
A Survey of Free Software for the Design,

Analysis, Modelling, and Simulation of an

Unmanned Aerial Vehicle

Tomáš Vogeltanz

Department of Informatics and Artificial Intelligence

Tomas Bata University in Zlín, Faculty of Applied Informatics

nám. T.G. Masaryka 5555, 760 01 Zlín, CZECH REPUBLIC

vogeltanz@fai.utb.cz

Abstract—The objective of this paper is to analyze free

software for the design, analysis, modelling, and simulation of an

unmanned aerial vehicle (UAV). Free software is the best choice

when the reduction of production costs is necessary; nevertheless,

the quality of free software may vary. This paper probably does

not include all of the free software, but tries to describe or

mention at least the most interesting programs. The first part of

this paper summarizes the essential knowledge about UAVs,

including the fundamentals of flight mechanics and

aerodynamics, and the structure of a UAV system. The second

section generally explains the modelling and simulation of a

UAV. In the main section, more than 50 free programs for the

design, analysis, modelling, and simulation of a UAV are

described. Although the selection of the free software has been

focused on small subsonic UAVs, the software can also be used

for other categories of aircraft in some cases; e.g. for MAVs and

large gliders. The applications with an historical importance are

also included. Finally, the results of the analysis are evaluated

and discussed - a block diagram of the free software is presented,

possible connections between the programs are outlined, and

future improvements of the free software are suggested.

Keywords—aerodynamics; aircraft; analysis; CAD; calculator;

CFD; design; development; flight dynamics model; ESOTEC

software; FlightGear; free software; JavaFoil; JavaProp; JSBSim;

MIT software; mechanics; modelling; OpenEaagles; OpenVSP;

Public Domain Aeronautical Software; simulation; UAV;

Unmanned Aerial Vehicle

I. INTRODUCTION

UAVs are a relatively inexpensive alternative to manned
aircraft for a variety of applications, including aerial
reconnaissance, environmental monitoring, agriculture,
surveying, defense, search and rescue, and detection of
biological, chemical, or nuclear materials. [1] [2] [3] [33] [34]
[36] [28] [24] [45] [46] [49]

UAVs have a large number of important advantages. First
of all, errors arising from the human element are minimized.
This is of great significance in terms of reducing crashes;
moreover, UAVs can be produced in smaller sizes which

This paper is loosely based on [44].

contribute to their high performance maneuverability, wide
range of use, ease of control and command. [35] [50] [52]

The majority of missions are ideally suited to small UAVs
which are either remotely piloted or autonomous.
Requirements for a typical low-altitude small UAV include
long flight duration at speeds between 20 and 100 km/h, cruise
altitudes from 3 to 300 m, light weight, and all-weather
capabilities. Although the definition of small UAVs is
somewhat arbitrary, vehicles with wingspans less than
approximately 6 m and weight less than 25 kg are usually
considered in this category. [28]

Because of the availability of very small sensors, video
cameras, and control hardware, aerial systems as small as 15
cm with a mass of 80 g are possible to use for some limited
missions. These systems are referred to as micro aerial vehicles
(MAVs). [28] [24]

An extremely small (less than 15 cm), ultra-lightweight
(less than 20 g) aerial vehicle systems, with the potential to
perform indoor and outdoor missions, are known as nano aerial
vehicles (NAVs). [24]

Although the development and flight-testing of aircraft are
well-documented engineering procedures, every UAV design,
construction, implementation and test are unique and present
different challenges to engineers, operators, and test teams.
Because the performance of a UAV is dependent on both
effective and highly responsive motor control as well as on
aerodynamic efficiency, the high quality of the design and
control of a UAV is increasingly required nowadays.
Moreover, the criteria for UAVs may differ from those for
manned aircraft; for example, the operation times of a UAV
can be up to 10 times higher than a manned air vehicle, hence
operation times of UAVs should be well considered. In
addition, two important design parameters determine the power
requirement of a UAV; range (based on the lift to drag ratio
with fuel efficiency coefficient) and weight (based on total
mass). [2] [4] [5] [36] [35] [30] [38] [46]

There are three basic phases in aircraft design: conceptual,
preliminary, and detailed. Each design phase has characteristics
which drive the tools and methods used as the design

progresses. While it may be desirable to have the same suite of
tools and methods spanning the design process, the widely
varying characteristics of each of the phases makes this
extremely difficult. For those organizations whose activities
span all of these phases, there is a strong desire to have tools
and methods which also span all of the phases, and this is most
evident in the area of geometry definition. [177] [180]

II. FUNDAMENTALS OF FLIGHT MECHANICS AND

AERODYNAMICS

Flight mechanics is the application of Newton’s laws (1)
and (2) to the study of vehicle trajectories (performance),
stability, and aerodynamic control. [6] [3]

 F = m a (1)

 M = I (2)

The equations of motion are composed of translational
(force) equations (1) and rotational (moment) equations (2) and
are called the six degree of freedom (6DOF) equations of
motion. The 6DOF means that aircraft can move in three
dimensions in space and can rotate around three axes. Motion
caused by gravity, propulsion, and aerodynamic forces
contribute to the forces and moments which act upon the body
of the airplane. Fig. 1 shows the three axes and the forces and
moments acting on an aircraft. The center of gravity of the
aircraft is at the intersection of the axes. [1] [2] [3] [6] [7]

For trajectory analysis (performance), the translational
equations are uncoupled from the rotational equations by
assuming that the airplane rotational rates are small and that
control surface deflections do not affect forces. The
translational equations are referred to as the three degree of
freedom (3DOF) equations of motion. [6] [7]

A. Forces and Moments

The forces of lift, weight, drag, thrust, and side act along
the axes and they force the aircraft to move in the axis
direction. On the other hand, the three moments, yaw, roll, and
pitch force the aircraft to turn around the axes. [1] [2] [3] [51]

Fig. 1. The forces and moments acting on an aircraft [3]

Table I. defines each of the state variables. Although the
forces and moments are relative to the atmosphere, the state
variables are defined relative to the earth. [2]

TABLE I. STATE VARIABLE DEFINITION [2]

Variable Symbol

Roll Rate (rad / sec) P

Pitch Rate (rad / sec) Q

Yaw Rate (rad / sec) R

Velocity (m / sec) V

Sideslip Angle (rad)

Angle of Attack (rad)

Bank Angle (rad)

Flight-Path Angle (rad)

Heading Angle (rad)

North Position (m)

East Position (m)

Altitude (m) h

V, χ, and γ represent the magnitude of the velocity vector,
heading angle, and flight path angle. P, Q, and R represent the
components of angular velocity; roll, pitch, and yaw. The
position of the aircraft relative to the earth in Cartesian
coordinates is expressed by ξ, η, and h. Body attitude relative to
the velocity vector are μ, β, and α. [2]

All longitudinal motion occurs in the xz-plane of the
aircraft. Stability along the longitudinal axis is both static and
dynamic. Longitudinal static stability is the tendency of the
airplane to return to pitch equilibrium following an angle of
attack disturbance. Static stability is the aircraft’s initial
response to an input command. Aircraft is considered as
statically stable when it immediately tends to return to its
steady level flight condition. The aircraft is statically stable if
the center of gravity is located at the wing aerodynamic center.
When viewed over time, the aircraft is dynamically stable if it
tends to return to steady level flight condition. [2] [6] [7]

B. Airfoils and Reynolds Number

The design of efficient airfoils and wings is critical. The
proper functioning of the airfoil is the prerequisite to the
satisfactory performance of the lifting surface itself. [24] [29]
[28]

Accurate prediction of airfoil performance is especially
necessary in the design of efficient low-speed airfoils.
Parameters such as a wingspan and a chord length of the
aircraft should be sized according to the shape and density of
the structural model. The ideal shape of an airfoil depends
profoundly upon the size and speed of the wing of which it is
the core; in other words, different sizes of airfoils require
different shapes. This dependence is called scale effect. [28]
[31] [29] [38] [5]

The scale effect relates to the phenomenon that an airfoil
which has most excellent qualities on an insect or bird may not
exhibit these advantages when scaled up for an airplane wing,
and vice versa. The scale effect is characterized by the chord
Reynolds number (Re) defined by equation (3), where V is the
flight speed, c is the mean wing chord, and v is the kinematic
viscosity of the fluid in which the airfoil is operating. A
Reynolds number calculator can be found in [98]. [29] [28] [6]
[38] [5]

v

cV
Re (3)

The Reynolds number quantifies the relative importance of
the inertial (fluid momentum) effects on the airfoil behavior,
compared with the viscous (fluid stickiness) effects. It is the
latter effects that essentially control the airfoil performance
since they dictate the drag or stream-wise resistance as well as
limiting and controlling the maximum lift of the airfoil.
Normally, these qualities are described by the lift and drag
coefficients, CL and CD defined as (4) and (5), where L and D
are the lift and drag per unit span, q is the flow dynamic
pressure, and c is the wing chord. The lift and drag coefficients
depend on the Reynolds number as well as on the angle of
attack of the airfoil which represents its geometric inclination
to the incoming flow. [29] [6]

cq

L
CL

 (4)

cq

D
CD

 (5)

The chord length and the wingspan are based on the
aircraft’s mass and payloads weight; for instance, increasing
payloads also increases the mass of the aircraft where Reynolds
number rises as well as the wing-span. [38]

The combination of small length scale and low velocities
results in a flight regime with low wing chord Reynolds
numbers (i.e., chord Reynolds numbers ranging from 10,000 to
500,000). [28] [29]

The aerodynamics of fixed-wing UAVs is critically
dependent on the Reynolds number and aspect ratio of the
wing. Existing airfoil design methods produce good results
down to Reynolds numbers of 200,000. When the aspect ratio
decreases below 1.5, the nonlinear lift from the tip vortices
dominates, especially at high angles of attack. For this reason,
MAVs tend to cruise at higher angles of attack than higher
aspect ratio vehicles. [28]

Fig. 2 shows this huge scale range, which spans the
Reynolds numbers from 10

2
 to 10

9
. Below the lower limit,

viscous effects are dominant and it is unlikely that any airfoil-
like performance can occur. [29]

Fig. 2. Flight Reynolds number spectrum [29]

The insects and NAVs are in the range up to 10
4
, where the

flow is characteristically strongly and persistently laminar. The
range 30,000 ≤ Re ≤ 70,000 is of great interest to MAV
designers. The range of flying animals, MAVs, and small
UAVs is at somewhat higher Reynolds numbers up to 10

5
. [29]

[28] [24] [53]

In regime up to about 10
6
, the airfoil performance improves

significantly because the parasite drag decreases. There is also
the coexistence of a number of fascinating flight systems to
support this claim; for instance, large soaring birds of quite
remarkable performance, some small UAVs, foot-launched
ultralight, man-carrying hang-gliders, the human-powered
aircraft, and also the airfoils for small modern wind turbines.
Sailplanes, light aircraft, and jet transports operate at Reynolds
numbers up to and beyond 10

7
. [29] [28] [53]

 A convenient parameter to measure the effectiveness of an
airfoil (also known as aerodynamics efficiency) is its lift-to-
drag ratio (CL/CD); the maximum value of this quantity gives a
good indication of the airfoil effectiveness. For design
purposes, it is desirable that this maximum occur at a high lift
coefficient so that the physical size of the lifting surface is
minimized. [29] [24] [53]

At the lower Reynolds number values the viscous effects
are relatively large, causing high drags and limiting the
maximum lift, while at the higher values the lift-to-drag ratio
improves. There is a critical Reynolds number of ca. 70,000 at
which this performance transition takes place. This dramatic
increase can be seen the most intensively in Fig. 3. [29] [24]

Fig. 3. Low Reynolds number airfoil performance [29]

The striking change in performance for smooth airfoils is
near the critical Reynolds number where the lift-to-drag ratio
increases more than an order of magnitude. It is of great
interest that a rough or turbulent airfoil does not exhibit this
abrupt performance change with Reynolds number. It is
important to know that this critical Reynolds number divides
the airfoils of the insect class (less than 10

4
) from those of the

large airplane class (above 10
6
) (as illustrated in Fig. 2). [29]

[53]

Some representative airfoil sections of this transitional
range are shown in Fig. 4. At the low end, there are the insects
with the interesting feature that it is not necessary to have a
smooth surface; in fact, it is likely that the discontinuities are
desirable to delay flow separation. For birds, however,
smoothness begins to be important, as shown by the pigeon
section. In the middle range is the Eppler 193, an airfoil with
excellent performance at a Reynolds number of about 10

5
, and

at the high end, the Lissaman 7769, the airfoil used on the
Gossamer Condor and Albatross, and the Liebeck L 1003, an
airfoil of striking performance which provided clues on which
the design of the Lissaman 7769 was based. [29]

Fig. 4. Representative low-Reynolds-number airfoils [29]

1) Rotary Wing Airfoil
There are two main types of the rotor blade: symmetrical

and asymmetrical, as illustrated in Fig. 5. [41]

