

0.6 1.250 

0.7 1.400 
PG 

suspect 

0.8 1.667 
PG 

unreliable 

0.9 2.294 
PG 

hopeless 

 

For swept-wing configurations, the validity of the PG 
model is best judged using the wing-perpendicular Mach 
number in (9). Since Mperp ≤ 0.6, swept-wing cases can be 
modeled up to higher M values than unswept cases. [133] 

  sweepMM perp cos  (9) 

For instance, a 45° swept wing operating at freestream M = 
0.8 has Mperp = 0.8 * cos(45) = 0.566, which is still within the 
expected range of PG validity in the Table II; thus, reasonable 
results may also be expected for this case. [133] 

2) XFOIL 
Most of the second-generation small UAVs have used 

airfoil sections designed specifically for their application. The 
two methods most often used to design airfoils at low Reynolds 
numbers are attributed to Eppler (implemented in the code 
described in the chapter V.E.1)) and Drela (XFOIL). [28] 

XFOIL is an interactive program for the design and 
analysis of subsonic isolated airfoils. The main goal was to 
combine the speed and accuracy of high-order panel methods 



with the new fully-coupled viscous/inviscid interaction 
method. XFOIL consists of a collection of menu-driven 
routines which perform various useful functions such as: [21] 
[130] [32] 

 Viscous (or inviscid) analysis of an existing airfoil, 
allowing forced or free transition, transitional 
separation bubble(s), limited trailing edge separation, 
lift and drag predictions just beyond CLmax, and 
Karman-Tsien compressibility correction 

 Airfoil design and redesign by interactive specification 
of a surface speed distribution via screen cursor or 
mouse. Two such facilities are implemented: Full-
Inverse, based on a complex-mapping formulation, 
and Mixed-Inverse, an extension of XFOIL's basic 
panel method 

 Airfoil redesign by interactive specification of new 
geometric parameters such as new max thickness 
and/or camber, new LE radius, new TE thickness, new 
camber line via geometry specification, new camber 
line via loading change specification, flap deflection, 
and explicit contour geometry (via screen cursor) 

 Blending of airfoils 

 Drag polar calculation with fixed or varying Reynolds 
and/or Mach numbers 

 Writing and reading of airfoil geometry and polar save 
files 

 Plotting of geometry, pressure distributions, and polars 

XFOIL uses a text x- and y-coordinate file to model two-
dimensional airfoils. The user may input an airfoil from a file 
or select a NACA four- or five-series airfoil and XFOIL will 
build the appropriate coordinate file. The user can then make 
changes to inviscid/viscous properties such as Mach number 
and Reynolds number (Re). XFOIL will then use the user data 
to simulate flight at many angles of attack, to return lift 
coefficient (CL), drag coefficient (CD), and moment coefficient 
(CM) in the form of a saved polar file, and to generate CL versus 

, and CL versus CD plots. [32] 

XFOIL stores all its data in RAM during execution.  Saving 
of the data to files is NOT normally performed automatically; 
thus the user must be careful to save work results before exiting 
XFOIL. [130] 

XFOIL gives results much more quickly than more 
advanced CFD programs and still provides results accurate 
enough to be a good design tool. However, XFOIL works only 
for two dimensions and is only effective at low Reynolds 
numbers and incompressible flows. [32] 

XFOIL was used in design of camber-controlled morphing 
UAVs in [32]; the results are: 

 XFOIL follows the wind tunnel data well 

 XFOIL is predicting both lift and drag coefficients 
within an acceptable range or accuracy 

 XFOIL provides accurate simulation of flap addition 
on airfoils 

 XFOIL can only model plain flaps with a sealed gap 

Moreover, following the validation tests, a series of 
aerodynamic simulations using XFOIL were also performed on 
the LEEUAV airfoil in [131]. 

However, independently of any accuracy, the following 
situations may cause problems strictly due to numerical 
rounding off: [130] 

 Excessively small panel(s) somewhere on the airfoil 

 Airfoil is located too far from origin 

 Airfoil is too thin 

These situations will rarely result in an arithmetic failure, 
but will typically result in a rough Cp distribution. [130] 

3) QPROP/QMIL 
Same as aerodynamic design, the design of propeller is very 

important. When the inefficient or inappropriate propeller is 
used in UAV, all advantages of excellent-designed 
aerodynamics may remain underutilized. Modern propeller 
theory is analogous to wing theory in which the propeller blade 
is considered to be a lifting surface about which there is a 
circulation associated with the bound vorticity and a vortex 
sheet is continuously shed from the trailing edge. [54] 

QPROP (whose logo is illustrated in Fig. 23) is an analysis 
program for predicting the performance of propeller-motor or 
windmill-generator combinations. The same formulation 
applies to the companion propeller/windmill design program 
QMIL, which generates propeller geometries for the Minimum 
Induced Loss (MIL) condition, or windmill geometries for the 
MIL or Maximum Total Power (MTP) conditions. [122] [123] 

 

Fig. 23. The logo of QPROP [122] 

QPROP and QMIL use an extension of the classical blade-
element/vortex formulation, developed originally by Betz 
[124], Goldstein [125], and Theodorsen [126], and 
reformulated somewhat by Larrabee [127]. The extensions 
include: [123] [53] [54] 

 Radially-varying self-induction velocity which gives 
consistency with the heavily-loaded actuator disk limit 

 Perfect consistency of the analysis and design 
formulations 

 Solution of the overall system by a global Newton 
method, which includes the self-induction effects and 
power-plant model 



 Formulation and implementation of the Maximum 
Total Power (MTP) design condition for windmills 

QPROP has a relatively sophisticated and accurate prop 
aerodynamic model, and a general motor model which can be 
implemented via a user-supplied subroutine if necessary. [128] 
[109] [53] 

The enhancement in the classical blade-element/vortex 
formulation is primarily in the correct accounting of the 
propeller’s self-induction, which makes QPROP accurate for 
very high disk loadings, all the way to the static-thrust case.  
The blade airfoil lift characteristic is assumed to be a simple 
linear CL(alpha) line with CLmax and CLmin stall limiting. The 
profile drag characteristic is a quadratic CD(CL) function, with 
an approximate stall drag increase, and a power-law scaling 
with Reynolds number.  The model applies equally well to 
propellers and windmills. [128] 

QPROP requires a fairly detailed description of the 
propeller geometry and blade airfoil characteristics. The 
specification of the diameter and pitch of a propeller is in 
general insufficient to accurately capture the propeller 
performance. [128] [53] 

The default motor type 1 corresponds to a brushed DC 
motor, and is modeled using the fairly standard approach with 
an RPM/Volt motor constant Kv, an electrical resistance R, and 
a constant rotational friction described by the zero-load current 
I0. [128] 

Motor type 2 corresponds to a brushed DC motor, and is a 
more accurate extension of the type 1 model above. The 
extensions are improved models of the frictional torque, 
temperature-dependent resistance, and magnetic lags. [128] 

Any other motor model can be coded in SUBROUTINE 
MOTORQ (in motor.f), as a Q(w,V) function.  The derivatives 
dQ/dw and dQ/dV must also be returned.  The subroutine 
source header fully describes the inputs and outputs. [128] 
[109] 

For non-electric motors, the voltage (V) passed to 
MOTORQ can represent any suitable power-control variable, 
e.g. throttle setting, fuel flow rate, etc. [128] [109] 

QPROP and QMIL have identical theoretical formulations 
and very similar input files. This is described in detail in [128], 
[129], and in the theory document [123]. Their only difference 
is the variables which are treated as knowns and unknowns (the 
variables are swapped). [129] 

QPROP's output is entirely in tabular text format, and is 
typically used in conjunction with the user's own plotting 
programs. It is intended for large-scale parametric sweeps, 
driven manually or via batch execution. [122] 

QPROP was used to find an optimal propeller, motor, and 
energy requirement, for example, on MAV prototype in [109] 
and [53]. 

4) XROTOR 
XROTOR is an interactive program for the design and 

analysis of ducted and free-tip propellers and windmills. It 

consists of a collection of menu-driven routines which perform 
various useful functions such as: [115] [116] 

 Design of minimum induced loss rotor (propeller or 
windmill) 

 Prompted input of arbitrary rotor geometry 

 Interactive modification of rotor geometry 

 Twist optimization of an arbitrary rotor for minimum 
induced loss 

 Analysis of a rotor with a wealth of choices of 
operating parameters 

 Incoming slipstream effects (from an upstream 
propeller, viscous wake, etc.) 

 Multi-point parameter display 

 Structural analysis and corrections for twist under load 

 Acoustic analysis with dB noise footprint predictions 

 Interpolation of geometry to radii of interest 

 Plotting of geometry, aerodynamic parameters, and 
performance maps 

The design procedure of a rotor design allows calculation 
of a rotor chord and blade angle (c/R, beta) distributions to 
achieve a Minimum Induced Loss (MIL) circulation 
distribution. This can be either the i) Betz-Prandtl distribution 
(Graded-Momentum Formulation), or ii) Goldstein distribution 
(Potential Formulation), depending on the state of the FORM 
toggle. [116] 

The design of a new rotor is typically begun with the INPU 
command, which prompts the user for all required design-
parameter inputs, and then follows by displaying the input-
modification menu. [116] 

All the design parameters will retain their values for the 
length of the XROTOR session.  Hence the designed rotor can 
be analyzed in the other menus, and can then be further 
redesigned in DESI just by invoking EDIT again. [116] 

QPROP/QMIL has almost the same theoretical formulation 
as XROTOR, and they are also extensively documented; thus, 
their documentation can be used as the basic documentation for 
XROTOR. [115] 

In [117], XROTOR and CROTOR (described below) were 
used to determine the 10 best propellers with optimal efficiency 
for a multi-mission micro aerial vehicle. [117] 

a) CROTOR 

CROTOR v755-ES is all of XROTOR 7.55 along with a 
couple of features ported from DFDC v070-ES (described in 
the chapter V.D.5)a)). With the source directory growing by 
some 70 percent (including some XFOIL code), the package is 
dubbed CROTOR to distinguish it from its parent. [118] 

CROTOR added the following features: [118] 

 Counter-Rotation Facility 



 Multi-Axis Parametric Analysis 

 Blade Lofting Facility 

 Multi-Re Plotting in AERO 

Subroutine CROTOR automates the design and analysis of 
converging counter-rotating rotors while providing an effective 
user interface and reporting. The result is a flexible and robust 
counter-rotation design/analysis facility. [118] [119] 

Rotors can be designed directly in CROTOR or imported 
from XROTOR. When rotors are designed or loaded into 
CROTOR, the geometries, names and imposed slipstreams are 
stored in CROTOR to be loaded into XROTOR as required. 
[119] 

When operating parameters and geometries of two rotors 
have been defined, the code converges the dual-rotor system by 
alternately loading and analyzing of the forward and aft rotors. 
When the thrust of each rotor converges, the iteration stops, 
and the output for both rotors is displayed. Each rotor can then 
be run independently in the converged slipstream for closer 
inspection. [119] 

To reduce the complexity of working with multiple rotors 
and input, a Default Input system is used which allows the user 
to progress efficiently through a design study. [119] 

Subroutine ESPARA is one half of a parametric analysis 
system originally developed for a propeller company using 
third party blades in their electric constant speed hubs. The 
problem was to select appropriate blades for a particular 
engine/airframe. ESPARA makes multi-axis parameter sweeps 
and stores data in a multi-rotor database to be displayed and 
plotted with great flexibility in a standalone utility called 
ESPROP. This facility is intended for practical applications in 
the field, selecting propellers for real world applications by 
directly comparing them over any operating range within the 
database bounds. Currently only variable pitch props are 
supported although support for fixed pitch is planned by 
calculating on the same database. [118] 

The ESPROP system has two main applications: [120] 

 The propeller designer seeking to directly compare 
competing designs over a wide range of operating 
conditions.  

 The propeller manufacturer seeking to select the 
optimum existing blade for a specific application. 

ESPROP databases can be built from any blade geometry 
which has been loaded into XROTOR, over any range of 
operating parameters for which XROTOR will converge 
solutions. [120] 

Subroutine ESLOFTX is a port and further development of 
ESLOFT for DFDC (described in the chapter V.D.5)a)), 
allowing rotor designs to be explicitly defined in three 
dimensions and exported into CAD for 3D modelling, meshing 
or manufacture. Support has been added for round tips, along 
with splined thickness or thickness/chord distributions (in 
addition to linear and parabolic distributions). Version ES1.1 
adds circular root blends, important for windmills and constant 
speed propellers. [118] 

The definition of blade thickness plays a main role in 
ESLOFTX. A smooth thickness distribution is desired for both 
aerodynamic and structural reasons. Since chord is defined by 
the blade design, defining the distribution of thickness (t) or 
thickness/chord (t/c), the blade allows for section t/c to be 
determined at any station radius. Sections are interpolated to 
the required t/c from parent airfoils bounding the t/c (or 
extrapolated as necessary). [121] 

Because the setting of the REexp parameter in AERO has 
sometimes seemed like guesswork, the improvement has been 
implemented. In addition to polar plots at multiple Mach 
numbers, AERO now supports plotting at multiple Reynolds 
numbers, providing precise feedback on the effects of REexp. 
[118] 

5) Ducted Fan Design Code (DFDC) 
DFDC is an analysis code for axisymmetric ducted rotor 

design and analysis. Wall Boundary Layer (BL) analysis solves 
the wall shear forces with a BL calculation (not interacted with 
the inviscid flow, as is done in XFOIL). The 0.70 version adds 
analysis and design for a ducted rotor with stator. [112] 

There is also a Win32 GUI wrapper for DFDC, Whirlwind. 
However, it does not support all DFDC functionality. [113] 

The logo of DFDC is shown in Fig. 24. DFDC has a 
number of features intended for rapid duct and ducted rotor 
design and analysis, e.g. axisymmetric components, 
aerodynamic outputs, analysis capability, rotor/stator design 
capability, geometric redesign of duct walls (XFOIL-like 
geometry modification), BL analysis of duct and center-body 
walls (viscous forces), aerodynamic redesign of duct walls to 
specified pressures, and an input file. [112] [113] 

 

Fig. 24. The logo of the Ducted Fan Design Code [113] 

DFDC works with a single input file in plain text format.  
This file contains the duct case data, the duct geometry data, 
actuator disk or rotor blade data and drag source data.  The 
sections of this file are separated by keywords and can be input 
in any order. [112] 

The operating point section contains the flow condition and 
operating point data for the case (e.g. the freestream velocity, 
reference velocity, RPM, fluid properties, etc.). The aero 
properties section contains aerodynamic data which is used for 
each blade element in a rotor analysis or design. The actuator 
disk section contains a specification for an actuator disk to 
model the duct rotor. The rotor section contains a specification 
for a bladed disk in the ducted fan. The drag object section 
contains a CDA (drag area) and XY (XR in axisymmetric 
system) coordinates of the drag line. The geometry section 
contains the center-body and duct wall coordinates. [112] 



Optionally, a second file can be used, containing 
information to redistribute points on the duct and center-body 
walls.  This paneling file has the extension of .pan. However, 
the paneling information can also be put directly into the case 
file in the paneling data section. Moreover, user-specified 
paneling information is normally not needed; the automatic 
point distribution scheme works for most inputs without further 
interaction. [112] 

a) DFDC v070-ES 

Because the development of DFDC appears to be halted, 
Esotec Developments started to upgrade the code. The new 
code fixed most known bugs, added enhancements to AERO, 
plotting, reporting, multi-rotor, blade editing, an experimental 
blade blockage model, and ESLOFT. [114] 

ESLOFT is a tool for getting rotor and stator blade designs 
out of DFDC and into CAD for subsequent 3D modelling, 
meshing or manufacture. This is accomplished by calculating 
on the rotor/stator geometry in conjunction with airfoil 
geometries (parent airfoils) and blade thickness distributions 
(user controlled) to generate point files which can be imported 
into 3D CAD systems. ESLOFT is fully integrated with DFDC 
and generates accurate output with minimum user input. [114] 

6) Dynamic Soaring simulation and optimization program 

(DSOPT) 
Dynamic soaring is a flying technique used to gain energy 

by utilizing wind shear over altitude to reduce energy 
consumption and extend flight duration. Because the wind 
shear gradient is persistently distributed in the boundary layer 
above the ocean surface, dynamic soaring can be widely used 
in UAVs and may have the potential to support almost 
perpetual flight. [110] 

DSOPT uses the “Inverse Dynamics” approach to 
simulating a Dynamic Soaring orbit.  The code is two nested 
loops, with an inverse-dynamics integrator on the inside and 
requires Fortran 77 compiler. [111] 

The bulk of the calculations are performed in 
SUBROUTINE ORBIT1, which assumes that the path shape in 
xyz space is known, and is prescribed to be an ellipse of 
specified size, oriented at some tip and lean angles within the 
atmospheric wind shear layer.  SUBROUTINE ORBIT1 is also 
provided with an initial velocity Vi at the first point in the orbit, 
and then integrates the equations of motion along the known 
trajectory, using simple representations of the airplane's CL and 
CD.  One output is the final velocity Vf at the last point in the 
orbit (which is at the same spatial location as the first point).  
In general Vi and Vf will not match, in which case Vi is 
modified and the orbit is recalculated again.  When Vf matches 
Vi to within some small tolerance the orbit is converged.  This 
means that it is periodic, and hence represents sustained 
Dynamic Soaring. [111] 

The output quantities are, for example, time, position, 
ground speed, air speed, lift coefficient and a number of others. 
[111] 

The code is heavily commented, and it is fairly easy to 
locate the formulas used for the various models for CL, CDi, 
CDp, CDw, wind shear field, etc.  The dynamic equations which 

are integrated are simply F=ma, with three separate 
components in the xyz directions. [111] 

The outermost OPTIMIZER loop is optional and adjusts 
the selected parameters of the formulation via gradient-descent 
steps to maximize the speed Vmeasured at a selected point in the 
Dynamic Soaring orbit. [111] 

E. Public Domain Aeronautical Software (PDAS) 

For many years the Air Force, Navy, NASA, and 
educational institutions have sponsored the development of 
computer software which is useful to aeronautical engineers, 
airplane designers, and aviation technicians. [8] 

Public Domain Aeronautical Software (PDAS) was 
founded to make this valuable software available to the 
aeronautical community for use on desktop computers. These 
programs include descriptions and complete public domain 
source code (written mostly in the FORTRAN programming 
language). The source code is not copyrighted and may be used 
in whole or part in any of aeronautical studies. Moreover, many 
programs have sample cases (both input and output). However, 
some of the programs are noted as “work-in-progress”, 
indicating that they are lacking in instructions or 
documentation or do not run properly. [8] [9] 

The list of the useful software for development of UAVs 
which is included in this subchapter may not be 
comprehensive. However, other interesting applications can be 
found in [9], for instance: 

 Atmosphere (ATMOS) - characterizes the 1976 
standard atmosphere to 1000 km altitude, including 
nonstandard atmosphere routines (hot, cold, polar, 
tropical). [64] 

 Real Gas Properties (GASP) - computes real gas 
properties of ten important gases over a wide range of 
temperatures and pressures. Covers cryogenic regions 
and saturated liquid/gas regions. [65] 

 Thermodynamic and Transport Properties of Fluids 
(FLUID) - a companion program to GASP computes 
thermodynamic and transport properties of many 
gases. Treats air and steam as well as pure fluids. [66] 

 A Compressible Flow Calculator (VuCalc) - performs 
calculations in compressible fluid dynamics. There are 
six different classes of calculations: Isentropic Flow, 
Normal Shock, Oblique Shock, Standard Atmosphere, 
Rayleigh Flow, Fanno Flow. [67] 

 Turbulent Skin Friction by the Reference Temperature 
Method of Sommer and Short (TURBSF) – contains 
the formula developed by Sommer and Short with 
including the temperature of the flow as a variable. As 
a result, the created function has three arguments, 
Reynolds number, Mach number and freestream 
temperature. For the great majority of flight problems, 
the variation of friction with temperature is of little 
importance. This effect is small at subsonic speeds but 
becomes appreciable for supersonic and hypersonic 
aircraft. [82] [105] 



 A segmented mission analysis program for low and 
high speed aircraft (NSEG) - was developed to 
perform rapid aircraft mission analyses which is based 
upon the use of approximate equations of motion 
whose form varies with the type of flight segment (e.g. 
take-off, accelerations, climbs, cruises, descents, 
decelerations, and landings). There are three main 
atmosphere options available: the 1962 U.S. Standard 
atmosphere, a stratified atmosphere model, and an 
external atmosphere model supplied by the user. [68] 

 Conical relaxation program for supersonic wing 
design and analysis (COREL) [69] and supersonic 
wing design and analysis program (W12SC3) [70] - 
can be run also at subsonic speeds despite their titles. 

 Two-dimensional grids about airfoils and other shapes 
by the use of Poisson's Equation (GRAPE) - can 
provide the aerodynamic analysis with an efficient and 
consistent means of grid generation and should be 
numerically stable and computationally fast. [71] 

 NASA-AMES WingBody Panel Code (WINGBODY) - 
The classic NASA program for computing subsonic 
and supersonic aerodynamics of a wing-body 
combination by using Panel Code [80] 

 V/STOL Aircraft Sizing and Performance (VASCOMP 
II) - developed to aid in the comparative design study 
of V/STOL (vertical/short take-off and landing) 
aircraft systems by rapidly providing aircraft size and 
mission performance data. Generality and flexibility 
were maintained during formulation of the program in 
order to permit an accurate simulation of virtually any 
V/STOL configuration. [83] [9] 

1) The Eppler Airfoil Code (PROFILE) 
PROFILE is one of computer programs for low-speed 

(incompressible) airfoils. The program has been successfully 
applied at Reynolds numbers from 20 thousand to 100 million. 
[92] [72] 

A conformal-mapping method for the design of airfoils 
with prescribed velocity distribution characteristics, a panel 
method for the analysis of the potential flow about given 
airfoils, and a boundary-layer method have been combined. 
With this combined method, airfoils with prescribed boundary-
layer characteristics can be designed and airfoils with 
prescribed shapes can be analyzed. [72] 

The flow about an airfoil in free air can be described 
approximately by a boundary-layer flow near the surface of the 
airfoil and by a potential flow everywhere else. Boundary-layer 
theory can be applied to the flow about an airfoil in two ways. 
First, the boundary-layer development can be determined for a 
given potential flow velocity distribution. This is the direct or 
analysis problem. Second, the potential-flow field, or at least 
some of its properties, can be determined for a given boundary-
layer development. This is the inverse or design problem. [92] 
[72] 

The potential flow inverse problem still plays a major role 
in airfoil design. This problem has been solved exactly by 
means of conformal mapping which is similar to the method of 

Lighthill; it is direct, and solves most multipoint design 
problems in a very simple manner. A potential-flow analysis 
method is also required for comparison with wind tunnel tests 
of given airfoils and for analyses of airfoils generated by the 
design method and then modified by a flap deflection. The 
airfoil analysis problem is solved using a distributed surface 
singularity method. The boundary-layer method uses integral 
momentum and energy equations. The present method does not 
contain boundary-layer displacement iteration. [92] [72] 

Although this program is of great historical importance and 
current papers which refer to calculations performed with 
PROFILE can still be found, it is not the program of choice for 
someone learning about airfoil plus boundary layer 
calculations. For this kind of interest, XFOIL is recommended. 
XFOIL has been described in the chapter V.D.2). [72] 

2) Minimum Drag Camber Surface by Vortex Lattice 

(VLMD) 
This program represents a subsonic aerodynamic method 

for determining the mean camber surface of trimmed 
noncoplanar planforms with minimum vortex drag. With this 
program, multiple surfaces can be designed together to yield a 
trimmed configuration with minimum induced drag at some 
specified lift coefficient. [84] 

The method uses a vortex-lattice and overcomes difficulties 
with chord loading specification. A Trefftz plane analysis is 
used to determine the optimum span loading for minimum 
drag. The program then solves for the mean camber surface of 
the wing associated with this loading. Pitching-moment or 
root-bending-moment constraints can be employed at the 
design lift coefficient. [84] 

 Sensitivity studies of vortex-lattice arrangements have 
been made with this program and comparisons with other 
theories show generally good agreement. The program is very 
versatile and has been applied to isolated wings, wing-canard 
configurations, a tandem wing, and a wing-winglet 
configuration. [84] 

The design problem solved with this code is essentially an 
optimization one. A subsonic vortex-lattice is used to 
determine the span load distribution(s) on bent lifting line(s) in 
the Trefftz plane. A Lagrange multiplier technique determines 
the required loading which is used to calculate the mean 
camber slopes, which are then integrated to yield the local 
elevation surface. The problem of determining the necessary 
circulation matrix is simplified by having the chordwise shape 
of the bound circulation remain unchanged across each span, 
though the chordwise shape may vary from one planform to 
another. The circulation matrix is obtained by calculating the 
spanwise scaling of the chordwise shapes. A chordwise 
summation of the lift and pitching-moment is utilized in the 
Trefftz plane solution on the assumption that the trailing wake 
does not roll up and that the general configuration has 
specifiable chord loading shapes. [84] 

3) Induced Drag from Span Load Distribution 

(INDUCED) 
The induced drag may be computed from the span load 

distribution on a planar wing. Most books on aerodynamics 
show how to do this if the analytical form of the loading 



function is known. This algorithm enables to solve the same 
problem when only a few sparse values of the loading function 
are known. [74] 

A simple algorithm for computing a curve which in one 
sense is the smoothest which exactly matches the data points 
and produces the Fourier sine coefficients as part of the 
solution is described in [93] by Lundry. This technique and 
other similar algorithms are widely used by specialists. The 
routines given in this program are a coding of Lundry's 
equations 3 and 5 for asymmetric and symmetric loadings. [74] 

The coefficients are computed with a call to subroutine 
“ComputeFourierCoefficients”. The drag may then be 
computed from the coefficients by use of the function 
“DragFromCoefficients”. Moreover, lift coefficient may be 
computed by (10). [74] 

 
 

sref

coeffspanspanPI
CL

1
  (10) 

If the induced drag without the coefficients is needed to be 
calculated, the following two functions can be used: [74] 

 AsymmetricLoadingInducedDrag 

 SymmetricLoadingInducedDrag 

These functions take the loadings and return D/q (these 
variables have been described in the chapter II.B). If drag 
coefficient is required, the result has to be divided by the 
reference area (sref). [74] 

Once the module is compiled, there is access to any of the 
routines by inserting the statement “USE InducedDrag” in 
application programs. [74] 

4) Flutter Analysis by Strip Theory (FLUTTER) 
A modified strip analysis has been developed for rapidly 

predicting flutter of finite-span, swept or unswept wings at 
subsonic to hypersonic speeds. The method employs 
distributions of aerodynamic parameters which may be 
evaluated from any suitable linear or nonlinear steady-flow 
theory or from measured steady-flow load distributions for the 
underformed wing. The method has been shown to give good 
flutter results for a broad range of wings at Mach number from 
0 to as high as 15.3. [73] 

Flutter characteristics have been calculated by the modified 
strip analysis and compared with results of other calculations 
and with experiments for Mach numbers up to 15.3 and for 
wings with sweep angles from 0 degrees to 52.5 degrees, 
aspect ratios from 2.0 to 7.4, taper ratios from 0.2 to 1.0, and 
center-of-gravity positions between 34% chord and 59% chord. 
These ranges probably cover the great majority of wings which 
are of practical interest with the exception of very low-aspect-
ratio surfaces such as delta wings and missile fins. [73] 

5) Mean Aerodynamic Chord of a Wing (GETMAC) 
GETMAC computes the mean aerodynamic chord (MAC) 

of a wing of arbitrary planform. GETMAC reads the definition 
of a wing from an arbitrary number of chords, each defined by 

its spanwise location, longitudinal position of its leading edge, 
and its length. [75] 

The program reads the input file and prints the area of 
wing, length of MAC, y of MAC, xLE (x of Leading Edge) of 
MAC, xTE (x of Trailing Edge) of MAC, and x of c/4 of MAC. 
[75] 

A following example illustrates a wing similar to the B-2 
airplane. The chords are 1300, 500, 500, and 0 in length. The 
leading edges are at 0, 400, 750, and 1000 with y equals 0, 480, 
900, and 1200. The projection of these points can be seen in 
Fig. 25. The input to GETMAC for the right wing is shown in 
Fig. 26. And finally, Fig. 27 presents the resultant MAC. [94] 
[95] [96] 

 

Fig. 25. The projection of the wing inserted to GETMAC [95] 

 

Fig. 26. The input file to GETMAC for the right wing [95] 

 

Fig. 27. The projection of the resultant MAC [96] 

It is evident that the use of a homogeneous material is a 
necessary condition to achieving this MAC. Moreover, the 
shape of an elliptical wing is more difficult to define and its 
real MAC may be slightly different. 



6) NACA Airfoil Coordinates (NACA456) 
A large number of NACA airfoil shapes have been 

successfully used over years as wing sections or tail sections 
for general aviation and military aircraft, as well as propellers 
and helicopter rotors. The ordinates for numerous specific 
airfoils of these families at a coarse set of data points were 
published in a series of NACA reports. However, when 
performing parametric studies on effects of such variables as 
thickness, location of maximum thickness, leading-edge radius, 
location of maximum camber and others, it is not always easy 
to obtain the ordinates of the desired shapes rapidly and 
accurately. To remedy this problem the NASA Langley 
Research Center sponsored the development of computer 
programs for generation of ordinates of standard NACA 
airfoils. [77] 

NACA 4-digit, 4-digit modified, 5-digit, and 16-series 
airfoils are defined by algebraic equations. These thickness 
families are combined with appropriate mean lines to produce 
the final thick cambered airfoil. [77] [101] 

NACA 6-series and 6A-series airfoils are not defined by 
algebraic equations, but use conformal mapping of a circle into 
an airfoil shape. These thicknesses are combined with 6-series 
mean lines to produce the final thick cambered airfoil. [77] 
[101] 

The coordinates of 4-digit, 4-digit-modified, 5-digit, 6-
series, and 16-series airfoils may be accurately calculated by 
NACA456. It is modified to present upper and lower surface 
points at the same x-coordinate. All NACA airfoils are 
produced by combining a thickness distribution and a mean 
line into a definition of the upper and lower surfaces of the 
airfoil. [9] [100] 

NACA456 is a complete revision of the NASA Langley 
programs for computing the coordinates of NACA airfoils. The 
NASA 1996 program was used as a guide for the development 
of a program which is highly modular and contains several 
features which were requested by user of the older programs. 
This program is a console application for which the user 
prepares an input file. An output file containing the airfoil 
geometry is generated by the program. Moreover, a file for 
graphical examination is produced. [100] 

a) AirfoilTools.com 

A similar online version of the NACA 4 digit generator, the 
NACA 5 digit generator, an airfoil database, and other airfoil 
tools can be found in [99]. 

7) Mass Properties of a Rigid Structure (MASSPROP) 
MASSPROP was developed for the rapid computation of 

the mass properties of complex rigid structural systems and 
provides a designer with a simple technique which requires 
minimal input to calculate the mass properties of a complex 
rigid structure and should be useful in any situation where one 
needs to calculate the center of gravity and moments of inertia 
of a complex structure. [76] [97] 

This program is based on the premise that complex systems 
can be adequately described by a combination of elemental 
structural shapes. Thirteen widely used structural shapes are 
available in this program. They are as follows: Discrete Mass, 

Cylinder, Truncated Cone, Torus, Beam (arbitrary cross 
section), Circular Rod (arbitrary cross section), Spherical 
Segment, Sphere, Hemisphere, Parallelepiped, Swept 
Trapezoidal Panel, Symmetric Trapezoidal Panels, and a 
Curved Rectangular Panel. [97] [76] 

Rigid body analysis is used to calculate mass properties. 
Mass properties are calculated about component axes which 
have been rotated to be parallel to the system coordinate axes. 
Then the system center of gravity is calculated and the mass 
properties are transferred to axes through the system center of 
gravity by using the parallel axis theorem. System weight, 
moments of inertia about the system origin, and the products of 
inertia about the system center of mass are calculated and 
printed. From the information about the system center of mass 
the principal axes of the system and the moments of inertia 
about them are calculated and printed. [76] [97] 

Geometric data describing size and location of each 
element and the respective material density or weight of each 
element are the only required input data. [97] [76] 

8) Predicting Subsonic or Supersonic Linear Potential 

Flows about Arbitrary Configurations Using a Higher Order 

Panel Method (PANAIR) 
PANAIR is the definitive subsonic/supersonic panel 

method based on linear aerodynamic theory. PANAIR 
calculates flow properties about arbitrary three-dimensional 
configurations. The program uses a higher-order panel method 
to solve the linearized potential flow boundary-value problem 
at subsonic and supersonic Mach numbers. [78] [102] [103] 

Generally speaking, a panel method solves a linear partial 
differential equation numerically by approximating the 
configuration surface by a set of panels on which unknown 
"singularity strengths" are defined, imposing boundary 
conditions at a discrete set of points, and thereby generating a 
system of linear equations relating the unknown singularity 
strengths. These equations are solved for the singularity 
strengths which provide information on the properties of the 
flow. [78] 

A "higher order" panel method means that the singularity 
strengths are not constant on each panel. The potential for 
numerical error is greatly reduced in the PANAIR program by 
requiring the singularity strength to be continuous. It is also 
this "higher order" attribute which allows PANAIR to be used 
to analyze flow about arbitrary configurations. PANAIR can 
handle the simple configurations considered in the preliminary 
design phase and later serve as the "analytical wind tunnel" 
which can analyze the flow about the final detailed, complex 
configurations. [78] 

PANAIR includes the following capabilities: [78] 

 the ability to handle, within the limitations of linear 
potential flow theory, completely arbitrary 
configurations, using either exact or linearized 
boundary conditions 

 the ability to handle asymmetric configurations as well 
as those with one or two planes of symmetry 



 the ability to handle symmetric configurations in either 
symmetric or asymmetric flow 

 the ability to calculate pressures, forces, and moments 
using a variety of pressure formulas (such as 
isentropic, linear, etc.), including the forces and 
moments due to flow through the surface 

The aerodynamic solution provides surface flow properties 
(flow directions, pressures, and Mach number), configuration 
forces and moments, sectional forces and moments, and 
pressures. In addition, PANAIR calculates flow properties in 
the flow-field points and flow-field streamlines. Results are 
limited to subsonic and supersonic cases (transonic cases are 
excluded) with attached flow. In other words, PANAIR offers a 
comprehensive aerodynamic analysis and design capability for 
nearly arbitrary configurations in subsonic and supersonic 
flows. [102] [103] 