Fig. 5. Symmetrical and asymmetrical airfoils [41]

Symmetrical blades are very stable, which helps keep blade
twisting and flight control loads to a minimum. This stability is
achieved by keeping the center of pressure virtually unchanged
as the angle of attack changes. [41]

Asymmetrical airfoils normally would not be as stable, but
this can be corrected by bending the trailing edge to produce
the same characteristics as symmetrical airfoils; this correction
is called “reflexing”. Using asymmetrical type of rotor blade
allows the rotor system to operate at higher forward speeds.
The advantages are more lift production at a given angle of
attack than a symmetrical design, an improved lift-to-drag
ratio, and better stall characteristics. The disadvantages are
greater production costs and center of pressure travel of up to
20% of the chord line (creating undesirable torque on the
airfoil structure). [42]

C. Weight and Power

During the design process of a UAV, both the weight
budget and the power budget should be carefully monitored. In
particular, the total mass of the vehicle should be kept as low as
possible, since added weight will increase power consumption.
The minimum power required to keep a fixed-wing aircraft in
level flight can be expressed as (6), where T is the thrust, V is
the velocity, ηp is the propeller efficiency, m is the aircraft
mass, g is the gravitational variable, S is the wing area, ρ is the
density of fluid, L/D is lift-to-drag ratio, and CL is the lift
coefficient. This means that doubling the weight nearly triples
the power consumption. [24] [244]

Similarly, for hovering flight, the power requirement is
expressed as (7), where M is the figure of merit of the rotor and
Vh is the induced velocity in hover. Similar to that described
above, a doubling of the weight increases the required power
by a factor of nearly 3. [24] [244]

pp

2

/

LCS

gm

DL

gmVT
P

 (6)

S

gm

M

gm

M

VT
P h

2
 (7)

III. THE STRUCTURE OF A UAV SYSTEM

The study of structure, composition and function of the
UAV system (UAS) is the premise. Any UAV system depends
on its mission and range; however, most UAV systems include:
airframe (physical and material structures) and propulsion
systems, control systems, sensors for information collection,
launch and recovery systems, communication links to get
collected information from the UAV and send commands to it,
and a ground control station. The typical UAV system is shown
as Fig. 6. It is obvious that the health state of the whole system
is dependent on the composed sub-systems. [3] [5] [34] [43]
[38] [45] [48] [49]

UAVs can also require additional sensors to avoid
obstacles, i.e. power lines, birds, trees, buildings and other
barriers. These types of avoidance sensors are called see-and-
avoid or sense-and-avoid. [38] [49]

Fig. 6. The composition of a UAV system [43]

Although human personnel are part of the overall system,
UAV systems include different levels of autonomy, ranging
from remote control to fully automated mission completion
including adaptation and decision making in response to
changing operational conditions. [25] [46]

A. Airframe

Fig. 7 shows the main components of fixed-wing aircraft.
The airframe consists of fuselage, wings, horizontal stabilizer,
elevator, vertical stabilizer, and rudder. The weight of the
airframe does not only come from the wings (pylon, flaps, and
ailerons), fuselage, empennage, and nacelle but also from
propulsion, avionics, sensors, and other payloads. The payload
of medium range light aircraft is usually about 40–50%. [3]
[38] [5]

Fig. 7. Fixed-wing aircraft components [3]

The elevator is used to control the pitch of the aircraft. The
rudder is used to control the yaw of the aircraft. The ailerons,
which are movable surfaces on the outer trailing edge of the
wings, are used to control the roll of the aircraft. The flaps,
which are hinged parts on the inner trailing edge of the wings,
are used to produce higher lift at low speed, and to increase
drag on landing to get the required landing speed and approach
angle. [3]

The landing gears configurations are either tricycle landing
gear, which has the main landing gears just behind the aircraft
center of gravity and a steerable nose gear, or tail dragger,
which has the main landing gear forward of the aircraft center
of gravity and a small steerable gear at the tail. [3]

Carbon fiber composites are the main materials used for
UAV airframes, because they have high strength/weight ratio
and are easily accessible. [24]

B. Propulsion

The propulsion system of a UAV consists of the following
elements: [37] [38]

 energy source; e.g. chemical fuels (fossil fuels,
biofuels, and chemicals), electricity, solar energy (in
conjunction with photovoltaic cells), hydrogen,
methanol, and energy mechanics

 storage media; e.g. tanks, batteries, capacitors, and
metal hydrides

 mechanical energy converter; e.g. internal combustion
engine, and fuel cell + electric motor

 lift/thrust converter; e.g. rotor, fan, propeller, and jet
engine

Lift/thrust conversion systems are closely linked to the type
of aircraft (fixed wing, rotary, lighter than air, etc.). In addition,
propulsion systems usually include power control, RPM
control, heat management system, and an auxiliary electrical
power generator. [37]

Three main types of propulsion systems exist for UAVs:
[37]

 alternative thermal systems; where different
thermodynamic cycles, fuel, or engine types can be
used (e.g., spark-ignition reciprocating engines fuelled
by gasoline)

 electrical systems; where the required power is
obtained through an electric motor and the power is
generated or stored in different ways

 hybrid systems; combining any of the systems listed
above, even the same type (e.g. a combination of fuel
cell and battery or Regenerative Fuel Cell Systems,
RFC, which combine fuel cell, battery, and
photovoltaic cells)

Currently, mainly MAVs and small UAVs are powered by
batteries and electric motors due to their high efficiencies,
reliability, and ease of control. Electric motors convert
electricity into mechanical energy by moving a propeller, fan,
or rotor. They have the advantage of being the quietest and
having one of the lowest thermal signatures. [37] [24]

Since coreless motors are lighter and smaller than, for
example, direct current (DC) iron-core motors, they are
considered more suitable. In addition to the small dimensions
and the low weight, another advantage of coreless motors is the
lack of iron losses that are reflected in a higher efficiency.
Furthermore, since the rotor is very light, it has a small inertia
that allows extremely fast accelerations and decelerations.
However, the lack of iron in the center reduces the motor heat
dissipation. To avoid overheating and thermal problems, they
are only used for small and low-power motors. [24]

Innovations exist in small propulsion; for example, there
are mini-ducted fan, mini-turboprop, mini-gas turbines, and
mini-internal combustion engines. [24] [5]

C. Energy Storage

Electrical energy is supplied by a battery, photovoltaic or
fuel cell. Although they are undergoing continuous
improvement, electricity demand comes not only from the
engine, but also from the electronic circuits, sensors, actuators
and communication systems; consequently, the endurance or
speed is limited. However, a large part of the electric energy is
used for the electric motors. [37] [24]

Since energy stored in batteries does not require any
conversion to be useful for both the electronics and propulsion,
batteries seem to be the most appropriate for an electric UAV.
Furthermore, the energy density of the batteries has steadily
increased during the last years as shown in Fig. 8. [24] [5]

The most advanced batteries (intelligent batteries) include
circuit that optimizes the cells’ discharge curves with respect to
the loads. Despite these improvements, the most advanced
batteries also provide much lower energy densities than
sources, such as gasoline or methanol. [24] [5]

Another alternative is fuel cells. A fuel cell system is
conceptually a sort of battery in which the fuel is transformed
into electric current trough an electrochemical process. There
are several kinds of fuel cells which mainly differ with respect
to the principle of energy conversion. Currently, the most
promising fuel cells for a UAV are proton exchange membrane
(PEM) fuel cell and direct methanol fuel cell (DMFC) which
could be considered as a subcategory of the PEM. [24] [37] [5]

Besides fuel cells, ultra-capacitors have become interesting
the last few years. The latest improvements have made this
power storage principle attractive also for UAVs, and they
have already been used in some prototypes. [24]

Since they are an evolution of normal capacitors, their main
features are fast charging, high peak current, and virtually
unlimited charge-discharge cycles. The main drawback
consists of the output voltage that strongly depends on the
charge status of the capacitor. Moreover, when compared with
other energy sources, they have a relative low energy density as
can be seen in Fig. 8. [24]

Fig. 8. Energy densities of various energy storage systems [24]

Although solar cells are also a potential useful energy
source, photovoltaic systems cannot be used for every type of
the UAV; for example, the small dimensions of NAVs, the
weight constraints, the indoor application area (low light), and
some UAV typologies limit the efficiency and the availability
of this energy source. [24]

D. Transmission

For a UAV system, two different kinds of signals have to
be transmitted: control signals and data signals. The control
signals are needed for take-off, landing and for piloting the
vehicle in general while the data signals are the data collected
by onboard sensors of a UAV system (such as camera,
microphones, gas sensors, and other devices). Control signals
are mainly transmitted from the ground station to the vehicle
while the data signals are sent from the vehicle to the ground
station. [24] [5] [48]

Currently, the only system known to be operative is
communication by radio, directly or via satellites or other
means of radio relay. [5]

The specifications for communications performance
include two fundamental parameters: [5]

 data rate; which is the amount of data transferred per
second by a communications channel and is measured
in bytes per second (Bps)

 bandwidth; which is the difference between the
highest and lowest frequencies of a communications
channel, i.e. the width of its allocated band of
frequencies, and is measured in MHz or GHz as
appropriate

When reducing the UAV system dimensions, the major
challenges for the communications parts are represented by the
weight and size of the antennas, filters, and resonators.
Antenna shape strongly depends on the operating frequencies
and, thus, will depend on external factors, such as application
(military frequencies are different from civilian frequencies),
distances, bit rate, and other factors. This requires the
application specific antenna design. [24]

The loss of communication during operations may result
from: [5]

 failure of all or part of the system due to lack of
reliability

 loss of line-of-sight (LOS) due to geographic features
blocking the signals

 weakening of received power due to the distance from
the UAV to the control station becoming too great

 intentional or inadvertent jamming of the signals

UAV system should have an ability to safely
complete/cancel a mission in case the communication is lost,
e.g. the UAV can fly to the base or to the last position where
the communication was in order. It also must be ensured that
the transient loss of communication will not affect the UAV
functions.

E. Sensors

Sensors can roughly be divided into two categories. The
first one contains the sensors that are necessary for flight
control, the second is sensors that are a part of the payload and
provide mission-specific information. [24]

A UAV system should theoretically be able to fly only with
a 3-D accelerometer and a 3-D gyroscope. Ideally, if the initial
position is known, all the later positions can be calculated only
by integrating the resulting vector acceleration two times to
find the position, while 3-D gyroscope signal is used to
maintain flight stability. However, since all gyroscopes and
accelerometers suffer from offsets and drifts, for instance with
time and temperature, the accuracy of the calculated position
will decrease over time. [24]

The currently popular method of position fixing and
navigation between points is by use of the Global Positioning
System (GPS). GPS is available as two services, the Standard
Positioning System (SPS) for civilian users and the Precise
Positioning Service (PPS) for military users. Both signals are
transmitted from all satellites. The accuracy of GPS position
fixes varies with the receiver’s position and the satellite
geometry. Height is also available from GPS, but to a lower
accuracy. [5]

The other class of sensors is the data-collecting sensors that
provide useful information for the users. Examples are
cameras, microphones, gas sensors, biological sensors,
radiation sensors, and other sensors. [24]

IV. THE MODELLING AND SIMULATION OF A UAV

As known, flight modelling and simulation have many
advantages; for instance, energy and finance saving, security,
and no limitation of locality and weather. Moreover, some hard
and risky tasks can be simulated. [34]

However, the accurate modelling and simulation of a UAV
is not an easy task, due to the need to calculate many
parameters either by physical measurements, experiments, or
estimation from available data of similar UAV or by software
tools. One of the big challenges is calculating aerodynamic
coefficients. Aerodynamic coefficients characterize the
response of the proposed vehicle based on its geometry. [1] [3]

UAVs typically consist of sets of sophisticated and
different entities including several categories of human
personnel. A comprehensive simulation environment must
model all these components and include specific characteristics
related to system intelligence, complexity, autonomous
operation, and collaborative operation. [25]

Several major assumptions are often made for the
modelling and simulation of the aircraft. First, the aircraft is
rigid. Although aircraft are truly elastic in nature, modelling the
flexibility of the UAV should not contribute significantly to the
research. Second, the earth is an inertial reference frame. Third,
aircraft mass properties are constant throughout the simulation.
For UAV modelling, it can be assumed the aircraft has constant
mass over a flight. Finally, the aircraft has a plane of
symmetry. The first and third assumptions allow for the

treatment of the aircraft as a point mass. This assumption is a
satisfactory approximation for UAV models. [1] [2]

For the modelling and simulation of a UAV at least the
following items must be created: [3] [34]

 A Flight Dynamics Model (FDM)

 A UAV mathematical model

 A 3D graphical model (only if the 3D visualization of
the UAV is needed)

 A control system

 A flight route identification

 Autonomous flight simulation

FDM is the physics/math model which defines the
movement of an aircraft under the forces and moments applied
to it using the various control mechanisms and from the forces
of nature. FDM includes development of a physical, inertial,
and aerodynamic model representing the UAV. FDM processes
parameters from all input information. By manipulating input
variables mathematically, FDM predicts the future states of an
aircraft. The FDM accuracy determines the fidelity of the
simulator. [1] [2] [3] [34]