Most problems can be modeled with a minimum of user 
input. In general, the aircraft surface is partitioned into several 
networks of surface grid points, such as a fore-body network, a 
wing network, etc. The coordinates of the input grid points 
must be computed and entered by the user; PANAIR does not 
generate grid point coordinates. PANAIR connects the grid 
points in each network with piecewise flat panels. The user also 
supplies information concerning the free-stream onset flow, the 
angle of attack, and the angle of sideslip. Numerous flow 
quantities are computed at points on the vehicle surface and at 
points in space. These include pressure coefficients, total and 
perturbation values of velocity and mass flux components, total 
and perturbation potential, local Mach number, and vacuum 
pressure coefficient. The pressure coefficients on individual 
panels are fitted with two dimensional quadratic splines and 
integrated to obtain the six components of force and the 
moment coefficients. These coefficients may be output for each 
panel, for columns of panels, for each network, or for any 
combination of networks. [78] 

Panel codes generally generate the solution to problems in 
aerodynamics by superposition of elementary solutions. Panel 
codes have been superseded by Computational Fluid Dynamics 
(CFD) codes solving Euler or Navier-Stokes equations. 
However, there is still a tradeoff between the time spent setting 
up the input for a computational technique versus the accuracy 
of the method. [80] 

a) PANAIR input pre-processor (PANIN) 

Because the creation of an input file for PANAIR is error-
prone, PANIN accepts a free-form file and creates a properly 
formatted input file for PANAIR. [79] 

The input to PANAIR is described in [102]. The input data 
is organized in specific columns. The PANIN program was 
written to enable a user to select the flow properties and all 
other program options by editing a short free-format file called 
an auxiliary file. [79] 

One entry in the auxiliary file is the name of a file which 
contains the geometrical information. The geometrical file is in 
the NASA standard format for wireframe geometry, i.e. in the 
LaWGS (Langley Wireframe Geometry Standard) format. The 
program reads the various items of control information from 

the auxiliary file and combines this information with the panel 
geometry in the LaWGS file to produce a combined file which 
is a properly formatted input file for PANAIR. [79] 

The first and most difficult part of preparing a case for 
PANAIR or any panel code is the definition of the surface 
geometry as a set of quadrilateral panels. A variety of 
techniques exist for the creation of this data; for example a 
program named MAKEWGS (described in the chapter 
V.E.11)) is usable for definition of simple geometries. The 
ultimate solution lies in the use of a Computer-Aided-Design 
(CAD) system which has a wireframe output option. There is 
also a program named 2WGS (described in the chapter 
V.E.13)) which can convert PANAIR input to LaWGS. [79] 

Once the LaWGS geometry file and the auxiliary file are 
created and stored, the PANAIR input file can be generated by 
invoking the program PANIN. [79] 

After PANIN completes the execution, two files are 
produced. These files take their names from the data in the 
NAME record in the auxiliary file with extensions of .SH and 
.IN. The .IN file is the PANAIR input data. [79] 

Although a considerable effort has been expended in 
making the program free of errors or omissions, the user should 
inspect the input file and script carefully. There are many 
problems in forcing data to fit the fixed field format and 
inadvertent round off may result. In this case, the PRECISION 
keyword can be helpful, but there are many potential sources of 
error. The principal problem area is overflow of an output field 
when one is trying to keep the geometric accuracy high by 
printing many decimals. Two popular places for this error to 
occur are the x-coordinates of the trailing edges of wakes and 
the value of reference area. It is usually useful to scan the 
PANAIR input file for asterisk characters. [79] 

There are many options in the PANAIR input file and it 
would be virtually impossible to incorporate all of them in this 
program. For example, in PANAIR different reference lengths 
for yawing moment and rolling moment can be selected but 
PANIN simply requests a span. [79] 

9) Digital Datcom 
The Stability and Control Data Compendium (Datcom) 

provides a systematic summary of methods for estimating static 
stability, high lift and control, and dynamic derivative 
characteristics of a wide variety of aircraft and aircraft 
configurations. The estimation includes, for example, lift 
coefficients, drag coefficients, side force coefficients, roll 
moment coefficients, pitch moment coefficients, yaw moment 
coefficients, changes in coefficients due to power effects, and 
changes in coefficients due to ground effects. For any given 
flight condition and configuration the complete set of 
derivatives can be determined without resort to outside 
information. [2] [10] [106] [108] [86] [109] [52] 

The program contains a trim option which computes 
control deflections and aerodynamic increments for vehicle 
trim at subsonic Mach numbers. Furthermore, user oriented 
features of the program include minimized input requirements, 
input error analysis, and various options for application 
flexibility. An interesting feature is also roughness factors for 
various types of surface such as polished metal, wood, natural 



sheet metal, camouflage paint and other surfaces. [106] [108] 
[109] 

The program has been developed as a modular basis. These 
modules correspond to the primary building blocks referenced 
in the program executive. The modular approach was used 
because it simplified program development, testing, and 
modification or expansion. [10] [107] [108] 

Primarily intended for preliminary use, ahead of test data, it 
is designed to give an initial look at the stability performance 
of an aircraft design. By interfacing Datcom with the FDM, an 
aircraft model for any fixed-wing UAVs can be rapidly 
developed without wind tunnel testing. This feature 
significantly increases the repeatability of flight simulation and 
is found very useful for UAV preliminary designs where only a 
rough estimate of the vehicle’s stability is required. However, 
program should not be intended for use instead of wind tunnel 
or flight test. [1] [2] 

Digital Datcom is used to calculate aerodynamic 
coefficients from first principles. Datcom produces an output 
file with aerodynamic coefficients based on an input file 
containing all essential geometries of an aircraft. The 
coefficients in the six degrees of freedom are drag, lift, side, 
pitching moment, rolling moment, and yawing moment 
coefficient. The location of the center of gravity is uncertain 
because the material of the entire solid model is considered to 
be homogeneous. However, almost all similar programs have 
the same problem. [1] [10] [30] 

Inputs to Datcom include desired flight conditions, aircraft 
attitudes, physical geometry, and desired outputs. Datcom 
treats inputs which represent a traditional wing-body-tail 
configuration and any control or high lift devices. However, 
some nonstandard geometry can be treated as well. Datcom 
inputs were assumed for straight-tapered and nonstraight-
tapered wings including effects of sweep, taper, and incidence. 
For the longitudinal characteristics, the program assumes a 
mid-wing configuration. [2] [10] [11] 

The effect of linear twist can be treated at subsonic Mach 
numbers. Dihedral influences are included in lateral-directional 
stability derivatives and wing wake location used in the 
calculation of longitudinal data. Airfoil section characteristics 
are a required input, although most of these characteristics may 
be generated using the Airfoil Section Module. [10] [108] 

Users are advised to be mindful of section characteristics 
which are sensitive to Reynolds number, particularly in cases 
where very low Reynolds number estimates are of interest. A 
typical example would be pretest estimates for small, laminar 
flow wind tunnels where Reynolds numbers on the order of 
100,000 are common. Datcom has low accuracy below this 
Reynolds number. [10] [109] 

Users should be aware that Datcom employs turbulent skin 
friction methods in the computation of friction drag values. 
Estimates for cases involving significant wetted areas in 
laminar flow will require adjustment by the user. [10] 

Datcom requires Mach number and Reynolds number to 
define the flight conditions. This requirement can be satisfied 
by defining combinations of Mach number, velocity, Reynolds 

number, altitude, and pressure and temperature. The speed 
reference is input as either Mach number or velocity, and the 
atmospheric conditions as either altitude or freestream pressure 
and temperature. The specific reference and atmospheric 
conditions are then used to calculate Reynolds number. [10] 

The program may loop on speed reference and atmospheric 
conditions by using three different ways: [10] 

 LOOP=1 - Mach and altitude changes. The program 
executes at the first Mach number and first altitude, 
then at the second Mach number and second altitude, 
and continues for all the flight conditions. In the input 
data, NMACH must equal NALT. NMACH flight 
conditions are executed. This option should be 
selected when the Reynolds number is input, and must 
be selected when atmospheric conditions are not input. 

 LOOP=2 - Mach number changes at fixed altitude. 
The program executes using the first altitude and 
cycles through each Mach number in the input list, 
then using the second altitude and cycles through each 
Mach number, and continues until each altitude has 
been selected. Atmospheric conditions must be input 
for this option. NMACH times NALT flight conditions 
are executed. 

 LOOP=3 - Altitude changes at fixed Mach number. 
The program executes using the first Mach number 
and cycles through each altitude in the input list, then 
using the second Mach number and cycles through 
each altitude, and continues until each Mach number 
has been selected. Atmospheric conditions must be 
input for this option. NMACH times NALT flight 
conditions are executed. 

A diagnostic analysis module in Datcom scans all of the 
input data which listing is given and any errors are flagged. 
However, Datcom will attempt to execute all cases as input by 
the user even if errors are detected. [10] 

The airfoil section module can be used to calculate the 
required geometric and aerodynamic input parameters for 
virtually any user defined airfoil section. This module 
substantially simplifies the user's input preparation. [10] 

An airfoil section is defined by one of the following 
methods: [10] 

 an airfoil section designation (for NACA, double 
wedge, circular arc, or hexagonal airfoils) 

 upper and lower Cartesian coordinates 

 mean line and thickness distribution 

The airfoil section module uses Weber's method to 
calculate the inviscid aerodynamic characteristics. A viscous 
correction is applied to the lift curve slope, CL_alpha. [10] 

Five general characteristics of the module should be noted: 
[10] 

 For subsonic Mach numbers, the module computes the 
airfoil subsonic section characteristics and the results 
can be considered accurate for Mach numbers less 



than the crest critical Mach number. Near crest critical 
Mach number, flow mixing due to the upper surface 
shock will make the boundary layer correction invalid. 
Compressibility corrections also become invalid. The 
module also computes the required geometric 
variables at all speeds, and for transonic and 
supersonic speeds these are the only required inputs. 
Mach equals zero data are always supplied. 

 Because of the nature of the solution, predictions for 
an airfoil whose maximum camber is greater than 6% 
of the chord will lose accuracy. Accuracy will also 
diminish when the maximum airfoil thickness exceeds 
approximately 12% of the chord, or large viscous 
interactions are present such as with supercritical 
airfoils. 

 When section Cartesian coordinates or mean line and 
thickness distribution coordinates are specified, the 
user must adequately define the leading edge region to 
prevent surface curve fits which have infinite slope. 
This can be accomplished by supplying section 
ordinates at non-dimensional chord stations (x/c of 0.0, 
0.001, 0.002, and 0.003). 

 If the leading edge radius is not specified in the airfoil 
section input, the user must insure that the first and 
second coordinate points lie on the leading edge 
radius. For sharp nosed airfoils the user must specify a 
zero leading edge radius. 

 The computational algorithm can be sensitive to the 
smoothness of the input coordinates. Therefore, the 
user should insure that the input data contains no 
unintentional fluctuations. Considering that Datcom 
procedures are preliminary design methods, it is at 
least as important to provide smoothly varying 
coordinates as to accurately define the airfoil 
geometry. 

Several operational limitations exist in Datcom. These 
limitations and some pertinent operational techniques are listed 
below without extensive discussion or justification: [10] 

 The forward lifting surface is always input as the wing 
and the aft lifting surface as the horizontal tail. This 
convention is used regardless of the nature of the 
configuration. 

 Twin vertical tail methods are only applicable to 
lateral stability parameters at subsonic speeds. 

 Airfoil section characteristics are assumed to be 
constant across the airfoil span, or an average for the 
panel. Inboard and outboard panels of cranked or 
double-delta planforms can have their individual panel 
leading edge radii and maximum thickness ratios 
specified separately. 

 If airfoil sections are simultaneously specified for the 
same aerodynamic surface by an NACA designation 
and by coordinates, the coordinate information will 
take precedence. 

 Jet and propeller power effects are only applied to the 
longitudinal stability parameters at subsonic speeds. 
Jet and propeller power effects cannot be applied 
simultaneously. 

 Ground effect methods are only applicable to 
longitudinal stability parameters at subsonic speeds. 

 Only one high lift or control device can be analyzed at 
a time. The effect of high lift and control devices on 
downwash is not calculated. The effects of multiple 
devices can be calculated by using the experimental 
data input option to supply the effects of one device 
and allowing Datcom to calculate the incremental 
effects of the second device. 

 Jet flaps are considered to be symmetrical high lift and 
control devices. The methods are only applicable to 
the longitudinal stability parameters at subsonic 
speeds. 

 The program uses the input names to define the 
configuration components to be synthesized. For 
example, the presence of name list HTPLNF causes 
Datcom to assume that the configuration has a 
horizontal tail. 

Datcom was tested, for example, on Rascal UAV [2], 
Shadow UAV [58], and a MAV prototype [109]. 

a) Datcom Release 2 and OpenDatcom 

Some aspects of Datcom are outdated; for example the user 
interface, the use of the DOS command prompt, and the input 
file written in a text format for which the standard rules of 
FORTRAN apply. With these restrictions, it is time consuming 
to compile and troubleshoot the input file. [86] 

OpenDatcom and Datcom Release 2 (DR2) have been 
specifically developed to remove these outdated features. Both 
are written completely in Java SE and uses the Java Virtual 
Machine (JVM) to interface with Datcom. The interface is 
completely coded into OpenDatcom and DR2; as a result, no 
modification to the original Datcom code is needed. [86] 

OpenDatcom and DR2 use basic GUI to allow the user to 
easily compile an input file, import an existing input file, and 
run Datcom without any knowledge of DOS or of the 
FORTRAN formatting of the input file. [86] 

Another option which was added to DR2 is the compiling 
and export of stability and performance coefficients. This 
feature was added with the specific intention of compiling three 
dimensional stability tables which can be copied straight into 
the FlightGear (using the JSBsim). This allows that an aircraft 
can be analyzed in Datcom and its flight can be tested in 
FlightGear. [86] 

However, DR2 is in BETA development stage and may 
have some bugs; as a result, DR2 should be used cautiously. 
[86] 

The graphical user interface of OpenDatcom can be seen in 
Fig. 28, of Datcom Release 2 in Fig. 29, and of Datcom-to-
JSBSim application in Fig. 30. 



 

Fig. 28. The graphical user interface of OpenDatcom 

 

Fig. 29. The graphical user interface of Datcom Release 2 

 

Fig. 30. The graphical user interface of Datcom-to-JSBSim 

b) Datcom+ 

Datcom+ is an extension of the Datcom program and 
incorporates some tools to make it easier to use. Front-end and 
back-end is added to the original Datcom for user convenience. 
By adding a different format output section to the original 
program, the output data is in various formats: [85] [109] 

 Free-format LFI tables, for plotting with LFIPLOT 

 XML format, compatible with JSBSim 

 AC3D Model 

However, there are some known issues with DATCOM+. 
The first is the defining of airfoils manually with upper and 
lower surface points which does not provide any output for the 
AC3D picture. The second are fuselages which are not drawn 
correctly if defined as other than a circular cross-section. [109] 

Datcom+ Pro is the next generation of this program, which 
has been made much more user-friendly. Visualization tools 
allow user to see his aircraft immediately, and coefficient data 
generated by the Datcom program is plotted on X-Y graphs for 
ease of interpretation and inclusion into reports. Additionally, 
Datcom+ Pro model can now be run in JSBSim and sample 
flight test scripts are provided to execute standard flight test 
maneuvers. However, Datcom+ Pro is not available for free. 
[85] 

10) Aeroelastic Analysis for Rotorcraft in Flight or in a 

Wind Tunnel (ROTOR) 
The testing of rotorcraft, either in flight or in a wind tunnel, 

requires a consideration of the coupled aero-elastic stability of 
the rotor and airframe, or the rotor and support system. Even if 
the primary purpose of a test is to measure rotor performance, 
ignoring the question of dynamic stability introduces the risk of 
catastrophic failure of the aircraft. [81] 

This computer program was developed to incorporate an 
analytical model of the aero-elastic behavior of a wide range of 
rotorcraft. Such an analytical model is desirable for both pretest 
predictions and posttest correlations. The program is also 
applicable in investigations of isolated rotor aero-elasticity and 
helicopter flight dynamics and could be employed as a basis for 
more extensive investigations of aero-elastic behavior, such as 
automatic control system design. [81] 

The program incorporates an analytical model which is 
applicable to a wide range of rotors, helicopters, and operating 
conditions. The equations of motion used in the model were 
derived using an integral Newtonian method, which provides 
considerable insight into the blade inertial and aerodynamic 
forces. The rotor model includes coupled flap-lag bending and 
blade torsion degrees of freedom, and is applicable to 
articulated, hinge-less, gimbaled, and teetering rotors with an 
arbitrary number of blades. The aerodynamic model is valid for 
both high and low inflow, and for both axial and non-axial 
flight. Rotor rotational speed dynamics, including engine 
inertia and damping, and perturbation inflow dynamics are 
included in the aerodynamic model. [81] 

For a rotor on a wind-tunnel support, a normal mode 
representation of the test module, strut, and balance is used. 
The aero-elastic analysis for rotorcraft in flight is applicable to 
a general two-rotor aircraft, including single main-rotor and 
tandem helicopter configurations, and side-by-side or tilting 
prop-rotor aircraft configurations. The rotor model includes 
rotor-rotor aerodynamic interference and ground effect. The 
aircraft model includes rotor-fuselage-tail aerodynamic 
interference, engine dynamics, and control dynamics. A 
constant-coefficient approximation is used for non-axial flow 
and a quasistatic approximation is used for the low frequency 
dynamics. The coupled system dynamics results are a set of 
linear differential equations which are used to determine the 
stability and aero-elastic response of the system. [81] 



Unfortunately, this program is a “work in progress” and is 
not ready for general release. However, source codes may be 
seen in [81]. 