With a generic FDM implementation in mind, the
Aerodynamic Coefficients are not provided by the FDM and
hence need to be determined by other ways. As long as the
aerodynamic coefficients are available, the FDM may model
the motion of any vehicle configuration, from a ball to a
transonic fighter. [1]

FDM, like any other dynamics model, is a data driven
program. Hence the accuracy of its outputs depends on the
quality of the input information supplied. FDM takes initial
conditions of the vehicle, and other inputs including aircraft
properties (e.g. inertia and gravity), aerodynamic coefficients,
control inputs and relative wind conditions. After calculations,
FDM sends the vehicle dynamic responses to the output. Fig. 9
illustrates the internal data flow of FDM. [1]

Fig. 9. The schema of a flight dynamics model [1]

As indicated, wind modelling has a significant role in the
design and certification of aerial vehicles. It helps to study and
analyze the behavior of the aircraft facing the wind. [40] [1]

The best equations to use to completely and accurately
model a UAV’s true motion are nonlinear fully coupled
ordinary differential equations. With these equations of motion,

UAV response to any commanded inputs or wind disturbances
is accurately modeled. [2] [33]

However, a software model developed from first principles
has unknown accuracy. The accuracy of model is ensured
through a verification and validation process. [1] [25] [26]

Verification is the process of determining that a model
implementation accurately represents the developer’s
conceptual description of the model and the solution to the
model. [26] [27]

Validation is the process of determining the degree to
which a model is an accurate representation of the real world
from the perspective of the intended uses of the model. [26]
[27]

The 3D graphical model is necessary only if 3D
visualization of the UAV is needed. 3D Visualization can give
us a better view of the simulation than numbers and graphs
alone. [3]

UAVs promise greater precision; however, autonomous
flight and stability of the UAV depend on the control system.
The ability to test control systems in a virtual environment is
significant for development. A reliable UAV simulation
process which can be adapted for different aircraft would
provide a platform for developing control systems with reduced
dependence on expensive field trials. In many cases, testing
newly developed control systems in a virtual environment is
the only way to guarantee absolute safety. [1] [2] [4] [34]

The way to identify flight route means to simulate system
similar to the GPS or the GPS itself. [3]

Autonomous flight simulation depends on all things above;
in addition, use cases and activity diagrams of simulation
should be designed to define what should be found and how it
should be found. Next, the settings of simulation parameters
(e.g. density, gravity, airspeed, and altitude) must be defined
and then the simulation itself can be run with or without
visualization. [2] [3]

An example of the hierarchy of a UAV simulation system
can be seen in Fig. 10. This UAV simulation system is divided
into three layers based on function. In the simulation system,
the objects on top layer have more responsibilities and manage
the objects on low layer; for instance, they provide the
instantiation of object, the calling of methods, communication
and operation management. In contrast, the objects on low
layer are focused more on functionality. [34]

The simulation system includes an environment model, an
aircraft system model and an equipment model. Each
subsystem model has the independent function; for example the
aircraft system model is the core of the system and is formed of
flying control model, engine model, kinematics model, sensor
model, data channel model and other models. [34] [25]

Fig. 10. The structure of a UAV simulation system [34]

V. FREE SOFTWARE

Modelling and simulation software has been developed to
assist in the design, development, test, and validation of
complex aircraft systems. The fidelity and precision of the
software ensure the reliability and efficiency of flying
simulation system and can decrease the time and costs needed
to development of any UAV. [39] [34]

Simulation program can run in two modes: [34]

 real-time mode (used in real-time systems)

 script mode (used in test process)

A large amount of freeware and open-source software for
the modelling and simulation of aircraft exists on the Internet.
Fortunately, much of the software can also be used for UAVs.
As noted, this section probably does not include all of the free
software, but tries to mention, describe, or analyze the most
interesting applications.

A. JSBSim Flight Dynamics Model

JSBSim is an open-source 6-DOF nonlinear flight
dynamics model which is used as the default FDM for
FlightGear Flight Simulator and for OpenEaagles Simulation
Framework. JSBSim is generally considered as a very accurate.
[1] [3] [12] [13] [14] [52] [55] [56]

The accuracy of JSBsim has been proved by a large number
of studies; for example, it was tested on Cessna-182 UAV by
University of Sheffield in the United Kingdom [3], and on
Shadow UAV by Purdue University in Indiana, USA [58].
Moreover, a full 6-DOF simulator for flight simulation and
pilot training was constructed at the University of Naples using
JSBSim as its physics engine. JSBSim is also used to drive the
motion-based research simulators in the Institute of Flight
System Dynamics and Institute of Aeronautics and
Astronautics at RWTH Aachen University in Germany.
Furthermore, U.S. Department of Transportation developed a
human pilot math model by using JSBSim as the 6-DOF
simulation core. [1] [3] [12] [57] [52] [56]

JSBSim is written in the C++ programming language and
can be run as a stand-alone application, or as an integrated part
of the flight simulator which provides visual output. It also
supports many data output formats such as socket and file. [3]
[12] [13] [55] [56]

JSBSim can model aircraft, missile, rotorcraft, and lighter-
than-air systems, and may take into consideration the rotational
earth or wind effects on the equation of motion. Particular
aircraft flight control systems, propulsion, aerodynamics,
landing gears, and autopilot are defined in eXtensible Markup
Language (XML) format files. [3] [12] [13] [59] [55] [56]

JSBSim allows algebraic functions (e.g. sum, random,
average, difference, sinus, power and other operations) to be
defined in configuration files. All currently supported
operations are listed in [57].

Despite JSBSim uses imperial units (e.g. feet, pounds, etc.)
for internal calculations almost exclusively, it is also possible
to use international units (e.g. meters, kilograms, etc.). In fact,
to avoid confusion, the unit should always be specified using
the “unit” attribute as shown in Fig. 11. [57]

Fig. 11. An example of the unit attribute

1) Configuration Files and Aeromatic
JSBSim requires creating JSBSim aircraft configuration

files to model and simulate an autonomous UAV; for instance,
by using the Aeromatic. Aeromatic is a free PHP-based web
application and is also included in source code of JSBSim.
However, Aeromatic uses templates for the generation of the
configuration file (e.g. the template for the glider, light twin,
subsonic racer/aerobatic, etc.) and provides only rough values.
As a result, the next step is to perform educated guesses to
improve important sections in the created configuration files
with the assistance of available data of a similar UAV or with
the assistance of appropriate software tools. [3] [13]

Aeromatic takes input conditions from the user i.e. used
units (imperial/international), a name, type, and length of the
aircraft, maximum take-off weight, wingspan, wing area, a
landing gear layout, a number of engines, an engine type, and
an engine layout. Some values can be estimated by Aeromatic,
e.g. wing chord, wing area, inertia, and other parameters. A
part of Aeromatic application can be seen in Fig. 12. [3] [13]

Fig. 12. The aircraft configuration file creation by using Aeromatic

For the test of Aeromatic, the glider type was used, the
metric system of measurement, a maximum take-off weight of
2 kilograms, a wingspan of 2.5 meters, a length of 1 meter, one
electric motor, and an after-fuselage engine layout. The other
parameters were automatically estimated by Aeromatic, for
example a wing chord was calculated as 0.0243 m, a wing area
as 0.0585 m

2
, and wing loading as 34.177 kg/m

2
.

However, because the wing loading seemed to be extremely
high, it was necessary to set the wing chord and wing area to
higher values i.e. to 0.25 meters and 0.58 m

2
. After this

modification, the wing loading decreased to 3.467 kg/m
2
 which

should be acceptable. In conclude, the estimated values may
not always be suitably calculated by Aeromatic; thus educated
guesses must be performed.

Aircraft’s metrics, airframe geometry, mass and inertia
properties, landing gear positions and their ground reactions,
flight control system, and aerodynamic characteristics are
specified in the aircraft configuration file whose structure is
shown in Fig. 13. [3] [57] [56]

Fig. 13. The structure of the aircraft configuration file

The file-header section of the configuration file includes the
author’s name, date of creation, a version of the model, a
license type, references, notes, and limitations. [57]

The metrics section of the configuration file defines the
characteristic measurements of the vehicle and the locations of
key points. A Vehicle Reference Point (VRP) is usually placed
at the nose of the aircraft; X-axis is along the aircraft body
(positive towards the tail), Y-axis is along the wings (positive
towards the right wing tip), and Z-axis is in the vertical axis
(positive downward). The VRP is an agreed upon point on the
aircraft, for which the flight model will provide the
latitude/longitude/altitude. The VRP is not so important to
flight dynamics but it is very important to 3D visualization. It
helps with the placement of the 3D aircraft model where the
flight model exactly specifies aircraft components. [3] [57]

The mass-balance section specifies the empty weight of the
aircraft, the moments and products of inertia, the location of
the center of gravity, and definitions for any point masses that
are included such as Payloads. [57]

Hot air balloons, buoyancy-assisted vehicles, and zeppelins
can be modeled through the use of gas cells and ballonets. The
buoyant-forces section has to be added for these types of
systems. The type of gas contained in the gas cell can be 100%
pure hydrogen, helium or air. The initial fullness fraction of the
cell is normally in the interval (0-1); the fullness value greater
than 1.0 initialize the cell at higher than ambient pressure. The
maximum allowed cell overpressure with respect to the
surrounding atmosphere, the capacity of the manual valve, and
the heat flow from the atmosphere and surrounding
environment into the gas cell can also be defined. However,
automatic valves with limited capacity, cell failure from
overpressure, more realistic center of buoyancy, and more
realistic and complete inertia moment are still missing. [57]
[59]

Ground reactions section specifies the wheels location, and
the coefficients associated with each wheel. Contacts between
the aircraft and the ground can be modelled so that the aircraft
can realistically take-off and land. Contacts can also be used to
model the interaction between the ground and any part of the
aircraft structure such as the wing tip. JSBSim does not make
any guess for the contact points location from the geometry
data provided in the metrics section. It is advisable to have at
least 3 unaligned contacts so that the aircraft can have a stable
position when resting on the ground. [3] [57]

JSBSim can model two types of contacts: [57]

 BOGEY which is used for landing gears

 STRUCTURE which is used for any location on the
aircraft other than the landing gears (typically wing
tips, nose and tail)

Both of these contact types basically result in a force which
resists the penetration of the ground by the aircraft. The main
difference between the two types of contacts is how the ground
reaction force is computed. Furthermore the BOGEY type
includes features which are typical to landing gears such as
brake and steering. [57]

The ground reactions are computed as forces that support
the aircraft above the ground, and affect the motion over the
ground; thus, these forces can be split into two components:
[57]

 the ground normal reaction (computed by a
spring/damper model)

 the ground tangential reaction (computed by the
Coulomb friction law)

Aerodynamic forces and moments in JSBSim are defined in
the aerodynamics section of the aircraft configuration file, or in
a separate file. Within the aerodynamics section there are six
axis sections corresponding to three translational and three
rotational axes. Many factors affect each of the forces and
moments. The total force or moment is the sum of the
individual effect. [3] [57] [55] [56]

Optionally two other coordinate systems may be used: [57]

 body coordinate system (x, y, z)

 axial-normal coordinate system (axial, normal, side)

JSBSim can model externally or arbitrarily applied forces
and moments. Such a capability might be needed to model a
catapult, hook and wire capture device, tow rope, or parachute.
External forces are defined in the external reactions section.
[57]

JSBSim can model different types of engines i.e. electric,
turbine, turboprop, piston, and rocket engines. Nowadays, there
is no battery model available for electric engine; thus it does
not consume any energy in simulations. [3] [13]

The aircraft’s propulsion system is specified in two files,
one for an engine and the other for a thruster. This technique
allows researchers to assign different kinds of engines and
thrusters to the aircraft. These files are referred to in the
propulsion section of the aircraft configuration file.
Additionally, other parameters (e.g. the location, orientation,
and energy consumption) of the engine, thruster, and fuel tank
are specified in this file. [3] [13] [55] [56] [58]

For the creation of an engine or propeller, Aeromatic takes
the engine type, engine power or thrust, maximum engine
RPM, pitch condition, and propeller diameter from the user
while the orientations of engines and propellers have to be
edited in file if it is needed. [3] [13] [58]

Aeromatic does not have the ability to create an electric
engine; however, there is no problem to make the file manually
because of small complexity. An example of the electric engine
file is shown in Fig. 14.

Fig. 14. The configuration file of the 2 kW electric engine

It was found that Aeromatic is not appropriate for creating
the propeller of small measurements because, for example, the
rotational inertia (<ixx> element in file) of generated propeller

is almost always zero. The problem is probably in the rounding
of the value to 2 decimal places. However, after appropriate
editing, the generated file may be usable.

JSBSim provides components which can be connected
together to model a flight control system for an aircraft. The
control of the channels such as Pitch, Roll, Yaw, Flaps,
Landing Gear, and Speed Brake can be performed in the flight
control section. The flight control surfaces are elevator, right
and left ailerons, and rudder. [3]

Mechanization of components can be defined by properties.
Properties are like variables which are categorized into a tree
structure, and accessible from the configuration file. Properties
refer to various values within the simulation which represent
such physical parameters as roll rate, air density, drag force,
and others. [57]

Almost all control system components have some common
features. Unless otherwise specified, the common elements are:
input, output, delay, and clipto (the last one permits limiting of
the output of a component). The possible components to use
are: Filter, Switch, Sample and Hold, Sum (named as
“summer”), Gain, Scheduled Gain, Aero-surface Scaling,
Deadband, Limiter, Positive or Negative Value, Absolute
Value, Kinematic, FCS (Flight Control System) Function,
Actuator, Sensor, Translational Accelerometer, and PID
(Proportional-Integral-Derivative) controller. [57]

JSBSim can be scripted to run automatically by using a
script file in XML format. Commands are specified using the
scripting directives for JSBSim. A test condition (or
conditions) can be set in an event in a script and when the
condition evaluates to true, the specified action (or actions) is
taken. An event can be persistent, which means that at all times
when the test condition evaluates to true the specified actions
are executed. When the set of tests evaluates to true for a given
condition, an item may be set to another value. This value may
be a value, or a delta value, and the change from the current
value to the new value can be either via a step function, a ramp,
or an exponential approach. The speed of a ramp or approach is
specified via the time constant. The basic structure of the script
file is shown Fig. 15. [57] [55] [56]

Fig. 15. The basic structure of the script file

B. FlightGear Flight Simulator

FlightGear is an open-source flight simulator, written in the
C++ programming language, to model and simulate a wide
variety of aircraft and, reportedly, also a soft-wing and
flapping-wing vehicles (ornithopters). FlightGear has probably

the ability to model all these kind of vehicles and their hybrids.
[1] [3] [14] [15] [60] [45] [47] [48] [49] [52] [58]

Data visualization is another aspect considered while
building the flight dynamics model. FlightGear supports many
different 3D file formats, for example VRML1, DXF and
AC3D. AC3D is the standard used in most FlightGear models.
FlightGear can produce a 3D graphic animation in real time
and is connected to FDM. The animation facility allows the
UAV to be viewed from any angles, and provides absolute
visual information on the UAV attitude and stability.
Moreover, it models real world instrument behavior, and
system failures. [1] [3] [14] [15] [60] [62] [45] [47] [50] [58]

FlightGear allows the user to access the internal properties
and monitor any of its internal state variables. By editing
configuration files, it is possible to create sound effects, model
animations, instrument animations and network protocols for
nearly any situation. FlightGear can communicate with external
flight dynamics models, GPS receivers, external autopilot,
control modules, other instances of FlightGear, and other
software. FlightGear could also be used for the simulation of
multi-agent cooperation. [3] [15] [62] [47] [48] [49] [58]

FlightGear contains many special features, some of which
are not obvious to the new user, e.g. aircraft carrier with
launching of aircraft from a catapult, Atlas (“moving map"
application), multiple displays, multiple computer, recording
and playback, and air-air refueling. [60]

It is possible to choose between three primary FDMs:
JSBSim (described in previous subchapter), YASim, and
UIUC. It is also possible to add new dynamics models or even
interface to external proprietary flight dynamics models. [15]
[16] [60] [61] [62]

YASim is an integrated part of FlightGear and uses a
different approach than JSBSim by simulating the effect of the
airflow on the different parts of an aircraft. The advantage of
this approach is that it is possible to perform the simulation
based on geometry and mass information combined with more
commonly available performance numbers for an aircraft. This
allows for quickly constructing a plausibly behaving aircraft
which matches published performance numbers without
requiring all the traditional aerodynamic test data. [15] [60]

UIUC is based on LaRCsim originally written by the
NASA. UIUC was initially geared toward modelling aircraft in
icing conditions, but now encompasses nonlinear
aerodynamics, which result in more realism in extreme
attitudes, such as stall and high angle of attack flight. [15] [16]
[60] [61]

FlightGear tries to replicate the real navigation system
around the world; thus a flight path which contains a number of
waypoints can be constructed. FlightGear uses fixed waypoints
such as airports and navigation aids such as radio stations for
navigation. In order to use the selected waypoints with
FlightGear navigation system, a unique ID can be assigned to
each waypoint, and the FlightGear database can be altered to
include the new waypoints with their IDs. [3]

The fixed waypoints are determined by latitude and
longitude. When a waypoint is entered in the aircraft route

during the simulation time, FlightGear checks the database to
see if it is a valid fixed point or not. This database is stored in
the compressed file called fix.dat which can be found in the
directory FG_ROOT\ FlightGear\data\Navaids. This file can be
edited by using, for example, Notepad++. [3]

FlightGear was tested, for example, on Cessna-182 UAV
[3], Shadow UAV [58], Pioneer UAV [61], and ArduCopter
[63].

1) Configuration Files
Except of FDM configuration files, other files are required

for use with FlightGear which include the electric-system file,
autopilot file, and 3D graphical model specification file. The
final required file ties the previous files together. [3] [47]

The electrical-system file specifies the battery
characteristics, the lights and other parameters. A part of an
example of an electrical-system configuration file can be seen
in Fig. 16. [3]

Fig. 16. A part of the electrical-system configuration file

To fly the modelled UAV autonomously, a tuning process
should be made for the built-in PID autopilot which has the
ability to hold aircraft velocity, vertical aircraft speed, altitude,
pitch angle, angle of attack, bank angle, and true heading. [3]

FlightGear implements a PID algorithm in a flexible way
which makes it reusable with similar aircraft. Typically a PID
controller manipulates one control output to force a current
value (or process value) towards a target value (or reference
point). However, any number of PID controllers can be defined
in the autopilot configuration file. Moreover, a process value,
reference point, any number of output values, and other tuning
constants can be assigned to each controller. Cascading
controllers can be implemented by specifying multiple PID
controllers in which the output of the current stage is used as
the input to the next stage. [3]

To construct an autopilot configuration file (whose example
can be seen in Fig. 17) for a modelled aircraft, an suitable idea
may be to copy an autopilot configuration file from an existing,
similar aircraft, and tuning the autopilot parameters to adapt to
the modelled aircraft. The most basic method of tuning
autopilot parameters is the trial and error method. In this
method, the proportional gain, integral time, and derivative
time are adjusted until the performance is acceptable. [3]

Fig. 17. A part of the autopilot configuration file

In order to perform a visual simulation, a 3D graphical
model should be specified. The animated control surfaces and
their kind of animation are specified in a graphical-model
configuration file as shown in Fig. 18. [3] [47] [62]

Fig. 18. A part of the graphical-model configuration file

The set configuration file ties all the previous files together
by specifying their names and paths and is the first processed
file in the simulation. Fig. 19 illustrates an example of the set
configuration file. [3] [50] [62]

Fig. 19. A part of the set configuration file

C. OpenEaagles Simulation Framework

OpenEaagles is an open-source multi-platform simulation
framework targeted to help simulation engineers and software
developers rapidly prototype and build robust, scalable, virtual,
constructive, stand-alone, and distributed simulation
applications. OpenEaagles is written in the C++ programming
language and has been used extensively to build applications
which demand deterministic real-time performance or
execution as fast as possible. This includes applications used to
conduct human factor studies, operator training, or the
development of complete distributed virtual simulation
systems. OpenEaagles has also been used to build stand-alone
and distributed constructive applications oriented at system
performance analysis. Constructive-only simulation
applications which do not need to meet time-critical deadlines
can use models with even higher levels of fidelity. [17] [18]
[57]

It should be emphasized that OpenEaagles is a cycle or
frame-based system, not a discrete-event simulator. This
approach satisfies the requirements for which it is designed;
namely, support for models of varying levels of fidelity
including higher-level physics-based models, digital signal
processing models and the ability to meet real-time
performance requirements. Model state can be captured with
state machines and state transitions can use the message
passing mechanisms provided by the framework. [19] [20] [57]

The framework embraces the Model-View-Controller
(MVC) software design pattern by partitioning functional
components into packages as can be seen in Fig. 20 (packages
with white/clear background indicate the use of a third party
open-source tool). This concept is taken a step further by
providing an abstract network interface; thus, custom protocols
can be implemented without affecting system models. The
framework supports a number of other third party open-source
tools such as FLTK, Fox and wxWidgets for cross-platform
GUI applications, and JSBSim as a high quality flight
dynamics model. [18] [19] [20]

Fig. 20. OpenEaagles Package Hierarchy [18]

The simulation section provides a wealth of capabilities
including abstract classes for representing a variety of entity
types such as aircraft, ships, tanks, ground vehicles, space
vehicles and even lifeforms. Moreover, a complete radar
modelling environment is included. [20]

The graphics hierarchy provides a collection of classes
which can be used to render instruments which are commonly
used in operator‐vehicle interface displays. The available
instruments include, for example, analog dials for altimeters,
dials for direction finders, speedometer dials, and landing gear
indicators. [20]

Distributed applications can interoperate with other systems
and simulations through Distributed Interactive Simulation
(DIS) and/or High Level Architecture (HLA) interfaces.
Numerous DIS compliant distributed simulation applications
have been built using this framework as the foundation. [17]
[18] [19]

Specific applications using the framework to support
simulation activities include a UAV ground control station
(Predator MQ-9), representative F-16 cockpits, Integrated Air
Defense Systems (IADS) and a futuristic battle manager.
OpenEaagles is also suitable for use in multi-agent
applications. [19]

The framework is routinely compiled with Microsoft Visual
Studio for the Windows environment and GCC for Linux.
Applications probably perform best when they are executed on
dual-core or dual-CPU systems. [19]

However, the project files for Codelite and Codeblocks
development environments can be generated by
OE_source_ROOT\build\premake\make.bat file. For the
generating of the Codelite project files, “%Premake% codelite”
has to be added to the end of the make.bat file.

D. MIT and ESOTEC Software

This chapter contains an analysis of MIT (Massachusetts
Institute of Technology) and ESOTEC (Esoteric Technology)
open-source software. ESOTEC software, written by Carter
[134], is an extension of MIT software, which was developed
mainly by Drela and Youngren [135].

In addition to described software, it is also worth
mentioning the Transport Aircraft System OPTimization
(TASOPT). TASOPT is a program for optimizing the airframe
of a wing-tube transport aircraft, together with the engine
parameters and operating parameters. However, despite there
may be found some parts which can be useful, this software as
a whole is probably inappropriate for UAVs. [136]

1) Athena Vortex Lattice (AVL)
AVL (whose logo is illustrated in Fig. 21) is a program for

the aerodynamic and flight-dynamic analysis of rigid aircraft of
arbitrary configuration. It employs an extended vortex lattice
model for the lifting surfaces, together with a slender-body
model for fuselages and nacelles. [132] [109] [53]

General nonlinear flight states can be specified. The flight
dynamic analysis combines a full linearization of the
aerodynamic model about any flight state, together with
specified mass properties. [132]

Fig. 21. The logo of AVL [132]

AVL has a large number of features intended for rapid
aircraft configuration analysis. The major features are as
follows: [133] [132] [53]

 Aerodynamic Components (Lifting surfaces, and
Slender bodies)

 Configuration definition (Keyword-driven geometry
input file, Defined sections with linear interpolation,
Section properties, Scaling, translation, rotation of
entire surface or body, and Duplication of entire
surface or body)

 Singularities (Horseshoe vortices - surfaces, Source
plus doublet lines - bodies, and Finite-core option)

 Discretization (Uniform, Sine, Cosine, and Blend)

 Control deflections (Via normal-vector tilting, Leading
edge or trailing edge flaps, and Flaps independent of
discretization)

 General Freestream description (alpha, beta flow
angles; p, q, r aircraft rotation components; Subsonic
Prandtl-Glauert compressibility treatment)

 Aerodynamic outputs (Aerodynamic forces and
moments, in body or stability axes, Trefftz-plane
induced drag analysis, and Force and moment
derivatives w.r.t. angles, rotations, controls)

 Trim Calculation (Operating variables such as alpha,
beta, p, q, r, and control deflections, Constraints such

as direct constraints on variables and indirect
constraints via specified CL and moments, and
multiple trim run cases which can be defined, saved,
recalled)

 Optional mass definition file for trim setup and
Eigenmode analysis (User-chosen units, and Itemized
component location, mass, inertias)

 Trim setup of constraints (level or banked horizontal
flight, and steady pitch rate (looping) flight)

 Eigenmode analysis (Predicts flight stability
characteristics, Rigid-body, quasi-steady aero model,
Eigenvalue root progression with a parameter, Display
of Eigenmode motion in real time, and Output of
dynamic system matrices)

AVL utilizes the extended vortex lattice method to
determine the aerodynamic loads along the span of all
aerodynamic surfaces, interprets the geometric configuration of
the aircraft, and discretizes the wing into a finite element mesh.
An AVL aircraft model and the corresponding static lift
distribution can be seen in Fig. 22. [31] [53]

AVL allows the user to obtain individual lift forces for each
element in the mesh. The total lift load on each segmented
portion of the wing is calculated by summing the elemental lift
forces that are located within the geometric bounds defined by
the segmented plate control surfaces. [31]

Fig. 22. An AVL model and the lift distribution of an aircraft [31]

AVL works with three input files, all in plain text format
with the following extensions: [133] [109]

 .avl - required main input file defining the
configuration geometry

 .mass - optional file giving masses and inertias, and
dimensional units

 .run - optional file defining the parameter for some
number of run cases

AVL was tested, for example, on Odyssey UAV [31], and
MAV prototype in [109] and [53].