11) Wireframe generator (MAKEWGS) 
Many computing procedures in engineering require the 

definition of a surface or solid object by means of an ordered 
lattice of points which define a grid of quadrilaterals. 
MAKEWGS can create wireframe models of simple wings and 
bodies and enables to make some of the classic shapes of 
aerodynamic theory with a minimum of effort. [87] 

A script or input file describes the objects to be defined. 
The program reads the script and creates an output file with the 
grid points in NASA Langley Wireframe Geometry Standard 
format (LaWGS). [87] 

Wings are defined by their root and tip chords and their 
grid densities. Several common airfoil sections are available. 
Bodies are defined by nose length, after-body length and 
overall length and maximum diameter. The common body 
shapes such as parabolic, conical, Sears-Haack, von Karman 
Ogive, and ellipsoidal are coded. [87] 

12) 3-VIEW and SILHOUETTE 
SILHOUETTE gives perspective views of an arbitrary 

configuration defined by wireframe meshes of grid points with 
hidden line removal. 3-VIEW produces plan, side, and rear 
views from the same input file (LaWGS) as SILHOUETTE 
uses. [9] 

a) 3-VIEW 

For many applications, it is simple and fast to make views 
of the configuration in the plan, side, and rear or front view. 
Even though hidden lines are shown, they are not usually as 
confusing as they are in isometric views. An example of an 
aircraft in the plan view can be seen in Fig. 31. [88] 

 

Fig. 31. The plan view of an aircraft [88] 

This simple program takes a configuration in LaWGS 
format and produces several output files which may be used to 
visualize your vehicle. The files plan.gnu, side.gnu, and 
rear.gnu are formatted to be displayed with Gnuplot [104] or 
any other plotting package. [88] 

b) SILHOUETTE - Hidden Line Program (HLP) 

This program draws a perspective view of an object which 
has been defined as a wire frame and analyzes the image to 
remove the hidden lines. [89] 

A polygonal representation of objects, even with hidden 
lines removed, is not always desirable. A more pleasing 
pictorial representation often can be achieved by removing 
some of the remaining visible lines, thus creating silhouettes 
(or outlines) of selected surfaces of the object. Additionally, it 
should be noted that this silhouette feature allows warped 
polygons, i.e. any polygon can be decomposed into constituent 
triangles. The consideration that these triangles are members of 
the same family will result in a polygon with no interior lines, 
and thus, the restriction of flat polygons will be removed. [89] 

SILHOUETTE is a program for calligraphic drawings 
which can render any subset of polygons as a silhouette with 
respect to itself. The program is flexible enough to be 
applicable to every class of an object. SILHOUETTE offers all 
possible combinations of silhouette and non-silhouette 
specifications for an arbitrary solid. Thus, it is possible to 
enhance the clarity of any three-dimensional scene presented in 
two dimensions. [89] 

Input to the program can be line segments or polygons. 
Polygons designated with the same number will be drawn as a 
silhouette of those polygons. The output is a plot file, encoded 
for Gnuplot [104], of the object in question. [89] 

13) Geometry Conversion to LaWGS (2WGS) 
PANAIR (described in the chapter V.E.8)) allows the user 

to define the geometry of a vehicle and reads a wire frame 
mesh as part of its input file. PANAIR was developed before 
the definition of the LaWGS and have their own input 
schemes. As a result, 2WGS package with utility program 
which converts the input files for PANAIR (and for other 
programs in PDAS; e.g. WINGBODY) into the LaWGS format 
was developed. A program named a5022wgs converts the input 
file of PANAIR into a file with extension of .WGS. The 
converted file may be then inserted to the SILHOUETTE, 3-
VIEW, and other viewers. [90] 

14) Geometry Conversion to VRML World (VRML) 
This program makes a VRML model (a .WRL file) from 

wireframe geometry in LaWGS format. This is an experimental 
program in the initial phases of testing and produces a file in 
VRML 1.0 format. The idea is to display the data (input and 
output) from a general class of CFD programs. [91] 

The program asks for the name of the input file. This must 
be a file in LaWGS format. After reading the input data, the 
program produces a file with extension of .WRL which may be 
used as input to a VRML browser. [91] 

F. Computational Fluid Dynamics (CFD) 

Computational Fluid Dynamics (CFD) provides a 
qualitative (and sometimes even quantitative) prediction of 
fluid flows by means of: [137] 

 Mathematical modelling (partial differential equations) 



 Numerical methods (discretization and solution 
techniques) 

 Software tools (solvers, pre- and post-processing 
utilities) 

In other words, CFD uses numerical methods to solve how 
liquids and gases interact with surfaces. [143] [51] 

1) Stanford University Unstructured (SU
2
) 

The Stanford University Unstructured (SU
2
) suite is an 

open-source collection of C++ based software tools. This 
computational analysis and design software collection is being 
developed to solve complex, multi-physics analysis and 
optimization tasks using arbitrary unstructured meshes, to 
perform Partial Differential Equation (PDE) analysis and solve 
PDE constrained optimization problems. The toolset is 
designed with computational fluid dynamics and aerodynamic 
shape optimization in mind, but is extensible to treat arbitrary 
sets of governing equations such as potential flow, 
electrodynamics, chemically reacting flows, and many others. 
SU

2
 is under active development in the Aerospace Design Lab 

(ADL) of the Department of Aeronautics and Astronautics at 
Stanford University, and is released under an open-source 
license. [138] [139] 

The SU
2
 software suite specializes in high-fidelity PDE 

analysis and in the design of PDE-constrained systems on 
unstructured meshes. The suite itself is composed of several 
C++ analysis modules which handle specific jobs, including: 
[139] 

 SU2_CFD - The main PDE solution module which 
started primarily as an Euler and RANS CFD solver, 
but has been modified to treat many other governing 
equations, including the adjoint equations for many of 
the supported governing equation systems. 

 SU2_DDC - The Domain Decomposition Code, used 
to prepare SU

2
 for computations involving multiple 

processors. 

 SU2_MAC - The Mesh Adaptation Code which can be 
used to refine the unstructured computational meshes 
to improve the accuracy of the predictions. 

 SU2_GPC - The Gradient Projection Code which 
allows for the calculation of sensitivities for use in 
optimization and uncertainty quantification. 

 SU2_MDC - The Mesh Deformation Code which can 
be used to perturb an existing unstructured volume 
mesh to conform to new surface geometries dictated 
by either shape optimization processes or aero-
structural simulations. 

 SU2_PBC - The Periodic Boundary Code, a pre-
processor to allow for the solution of PDEs on 
periodic domains. 

 SU2_SMC - The Sliding Mesh Code, a pre-processor 
which enables the solution of PDEs on meshes which 
slide (translational or rotational capabilities included) 
past each other. 

Additional modules may be added as further capabilities are 
needed and included in the software. This structure makes SU

2
 

an ideal tool for performing multi-physics simulations, 
including multi-species thermochemical non-equilibrium flow 
analysis, combustion modelling, two-phase flow simulations, 
magneto-hydrodynamics simulations, and other simulations. 
[139] 

The SU
2
 software suite was conceived as a common 

infrastructure for solving Partial Differential Equation (PDE) 
problems, using the Finite Volume Method (FVM) or Finite 
Element Method (FEM). The code structure and the high-level 
time and spatial integration structure is shared by all of the 
applications, and only specific numerical methods for the 
convective, viscous and source terms are re-implemented for 
different models where necessary. There is no fundamental 
limitation on the number of state variables or the number of 
governing equation systems which can be solved 
simultaneously in a coupled or segregated way (other than the 
physical memory available on a given computer architecture), 
and the more complicated algorithms and numerical methods, 
including parallelization, multigrid and linear solvers, have 
been implemented in such a way that they can be applied 
without special consideration during the implementation of a 
new physical model. [139] 

Several forms of the Reynolds-averaged Navier-Stokes 
(RANS) equations have also been implemented in SU

2
; for 

instance compressible, incompressible, Arbitrary Lagrangian-
Eulerian, etc. Moreover, both the laminar Navier-Stokes and 
Euler equations are also available in the code as subsets of the 
RANS equations by disabling turbulence modelling and, 
respectively, by completely removing viscosity. [139] 

Numerical discretization of the governing fluid dynamic 
equations using a conservative formulation often results in 
excess artificial viscosity at low Mach numbers. This degrades 
the performance of a compressible solver in regions of low 
Mach number flow. Preconditioning techniques such as Roe-
Turkel have been developed for solving nearly incompressible 
flow problems using the same numerical methods developed 
for compressible flows. This can be particularly useful when 
only part of a flow field is essentially incompressible. For 
example, flow over a multi-element airfoil at high angles of 
attack has regions of both compressible and incompressible 
flow. [139] 

SU
2
 is built to enable vertical integration with optimizers 

and to reduce the amount of user overhead required for setup. 
There are five levels of components in the optimization control 
architecture, and most rely on Python scripts to modify the 
configuration input, execute lower-level components and post-
process any resulting data. To simplify and shorten overhead 
time during problem setup, all levels start from a common 
configuration file, which is modified as needed when passed to 
lower levels. Listed in order from lowest to highest, these 
levels are: [139] 

 Core tools 

 Solution decomposition/re-composition 

 Sensitivity analysis 



 Design evaluation 

 Design optimization 

A set of tutorials which cover all the basic capabilities of 
SU

2
 was created and is distributed with SU

2
. There can be 

found, for example, the flow and adjoint simulation of external, 
inviscid flow around a 2D geometry (NACA 0012 airfoil) by 
using steady, 2D, Euler and continuous Adjoint Euler equations 
[140], and optimal shape design of a rotating airfoil [141]. 
[139] 

Moreover, compressible RANS simulations, low-Mach 
number simulations, airfoil and fixed wing optimization, wing 
design using RANS equations, redesign of a rotor in hover 
(Fig. 32), Adaptive Mesh Refinement, goal-oriented mesh 
adaptation, engine propulsion effect adaptation and other 
applications of SU

2
 are described in [139]. 

 

Fig. 32. A comparison of a baseline and optimized rotor geometries [139] 

2) OpenFOAM 
The OpenFOAM (Open Field Operation and Manipulation) 

CFD Toolbox is a free, open source CFD software package 
which has a large user base across most areas of engineering 
and science, from both commercial and academic 
organizations. For example, in [149], OpenFOAM was used for 
simulation of flow around flapping wings, and in [143] as a 
part of system for optimization of wing, body, and tail of 
aircraft. [142] 

OpenFOAM has an extensive range of features to solve 
anything from complex fluid flows involving chemical 
reactions, turbulence and heat transfer, to solid dynamics and 
electromagnetics. It includes tools for meshing, notably 
snappyHexMesh, a parallelized mesher for complex CAD 
geometries, and for pre- and post-processing. Almost 
everything (including meshing, and pre- and post-processing) 
runs in parallel as standard, enabling users to take full 
advantage of computer hardware at their disposal. [142] [143] 
[144] 

The core technology of OpenFOAM is a flexible set of 
efficient C++ modules, used primarily to create executables, 
known as applications – overview of OpenFOAM structure can 
be seen in Fig. 33. The applications fall into two categories: 
solvers, which are each designed to solve a specific problem in 
continuum mechanics; and utilities, that are designed to 
perform tasks which involve data manipulation. OpenFOAM 
includes over 80 solver applications which simulate specific 
problems in engineering mechanics and over 170 utility 
applications which perform pre- and post-processing tasks, e.g. 
meshing, data visualization, etc. [144] [142] 

 

Fig. 33. The overview of the OpenFOAM structure [144] 

An extensive set of OpenFOAM solvers has evolved. 
Despite OpenFOAM is used mainly for CFD, it has found use 
in other areas such as stress analysis, electromagnetics and 
finance because; it is fundamentally a tool for solving partial 
differential equations rather than a CFD package in the 
traditional sense. OpenFOAM has standard solvers for: [145] 

 Basic CFD codes (Laplace, potential flow, and scalar 
transport solvers) 

 Incompressible flow 

 Compressible flow 

 Multiphase flow 

 Direct Numerical Simulation (DNS) and Large Eddy 
Simulation (LES) 

 Combustion 

 Particle-tracking flows 

 Heat transfer and buoyancy-driven flows 

 Molecular dynamics methods 

 Direct simulation Monte Carlo methods 

 Electromagnetics 

 Stress analysis of solids 

 Finance 

Moreover, OpenFOAM offers ODE solvers for non-stiff 
systems including: fifth-order Cash-Karp Runge-Kutta with 
error estimation and adaptive time step control. [146] 

OpenFOAM also offers ODE solvers for stiff systems 
including: the fourth-order semi-implicit Runge-Kutta scheme 
of Kaps, Rentrop and Rosenbrock with error estimation and 
adaptive time step control, and the semi-emplicit Bulirsch-
Stoer method of Bader and Deuflhard. [146] 



OpenFOAM contains a suite of numerical tools to solve a 
range of problems in engineering and science. It includes 
methods to solve problems where matter is represented as a 
continuum and where it is represented by discrete particles. To 
solve equations for a continuum, OpenFOAM uses a numerical 
approach with the following features: [147] 

 Segregated, iterative solution - For the system of 
equations governing our problem of interest, separate 
matrix equations are created for each equation, and are 
solved within an iterative sequence (as opposed to 
created one, big matrix equation for the entire system 
of equations). 

 Finite volume method - Matrix equations are 
constructed using the finite volume method applied to 
arbitrary shaped cells (any number of faces, any 
number of edges). 

 Collocated variables - The solution variable for each 
matrix equation is defined at cell centers. 

 Equation coupling - The coupling between equations, 
particularly pressure and velocity is performed using 
adapted versions of well-known algorithms such as 
e.g. PISO and SIMPLE. 

OpenFOAM contains a range of dynamic mesh 
functionality within a set of libraries that is plugged into a 
range of dynamic mesh solvers. The type of dynamic mesh 
functionality includes the following: [148] 

 Solid body motion of a mesh according to prescribed 
motion function, e.g. sloshing in a tank. 

 Internal motion (e.g. distortion) of a mesh calculated 
from boundary motion, e.g. object floating at a free 
surface. 

 Dynamic refinement/unrefinement of hex meshes, e.g. 
about a fluid interface, shock, etc. 

 Prescribed motion of a mesh, e.g. according to a 
periodic boundary motion. 

There are also a number of tools to specify the boundary 
motion in conjunction with mesh motion: [148] 

 Prescribed six degree of freedom (6DOF) motion 
functions, e.g. translations and rotations. 

 Tabulated 6DOF motion which interpolates discrete 
data. 

 Specialized Ship design analysis (SDA) 3DOF motion 
function. 

 6DOF motion caused by flow, e.g. floating object, 
which can also permit constraints (fixed points) and 
restraints (springs and dampers). 

3) Code_Saturne 
Code_Saturne is open-source CFD software which solves 

the Navier-Stokes equations for 2D, 2D-axisymmetric and 3D 
flows, steady or unsteady, laminar or turbulent, incompressible 

or weakly dilatable, isothermal or not, with scalars transport if 
required. [150] [151] 

Several turbulence models are available, from Reynolds-
Averaged models (RANS models) to Large-Eddy Simulation 
models (LES models). In addition, a number of specific 
physical models are available as modules: gas, coal, biomass, 
pollutant, and heavy-fuel oil combustion, semi-transparent 
radiative transfer, particle-tracking with Lagrangian modelling, 
Joule effect, electric arcs, multi-physics modelling of arc 
welding, weakly compressible flows, atmospheric flows, 
rotor/stator interaction for hydraulic machines. [150] [151] 

Code_Saturne has been under development since 1997 by 
EDF R&D (Electricité de France). The software is based on a 
co-located Finite Volume Method (FVM) that accepts three-
dimensional meshes built with any type of cell (tetrahedral, 
hexahedral, prismatic, pyramidal, and polyhedral) and with any 
type of grid structure (unstructured, block structured, hybrid). 
[152] [151] 

Code_Saturne is composed of two main elements and an 
optional GUI (as shown in Fig. 34): [151] 

 The Kernel module which is the numerical solver 

 The Preprocessor module which is in charge of mesh 
import 

 

Fig. 34. The Code_Saturne elements [151] 

Code_Saturne can use different numerical methods: [153] 

 Discretization 

 Velocity-pressure coupling 

 Linear system resolution (Jacobi (default for velocity, 
temperature, turbulent variables, passive scalars), 
algebraic multigrid (default for pressure), conjugate 
gradient, and stabilized bi-conjugate gradient (BI-
CGSTAB)) 

 Convective scheme (First order Upwind Scheme, 
Centered scheme, Second Order Linear Upwind 
(SOLU) Scheme, and Blended scheme between 
upwind and second order scheme) 

 Gradient calculation 

The supported compatible mesh generators’ formats 
include: SALOME SMESH, I-DEAS Nx, Gmsh, Gambit 
(Fluent), Simail, Harpoon, ICEM-CFD, and Star-CCM+. [154] 



Code_Saturne also relies on the PLE (Parallel Location and 
Exchange) library for the management of code coupling; this 
library can also be used independently. [151] 

Code_saturne can be coupled with: [155] 

 itself (in order to couple different models 
(RANS/LES), to model fluid-structure interaction with 
large displacement or the rotating machines) 

 Code_Aster (in order to model the fluid-structure 
interaction) 

 SYRTHES (in order to model the conjugate heat 
transfer) 

4) High Fidelity Large Eddy Simulation (HiFiLES) 
High-order numerical schemes may have the potential to 

advance CFD beyond the current plateau of second-order 
methods and RANS turbulence modelling, ushering in new 
levels of accuracy and computational efficiency in turbulent 
flow simulations. [156] [160] 

Because of new aircraft roles (e.g. very small or large 
concepts, Reynolds numbers 10

4–10
7
, very high or low altitude, 

Mach numbers between ca. 0.01–1.0, quiet vehicles, low fuel 
consumption vehicles, etc.), the need for high-fidelity 
simulation techniques to predict their performance is growing; 
furthermore, revolutionary aircraft design concepts may appear 
in the near future. As a result, high-order numerical methods 
may find their place in the aeronautical industry. [157] [50] 
[160] 

Unsteady simulations, including those of flapping wings, 
wake capturing, noise prediction, and turbulent flows via Large 
Eddy Simulation (LES), are just a few examples of 
computations that could benefit from high-order numerical 
methods. In particular, high-order methods have a significant 
edge in applications that require accurate resolution of the 
smallest scales of the flow. Such situations include the 
generation and propagation of acoustic noise from an airframe, 
or at the limits of the flight envelope where unsteady, vortex-
dominated flows have a significant effect on aircraft 
performance. On a given grid, utilizing a high-order 
representation enables smaller scales to be resolved with a 
greater degree of accuracy than standard second-order 
methods. Furthermore, high-order methods are inherently less 
dissipative, resulting in less unwanted interference with the 
correct development of the turbulent energy cascade. [157] 
[160] 

HiFiLES is open-source software, written in C++. HiFiLES 
is high-order numerical methods for flow simulations capture 
complex phenomena like vortices and separation regions using 
fewer degrees of freedom than their low-order counterparts. 
The High Fidelity (HiFi) provided by the schemes, combined 
with turbulence models for small scales and wall interactions, 
gives rise to a powerful LES software package. [156] 

HiFiLES is compressible flow solver for unstructured grids 
built from the ground up to take full advantage of parallel 
computing architectures. In general, the code is designed as an 
ideal base for further development on a variety of architectures; 
for example, it is especially well-suited for Graphical 

Processing Unit (GPU) architectures. The code uses the MPI 
protocol to run on multiple processors, and CUDA to harness 
GPU performance. [156] [157] 

HiFiLES v. 0.1 contains the following capabilities: [156] 
[157] 

 High-order compressible Navier-Stokes and Euler 
equations solver in 2D and 3D with support for 
triangular, quadratic, hexahedral, prismatic, and 
tetrahedral elements. Implementation for spatial orders 
of accuracy 2 through 4 has been verified. 

 Numerical scheme: Energy-Stable Flux 
Reconstruction. 

 Time advancement: explicit time-stepping with low-
storage RK45 method (4

th
 order) or forward Euler (1

st
 

order). Local time-stepping when running on CPUs. 

 Boundary conditions: Wall: no-slip isothermal, no-slip 
adiabatic, and symmetry (slip wall). Inflow and 
outflow: characteristic, supersonic, subsonic. Periodic. 

 High-order surface representation. 

 Mesh format compatibility: neutral (.neu) and Gmsh 
(.msh). 

 Large Eddy Simulation: Sub-grid Scale Models: 
Smagorinsky, WALE, similarity, and combinations of 
these. Wall models: log-law, three-layer Breuer-Rodi. 

 Parallelization: MPI, and GPU (strong scalability 88% 
of ideal for up to 16 GPUs; weak scalability above 
90% of ideal for up to 16 GPUs). 

In [157], the SD7003 airfoil flows with Re = 10,000; 
22,000; 60,000 (Fig. 35); and other simulation cases performed 
by using HiFiLES are described. 

 

Fig. 35. A density contour for the flow with Re = 60,000 around the SD7003 

airfoil [157] 



5) PyFR 
PyFR is an open-source Python based framework for 

solving advection-diffusion type problems on streaming 
architectures using the Flux Reconstruction approach of 
Huynh. The framework is designed to solve a range of 
governing systems on mixed unstructured grids containing 
various element types. PyFR is also designed to target a range 
of hardware platforms via use of an in-built domain specific 
language derived from the Mako template engine. The current 
release (v. 0.2.4) has the following capabilities: [158] [159] 
[160] 

 Governing equations - Euler, Navier Stokes 

 Dimensionality - 2D, 3D 

 Element types - Triangles, Quadrilaterals, Hexahedra, 
Prisms, Tetrahedra, Pyramids 

 Platforms - CPU clusters, Nvidia GPU clusters, AMD 
GPU clusters 

 Spatial discretization - High-order flux reconstruction 

 Temporal discretization - Explicit Runge-Kutta 

 Precision - Single, Double 

 Mesh files read - Gmsh (.msh) 

 Solution files produced - Unstructured VTK (.vtu) 

PyFR is being developed in the Vincent Lab, Department 
of Aeronautics, Imperial College London, UK. However, PyFR 
is not currently a fully-fledged production flow solver; in 
addition, no level of support is guaranteed. [158] 

PyFR aims to expand the industrial CFD envelope from its 
current RANS plateau; enabling affordable and accurate 
simulation of currently intractable unsteady flow problems via 
scale resolving approaches such as LES. As a result, it is 
envisaged that PyFR may have significant impact in a range of 
application areas including design of next-generation 
unmanned aerial vehicles, aircraft noise reduction, design of jet 
engines, and other areas. [159] 

G. Computer-Aided Design (CAD) 

Computer Aided Design (CAD) is a set of methods and 
tools to assist product designers in creating a geometrical 
representation of the artifacts, in dimensioning, configuration 
management, archiving, exchanging part and assembly 
information between organizations, feeding subsequent design 
steps (analysis and manufacturing – Computer-Aided 
Engineering (CAE) and Computer-Aided Manufacturing 
(CAM)) by means of a computer system. These applications 
came out of the manufacturing world; thus, they have certain 
characteristics which make them well suited for manufacturing. 
[161] [177] 

1) FreeCAD 
FreeCAD is a fully multi-platform, open-source, general-

purpose, parametric 3D CAD/CAE modeler. FreeCAD is 
aimed directly at mechanical engineering and product design; 
however it also fits in a wider range of uses around 
engineering, such as architecture. [162] [163] [131] [166] 

FreeCAD's focus is to allow user to create high-precision 
3D models, to keep tight control over those models (being able 
to go back into modelling history and change parameters), and 
eventually to build those models (via 3D printing, CNC 
machining or even construction worksite). [163] 

FreeCAD has many 2D components in order to sketch 2D 
shapes or extract design details from the 3D model to create 2D 
production drawings; Nevertheless, direct 2D drawing (like 
AutoCAD LT) is not the focus, neither animation or organic 
shapes are (like in Maya, 3ds Max, Blender, or Cinema 4D). 
[162] 

FreeCAD features tools are similar to Catia, SolidWorks or 
Solid Edge; as a result it also falls into the category of MCAD, 
PLM, CAx and CAE. Key features of FreeCAD are: [164] 
[162] [166] 

 A complete Open CASCADE Technology-based 
geometry kernel 

 A full parametric model 

 A modular architecture which makes to provide 
additional functionality without modifying the core 
system 

 Import/export to standard formats, such as STEP, 
IGES, OBJ, STL, DXF, SVG, STL, DAE, IFC or 
OFF, NASTRAN, VRML, in addition to FreeCAD’s 
native FCSTD file format 

 A Sketcher with constraint-solver, allowing to sketch 
geometry-constrained 2D shapes 

 A Robot simulation module which allows to study 
robot movements 

 A Drawing sheets module which permit to put 2D 
views of 3D models on a sheet 

 A Rendering module which can export 3D objects for 
rendering with external renderers 

 An Architecture module 

One of the most powerful features of FreeCAD is the 
scripting environment. From the integrated python console (or 
from any other external Python script), almost any part of 
FreeCAD can be accessed; for example it may create or modify 
geometry, modify the representation of objects in a 3D scene, 
or access and modify the FreeCAD interface. Python scripting 
can also be used in macros, which provide an easy method to 
create custom commands. [163] [131] [166] 

The main concept behind the FreeCAD interface is that it is 
separated into workbenches. A workbench is a collection of 
tools suited for a specific task, such as working with meshes, or 
drawing 2D objects, or constrained sketches. The current 
workbench can be switched with the workbench selector at any 
time. The tools included in each workbench, add tools from 
other workbenches, or even self-created tools (macros) can be 
customized. There is also a generic workbench which gathers 
the most commonly used tools from other workbenches, called 
the complete workbench. [163] 



The selection of a workbench depends on the type of job 
which is needed to be done; for instance, PartDesign 
Workbench is focused on mechanical models or more generally 
any small-scale objects, Draft Workbench works in 2D, as well 
as Sketcher Workbench which, in addition, uses constraints; 
there is also Arch Workbench, special Ship Workbench, 
OpenSCAD Workbench and other Workbenches. [163] 

However, FreeCAD is still in the early stages of 
development; thus, although it already offers a large list of 
features, many of them is still missing, specially comparing it 
to commercial solutions. Nevertheless, there is a fast-growing 
community of enthusiastic users, and it can already be found 
many examples of quality projects developed with FreeCAD. 
[163] 

For example, the tutorial of the creation of a very simple, 
elemental airplane model in Part Workbench is described in 
[165]; more complicated geometry is shown in [131], where a 
particular aircraft configuration for the Long Endurance 
Electric UAV (LEEUAV), which can be seen in Fig. 36, was 
designed by using FreeCAD and developed scripts. 

 

Fig. 36. LEEUAV designed with FreeCAD [131] 

2) SALOME 
SALOME is open-source software which provides a 

generic platform for Pre- and Post-Processing for numerical 
simulation. It is based on an open and flexible architecture 
made of reusable components. [222] [223] 

SALOME can be used as standalone application for 
generation of CAD model, its preparation for numerical 
calculations and post-processing of the calculation results. 
Moreover, SALOME can be used as a platform for integration 
of the external third-party numerical codes to produce a new 
application for the full life-cycle management of CAD models. 
[222] [223] 

SALOME can: [222] [223] 

 Support interoperability between CAD modelling and 
computation software (CAD-CAE link) 

 Make easier the integration of new components into 
heterogeneous systems for numerical computation 

 Set the priority to multi-physics coupling between 
computation software 

 Provide a generic user-friendly and efficient user 
interface, which helps to reduce the costs and delays of 
carrying out the studies 

 Reduce training time to the specific time for learning 
the software solution based on this platform 

 Provide access to all functionalities via the integrated 
Python console 

The following operations can be done with SALOME: 
[222] [223] 

 Create/modify, import/export (IGES, STEP, BREP), 
repair/clean CAD models 

 Mesh CAD models, edit mesh, check mesh quality, 
import/export mesh (MED, UNV, DAT, STL) 

 Handle physical properties and quantities attached to 
geometrical items 

 Perform computation using one or more external 
solvers (coupling) 

 Display computation results (scalar, vector) 

 Manage studies (create, save, reload) 

3) BRL-CAD 
BRL-CAD is a powerful cross-platform open-source 

combinatorial Constructive Solid Geometry (CSG) solid 
modelling system which includes interactive 3D solid 
geometry editing, high-performance ray-tracing support for 
rendering and geometric analysis, network-distributed 
framebuffer support, image and signal-processing tools, path-
tracing and photon mapping support for realistic image 
synthesis, a system performance analysis benchmark suite, an 
embedded scripting interface, and libraries for robust high-
performance geometric representation and analysis. [167] [168] 
[169] 

BRL-CAD is a collection of more than 400 tools, utilities, 
and applications comprising more than a million lines of source 
code. For more than 20 years, BRL-CAD has been the primary 
tri-service solid modelling CAD system used by the U.S. 
military to model weapons systems for vulnerability and 
lethality analyses. The solid modelling system is frequently 
used in a wide range of military, academic, and industrial 
applications including in the design and analysis of vehicles, 
mechanical parts, and architecture. The package has also been 
used in radiation dose planning, medical visualization, 
computer graphics education, CSG concepts and modelling 
education, and system performance benchmark testing among 
other purposes. [167] [168] [169] 

BRL-CAD supports a great variety of geometric 
representations including an extensive set of traditional CSG 
primitive implicit solids such as boxes, ellipsoids, cones, and 
tori, as well as explicit solids made from closed collections of 
Uniform B-Spline Surfaces, Non-Uniform Rational B-Spline 
(NURBS) surfaces, n-Manifold Geometry (NMG), and purely 
faceted mesh geometry. All geometric objects may be 



combined using boolean set-theoretic CSG operations 
including union, intersection, and difference. [167] [168] 

Although BRL-CAD has been used for a wide variety of 
engineering and graphics applications, the package's primary 
purpose continues to be the support of ballistic and 
electromagnetic analyses. Accordingly, developers have found 
CSG modelling to be the best approach in terms of model 
accuracy, storage efficiency, precision, and speed of 
computational analysis. [168] 

While polygonal and boundary representation (B-rep) 
modelling often focuses on just the surfaces of objects, CSG 
modelling focuses on the entire volume and content of objects. 
This gives BRL-CAD the capability to be “more than skin 
deep” and build objects with real-world materials, densities, 
and thicknesses so that physical phenomena such as ballistic 
penetration and thermal, radiative, neutron, and other types of 
transport can be studied. [168] 

For example in [170], the methodology of the aircraft 
survivability analysis considering vulnerability of the aircraft 
against fragmenting warhead threat was studied, and for the 
shot-line analysis, the functions and required libraries of the 
BRL-CAD software are integrated in the code which is used as 
the shot-line subroutine of the main survivability analysis code. 

The BRL-CAD libraries are designed primarily for the 
geometric modeler who also wants to edit software and, 
perhaps, design custom tools. Each library fits into one of three 
categories: creating and/or editing geometry, ray-tracing 
geometry, or image handling. [168] 

The application side of BRL-CAD also offers a number of 
tools and utilities. They primarily concern is geometric 
conversion, geometric interrogation, image format conversion, 
and command-line-oriented image manipulation. An overview 
of libraries, tools, and utilities of BRL-CAD can be found in 
[168]. 

4) QCAD 
QCAD is a multi-platform, open source application for 

computer aided drafting (CAD) in two dimensions (2D). 
Technical drawings such as plans for aircraft models (Fig. 37), 
buildings, interiors, mechanical parts, or schematics and 
diagrams can be created with QCAD. QCAD was designed 
with modularity, extensibility and portability in mind; 
moreover, QCAD has intuitive user interface. [171] 

 

Fig. 37. The wings and airfoil of the ZLIN 526 AF/AFS aircraft model in 

QCAD 

Main Features of QCAD are: [171] [172] 

 Layers 

 Blocks (grouping) 

 35 CAD fonts included 

 Support for TrueType fonts 

 Various Metrical and Imperial units 

 DXF and DWG import and export 

 Import bitmaps into drawing and export drawing as 
bitmap (BMP, JPEG, PNG, TIFF, ICO, PPM, XBM, 
XPM) 

 Printing to scale 

 Printing on multiple pages 

 Over 40 construction tools 

 Over 20 modification tools 

 Construction and modification of points, lines, arcs, 
circles, ellipses, splines, polylines, texts, dimensions, 
hatches, fills, raster images 

 Various entity selection tools 

 Object snaps 

 Measuring tools 

 QCAD Library Browser with over 5000 CAD parts 

 Complete ECMAScript scripting interface 

Using the QCAD 3 scripting interface, new interactive tools 
and user interface components can be added to QCAD without 
having to set up a development environment or requiring a 
special developer license. In the same manner, completely new 
applications can be developed using only the script interface of 
QCAD. [173] 

If an extension of QCAD by using scripts is not possible, a 
QCAD C++ plugin which wraps developer’s library can be 
created; however, the necessary hooks to access library 
functionality through the script interface have to be added. 
[173] 

H. OpenVSP 

OpenVSP (Vehicle Sketch Pad) is a parametric aircraft 
geometry tool which allows the user to create a 3D model of an 
aircraft defined by common engineering parameters. This 
model can be processed into formats suitable for engineering 
analysis, for example into STL, MSH, HRM, 3DM, FEL, X3D 
and other formats. OpenVSP was successfully used, for 
instance, in [143] as a part of system for the optimization of 
wing, body, and tail of aircraft. Furthermore, in [180], four 
types of reduced-fidelity geometric representations were 
defined in response to a need for bridging the gap between 
conceptual design and analysis. [174] [177] [178] [179] 

The predecessors to OpenVSP have been developed by 
NASA since the early 1990's.  In January 2012, OpenVSP was 



released as an open source project under the NOSA 1.3 license; 
the logo of OpenVSP can be seen in Fig. 38. [174] [175] [178] 

 

Fig. 38. The Logo of OpenVSP [175] 

In [176], there is a VSP Hangar where over 170 aircraft 
VSP models of various types can be found. Fig. 39 shows 
Dragon Eye UAV which was downloaded from VSP Hangar 
and displayed in OpenVSP application. 