However, like any computational method, AVL has some
limitations. A vortex-lattice model like AVL is best suited for
aerodynamic configurations which consist mainly of thin
lifting surfaces at small angles of attack and sideslip. These
surfaces and their trailing wakes are represented as single-layer
vortex sheets, discretized into horseshoe vortex filaments,
whose trailing legs are assumed to be parallel to the x-axis.
[133] [53]

AVL provides the capability to model also slender bodies
such as fuselages and nacelles via source plus doublet
filaments. The resulting force and moment predictions are
consistent with slender-body theory, but the experience with
this model is relatively limited, and hence modelling of bodies
should be done with caution. If a fuselage is expected to have
little influence on the aerodynamic loads, it is simplest to just
leave it out of the AVL model. However, the two wings should
be connected by a fictitious wing portion which spans the
omitted fuselage. [133]

AVL assumes quasi-steady flow, meaning that unsteady
vorticity shedding is neglected. More precisely, it assumes the
limit of small reduced frequency, which means that any
oscillatory motion (e.g. in pitch) must be slow enough so that
the period of oscillation is much longer than the time it takes
the flow to traverse an airfoil chord. This is true for virtually
any expected flight maneuver. Also, the roll, pitch, and yaw
rates used in the computations must be slow enough so that the
resulting relative flow angles are small. This can be judged by
the dimensionless rotation rate parameters, which should fall
within the following practical limits: [133] [53]

 -0.10 < pb/2V (Roll rate) < 0.10

 -0.03 < qc/2V (Pitch rate) < 0.03

 -0.25 < rb/2V (Yaw rate) < 0.25

These limits represent violent aircraft motion and are
unlikely to be exceeded in any typical flight situation, except
perhaps during low-airspeed aerobatic maneuvers. However, if
any of these parameters falls outside of these limits, the results
should be interpreted with caution. [133]

Compressibility is treated in AVL using the classical
Prandtl-Glauert (PG) transformation, which converts the PG
equation to the Laplace equation, which can then be solved by
the basic incompressible method. This is equivalent to the
compressible continuity equation, with the assumptions of the
state without rotation, and linearization about the freestream.

The forces are computed by applying the Kutta-Joukowsky
relation to each vortex, which remains valid for compressible
flow. [133]

The linearization assumes small perturbations (thin
surfaces) and is not completely valid when velocity
perturbations from the free-stream become large. The relative
importance of compressible effects can be judged by the PG
factor (8), where M is the freestream Mach number. A few
values are given in Table II, which shows the expected range of
validity. [133]

21

11

MB
 (8)

TABLE II. THE EXPECTED RANGE OF THE VALIDITY OF PRANDTL-GLAUERT

TRANSFORMATION [133]

M 1/B Validity

0.0 1.000

PG
expected

valid

0.1 1.005

0.2 1.021

0.3 1.048

0.4 1.091

0.5 1.155

0.6 1.250

0.7 1.400
PG

suspect

0.8 1.667
PG

unreliable

0.9 2.294
PG

hopeless

For swept-wing configurations, the validity of the PG
model is best judged using the wing-perpendicular Mach
number in (9). Since Mperp ≤ 0.6, swept-wing cases can be
modeled up to higher M values than unswept cases. [133]

 sweepMM perp cos (9)

For instance, a 45° swept wing operating at freestream M =
0.8 has Mperp = 0.8 * cos(45) = 0.566, which is still within the
expected range of PG validity in the Table II; thus, reasonable
results may also be expected for this case. [133]

2) XFOIL
Most of the second-generation small UAVs have used

airfoil sections designed specifically for their application. The
two methods most often used to design airfoils at low Reynolds
numbers are attributed to Eppler (implemented in the code
described in the chapter V.E.1)) and Drela (XFOIL). [28]

XFOIL is an interactive program for the design and
analysis of subsonic isolated airfoils. The main goal was to
combine the speed and accuracy of high-order panel methods

with the new fully-coupled viscous/inviscid interaction
method. XFOIL consists of a collection of menu-driven
routines which perform various useful functions such as: [21]
[130] [32]

 Viscous (or inviscid) analysis of an existing airfoil,
allowing forced or free transition, transitional
separation bubble(s), limited trailing edge separation,
lift and drag predictions just beyond CLmax, and
Karman-Tsien compressibility correction

 Airfoil design and redesign by interactive specification
of a surface speed distribution via screen cursor or
mouse. Two such facilities are implemented: Full-
Inverse, based on a complex-mapping formulation,
and Mixed-Inverse, an extension of XFOIL's basic
panel method

 Airfoil redesign by interactive specification of new
geometric parameters such as new max thickness
and/or camber, new LE radius, new TE thickness, new
camber line via geometry specification, new camber
line via loading change specification, flap deflection,
and explicit contour geometry (via screen cursor)

 Blending of airfoils

 Drag polar calculation with fixed or varying Reynolds
and/or Mach numbers

 Writing and reading of airfoil geometry and polar save
files

 Plotting of geometry, pressure distributions, and polars

XFOIL uses a text x- and y-coordinate file to model two-
dimensional airfoils. The user may input an airfoil from a file
or select a NACA four- or five-series airfoil and XFOIL will
build the appropriate coordinate file. The user can then make
changes to inviscid/viscous properties such as Mach number
and Reynolds number (Re). XFOIL will then use the user data
to simulate flight at many angles of attack, to return lift
coefficient (CL), drag coefficient (CD), and moment coefficient
(CM) in the form of a saved polar file, and to generate CL versus

, and CL versus CD plots. [32]

XFOIL stores all its data in RAM during execution. Saving
of the data to files is NOT normally performed automatically;
thus the user must be careful to save work results before exiting
XFOIL. [130]

XFOIL gives results much more quickly than more
advanced CFD programs and still provides results accurate
enough to be a good design tool. However, XFOIL works only
for two dimensions and is only effective at low Reynolds
numbers and incompressible flows. [32]

XFOIL was used in design of camber-controlled morphing
UAVs in [32]; the results are:

 XFOIL follows the wind tunnel data well

 XFOIL is predicting both lift and drag coefficients
within an acceptable range or accuracy

 XFOIL provides accurate simulation of flap addition
on airfoils

 XFOIL can only model plain flaps with a sealed gap

Moreover, following the validation tests, a series of
aerodynamic simulations using XFOIL were also performed on
the LEEUAV airfoil in [131].

However, independently of any accuracy, the following
situations may cause problems strictly due to numerical
rounding off: [130]

 Excessively small panel(s) somewhere on the airfoil

 Airfoil is located too far from origin

 Airfoil is too thin

These situations will rarely result in an arithmetic failure,
but will typically result in a rough Cp distribution. [130]

3) QPROP/QMIL
Same as aerodynamic design, the design of propeller is very

important. When the inefficient or inappropriate propeller is
used in UAV, all advantages of excellent-designed
aerodynamics may remain underutilized. Modern propeller
theory is analogous to wing theory in which the propeller blade
is considered to be a lifting surface about which there is a
circulation associated with the bound vorticity and a vortex
sheet is continuously shed from the trailing edge. [54]

QPROP (whose logo is illustrated in Fig. 23) is an analysis
program for predicting the performance of propeller-motor or
windmill-generator combinations. The same formulation
applies to the companion propeller/windmill design program
QMIL, which generates propeller geometries for the Minimum
Induced Loss (MIL) condition, or windmill geometries for the
MIL or Maximum Total Power (MTP) conditions. [122] [123]

Fig. 23. The logo of QPROP [122]

QPROP and QMIL use an extension of the classical blade-
element/vortex formulation, developed originally by Betz
[124], Goldstein [125], and Theodorsen [126], and
reformulated somewhat by Larrabee [127]. The extensions
include: [123] [53] [54]

 Radially-varying self-induction velocity which gives
consistency with the heavily-loaded actuator disk limit

 Perfect consistency of the analysis and design
formulations

 Solution of the overall system by a global Newton
method, which includes the self-induction effects and
power-plant model

 Formulation and implementation of the Maximum
Total Power (MTP) design condition for windmills

QPROP has a relatively sophisticated and accurate prop
aerodynamic model, and a general motor model which can be
implemented via a user-supplied subroutine if necessary. [128]
[109] [53]

The enhancement in the classical blade-element/vortex
formulation is primarily in the correct accounting of the
propeller’s self-induction, which makes QPROP accurate for
very high disk loadings, all the way to the static-thrust case.
The blade airfoil lift characteristic is assumed to be a simple
linear CL(alpha) line with CLmax and CLmin stall limiting. The
profile drag characteristic is a quadratic CD(CL) function, with
an approximate stall drag increase, and a power-law scaling
with Reynolds number. The model applies equally well to
propellers and windmills. [128]

QPROP requires a fairly detailed description of the
propeller geometry and blade airfoil characteristics. The
specification of the diameter and pitch of a propeller is in
general insufficient to accurately capture the propeller
performance. [128] [53]

The default motor type 1 corresponds to a brushed DC
motor, and is modeled using the fairly standard approach with
an RPM/Volt motor constant Kv, an electrical resistance R, and
a constant rotational friction described by the zero-load current
I0. [128]

Motor type 2 corresponds to a brushed DC motor, and is a
more accurate extension of the type 1 model above. The
extensions are improved models of the frictional torque,
temperature-dependent resistance, and magnetic lags. [128]

Any other motor model can be coded in SUBROUTINE
MOTORQ (in motor.f), as a Q(w,V) function. The derivatives
dQ/dw and dQ/dV must also be returned. The subroutine
source header fully describes the inputs and outputs. [128]
[109]

For non-electric motors, the voltage (V) passed to
MOTORQ can represent any suitable power-control variable,
e.g. throttle setting, fuel flow rate, etc. [128] [109]

QPROP and QMIL have identical theoretical formulations
and very similar input files. This is described in detail in [128],
[129], and in the theory document [123]. Their only difference
is the variables which are treated as knowns and unknowns (the
variables are swapped). [129]

QPROP's output is entirely in tabular text format, and is
typically used in conjunction with the user's own plotting
programs. It is intended for large-scale parametric sweeps,
driven manually or via batch execution. [122]

QPROP was used to find an optimal propeller, motor, and
energy requirement, for example, on MAV prototype in [109]
and [53].

4) XROTOR
XROTOR is an interactive program for the design and

analysis of ducted and free-tip propellers and windmills. It

consists of a collection of menu-driven routines which perform
various useful functions such as: [115] [116]

 Design of minimum induced loss rotor (propeller or
windmill)

 Prompted input of arbitrary rotor geometry

 Interactive modification of rotor geometry

 Twist optimization of an arbitrary rotor for minimum
induced loss

 Analysis of a rotor with a wealth of choices of
operating parameters

 Incoming slipstream effects (from an upstream
propeller, viscous wake, etc.)

 Multi-point parameter display

 Structural analysis and corrections for twist under load

 Acoustic analysis with dB noise footprint predictions

 Interpolation of geometry to radii of interest

 Plotting of geometry, aerodynamic parameters, and
performance maps

The design procedure of a rotor design allows calculation
of a rotor chord and blade angle (c/R, beta) distributions to
achieve a Minimum Induced Loss (MIL) circulation
distribution. This can be either the i) Betz-Prandtl distribution
(Graded-Momentum Formulation), or ii) Goldstein distribution
(Potential Formulation), depending on the state of the FORM
toggle. [116]

The design of a new rotor is typically begun with the INPU
command, which prompts the user for all required design-
parameter inputs, and then follows by displaying the input-
modification menu. [116]

All the design parameters will retain their values for the
length of the XROTOR session. Hence the designed rotor can
be analyzed in the other menus, and can then be further
redesigned in DESI just by invoking EDIT again. [116]

QPROP/QMIL has almost the same theoretical formulation
as XROTOR, and they are also extensively documented; thus,
their documentation can be used as the basic documentation for
XROTOR. [115]

In [117], XROTOR and CROTOR (described below) were
used to determine the 10 best propellers with optimal efficiency
for a multi-mission micro aerial vehicle. [117]

a) CROTOR

CROTOR v755-ES is all of XROTOR 7.55 along with a
couple of features ported from DFDC v070-ES (described in
the chapter V.D.5)a)). With the source directory growing by
some 70 percent (including some XFOIL code), the package is
dubbed CROTOR to distinguish it from its parent. [118]

CROTOR added the following features: [118]

 Counter-Rotation Facility

 Multi-Axis Parametric Analysis

 Blade Lofting Facility

 Multi-Re Plotting in AERO

Subroutine CROTOR automates the design and analysis of
converging counter-rotating rotors while providing an effective
user interface and reporting. The result is a flexible and robust
counter-rotation design/analysis facility. [118] [119]

Rotors can be designed directly in CROTOR or imported
from XROTOR. When rotors are designed or loaded into
CROTOR, the geometries, names and imposed slipstreams are
stored in CROTOR to be loaded into XROTOR as required.
[119]

When operating parameters and geometries of two rotors
have been defined, the code converges the dual-rotor system by
alternately loading and analyzing of the forward and aft rotors.
When the thrust of each rotor converges, the iteration stops,
and the output for both rotors is displayed. Each rotor can then
be run independently in the converged slipstream for closer
inspection. [119]

To reduce the complexity of working with multiple rotors
and input, a Default Input system is used which allows the user
to progress efficiently through a design study. [119]

Subroutine ESPARA is one half of a parametric analysis
system originally developed for a propeller company using
third party blades in their electric constant speed hubs. The
problem was to select appropriate blades for a particular
engine/airframe. ESPARA makes multi-axis parameter sweeps
and stores data in a multi-rotor database to be displayed and
plotted with great flexibility in a standalone utility called
ESPROP. This facility is intended for practical applications in
the field, selecting propellers for real world applications by
directly comparing them over any operating range within the
database bounds. Currently only variable pitch props are
supported although support for fixed pitch is planned by
calculating on the same database. [118]

The ESPROP system has two main applications: [120]

 The propeller designer seeking to directly compare
competing designs over a wide range of operating
conditions.

 The propeller manufacturer seeking to select the
optimum existing blade for a specific application.

ESPROP databases can be built from any blade geometry
which has been loaded into XROTOR, over any range of
operating parameters for which XROTOR will converge
solutions. [120]

Subroutine ESLOFTX is a port and further development of
ESLOFT for DFDC (described in the chapter V.D.5)a)),
allowing rotor designs to be explicitly defined in three
dimensions and exported into CAD for 3D modelling, meshing
or manufacture. Support has been added for round tips, along
with splined thickness or thickness/chord distributions (in
addition to linear and parabolic distributions). Version ES1.1
adds circular root blends, important for windmills and constant
speed propellers. [118]

The definition of blade thickness plays a main role in
ESLOFTX. A smooth thickness distribution is desired for both
aerodynamic and structural reasons. Since chord is defined by
the blade design, defining the distribution of thickness (t) or
thickness/chord (t/c), the blade allows for section t/c to be
determined at any station radius. Sections are interpolated to
the required t/c from parent airfoils bounding the t/c (or
extrapolated as necessary). [121]

Because the setting of the REexp parameter in AERO has
sometimes seemed like guesswork, the improvement has been
implemented. In addition to polar plots at multiple Mach
numbers, AERO now supports plotting at multiple Reynolds
numbers, providing precise feedback on the effects of REexp.
[118]

5) Ducted Fan Design Code (DFDC)
DFDC is an analysis code for axisymmetric ducted rotor

design and analysis. Wall Boundary Layer (BL) analysis solves
the wall shear forces with a BL calculation (not interacted with
the inviscid flow, as is done in XFOIL). The 0.70 version adds
analysis and design for a ducted rotor with stator. [112]

There is also a Win32 GUI wrapper for DFDC, Whirlwind.
However, it does not support all DFDC functionality. [113]

The logo of DFDC is shown in Fig. 24. DFDC has a
number of features intended for rapid duct and ducted rotor
design and analysis, e.g. axisymmetric components,
aerodynamic outputs, analysis capability, rotor/stator design
capability, geometric redesign of duct walls (XFOIL-like
geometry modification), BL analysis of duct and center-body
walls (viscous forces), aerodynamic redesign of duct walls to
specified pressures, and an input file. [112] [113]

Fig. 24. The logo of the Ducted Fan Design Code [113]

DFDC works with a single input file in plain text format.
This file contains the duct case data, the duct geometry data,
actuator disk or rotor blade data and drag source data. The
sections of this file are separated by keywords and can be input
in any order. [112]

The operating point section contains the flow condition and
operating point data for the case (e.g. the freestream velocity,
reference velocity, RPM, fluid properties, etc.). The aero
properties section contains aerodynamic data which is used for
each blade element in a rotor analysis or design. The actuator
disk section contains a specification for an actuator disk to
model the duct rotor. The rotor section contains a specification
for a bladed disk in the ducted fan. The drag object section
contains a CDA (drag area) and XY (XR in axisymmetric
system) coordinates of the drag line. The geometry section
contains the center-body and duct wall coordinates. [112]

Optionally, a second file can be used, containing
information to redistribute points on the duct and center-body
walls. This paneling file has the extension of .pan. However,
the paneling information can also be put directly into the case
file in the paneling data section. Moreover, user-specified
paneling information is normally not needed; the automatic
point distribution scheme works for most inputs without further
interaction. [112]

a) DFDC v070-ES

Because the development of DFDC appears to be halted,
Esotec Developments started to upgrade the code. The new
code fixed most known bugs, added enhancements to AERO,
plotting, reporting, multi-rotor, blade editing, an experimental
blade blockage model, and ESLOFT. [114]

ESLOFT is a tool for getting rotor and stator blade designs
out of DFDC and into CAD for subsequent 3D modelling,
meshing or manufacture. This is accomplished by calculating
on the rotor/stator geometry in conjunction with airfoil
geometries (parent airfoils) and blade thickness distributions
(user controlled) to generate point files which can be imported
into 3D CAD systems. ESLOFT is fully integrated with DFDC
and generates accurate output with minimum user input. [114]

6) Dynamic Soaring simulation and optimization program

(DSOPT)
Dynamic soaring is a flying technique used to gain energy

by utilizing wind shear over altitude to reduce energy
consumption and extend flight duration. Because the wind
shear gradient is persistently distributed in the boundary layer
above the ocean surface, dynamic soaring can be widely used
in UAVs and may have the potential to support almost
perpetual flight. [110]

DSOPT uses the “Inverse Dynamics” approach to
simulating a Dynamic Soaring orbit. The code is two nested
loops, with an inverse-dynamics integrator on the inside and
requires Fortran 77 compiler. [111]

The bulk of the calculations are performed in
SUBROUTINE ORBIT1, which assumes that the path shape in
xyz space is known, and is prescribed to be an ellipse of
specified size, oriented at some tip and lean angles within the
atmospheric wind shear layer. SUBROUTINE ORBIT1 is also
provided with an initial velocity Vi at the first point in the orbit,
and then integrates the equations of motion along the known
trajectory, using simple representations of the airplane's CL and
CD. One output is the final velocity Vf at the last point in the
orbit (which is at the same spatial location as the first point).
In general Vi and Vf will not match, in which case Vi is
modified and the orbit is recalculated again. When Vf matches
Vi to within some small tolerance the orbit is converged. This
means that it is periodic, and hence represents sustained
Dynamic Soaring. [111]

The output quantities are, for example, time, position,
ground speed, air speed, lift coefficient and a number of others.
[111]

The code is heavily commented, and it is fairly easy to
locate the formulas used for the various models for CL, CDi,
CDp, CDw, wind shear field, etc. The dynamic equations which

are integrated are simply F=ma, with three separate
components in the xyz directions. [111]

The outermost OPTIMIZER loop is optional and adjusts
the selected parameters of the formulation via gradient-descent
steps to maximize the speed Vmeasured at a selected point in the
Dynamic Soaring orbit. [111]

E. Public Domain Aeronautical Software (PDAS)

For many years the Air Force, Navy, NASA, and
educational institutions have sponsored the development of
computer software which is useful to aeronautical engineers,
airplane designers, and aviation technicians. [8]

Public Domain Aeronautical Software (PDAS) was
founded to make this valuable software available to the
aeronautical community for use on desktop computers. These
programs include descriptions and complete public domain
source code (written mostly in the FORTRAN programming
language). The source code is not copyrighted and may be used
in whole or part in any of aeronautical studies. Moreover, many
programs have sample cases (both input and output). However,
some of the programs are noted as “work-in-progress”,
indicating that they are lacking in instructions or
documentation or do not run properly. [8] [9]

The list of the useful software for development of UAVs
which is included in this subchapter may not be
comprehensive. However, other interesting applications can be
found in [9], for instance:

 Atmosphere (ATMOS) - characterizes the 1976
standard atmosphere to 1000 km altitude, including
nonstandard atmosphere routines (hot, cold, polar,
tropical). [64]

 Real Gas Properties (GASP) - computes real gas
properties of ten important gases over a wide range of
temperatures and pressures. Covers cryogenic regions
and saturated liquid/gas regions. [65]

 Thermodynamic and Transport Properties of Fluids
(FLUID) - a companion program to GASP computes
thermodynamic and transport properties of many
gases. Treats air and steam as well as pure fluids. [66]

 A Compressible Flow Calculator (VuCalc) - performs
calculations in compressible fluid dynamics. There are
six different classes of calculations: Isentropic Flow,
Normal Shock, Oblique Shock, Standard Atmosphere,
Rayleigh Flow, Fanno Flow. [67]

 Turbulent Skin Friction by the Reference Temperature
Method of Sommer and Short (TURBSF) – contains
the formula developed by Sommer and Short with
including the temperature of the flow as a variable. As
a result, the created function has three arguments,
Reynolds number, Mach number and freestream
temperature. For the great majority of flight problems,
the variation of friction with temperature is of little
importance. This effect is small at subsonic speeds but
becomes appreciable for supersonic and hypersonic
aircraft. [82] [105]

 A segmented mission analysis program for low and
high speed aircraft (NSEG) - was developed to
perform rapid aircraft mission analyses which is based
upon the use of approximate equations of motion
whose form varies with the type of flight segment (e.g.
take-off, accelerations, climbs, cruises, descents,
decelerations, and landings). There are three main
atmosphere options available: the 1962 U.S. Standard
atmosphere, a stratified atmosphere model, and an
external atmosphere model supplied by the user. [68]

 Conical relaxation program for supersonic wing
design and analysis (COREL) [69] and supersonic
wing design and analysis program (W12SC3) [70] -
can be run also at subsonic speeds despite their titles.

 Two-dimensional grids about airfoils and other shapes
by the use of Poisson's Equation (GRAPE) - can
provide the aerodynamic analysis with an efficient and
consistent means of grid generation and should be
numerically stable and computationally fast. [71]

 NASA-AMES WingBody Panel Code (WINGBODY) -
The classic NASA program for computing subsonic
and supersonic aerodynamics of a wing-body
combination by using Panel Code [80]

 V/STOL Aircraft Sizing and Performance (VASCOMP
II) - developed to aid in the comparative design study
of V/STOL (vertical/short take-off and landing)
aircraft systems by rapidly providing aircraft size and
mission performance data. Generality and flexibility
were maintained during formulation of the program in
order to permit an accurate simulation of virtually any
V/STOL configuration. [83] [9]

1) The Eppler Airfoil Code (PROFILE)
PROFILE is one of computer programs for low-speed

(incompressible) airfoils. The program has been successfully
applied at Reynolds numbers from 20 thousand to 100 million.
[92] [72]

A conformal-mapping method for the design of airfoils
with prescribed velocity distribution characteristics, a panel
method for the analysis of the potential flow about given
airfoils, and a boundary-layer method have been combined.
With this combined method, airfoils with prescribed boundary-
layer characteristics can be designed and airfoils with
prescribed shapes can be analyzed. [72]

The flow about an airfoil in free air can be described
approximately by a boundary-layer flow near the surface of the
airfoil and by a potential flow everywhere else. Boundary-layer
theory can be applied to the flow about an airfoil in two ways.
First, the boundary-layer development can be determined for a
given potential flow velocity distribution. This is the direct or
analysis problem. Second, the potential-flow field, or at least
some of its properties, can be determined for a given boundary-
layer development. This is the inverse or design problem. [92]
[72]

The potential flow inverse problem still plays a major role
in airfoil design. This problem has been solved exactly by
means of conformal mapping which is similar to the method of

Lighthill; it is direct, and solves most multipoint design
problems in a very simple manner. A potential-flow analysis
method is also required for comparison with wind tunnel tests
of given airfoils and for analyses of airfoils generated by the
design method and then modified by a flap deflection. The
airfoil analysis problem is solved using a distributed surface
singularity method. The boundary-layer method uses integral
momentum and energy equations. The present method does not
contain boundary-layer displacement iteration. [92] [72]