 

Fig. 39. Dragon Eye UAV displayed in OpenVSP 

Traditional CAD tools generate a static solution to a design 
problem. However, many of the strengths of CAD which make 
it beneficial in the preliminary and detailed design phases 
actually become either of little benefit or even hindrances in 
the conceptual design phase. Instead of manually creating a 
CAD model by dragging and dropping components, the 
parametric design is specified using variables and functions. 
Parametric design defines the relationships between 
components in a design. As a result, changing a variable which 
defines part of a model will adapt all the connected 
components so as to maintain a coherent design. Although 
there is a longer lead time to implement the initial model, once 
the model is developed, the user can easily create endless 
variations of the original. In other words, parametric design 
systems make the computer a generative design tool and are 
already used extensively as a rapid prototyping technique in 
architecture and aeronautics. [143] [177] [178] [179] 

OpenVSP builds a text file which is filled out through a 
series of forms presented graphically to the user, and the 
geometry is displayed in real-time in a three-dimensional 
display window. [177] [178] [179] 

In order to provide real-time performance, the true wetted 
surface of the aircraft is not generated or updated with every 
design change. Instead, aircraft components are modeled and 
displayed independently but simultaneously; the wing and 
fuselage are both represented, but the wing-fuselage 

intersection is not calculated and the components are not 
trimmed at the intersection. [179] 

At any point in the design process, the designer may elect 
to calculate the component intersections and generate the outer 
mold lines of the vehicle. This true wetted surface can be used 
by OpenVSP to perform a number of analysis tasks. The 
surface representation generated by OpenVSP can be used as 
the starting point for volume mesh generation to be used in 
CFD analysis. Moreover, it can be used as input to a rapid 
prototyping machine or 3D printer. The surface model output 
by OpenVSP can also be used to create high quality 
illustrations and renderings of the design concept. [179] 

Mesh grid density is defined and controlled by using point, 
line and box sources. These sources specify the desired edge 
length near the source. The radius of the source dictates the 
volume affected by that source. The target length is decreased 
by the square of the fractional distance away from the source. 
The source size may be automatically increased to prevent the 
edge length from changing more than 20% at source borders. 
The position of the sources is specified in the parameter space 
of the components. This allows the user to change the 
geometry without having to redefine sources as can be seen in 
Fig. 40 and Fig. 41. [179] 

Line and box sources require two points to specify location 
and size. To improve the speed of the mesh density 
specification, the meshing process is split into two parts: 
intersect and mesh. If the geometry does not change, only the 
mesh process is required to see changes in density. When the 
mesh density is satisfactory, the mesh can be exported, for 
example, in Nascart (DAT) or STL format. [179] 

 

Fig. 40. The original geometry [179] 

 

Fig. 41. The altered geometry [179] 



The primary mesh control interface presented to the user is 
depicted in Fig. 42. This interface allows the user to create and 
modify the grid density control sources. [179] 

 

Fig. 42. CFD Mesh control dialog 

OpenVSP has the capability to automatically create a 
default set of mesh control sources for each geometric 
component in the model. These default sources provide a 
reasonable foundation for tweaking and customization. In 
addition to the controls for the individual sources, the user can 
adjust some global parameters scaling mesh size and limiting 
the largest triangle in the mesh. These global parameters allow 
the user to quickly adjust a mesh as a whole, thereby creating a 
series of related meshes. [179] 

An example of how parameterization can be used 
effectively is in the area of defining high-lift devices. 
OpenVSP allows for arbitrary airfoil coordinates in relation to 
the traditional zero to one chord reference. This means that the 
cruise configuration wing can be defined, and if the high-lift 
configuration airfoils are defined properly, then multiple copies 
of the cruise wing only have to differ by the airfoil file chosen 
in order to correctly size and position all of the elements. Any 
other high-lift flap settings need only to have different airfoil 
files read in to define them as well. The accuracy of the 
positioning is only dependent upon the accuracy of the airfoil 
file. If for any reason the cruise wing geometry is altered, then, 
everything that is necessary to be done is updating the copies to 
the same values. Unfortunately, this update must be performed 
manually. However, a future feature may be to automate this 
process by allowing the designer to specify dependencies down 
to the individual parameter level. Currently, parent-child 
dependencies only extend to position and rotation. [177] 

OpenVSP also has some capability to do arbitrary shapes. 
In general, this should be avoided because it negates the main 
advantage which OpenVSP has over CAD, namely parametric 
input and the ease with which the geometry can be modified. 
[177] 

I. JavaFoil 

JavaFoil uses several traditional methods for airfoil 
analysis. The following two methods build the backbone of the 
program: [229] [230] 

 The potential flow analysis is performed with a higher 
order panel method. It calculates the local, inviscid 
flow velocity along the surface of an airfoil for any 
desired angle of attack by using a set of airfoil 
coordinates. 

 The boundary layer analysis module steps along the 
upper and the lower surfaces of the airfoil, starting at 
the stagnation point. It solves a set of differential 
equations to find the various boundary layer 
parameters; it is a so called integral method. The 
equations and criteria for transition and separation are 
based on the procedures described by Eppler. The 
boundary layer module works best in the Reynolds 
number regime between 500,000 and 20,000,000. 

A standard compressibility correction according to Karman 
and Tsien has been implemented to take mild Mach number 
effects into account. As long as the flow stays subsonic (this 
usually means that Mach numbers are between zero and 0.5), 
the results should be fairly accurate. Airfoils in supersonic flow 
cannot be analyzed with the methods in JavaFoil. [229] 

First, it calculates the distribution of the velocity on the 
airfoil surface which can be integrated to get the lift and the 
moment coefficient. Then, it calculates the behavior of the flow 
close to the airfoil surface (the boundary layer). The boundary 
layer data can be used to calculate the friction drag of the 
airfoil. Both steps are repeated for the given range of angle of 
attacks, which yields a complete polar of the airfoil for one 
fixed Reynolds number. [229] [230] 

JavaFoil does not model laminar separation bubbles and 
flow separation, the results will be incorrect if either of these 
occur. Flow separation, as it occurs at stall, is modeled to some 
extent by empirical corrections, so that maximum lift can be 
predicted for “conventional” airfoils. If an airfoil beyond stall 
is analyzed, the results will be quite inaccurate. Two 
dimensional analysis methods should not be used at all in this 
regime, as the flow field beyond stall is fully three dimensional 
with spanwise flow and strong vortices. [229] [230] 

If laminar separation is detected, the method switches to 
turbulent flow and continues. When turbulent separation is 
found, the boundary layer integration is stopped and an 
empirical drag penalty depending on the length of the separated 
region is added to the result. [230] 

The drag is applied by examining the boundary layer 
parameters at the trailing edge using the Squire-Young 
formula. [230] 

The following empirical transition criteria have been 
implemented and can be selected by the user: [230] 

 Eppler 1 

 Eppler 2 

 Michel 1 

 Michel 2 

 Granville 

 Drela’s en
 approximation 1 



 Drela’s en
 approximation 2 

 Arnal e
n
 approximation by Würz 

The JavaFoil program contains a row of tabs on top and a 
card area below. Each tab shows its associated card which 
contains input and output elements for a certain topic. The 
cards are divided in topics like Geometry, Modify, Velocity, 
Flow Field (see Fig. 43), Boundary Layer, Polars and Options. 
[231] 

 

Fig. 43. The flow field card in JavaFoil with an analysis of an airfoil 

JavaFoil may create the following standard airfoils: [231] 

 4-digit series (like NACA 2415) 

 5-digit series (like NACA 23015) 

 16-series (like NACA 16-412) 

 6-series (like NACA 64-412) 

 TsAGI “B” series airfoils 

 NPL “EC”, “EH” series airfoils 

 Symmetrical Circular Arc airfoils 

 Symmetrical Double Wedge airfoils 

 Cambered Plate airfoils 

 Van de Vooren conformal mapping airfoil 

 Newman airfoil 

 Helmbold-Keine airfoil 

J. JavaProp 

JavaProp is based on the blade element theory presented in 
[234]. The blade is divided into small sections, which are 
handled independently from each other. Each segment has a 
chord and a blade angle, and associated airfoil characteristics. 
The theory makes no provision for three dimensional effects, 
like sweep angle or cross flow; however it is able to find the 
additional axial and circumferential velocity added to the 
incoming flow by each blade segment. This additional velocity 

results in an acceleration of the flow and thus thrust. Usually 
this simplified model works very well, when the power and 
thrust loading of the propeller (power per disk area) is 
relatively small, as it is the case for most aircraft propellers. 
[232] [233] [235] 

Based on the theory of the optimum propeller (as developed 
by Betz, Prandtl, Glauert), only a small number of design 
parameters must be specified. These are: [233] 

 The number of blades B 

 The axial velocity v of the flow (flight speed or boat 
speed) 

 The diameter D of the propeller 

 The selected distributions of airfoil lift and drag 
coefficients CL and CD along the radius 

 The desired thrust T or the available shaft power P 

 The density ρ of the medium (air: ~1.22 kg/m
3
, water: 

~1000 kg/m
3
) 

The design procedure creates the blade geometry in terms 
of the chord distribution along the radius as well as the 
distribution of the blade angle. The influence of blade number 
and tip loss are taken into account by the “Prandtl Tip-Loss 
Factor”. [233] [235] 

JavaProp offers two ways to use the analysis procedure: 
[235] 

 Analyze the propeller for its full operating range, from 
static to the beginning of the wind-milling range. 

 Perform an analysis for one advance ratio only which 
gives a user more details for the aerodynamic 
conditions along the radius. 

The local chord length c depends mainly on the prescribed 
lift coefficient CL - if designer would like to have wider blades, 
he have to choose a smaller design lift coefficient (or angle of 
attack) and vice versa. It should be noted that the design 
procedure does not work accurately for high thrust loadings as 
they occur under static conditions. If nonsense values for the 
blade chord are received, the power loading of the propeller is 
probably too high. The power coefficient PC should be less 
than 1.5; otherwise the theory is not fully applicable and may 
lead to errors. [233] 

However, the blade element method is limited when flow 
separation occurs e.g. at static conditions. Moreover, JavaProp 
comes with a set of airfoil polars which can represent only a 
limited model of the whole range of possible airfoil sections. 
[236] [235] 

Finally, the flow field around a propeller is complex and 
fully three dimensional with boundary layers, Mach number 
effects and local flow separation. This problem may also be 
difficult to model accurately with the most sophisticated tools 
such as Navier-Stokes solvers which typically require long 
time to calculation. On the other hand, JavaProp can give a first 
answer in fractions of a second for price of the accuracy. 
However, results may be overestimated. [236] 



The JavaFoil program contains a row of tabs on top and a 
card area below. Each tab shows its associated card which 
contains input and output elements for a certain topic. The 
cards are divided in topics like Design, Airfoils, Geometry (see 
Fig. 44), Analysis and Options. [237] 

 

Fig. 44. The geometry card in JavaProp with the geometry of a propeller 

A user can work only with a single propeller in JavaProp. It 
means that he has a single propeller, which can be designed, 
analyzed, modified, and analyzed again. All manipulations 
such as the airfoil choice, specification of diameter, or RPM 
setting, applying modifications to the blade shape, and 
importing new blade geometry will alter this virtual propeller. 
The unit system is metric for all entries and results if not noted 
otherwise. [237] 

K. Other Software 

In this section, other interesting or acceptable software 
which can be used for modelling, simulation, and development 
is briefly described or only mentioned. 

1) Larosterna 
The Larosterna software includes a surface modelling tool 

and mesh generator (SUMO), and a visualization program 
(SCOPE). [225] 

The surface modeler SUMO is a graphical tool aimed at 
rapid creation of aircraft geometries and automatic surface 
mesh generation. The plan and side views of a fuselage in 
SUMO are shown in Fig. 45 and the meshed aircraft can be 
seen in Fig. 46. [225] [226] 

SUMO is not a CAD system, but rather an easy-to-use 
parametric sketchpad, highly specialized towards aircraft 

configurations. SUMO can import IGES, STEP, STL, CGNS, 
SU2, CEASIOM and other files. After the generation of a 
mesh, the surface can be exported to CGNS, MSH, STL, SU2, 
and ZML files. [225] [226] 

 

Fig. 45. The plan and side views of a fuselage in SUMO 

 

Fig. 46. A meshed aircraft generated with SUMO 

SCOPE is a visualization program to display surface data, 
flutter mode-shapes and flight trajectories. Furthermore, it can 
read NASTRAN as well as modal analysis results and animate 
Eigen-mode shapes. SCOPE can also import/export CGNS, 
SU2, MSH, STL and other files. [225] [227] 

2) VAMPzero, CPACS, and TiGL 
VAMPzero is an open-source software tool for the 

conceptual design of aircraft. Based on well-known handbook 
methods (e.g. Raymer and Roskam), the design of new 
configurations includes outer geometry as well as structures, 
engines, systems, mission analysis and costs. It supports 
working in multi-disciplinary and multi-fidelity environments. 
VAMPzero can interpret data from CPACS (Common 
Parametric Aircraft Configuration Schema) and can be used to 
generate CPACS files. [181] [178] [182] [183] 

VAMPzero is based on an object oriented structure and, as 
a result, is highly flexible. Furthermore, the structure 
distinguishes feature aspects (file handling, convergence 
control, and process control) and design aspects (parameter 
definition, calculation methods) in a way that makes extensions 
easy to implement. The design aspects are grouped into 
components, disciplines and parameters, whereas the 
parameters contain the actual design knowledge. [181] [178] 
[182] [183] 

As VAMPzero is a supportive analysis module for CPACS, 
it has to handle two tasks: initialization and integration. 
Obviously, a design process needs to go through requirements 
definition and conceptual design before preliminary methods 
can be applied. VAMPzero handles the conceptual design stage 



but also initializes the CPACS data set; thus, higher level 
analysis modules can be triggered. It creates geometries 
following a knowledge-based engineering approach and writes 
necessary process data like, for example, tool-specific settings. 
[183] 

The Common Parametric Aircraft Configuration Schema 
(CPACS) is a data definition for the civil and military aircraft, 
rotorcraft, jet engines, and entire air transportation systems. 
CPACS is based on XML technology and enables engineers to 
exchange information between their tools. As a result, CPACS 
is a driver for multidisciplinary and multi-fidelity design in 
distributed environments. CPACS describes the characteristics 
of aircraft, rotorcraft, engines, climate impact, fleets and 
mission in a structured, hierarchical manner. Not only product 
but also process information is stored in CPACS. The process 
information helps in setting up workflows for analysis 
modules. Since CPACS follows a central model approach, the 
number of interfaces is reduced to a minimum. [184] [178] 
[183] 

The TiGL Geometry Library can be used for easy 
processing of geometric data stored inside CPACS data sets. 
TiGL offers query functions for the geometry structure. These 
functions can be used, for example, to detect how many 
segments are attached to a certain segment, which indices these 
segments have, or how many wings and fuselages the current 
airplane configuration contains. This functionality is necessary 
because not only the modelling of simple wings or fuselages 
but also the description of quite complicated structures with 
branches or flaps is targeted. TiGL uses OpenCASCADE to 
represent the airplane geometry by B-spline surfaces in order to 
compute surface points and also to export the geometry in the 
IGES/STEP/STL/VTK format. The library provides external 
interfaces for C, C++, Python, Java, MATLAB and 
FORTRAN. The TiGLViewer is an application used to 
visualize the geometries. [185] 

3) TetrUSS 
TetrUSS is a time-tested computational aerodynamic 

capability servicing the configuration aerodynamic needs of 
NASA's airframe and exploration programs. Present 
capabilities include rapid grid generation, inviscid and viscous 
flow analysis and design, special functional boundary 
conditions, and ease of use. TetrUSS also includes a modular 
capability for computing aero-elastic effects, iterative design, 
and interactive boundary layer. Future goals are focused on 
improving process automation, better integrating functional 
capabilities, and increasing its impact on new NASA projects 
and programs. [186] [188] 

However, TetrUSS is only available to U.S. entities, 
citizens, and permanent residents because the software has 
been developed by the United States government and is subject 
to US export regulations and NASA policy. As a result, 
TetrUSS cannot be tested by the author of this paper. [187] 

4) Extensions and Tools of Computational Environments 
Tornado for Octave (also for Matlab) is a Vortex Lattice 

Method for linear aerodynamic wing design applications in 
conceptual aircraft design or in aeronautical education. By 
modelling all lifting surfaces as thin plates, Tornado can solve 

for most aerodynamic derivatives for a wide range of aircraft 
geometries. [22] 

Aerospace blockset for Scilab/XCos is an external module 
providing aerospace palette. It is based on CelestLab aerospace 
library. Although Scilab/XCos and aerospace blockset are very 
interesting compensation for Matlab/Simulink, Aerospace 
blockset is now designed rather for satellites than aircraft. 
However, there is an example named “Quadrocopter attitude 
estimation with TRIAD” which demonstrates that UAV 
simulation is also possible. [23] 

OpenFDM is an open source flight dynamics library for 
Modelica and has basic functions for the modelling of aircraft, 
aerodynamics, control, navigation, and propulsion. [192] 

a) Flapping Flight Simulation Package 

Flapping Flight Simulation package can be used to simulate 
the physics of flapping-wing flight which includes simulating 
the flight of living organisms, such as birds and insects, and 
also man-made flapping-wing air vehicles. [196] 

This package contains three applications for simulation 
flapping flight: [193] [196] 

 FLAPSIM - An inverse dynamics application which 
simulates the dynamics of flapping wings, predicting 
aerodynamic forces and torques, and mechanical 
power. 

 FLAPOPTIMISE - A numerical optimization tool 
which predicts the most energy efficient wing 
kinematics. 

 WAKESIM - A point vortex simulator which 
simulates the geometry of wake shed by flapping 
wings. 

Wing dynamics for a hoverfly cruising at 3m/s is shown in 
Fig. 47 [194]. Detailed information about Flapping Flight 
Simulation package can be found in [195] and [196]. 

 

Fig. 47. Wing dynamics for a hoverfly cruising at 3m/s [194] 

Applications in the package require the Matlab Compiler 
Runtime (MCR) to be installed. MCR is a standalone set of 
shared libraries which enables the execution of compiled 



MATLAB applications. Installing MCR does not install a 
complete version of Matlab; as a result, no Matlab license is 
required. [193] 

b) CEASIOM 

CEASIOM is a free conceptual aircraft design tool and 
involves stability and control driven sizing and optimization in 
the design cycle earlier than is standard practice nowadays. 
CEASIOM is the result of the EU funded project SimSAC 
(SIMulating Aircraft Stability and Control) which had as 
objective to build an integrated simulation environment for 
computing stability and control information with quantifiable 
uncertainty. [189] [178] 

CEASIOM integrates into one application the main design 
disciplines, aerodynamics, structures, and flight dynamics, 
impacting on the aircraft's performance. In other words, 
CEASIOM is a tri-disciplinary analysis which should 
participate in the design of the aero-servo-elastic aircraft. [189] 
[178] 

Significant features developed and integrated in CEASIOM 
as modules are: (see also Fig. 48) [190] [178] [183] 

 Geometry module / Aircraft Builder (ACBuilder) - A 
customized geometry construction system coupled to 
surface and volume grid generators; port to CAD via 
IGES. 

 Aerodynamic Module (AMB-CFD) - A replacement 
of current handbook aerodynamic methods (Digital 
Datcom) with new adaptable-fidelity modules: Steady 
and unsteady TORNADO vortex-lattice code for low-
speed aerodynamics and aero-elasticity, Panel method, 
Inviscid Euler solver EDGE for high-speed 
aerodynamics, and RANS flow simulator for high-
fidelity analysis of extreme flight conditions. 

 Stability and Control module (SDSA) - A static and 
dynamic stability and control analyzer, and flying-
quality assessor. Test flights with 6DOF flight 
simulation, and performance prediction, also includes 
human pilot model, Stability Augmentation System 
(SAS) and a LQR-based (Linear-Quadratic Regulator) 
flight control system package are among the major 
functionalities of this module. The standalone version 
of SDSA is described in the chapter V.K.8). 

 Aero-elastic module (NeoCASS) - Quasi-analytical 
structural analysis methods which support aero-elastic 
problem formulation and solution. 

 Flight Control System Design Toolkit (FCSDT) - A 
designer toolkit for flight control-law formulation, 
simulation and technical decision support, permitting 
flight control system design philosophy and 
architecture to be coupled early in the conceptual 
design phase. 

 

Fig. 48. The core modules in CEASIOM [189] 

CEASIOM can be linked to VAMPzero via CPACS 
(briefly described in the chapter V.K.2)). The main reason why 
modules must be interfaced to a code like VAMPzero is that 
CEASIOM does not perform the initial sizing of a baseline 
configuration. [178] [183] 

Despite CEASIOM is freeware, to use it, Matlab is need to 
be installed (Release 2008a or later), including Simulink for 
use of FCSDT. As a result, CEASIOM can be used without fee 
when an institution has already owned a Matlab license. [191] 
[189] 

5) Calculators 
FlapDesign (Fig. 49) is a simple, free software program 

which runs within a web browser with installed Java plug-in. It 
can find the correct dimensions of an ornithopter wing-flapping 
mechanism. [197] 

 

Fig. 49. A graph of the wing angle as the crank rotates in FlapDesign [197] 

Orni calculation tools are based on the calculation method 
specified for Ornithopters and can determine the power and the 
twisting of the wing at stationary flight situations. Furthermore, 
the calculation method permits at least an approximate 
quantitative specification of dynamics and aerodynamics of 
profiled flapping wings. Primarily, the numerical comparison 
of various factors influencing of flapping wings. [198] 



Profiled flapping wings and quasi-stationary flow 
conditions are presumed; thus, calculations lead to useful 
results only for a fast forward flight with a relatively low 
flapping frequency (large birds, flying with lift). [198] 

The mathematical models are executable with the relevant 
software applications. The Orni calculation tools contains: 
[198] 

 Orni 1 (XLS or XLSX file) is a simple calculation tool 
to describe the wing twisting. 

 Orni 2 (MathCAD file) is a calculation method for 
ornithopter models. For the construction of a flapping 
wing model, the calculation method describes progress 
of various force and moment at the wing. Furthermore, 
the required power and, especially, the wing twisting 
along the span are being calculated. 

 Orni 3 (MathCAD file) is mathematical model for 
ornithopters which is based on the calculation tool 
Orni 2. Gliding and power flights of a flapping wing 
model can be analyzed singly and in series. 

 Comparison (XLSX file) - the flight performance of a 
mute swan is compared with the performances of a 
propeller and a flapping wing model. 

However, Orni 2 and Orni 3 cannot be imported into 
MathCAD Express (free for use) because these files were 
developed with commercial MathCAD Professional 13 and 14, 
and furthermore, they are in XMCDZ format. 

WebOcalc (Fig. 50) was created to make the easy selection 
of motors, propellers, gearbox ratios, and batteries for electric-
powered model airplanes. Moreover, WebOCalc includes 
several app wizards to recommendation of battery chemistry, 
cell capacity and pack voltage, current draw, propeller size, 
motor Kv, etc. This is a fast way how to get a model in the air. 
However, the experienced user still has complete flexibility to 
insert any values of his choice. [200] 

Traditional motor calculator programs ignore airframe 
characteristics, and can result in poor-flying systems. On the 
other hand, WebOCalc matches airframe and power system 
characteristics every time. This may ensure great performance 
for model aircraft. [200] 

 

Fig. 50. WebOcalc 1.7.6 with estimated data 

PowerCalc is motor/propeller simulation software which 
can help a user to effectively choose a motor and propeller for 
his electric powered model airplane. It may be used along with 
WebOCalc to quickly focus on the power system. [201] 

The traditional mathematical model for motor simulation 
uses three motor constants, Kv, Rm, and I0. This three-constant 
model works well, but has significant inaccuracies. In contrast, 
PowerCalc is based on a four-constant mathematical model 
which should predict motor performance better than the 
traditional three-constant motor model does. [201] 

Web site [202] contains the series of calculators, and 
Aerodynamics, Beginners' Guide. The links to calculators (or 
calculators themselves) are often placed inside the text of the 
Guide. There are at least these calculators: 

 Aircraft Center of Gravity Calculator [203] 

 Canard Center of Gravity Calculator [204] 

 Wing loading Calculator [205] 

 Stall Speed Calculator [206] 

 Level Flight Speed Calculator [207] 

 Motor Efficiency Calculator [208] 

 Propeller's Static Thrust Estimation [209] 

 Electric Motor & Prop Combination Estimation [210] 

 Power/Weight Performance Estimation [211] 

eCalc is a set of four calculators as can be seen in Fig. 51. 
eCalc provides web-based services to calculate, evaluate, and 
design electric motor driven systems for remote controlled 
(RC) models. However, despite eCalc can be useful, only its 
restricted demo version with reduced functionality and 25% 
random database is free for use. [199] 

 

Fig. 51. The set of four eCalc calculators [199] 

6) Apame 
Apame is a 3D Panel Method program used for calculating 

aerodynamic forces and moments acting on an aircraft in flight 
as can be seen in Fig. 52. [220] 

 Apame can replace CFD programs (like Fluent, 
OpenFOAM, etc.) for subsonic attached flows where 
calculation time is important and friction drag can be ignored 
(optimization problems, conceptual designs, aerodynamic load 
generation, etc.). The calculation time is much shorter 
compared to classic CFD; seconds vs. hours. [220] [221] 

Project can perform two operations; evaluation and 
optimization: [220] [221] 

 Evaluation: for this purpose, ApameGUI is used to 
import already available meshes (e.g. meshes in 



NASTRAN and FLUENT format), pre-process it, send 
it to the ApameSolver and evaluate results. 

 Optimization: in this case, user-defined scripts are 
used to parametrically generate mesh and send it to the 
ApameSolver in a single optimization step. For this 
purpose, ApameScripts are given inside Apame 
package as base examples. 

 

Fig. 52. An analysis of an aircraft by using APAME [220] 

7) PANUKL 2012 
PANUKL is a package to compute the aerodynamic 

characteristics of an aircraft using low order panel method, 
where the Dirichlet problem is solved and the quadrangle 
panels are used. The flat vortex wake, parallel to the free 
stream velocity or parallel to chord is assumed. Moreover, it 
contains functions for pre- and post-processing. [238] [239] 
[240] 

Current version contains new editor and mesh generator; 
however, the old version of mesh generator is still embedded. 
New geometry definition methods are available only in the new 
mesh generator. Current version contains also option to export 
the geometry and the results (pressure distribution) to FEM 
analysis (Calculix). [238] 

Computational method strongly depends on the way of 
aircraft body modelling; generally, there are two methods in 
which the body of an aircraft is modeled using: [239] 

 Thin surfaces 

 A three dimensional model 

PANUKL 2012 application is composed of three main 
subprogram groups: [239] 

 The data preparation programs 

 The programs to process data and make computations 

 The managing program for showing the obtained 
results and make appropriate changes and 
modifications. 

PANUKL can be used to create a grid (made from 
quadrangle panels as can be seen in Fig. 53) which describes an 
aircraft body. To create the grid file (.INP), the following input 
files have to be prepared: [239] 

 Main aircraft geometry description file (.MS2) - 
contains aircraft reference data, information about 
wing, tail, fuselage overall geometry 

 Wing airfoil geometry file (.PRF, .DAT, .KOO) 

 Fuselage geometry file (.F) 

 

Fig. 53. A model displayed in the Grid Viewer of PANUKL [239] 

8) Simulation and Dynamic Stability Analysis (SDSA) 
SDSA module was developed as the CEASIOM (described 

in the chapter V.K.4)b)) module; however it can be run as a 
standalone application as well. SDSA was developed for 
stability and control analysis and is able to compute stability 
characteristics using linear and nonlinear simulation model as 
well. [240] [241] 

SDSA uses the same 6-DOF mathematical nonlinear model 
of the aircraft motion for all functions. For the eigenvalue 
analysis, the model is linearized numerically by computing the 
Jacobian matrix of state derivatives around the equilibrium 
(trim) point. Eigenvalues and eigenvectors analysis allow 
automatic recognition of the typical modes of motion and their 
parameters. The flight simulation module can be used to 
perform test flights and record flight parameters in real-time. 
The recorded data can be used for identification of the typical 
modes of motions and their parameters (period, damping 
coefficient, phase shift). The stability analysis results can be 
assessed on basis of CS/FAR, ICAO, and MIL requirements. 
[240] [241] 

Necessary data (aerodynamics, mass, inertia) can be 
imported to SDSA as an XML file or as a set of plain text files. 
The second option is useful e.g. for experimental data. The data 
set contains aerodynamic coefficients or/and stability 
derivatives tables, mass and inertia data, propulsion data, 
control derivatives and reference dimensions. The control and 
propulsion data can be completed and edited using special 
options of SDSA. SDSA accepts aerodynamic data as tables of 
stability derivatives as function of angle of attack and Mach 
number. SDSA also accepts a multidimensional array of force 
and moment coefficients versus six state parameters (angle of 
attack, Mach number, sideslip angle and rotational velocity 
components). A similar array is defined for control derivatives 
and stability derivatives versus selected accelerations (i.e. alpha 
dot derivatives). All aerodynamic data (derivatives) can be 
reviewed and are checked by comparison with typical values. 
[240] [241] 

SDSA may run in the batch mode and can send necessary 
output data for an optimization procedure without any 
prompting; as a result, the optimization process can run 
completely in an automatic way; however, SDSA needs an 



external application for the optimization process because it is 
not included. [240] 

9) XFLR5 
XFLR5 is an analysis tool for airfoils, wings and planes 

operating at low Reynolds Numbers and includes: [212] [213] 
[214] 

 XFoil's Direct and Inverse analysis capabilities  

 Wing design and analysis capabilities based on the 
Lifting Line Theory, on the Vortex Lattice Method, 
and on a 3D Panel Method 

The code has been intended and written exclusively for the 
design of model sailplanes, for which it gives reasonable and 
consistent results. One analysis of a sailplane can be seen in 
Fig. 54. [214] [213] 

 

Fig. 54. An analysis of a sailplane by using XFLR5 [213] 

10) JBLADE 
JBLADE is an open-source propeller design and analysis 

code based on QBLADE and XFLR5. The airfoil performance 
figures needed for the blades simulation come from 
QBLADE’s coupling with XFOIL. This integration allows the 
fast design of custom airfoils and computation of their polars. 
[215] [216] 

JBLADE uses the classical Blade Element Momentum 
(BEM) theory modified to account for the 3D flow equilibrium. 
The code can estimate the performance curves of a given 
propeller design for off-design analysis. The software has a 
graphical interface making easier to build and analyze the 
propeller simulations. [215] [216] 

JBLADE Capabilities are, for example, Extrapolation of 
XFOIL generated or imported polar data to 360° Angle of 
Attack with improved airfoil leading edge radius correlation, 
Blade design and optimization including 3D visualization, 
parametric simulations including evaluation of performance 
over an airspeed, rotational speed, and pitch range, analysis and 
prediction of performance curves for a given blade geometry, 
manual selection of BEM correction algorithms, manual 
selection of all simulation parameters, data browsing and 

visualization as post processing, export functionality for all 
created simulation data, blade geometry export functionality, 
and storing of projects, blades, propellers and simulations in a 
runtime database. [215] [216] 

11) NACA Airfoil Generation – FoilGen and LADSON 
FoilGen is an interactive FORTRAN program which allows 

the user to construct airfoils using the NACA 4 digit or 
modified 4 digit airfoil thickness distributions and the NACA 4 
digit, 5 digit or 6- and 6A series camber lines. A variety of 
output options are available on the screen. It can also create a 
file for use as input to airfoil analysis programs. [217] 

LADSON is a FORTRAN program which allows the user 
to approximately obtain the NACA 6 digit or 6A digit airfoils. 
The thickness distribution of these airfoils is not described by a 
single equation. [217] 

12) Gmsh 
Gmsh is a 3D finite element grid/mesh generator with a 

build-in CAD engine and post-processor. Its design goal is to 
provide a fast, light and user-friendly meshing tool with 
parametric input and advanced visualization capabilities. Gmsh 
is built around four modules: geometry, mesh, solver and post-
processing. The specification of any input to these modules is 
done either interactively using the graphical user interface or in 
ASCII text files using Gmsh’s own scripting language. [218] 

Gmsh may import MSH, STL, STEP, IGES, BREP, and 
other files. Export to MSH, STL, MED, UNV, SU2, WRL and 
others are possible. It can also be used in collaboration with, 
for example, Code_Saturne, HiFiLES, PyFR, and enGrid 
(described in the chapter V.K.13)). [224] [154] [156] [158] 

13) enGrid 
enGrid is an open-source mesh generation software which 

is used predominantly for CFD applications. enGrid uses an in-
house development for surface meshing and prismatic 
boundary layers. Internally, enGrid uses the VTK data 
structures as well as the VTU file format. Currently, enGrid has 
interfaces to Gmsh, STL, and few other file formats. [224] 

enGrid provides native export to OpenFOAM and SU
2
. 

This includes export capabilities for complete OpenFOAM 
cases (including boundary conditions), as well as support for 
polyhedral cells. [224] 

14) Mission Planner 
Mission Planner has more features than its name indicates: 

it can interface with a PC flight simulator (FlightGear, JSBSim, 
Xplane, and AeroSim RC) to create a full hardware-in-the-loop 
(HIL) UAV simulator. Furthermore, Point-and-click waypoint 
entry using Google Maps/Bing/Open street maps/Custom 
WMS may be created. [219] 

VI. RESULTS AND DISCUSSION 

As can be seen in previous chapters, many applications can 
be used for design, analysis, modelling, and simulation of a 
UAV. However, all of them may not be used in one UAV 
project because they are, for example, focused on different 
types of UAVs (fixed-wing, rotary-wing, flapping-wing, 
lighter-than-air, etc.), or have better alternatives. 



Fig. 55 shows all software which can create, or supports the 
items required for the efficient modelling and simulation of a 
UAV as described in the chapter IV (i.e. a UAV mathematical 
model, a control system, FDM, etc.) 