Although this program is of great historical importance and
current papers which refer to calculations performed with
PROFILE can still be found, it is not the program of choice for
someone learning about airfoil plus boundary layer
calculations. For this kind of interest, XFOIL is recommended.
XFOIL has been described in the chapter V.D.2). [72]

2) Minimum Drag Camber Surface by Vortex Lattice

(VLMD)
This program represents a subsonic aerodynamic method

for determining the mean camber surface of trimmed
noncoplanar planforms with minimum vortex drag. With this
program, multiple surfaces can be designed together to yield a
trimmed configuration with minimum induced drag at some
specified lift coefficient. [84]

The method uses a vortex-lattice and overcomes difficulties
with chord loading specification. A Trefftz plane analysis is
used to determine the optimum span loading for minimum
drag. The program then solves for the mean camber surface of
the wing associated with this loading. Pitching-moment or
root-bending-moment constraints can be employed at the
design lift coefficient. [84]

 Sensitivity studies of vortex-lattice arrangements have
been made with this program and comparisons with other
theories show generally good agreement. The program is very
versatile and has been applied to isolated wings, wing-canard
configurations, a tandem wing, and a wing-winglet
configuration. [84]

The design problem solved with this code is essentially an
optimization one. A subsonic vortex-lattice is used to
determine the span load distribution(s) on bent lifting line(s) in
the Trefftz plane. A Lagrange multiplier technique determines
the required loading which is used to calculate the mean
camber slopes, which are then integrated to yield the local
elevation surface. The problem of determining the necessary
circulation matrix is simplified by having the chordwise shape
of the bound circulation remain unchanged across each span,
though the chordwise shape may vary from one planform to
another. The circulation matrix is obtained by calculating the
spanwise scaling of the chordwise shapes. A chordwise
summation of the lift and pitching-moment is utilized in the
Trefftz plane solution on the assumption that the trailing wake
does not roll up and that the general configuration has
specifiable chord loading shapes. [84]

3) Induced Drag from Span Load Distribution

(INDUCED)
The induced drag may be computed from the span load

distribution on a planar wing. Most books on aerodynamics
show how to do this if the analytical form of the loading

function is known. This algorithm enables to solve the same
problem when only a few sparse values of the loading function
are known. [74]

A simple algorithm for computing a curve which in one
sense is the smoothest which exactly matches the data points
and produces the Fourier sine coefficients as part of the
solution is described in [93] by Lundry. This technique and
other similar algorithms are widely used by specialists. The
routines given in this program are a coding of Lundry's
equations 3 and 5 for asymmetric and symmetric loadings. [74]

The coefficients are computed with a call to subroutine
“ComputeFourierCoefficients”. The drag may then be
computed from the coefficients by use of the function
“DragFromCoefficients”. Moreover, lift coefficient may be
computed by (10). [74]

sref

coeffspanspanPI
CL

1
 (10)

If the induced drag without the coefficients is needed to be
calculated, the following two functions can be used: [74]

 AsymmetricLoadingInducedDrag

 SymmetricLoadingInducedDrag

These functions take the loadings and return D/q (these
variables have been described in the chapter II.B). If drag
coefficient is required, the result has to be divided by the
reference area (sref). [74]

Once the module is compiled, there is access to any of the
routines by inserting the statement “USE InducedDrag” in
application programs. [74]

4) Flutter Analysis by Strip Theory (FLUTTER)
A modified strip analysis has been developed for rapidly

predicting flutter of finite-span, swept or unswept wings at
subsonic to hypersonic speeds. The method employs
distributions of aerodynamic parameters which may be
evaluated from any suitable linear or nonlinear steady-flow
theory or from measured steady-flow load distributions for the
underformed wing. The method has been shown to give good
flutter results for a broad range of wings at Mach number from
0 to as high as 15.3. [73]

Flutter characteristics have been calculated by the modified
strip analysis and compared with results of other calculations
and with experiments for Mach numbers up to 15.3 and for
wings with sweep angles from 0 degrees to 52.5 degrees,
aspect ratios from 2.0 to 7.4, taper ratios from 0.2 to 1.0, and
center-of-gravity positions between 34% chord and 59% chord.
These ranges probably cover the great majority of wings which
are of practical interest with the exception of very low-aspect-
ratio surfaces such as delta wings and missile fins. [73]

5) Mean Aerodynamic Chord of a Wing (GETMAC)
GETMAC computes the mean aerodynamic chord (MAC)

of a wing of arbitrary planform. GETMAC reads the definition
of a wing from an arbitrary number of chords, each defined by

its spanwise location, longitudinal position of its leading edge,
and its length. [75]

The program reads the input file and prints the area of
wing, length of MAC, y of MAC, xLE (x of Leading Edge) of
MAC, xTE (x of Trailing Edge) of MAC, and x of c/4 of MAC.
[75]

A following example illustrates a wing similar to the B-2
airplane. The chords are 1300, 500, 500, and 0 in length. The
leading edges are at 0, 400, 750, and 1000 with y equals 0, 480,
900, and 1200. The projection of these points can be seen in
Fig. 25. The input to GETMAC for the right wing is shown in
Fig. 26. And finally, Fig. 27 presents the resultant MAC. [94]
[95] [96]

Fig. 25. The projection of the wing inserted to GETMAC [95]

Fig. 26. The input file to GETMAC for the right wing [95]

Fig. 27. The projection of the resultant MAC [96]

It is evident that the use of a homogeneous material is a
necessary condition to achieving this MAC. Moreover, the
shape of an elliptical wing is more difficult to define and its
real MAC may be slightly different.

6) NACA Airfoil Coordinates (NACA456)
A large number of NACA airfoil shapes have been

successfully used over years as wing sections or tail sections
for general aviation and military aircraft, as well as propellers
and helicopter rotors. The ordinates for numerous specific
airfoils of these families at a coarse set of data points were
published in a series of NACA reports. However, when
performing parametric studies on effects of such variables as
thickness, location of maximum thickness, leading-edge radius,
location of maximum camber and others, it is not always easy
to obtain the ordinates of the desired shapes rapidly and
accurately. To remedy this problem the NASA Langley
Research Center sponsored the development of computer
programs for generation of ordinates of standard NACA
airfoils. [77]

NACA 4-digit, 4-digit modified, 5-digit, and 16-series
airfoils are defined by algebraic equations. These thickness
families are combined with appropriate mean lines to produce
the final thick cambered airfoil. [77] [101]

NACA 6-series and 6A-series airfoils are not defined by
algebraic equations, but use conformal mapping of a circle into
an airfoil shape. These thicknesses are combined with 6-series
mean lines to produce the final thick cambered airfoil. [77]
[101]

The coordinates of 4-digit, 4-digit-modified, 5-digit, 6-
series, and 16-series airfoils may be accurately calculated by
NACA456. It is modified to present upper and lower surface
points at the same x-coordinate. All NACA airfoils are
produced by combining a thickness distribution and a mean
line into a definition of the upper and lower surfaces of the
airfoil. [9] [100]

NACA456 is a complete revision of the NASA Langley
programs for computing the coordinates of NACA airfoils. The
NASA 1996 program was used as a guide for the development
of a program which is highly modular and contains several
features which were requested by user of the older programs.
This program is a console application for which the user
prepares an input file. An output file containing the airfoil
geometry is generated by the program. Moreover, a file for
graphical examination is produced. [100]

a) AirfoilTools.com

A similar online version of the NACA 4 digit generator, the
NACA 5 digit generator, an airfoil database, and other airfoil
tools can be found in [99].

7) Mass Properties of a Rigid Structure (MASSPROP)
MASSPROP was developed for the rapid computation of

the mass properties of complex rigid structural systems and
provides a designer with a simple technique which requires
minimal input to calculate the mass properties of a complex
rigid structure and should be useful in any situation where one
needs to calculate the center of gravity and moments of inertia
of a complex structure. [76] [97]

This program is based on the premise that complex systems
can be adequately described by a combination of elemental
structural shapes. Thirteen widely used structural shapes are
available in this program. They are as follows: Discrete Mass,

Cylinder, Truncated Cone, Torus, Beam (arbitrary cross
section), Circular Rod (arbitrary cross section), Spherical
Segment, Sphere, Hemisphere, Parallelepiped, Swept
Trapezoidal Panel, Symmetric Trapezoidal Panels, and a
Curved Rectangular Panel. [97] [76]

Rigid body analysis is used to calculate mass properties.
Mass properties are calculated about component axes which
have been rotated to be parallel to the system coordinate axes.
Then the system center of gravity is calculated and the mass
properties are transferred to axes through the system center of
gravity by using the parallel axis theorem. System weight,
moments of inertia about the system origin, and the products of
inertia about the system center of mass are calculated and
printed. From the information about the system center of mass
the principal axes of the system and the moments of inertia
about them are calculated and printed. [76] [97]

Geometric data describing size and location of each
element and the respective material density or weight of each
element are the only required input data. [97] [76]

8) Predicting Subsonic or Supersonic Linear Potential

Flows about Arbitrary Configurations Using a Higher Order

Panel Method (PANAIR)
PANAIR is the definitive subsonic/supersonic panel

method based on linear aerodynamic theory. PANAIR
calculates flow properties about arbitrary three-dimensional
configurations. The program uses a higher-order panel method
to solve the linearized potential flow boundary-value problem
at subsonic and supersonic Mach numbers. [78] [102] [103]

Generally speaking, a panel method solves a linear partial
differential equation numerically by approximating the
configuration surface by a set of panels on which unknown
"singularity strengths" are defined, imposing boundary
conditions at a discrete set of points, and thereby generating a
system of linear equations relating the unknown singularity
strengths. These equations are solved for the singularity
strengths which provide information on the properties of the
flow. [78]

A "higher order" panel method means that the singularity
strengths are not constant on each panel. The potential for
numerical error is greatly reduced in the PANAIR program by
requiring the singularity strength to be continuous. It is also
this "higher order" attribute which allows PANAIR to be used
to analyze flow about arbitrary configurations. PANAIR can
handle the simple configurations considered in the preliminary
design phase and later serve as the "analytical wind tunnel"
which can analyze the flow about the final detailed, complex
configurations. [78]

PANAIR includes the following capabilities: [78]

 the ability to handle, within the limitations of linear
potential flow theory, completely arbitrary
configurations, using either exact or linearized
boundary conditions

 the ability to handle asymmetric configurations as well
as those with one or two planes of symmetry

 the ability to handle symmetric configurations in either
symmetric or asymmetric flow

 the ability to calculate pressures, forces, and moments
using a variety of pressure formulas (such as
isentropic, linear, etc.), including the forces and
moments due to flow through the surface

The aerodynamic solution provides surface flow properties
(flow directions, pressures, and Mach number), configuration
forces and moments, sectional forces and moments, and
pressures. In addition, PANAIR calculates flow properties in
the flow-field points and flow-field streamlines. Results are
limited to subsonic and supersonic cases (transonic cases are
excluded) with attached flow. In other words, PANAIR offers a
comprehensive aerodynamic analysis and design capability for
nearly arbitrary configurations in subsonic and supersonic
flows. [102] [103]

Most problems can be modeled with a minimum of user
input. In general, the aircraft surface is partitioned into several
networks of surface grid points, such as a fore-body network, a
wing network, etc. The coordinates of the input grid points
must be computed and entered by the user; PANAIR does not
generate grid point coordinates. PANAIR connects the grid
points in each network with piecewise flat panels. The user also
supplies information concerning the free-stream onset flow, the
angle of attack, and the angle of sideslip. Numerous flow
quantities are computed at points on the vehicle surface and at
points in space. These include pressure coefficients, total and
perturbation values of velocity and mass flux components, total
and perturbation potential, local Mach number, and vacuum
pressure coefficient. The pressure coefficients on individual
panels are fitted with two dimensional quadratic splines and
integrated to obtain the six components of force and the
moment coefficients. These coefficients may be output for each
panel, for columns of panels, for each network, or for any
combination of networks. [78]

Panel codes generally generate the solution to problems in
aerodynamics by superposition of elementary solutions. Panel
codes have been superseded by Computational Fluid Dynamics
(CFD) codes solving Euler or Navier-Stokes equations.
However, there is still a tradeoff between the time spent setting
up the input for a computational technique versus the accuracy
of the method. [80]

a) PANAIR input pre-processor (PANIN)

Because the creation of an input file for PANAIR is error-
prone, PANIN accepts a free-form file and creates a properly
formatted input file for PANAIR. [79]

The input to PANAIR is described in [102]. The input data
is organized in specific columns. The PANIN program was
written to enable a user to select the flow properties and all
other program options by editing a short free-format file called
an auxiliary file. [79]

One entry in the auxiliary file is the name of a file which
contains the geometrical information. The geometrical file is in
the NASA standard format for wireframe geometry, i.e. in the
LaWGS (Langley Wireframe Geometry Standard) format. The
program reads the various items of control information from

the auxiliary file and combines this information with the panel
geometry in the LaWGS file to produce a combined file which
is a properly formatted input file for PANAIR. [79]