The extended version of the categories in Fig. 55 may be 
listed as follows (the applications may not be limited only to 
this classification): 

 Conceptual/Preliminary Design 

 OpenVSP (V.H) 

 Larosterna (V.K.1)) 

 VAMPzero (V.K.2)) 

 CEASIOM (V.K.4)b)) 

 CAD 

 FreeCAD (V.G.1)) 

 SALOME (V.G.2)) 

 BRL-CAD (V.G.3)) 

 QCAD (V.G.4)) 

 Aerodynamics and Mechanics 

 Airfoil 

 JavaFoil (V.I) 

 XFOIL (V.D.2)) 

 The Eppler Airfoil Code (PROFILE - V.E.1)) 

 Tornado (V.K.4)) 

 Minimum Drag Camber Surface by Vortex 
Lattice (VLMD - V.E.2)) 

 Induced Drag from Span Load Distribution 
(INDUCED - V.E.3)) 

 Flutter Analysis by Strip Theory (FLUTTER - 
V.E.4)) 

 Mean Aerodynamic Chord of a Wing 
(GETMAC - V.E.5)) 

 NACA Airfoil Coordinates (NACA456 - 
V.E.6)) 

 AirfoilTools.com (V.E.6)a)) 

 NACA Airfoil Generation (FoilGen and 
LADSON - V.K.11)) 

 Complete Aerodynamics 

o CFD 

 Stanford University Unstructured (SU
2
 - 

V.F.1)) 

 OpenFOAM (V.F.2)) 

 Code_Saturne (V.F.3)) 

 High Fidelity Large Eddy Simulation 
(HiFiLES - V.F.4)) 

 PyFR (V.F.5)) 

 Athena Vortex Lattice (AVL - V.D.1)) 

 Apame (V.K.6)) 

 PANUKL 2012 (V.K.7)) & SDSA (V.K.8)) 

 Digital Datcom (V.E.9)), Datcom R2 and 
OpenDatcom (V.E.9)a)), or Datcom+ 
(V.E.9)b)) 

 Predicting Subsonic or Supersonic Linear 
Potential Flows about Arbitrary 
Configurations Using a Higher Order Panel 
Method (PANAIR - V.E.8)) 

 XFLR5 (V.K.7)) 

 CEASIOM (V.K.4)b)) 

 Aeroelastic Analysis for Rotorcraft in Flight 
or in a Wind Tunnel (ROTOR, work-in-
progress - V.E.10)) 

 Propulsion 

 JavaProp (V.J) 

 QPROP/QMIL (V.D.3)) 

 CROTOR/XROTOR (V.D.4)a) / V.D.4)) 

 Ducted Fan Design Code (DFDC / DFDC 
v070-ES - V.D.5) / V.D.5)a)) 

 JBLADE (V.K.10)) 

 Mass Analyzer 

 Mass Properties of a Rigid Structure 
(MASSPROP - V.E.7)) 

 Calculators (V.K.5)) 

o Aerodynamics 

 Aircraft Center of Gravity 

 Canard Center of Gravity 

 Wing loading 

 Stall Speed 

o Propulsion 

 WebOcalc 

 PowerCalc 

 Motor Efficiency 

 Propeller's Static Thrust 

 Electric Motor & Prop Combination 

 Level Flight Speed 

 Power/Weight Performance 

 eCalc 

o Flapping-Wing Calculators 



 FlapDesign 

 Orni 

 Flight Dynamics Model (FDM) 

 JSBSim (V.A) 

 YASim (V.B) 

 UIUC (V.B) 

 Aerospace blockset for Scilab/XCos (V.K.4)) 

 SDSA (V.K.8)) 

 CEASIOM (V.K.4)b)) 

 Simulation Software (Application/Framework) 

 FlightGear (V.B) 

 OpenEaagles (V.C) 

 Simulation and Dynamic Stability Analysis 
(SDSA - V.K.8)) 

 Flapping Flight Simulation Package (V.K.4)a)) 

 Dynamic Soaring simulation and optimization 
program (DSOPT - V.D.6)) 

 CEASIOM (V.K.4)b)) 

 Mission Planner (HIL Simulation - V.K.14)) 

 Propulsion and Control System 

 JSBSim (V.A) 

 YASim (V.B) 

 FlightGear (V.B) 

 OpenEaagles (V.C) 

 Digital Datcom (V.E.9)) 

 SDSA (V.K.8)) 

 CEASIOM (V.K.4)b)) 

 View 

 3-VIEW and SILHOUETTE (V.E.12)) 

 The TiGL Geometry Library and TiGLViewer 
(V.K.2)) 

 OpenVSP (V.H) 

 CAD applications (V.G) 

 Many other 3D/2D Viewers. 

 Geometry Generators or Converters 

 Wireframe generator (MAKEWGS - V.E.11)) 

 PANAIR input pre-processor (PANIN - V.E.8)a)) 

 Aeromatic (V.A.1)) 

 Gmsh (V.K.12)) 

 enGrid (V.K.13)) 

 OpenVSP (V.H) 

 Larosterna (V.K.1)) 

 FreeCAD (V.G.1)) 

 CEASIOM (V.K.4)b)) 

 Geometry Conversion to LaWGS (2WGS - 
V.E.13)) 

 Geometry Conversion to VRML World (VRML - 
V.E.14)) 

 The Common Parametric Aircraft Configuration 
Schema (CPACS - V.K.2)) 

 Other generators or converters; for example, in the 
CAD applications. 

 



 

Fig. 55. The block diagram of the free software for the design, analysis, modelling, and simulation of UAVs

If we consider the structure of the UAV system as 
illustrated in the chapter III, software for airframe, wings, and 
airfoil creation and for aerodynamics analysis represent a 
majority in Fig. 55. This situation is not surprise because the 
aerodynamics of a UAV is probably always the most important 
section due to its maneuverability, stability, and energy 
efficiency; thus, the modelling of any new UAV should always 
start with this part. 

Propulsion and control systems are the second most often 
investigated area of UAVs and are predominantly solved in 
FDMs, simulators, and calculators. However, detailed 
aerodynamics and efficiency of propellers, rotors, or ducted 
fans should be analyzed by using separate applications such as 
JavaProp, QPROP/QMIL, CROTOR/XROTOR, DFDC, and 
JBLADE. 

Energy storage systems are mostly included in FDMs, 
simulators, and calculators. However, the models of energy 
storage should be innovated, e.g. the electric storage in JSBSim 
should simulate its charge and discharge process, and the new 
energy source models such as solar cells or chemical fuels may 
be added. 

Transmission and sensors have not been sufficiently solved 
in the free software. Some principles of transmission and 
sensors can be found inside OpenEaagles and FlightGear 
source codes; however, more development is necessary in this 
area. The best candidates for these innovations are, of course, 

OpenEaagles and FlightGear; nevertheless also JSBSim and 
CEASIOM may be appropriate. 

A. Evaluation, Compatibility and Conversion 

The software in Fig. 55 can be separated into the 
aerodynamic and mechanical part, and the modelling and 
simulation part. The diagram also shows the ways how 
information can be exchanged between the software. In fact, 
there could also be illustrated the potential feedback from 
simulation to aerodynamic or mechanical part. However, when 
the modelling and simulation part starts, the aerodynamic and 
mechanical part should be already solved. It is obvious, that 
when all the aerodynamic and mechanical properties of a UAV 
are known, the aerodynamic and mechanical part does not have 
to be performed. 

All applications have an indirect connection between 
themselves. It means that their results may affect inputs to 
other programs; however, these dependencies have to be 
recorded and applied manually by user. On the other hand, 
some applications also contain a direct connection which 
means that an exchange file format exists. It applies especially 
for 3D geometric and mesh formats. 

If we start with the conceptual design, OpenVSP seems to 
be the best option because the parametric modelling provides 
an easy way for the building of an initial UAV model. 
Moreover, OpenVSP may import and export various types of 
formats, such as STL, MSH, 3DM, HRM, FEL, X3D, 



NASTRAN, and other formats which simplify the use in other 
software. 

Larosterna cleverly combines the 2D and 3D visual 
parametric designs which make it the great second option for 
conceptual design. This approach gives designers the 
possibility to perform easy and precise changes. Larosterna can 
import/export various types of the exchange files; as a result, 
the connection from/to OpenVSP, CEASIOM, FreeCAD, SU

2
, 

OpenFOAM, Code_Saturne, and other applications may be 
found. 

Another approach is to use CEASIOM which can be linked 
to VAMPzero via CPACS. The reason for this connection has 
been described in the chapter V.K.4)b). CEASIOM can be used 
in the wide range of the design areas, e.g. conceptual design, 
aerodynamic analysis, flight control system simulation, etc.; 
thus, the problems with conversion are not important unless a 
more accurate or other method for analysis is needed. 
However, the dependence on Matlab and maybe also the closed 
source code are the main disadvantages of CEASIOM. It is 
obvious that when the institution owns a Matlab license, the 
first disadvantage becomes irrelevant; and consequently user 
can use this comprehensive software for conceptual and 
preliminary design without major problems. 

CAD applications can also be used for conceptual design; 
for example, FreeCAD was presented as appropriate software 
for this in [131]. Moreover, FreeCAD may convert many file 
formats, such as STL, VRML, DXF, NASTRAN, DAE, SVG 
and other formats; consequently, a 3D model can be imported 
to many other programs, including OpenVSP which may be 
advantageous to easy mesh generation. 

SALOME has almost same advantages as FreeCAD; it can 
import or export IGES, STEP, BREP, MED, UNV, DAT, STL 
files. Consequently, exported files can be imported to CFD 
applications such as Code_Saturne or SU

2
. In fact, the process 

of the conversion to SU
2
 is not direct; SALOME has to export 

the file to enGrid, Larosterna, or Gmsh (Gmsh is not 
recommended for the SU2 file in 3D), which may export the 
file to SU

2
. Nevertheless, a script was written to perform the 

direct conversion from SALOME to SU
2
 in [228]. Since the 

script may be incomplete, the conversion via mesh convertors 
seems to be better. The same way for the conversion to SU

2
 

can be used also in other applications, such as OpenVSP and 
FreeCAD. The mesh of the SU2 format may be displayed 
probably only in Larosterna. 

The MSH format (and other formats) may be used to 
import files to CFD applications (OpenFOAM, Code_Saturne, 
HiFiLES, and PyFR), where an aircraft can be analyzed by 
using quality methods and algorithms. Some other applications 
for aerodynamic analysis might also import different types of 
formats, for example Apame may import NASTRAN format. 
Another interesting choice of the interconnection of the 
applications can be seen in the CAELinux distribution which is 
based on open-source CAD/CAM, CFD, FEA, and CAE 
software such as Freecad, LibreCAD, PyCAM, Cura, Salome, 
Code_Saturne, OpenFOAM, Code_Aster, and ParaView. [242] 
[243] 

The collection of PDAS (V.E) has mostly possibility to 
interchange UAV’s information via LaWGS file format. If not, 
the internal formats of some applications can be converted via 
2WGS to the LaWGS format. Moreover, LaWGS may be 
converted to VRML 1.0 via VRML World program; thus it can 
be imported to FlightGear or FreeCAD. 

An example of the indirect connection can be seen in 
calculators. The results from calculators may be used as an 
input to OpenVSP, Larosterna, FreeCAD, JSBSim models, and 
especially to propulsion applications. The calculators mostly 
solve the problems in the area of engines, propellers, power, 
batteries, and aerodynamics. 

The section for the wing and airfoil analysis can be used 
nearly separately from other parts of design. Nevertheless, 
results may be applied to conceptual and preliminary design; 
e.g. OpenVSP can read an airfoil file and thus change the 
airfoil of a designed UAV. 

The software for the analysis of propellers, rotors, and fans 
can be used almost separately from other parts of design. 
However, when we want to use, for example, ducted fan, we 
must take into account its placement, and thus, suitably change 
the physical design of the UAV. In addition, data from these 
applications may be manually inserted to, for instance, 
JSBSim. 

Since JSBSim is based predominantly on aerodynamic and 
control derivatives, the conversion to the JSBSim model should 
be simple. The elemental structure of the JSBSim model may 
be created with Aeromatic. Then, the particular generated 
values should be changed to correct values. It is always 
important to check the Aeromatic results because they are 
questionable and may not always meet the specific 
requirements for the UAV (as described in the chapter V.A.1)). 

However, it is self-evident that a direct conversion to the 
JSBSim model would be better. The direct conversion is 
implemented in Datcom+ and Datcom2JSBSim applications; 
however, it is necessary to define a new airframe specification 
of the UAV in Datcom format. Moreover, the output JSBSim 
model depends on Datcom results only. 

Because JSBSim is the default FDM in FlightGear and 
OpenEaagles, there is no problem with the conversion. 
However, the creation of other important files, such as the 3D 
model or electrical file, may be necessary. Nevertheless, 
FlightGear can import 3D formats, such as VRML1 and DXF, 
thus a simple exchange from, for example, FreeCAD or 
applications of PDAS should be possible. 

If we compare FlightGear and OpenEaagles: OpenEaagles 
may be better used as a battle manager or for the development 
of a multi-agent cooperation and complex cybernetic system of 
the UAV; in contrast, FlightGear is more appropriate for the 
visualization of a UAV during flight and the examination of 
UAV flight control system. Moreover, OpenEaagles is a 
framework with the possibility to simulate tanks, boats, 
lifeforms, etc. On the other hand, FlightGear is the complete 
application focused mainly (but not only) on aircraft and may 
use more FDMs to simulation. 



All the flight simulators contain FDM; however, only some 
of them may be easily separated (at least partially) from the rest 
of the program. This is the reason why these two categories 
have been divided in the diagram (Fig. 55). 

Because the development seems to be cyclical process, the 
results from simulation systems may be the reason for 
modification of the aerodynamic design of the UAV which is 
being developed. However, after the successful design of the 
UAV, the production drawings can be created with CAD tools, 
such as FreeCAD, to help with the physical realization of the 
UAV. In addition, the 3D model may also be usable for the 
physical realization; e.g. because of the 3D printing of a 
prototype or due to a more intelligible display. 

B. Possible Future Improvements 

The aerodynamic and mechanical part is the most variable 
section in the free software. There are many of these 
applications which are being developed, and as a result, new 
programs in this field may signify the wastage of resources. On 
the other hand, the support and extension of these already 
developing applications should be the proper way. 

The main lack seems to be the exchange formats of the free 
software system. Although the direct conversion paths between 
applications exist, some of them may not be optimal. As a 
result, the development of new import/export formats might be 
the key to creation of the complex system with the variable 
possibilities of use. For example, a direct conversion between 
internal parametric formats of OpenVSP and Larosterna 
together with a direct conversion of aerodynamic characteristic 
to JSBSim model may be usable. Moreover, import/export 
formats can reduce the time of the development of a UAV in 
future. 

In CAD or conceptual-design programs, the automatic 
generation of production drawings from 3D model with all 
necessary views, spot heights and UAV proportions might 
simplify the process of the following manufacture. FreeCAD 
seems to be the best option for this purpose because it contains 
the module to create the 2D production drawings which can be 
easily extended. 

In modelling and simulation part, there are more things 
which need additional programming for efficiently simulation 
of UAVs. For instance, in JSBSim and FlightGear, the situation 
about electric engines, electric sources, and electronic circuits 
should be improved; for example, these applications might 
simulate the engine temperature, accumulators, solar cells, fuel 
cells, methanol and hydrogen energy sources, differences 
between AC and DC engines, etc. 

A LQR- or Artificial Intelligence-based control system 
should be implemented into flight control system of JSBSim, 
FlightGear, or OpenEaagles. In addition, an optimal control 
setting could be calculated with solving the LQG (Linear-
Quadratic-Gaussian) problem or with using an evolution 
algorithm. However, LQR-based flight control system is 
included in SDSA application; thus, this type of control can 
also be simulated. 

Furthermore, tests of new algorithms intended for 
intelligent UAVs which should detect living beings (target 

tracking), possible collisions, and perform reconnaissance 
might be implemented into FlightGear and OpenEaagles. There 
is also the basis to program the physical principles of various 
radio communications which can be applied to the 
investigation of radio communication failure and to the testing 
of the UAV behavior when the failure occurs. The simulation 
of an interface for the command adjustment from control 
ground station to the UAV may be another interesting 
improvement. 

OpenEaagles and FlightGear are probably the best 
candidates for the simulation of the sensors and cameras. In 
this case, appropriate sources (e.g. chemical substances) for 
sensor activation should also be programmed. This 
functionality might be added by using an external library. 
However, the integration of OpenEaagles framework into 
FlightGear seems to be an interesting option; these two 
applications may be used, for example, for the investigation of 
multi-agent cooperation. 

Other software, such as Orni tools might be a suitable basis 
for the flight dynamics model of ornithopters. The theory 
described in Flapping Flight Simulation Package may also be 
usable. However, another computational environment or 
programming language, than that which was used for Orni, (for 
instance, C++, Python, Scilab/Xcos, Octave, etc.) should be 
used for Orni Flight Dynamics Model because the original 
computational environment is not appropriate for FDM 
development for free use. 

The rewriting of ROTOR program to a more convenient 
programming language (such as C++ or Python) would enable 
to create the extensive options for the modelling of a rotorcraft. 
Moreover, a rotorcraft-based FDM may be developed on basis 
of ROTOR. 

VII. CONCLUSION 

This paper has described the most interesting free software 
for the design, analysis, modelling, and simulation of a UAV. 
Although the selection of the free software has been focused on 
small (mini) subsonic UAVs, the software can be used for 
other categories of aircraft in some cases; e.g. for MAVs, large 
gliders, transonic airplanes, etc. The fundamentals of airplane 
flight mechanics and aerodynamics, the general structure of a 
UAV, and the basics of the modelling and simulation of a UAV 
have also been presented. 

The design, analysis, modelling and simulation are 
probably the first steps in development of a UAV. This 
approach is advantageous because a computer model allows 
better repeatability in testing. Consequently, it reduces the 
probability that the UAV and especially the autopilot will be 
designed and implemented incorrectly which could result in the 
UAV crash in the real world; and every crash can increase the 
distrust of UAVs and of their commercial using, especially in 
cities. 

It has been explained that FDM and Flight Simulators are 
used in the development process of a UAV for the testing of its 
design and control systems. The combination of JSBSim Flight 
Dynamic Model and FlightGear Flight Simulator provide an 
excellent base for building the simulation environment. 



However, because the aerodynamic coefficients and other 
parameters are not generally provided by FDM, a large number 
of the programs for the UAV aerodynamic and mechanical 
analysis have been described in detail in this paper. Despite the 
many connections between applications have been presented in 
the chapter VI.A, there may be found other possible 
connections. 

The CFD programs (such as SU
2
, OpenFOAM, 

Code_Saturne, HiFiLES, and PyFR) have the prominent 
position in the aerodynamic analysis nowadays. Moreover, 
HiFiLES and PyFR represent the high-order methods which 
should be very flexible and accurate; however, further 
development of these applications may be necessary. Finite 
Element Method (FEM) software, e.g. Calculix, might also be 
used in an analysis process. Nevertheless, these methods are 
focused more on the structural analysis than the aerodynamic 
analysis. 

We can agree with the statement in [143] that the 
parametric design systems, such as OpenVSP or Larosterna, 
are excellent tools for a rapid prototyping technique in 
aeronautics. 

The free software for the design, analysis, modelling, and 
simulation of the fixed-wing configuration is extensive. There 
is not such a wide selection for the rotary-wing configuration; 
however, the selection should be satisfactory. The creation of a 
hybrid UAV should also be possible, at worst in a limited 
degree. On the other hand, the number of the free software for 
the flapping-wing and especially for the lighter-than-air 
configuration may not be sufficient. 

The future of any UAV system is open to a wide range of 
research topics: collision avoidance, autonomous formation 
flight, navigation without the use of GPS, the automatic 
detection of a potential criminal, and other research topics. 
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