The first and most difficult part of preparing a case for
PANAIR or any panel code is the definition of the surface
geometry as a set of quadrilateral panels. A variety of
techniques exist for the creation of this data; for example a
program named MAKEWGS (described in the chapter
V.E.11)) is usable for definition of simple geometries. The
ultimate solution lies in the use of a Computer-Aided-Design
(CAD) system which has a wireframe output option. There is
also a program named 2WGS (described in the chapter
V.E.13)) which can convert PANAIR input to LaWGS. [79]

Once the LaWGS geometry file and the auxiliary file are
created and stored, the PANAIR input file can be generated by
invoking the program PANIN. [79]

After PANIN completes the execution, two files are
produced. These files take their names from the data in the
NAME record in the auxiliary file with extensions of .SH and
.IN. The .IN file is the PANAIR input data. [79]

Although a considerable effort has been expended in
making the program free of errors or omissions, the user should
inspect the input file and script carefully. There are many
problems in forcing data to fit the fixed field format and
inadvertent round off may result. In this case, the PRECISION
keyword can be helpful, but there are many potential sources of
error. The principal problem area is overflow of an output field
when one is trying to keep the geometric accuracy high by
printing many decimals. Two popular places for this error to
occur are the x-coordinates of the trailing edges of wakes and
the value of reference area. It is usually useful to scan the
PANAIR input file for asterisk characters. [79]

There are many options in the PANAIR input file and it
would be virtually impossible to incorporate all of them in this
program. For example, in PANAIR different reference lengths
for yawing moment and rolling moment can be selected but
PANIN simply requests a span. [79]

9) Digital Datcom
The Stability and Control Data Compendium (Datcom)

provides a systematic summary of methods for estimating static
stability, high lift and control, and dynamic derivative
characteristics of a wide variety of aircraft and aircraft
configurations. The estimation includes, for example, lift
coefficients, drag coefficients, side force coefficients, roll
moment coefficients, pitch moment coefficients, yaw moment
coefficients, changes in coefficients due to power effects, and
changes in coefficients due to ground effects. For any given
flight condition and configuration the complete set of
derivatives can be determined without resort to outside
information. [2] [10] [106] [108] [86] [109] [52]

The program contains a trim option which computes
control deflections and aerodynamic increments for vehicle
trim at subsonic Mach numbers. Furthermore, user oriented
features of the program include minimized input requirements,
input error analysis, and various options for application
flexibility. An interesting feature is also roughness factors for
various types of surface such as polished metal, wood, natural

sheet metal, camouflage paint and other surfaces. [106] [108]
[109]

The program has been developed as a modular basis. These
modules correspond to the primary building blocks referenced
in the program executive. The modular approach was used
because it simplified program development, testing, and
modification or expansion. [10] [107] [108]

Primarily intended for preliminary use, ahead of test data, it
is designed to give an initial look at the stability performance
of an aircraft design. By interfacing Datcom with the FDM, an
aircraft model for any fixed-wing UAVs can be rapidly
developed without wind tunnel testing. This feature
significantly increases the repeatability of flight simulation and
is found very useful for UAV preliminary designs where only a
rough estimate of the vehicle’s stability is required. However,
program should not be intended for use instead of wind tunnel
or flight test. [1] [2]

Digital Datcom is used to calculate aerodynamic
coefficients from first principles. Datcom produces an output
file with aerodynamic coefficients based on an input file
containing all essential geometries of an aircraft. The
coefficients in the six degrees of freedom are drag, lift, side,
pitching moment, rolling moment, and yawing moment
coefficient. The location of the center of gravity is uncertain
because the material of the entire solid model is considered to
be homogeneous. However, almost all similar programs have
the same problem. [1] [10] [30]

Inputs to Datcom include desired flight conditions, aircraft
attitudes, physical geometry, and desired outputs. Datcom
treats inputs which represent a traditional wing-body-tail
configuration and any control or high lift devices. However,
some nonstandard geometry can be treated as well. Datcom
inputs were assumed for straight-tapered and nonstraight-
tapered wings including effects of sweep, taper, and incidence.
For the longitudinal characteristics, the program assumes a
mid-wing configuration. [2] [10] [11]

The effect of linear twist can be treated at subsonic Mach
numbers. Dihedral influences are included in lateral-directional
stability derivatives and wing wake location used in the
calculation of longitudinal data. Airfoil section characteristics
are a required input, although most of these characteristics may
be generated using the Airfoil Section Module. [10] [108]

Users are advised to be mindful of section characteristics
which are sensitive to Reynolds number, particularly in cases
where very low Reynolds number estimates are of interest. A
typical example would be pretest estimates for small, laminar
flow wind tunnels where Reynolds numbers on the order of
100,000 are common. Datcom has low accuracy below this
Reynolds number. [10] [109]

Users should be aware that Datcom employs turbulent skin
friction methods in the computation of friction drag values.
Estimates for cases involving significant wetted areas in
laminar flow will require adjustment by the user. [10]

Datcom requires Mach number and Reynolds number to
define the flight conditions. This requirement can be satisfied
by defining combinations of Mach number, velocity, Reynolds

number, altitude, and pressure and temperature. The speed
reference is input as either Mach number or velocity, and the
atmospheric conditions as either altitude or freestream pressure
and temperature. The specific reference and atmospheric
conditions are then used to calculate Reynolds number. [10]

The program may loop on speed reference and atmospheric
conditions by using three different ways: [10]

 LOOP=1 - Mach and altitude changes. The program
executes at the first Mach number and first altitude,
then at the second Mach number and second altitude,
and continues for all the flight conditions. In the input
data, NMACH must equal NALT. NMACH flight
conditions are executed. This option should be
selected when the Reynolds number is input, and must
be selected when atmospheric conditions are not input.

 LOOP=2 - Mach number changes at fixed altitude.
The program executes using the first altitude and
cycles through each Mach number in the input list,
then using the second altitude and cycles through each
Mach number, and continues until each altitude has
been selected. Atmospheric conditions must be input
for this option. NMACH times NALT flight conditions
are executed.

 LOOP=3 - Altitude changes at fixed Mach number.
The program executes using the first Mach number
and cycles through each altitude in the input list, then
using the second Mach number and cycles through
each altitude, and continues until each Mach number
has been selected. Atmospheric conditions must be
input for this option. NMACH times NALT flight
conditions are executed.

A diagnostic analysis module in Datcom scans all of the
input data which listing is given and any errors are flagged.
However, Datcom will attempt to execute all cases as input by
the user even if errors are detected. [10]

The airfoil section module can be used to calculate the
required geometric and aerodynamic input parameters for
virtually any user defined airfoil section. This module
substantially simplifies the user's input preparation. [10]

An airfoil section is defined by one of the following
methods: [10]

 an airfoil section designation (for NACA, double
wedge, circular arc, or hexagonal airfoils)

 upper and lower Cartesian coordinates

 mean line and thickness distribution

The airfoil section module uses Weber's method to
calculate the inviscid aerodynamic characteristics. A viscous
correction is applied to the lift curve slope, CL_alpha. [10]

Five general characteristics of the module should be noted:
[10]

 For subsonic Mach numbers, the module computes the
airfoil subsonic section characteristics and the results
can be considered accurate for Mach numbers less

than the crest critical Mach number. Near crest critical
Mach number, flow mixing due to the upper surface
shock will make the boundary layer correction invalid.
Compressibility corrections also become invalid. The
module also computes the required geometric
variables at all speeds, and for transonic and
supersonic speeds these are the only required inputs.
Mach equals zero data are always supplied.

 Because of the nature of the solution, predictions for
an airfoil whose maximum camber is greater than 6%
of the chord will lose accuracy. Accuracy will also
diminish when the maximum airfoil thickness exceeds
approximately 12% of the chord, or large viscous
interactions are present such as with supercritical
airfoils.

 When section Cartesian coordinates or mean line and
thickness distribution coordinates are specified, the
user must adequately define the leading edge region to
prevent surface curve fits which have infinite slope.
This can be accomplished by supplying section
ordinates at non-dimensional chord stations (x/c of 0.0,
0.001, 0.002, and 0.003).

 If the leading edge radius is not specified in the airfoil
section input, the user must insure that the first and
second coordinate points lie on the leading edge
radius. For sharp nosed airfoils the user must specify a
zero leading edge radius.

 The computational algorithm can be sensitive to the
smoothness of the input coordinates. Therefore, the
user should insure that the input data contains no
unintentional fluctuations. Considering that Datcom
procedures are preliminary design methods, it is at
least as important to provide smoothly varying
coordinates as to accurately define the airfoil
geometry.

Several operational limitations exist in Datcom. These
limitations and some pertinent operational techniques are listed
below without extensive discussion or justification: [10]

 The forward lifting surface is always input as the wing
and the aft lifting surface as the horizontal tail. This
convention is used regardless of the nature of the
configuration.

 Twin vertical tail methods are only applicable to
lateral stability parameters at subsonic speeds.

 Airfoil section characteristics are assumed to be
constant across the airfoil span, or an average for the
panel. Inboard and outboard panels of cranked or
double-delta planforms can have their individual panel
leading edge radii and maximum thickness ratios
specified separately.

 If airfoil sections are simultaneously specified for the
same aerodynamic surface by an NACA designation
and by coordinates, the coordinate information will
take precedence.

 Jet and propeller power effects are only applied to the
longitudinal stability parameters at subsonic speeds.
Jet and propeller power effects cannot be applied
simultaneously.

 Ground effect methods are only applicable to
longitudinal stability parameters at subsonic speeds.

 Only one high lift or control device can be analyzed at
a time. The effect of high lift and control devices on
downwash is not calculated. The effects of multiple
devices can be calculated by using the experimental
data input option to supply the effects of one device
and allowing Datcom to calculate the incremental
effects of the second device.

 Jet flaps are considered to be symmetrical high lift and
control devices. The methods are only applicable to
the longitudinal stability parameters at subsonic
speeds.

 The program uses the input names to define the
configuration components to be synthesized. For
example, the presence of name list HTPLNF causes
Datcom to assume that the configuration has a
horizontal tail.

Datcom was tested, for example, on Rascal UAV [2],
Shadow UAV [58], and a MAV prototype [109].

a) Datcom Release 2 and OpenDatcom

Some aspects of Datcom are outdated; for example the user
interface, the use of the DOS command prompt, and the input
file written in a text format for which the standard rules of
FORTRAN apply. With these restrictions, it is time consuming
to compile and troubleshoot the input file. [86]

OpenDatcom and Datcom Release 2 (DR2) have been
specifically developed to remove these outdated features. Both
are written completely in Java SE and uses the Java Virtual
Machine (JVM) to interface with Datcom. The interface is
completely coded into OpenDatcom and DR2; as a result, no
modification to the original Datcom code is needed. [86]

OpenDatcom and DR2 use basic GUI to allow the user to
easily compile an input file, import an existing input file, and
run Datcom without any knowledge of DOS or of the
FORTRAN formatting of the input file. [86]

Another option which was added to DR2 is the compiling
and export of stability and performance coefficients. This
feature was added with the specific intention of compiling three
dimensional stability tables which can be copied straight into
the FlightGear (using the JSBsim). This allows that an aircraft
can be analyzed in Datcom and its flight can be tested in
FlightGear. [86]

However, DR2 is in BETA development stage and may
have some bugs; as a result, DR2 should be used cautiously.
[86]

The graphical user interface of OpenDatcom can be seen in
Fig. 28, of Datcom Release 2 in Fig. 29, and of Datcom-to-
JSBSim application in Fig. 30.

Fig. 28. The graphical user interface of OpenDatcom

Fig. 29. The graphical user interface of Datcom Release 2

Fig. 30. The graphical user interface of Datcom-to-JSBSim

b) Datcom+

Datcom+ is an extension of the Datcom program and
incorporates some tools to make it easier to use. Front-end and
back-end is added to the original Datcom for user convenience.
By adding a different format output section to the original
program, the output data is in various formats: [85] [109]

 Free-format LFI tables, for plotting with LFIPLOT

 XML format, compatible with JSBSim

 AC3D Model

However, there are some known issues with DATCOM+.
The first is the defining of airfoils manually with upper and
lower surface points which does not provide any output for the
AC3D picture. The second are fuselages which are not drawn
correctly if defined as other than a circular cross-section. [109]

Datcom+ Pro is the next generation of this program, which
has been made much more user-friendly. Visualization tools
allow user to see his aircraft immediately, and coefficient data
generated by the Datcom program is plotted on X-Y graphs for
ease of interpretation and inclusion into reports. Additionally,
Datcom+ Pro model can now be run in JSBSim and sample
flight test scripts are provided to execute standard flight test
maneuvers. However, Datcom+ Pro is not available for free.
[85]

10) Aeroelastic Analysis for Rotorcraft in Flight or in a

Wind Tunnel (ROTOR)
The testing of rotorcraft, either in flight or in a wind tunnel,

requires a consideration of the coupled aero-elastic stability of
the rotor and airframe, or the rotor and support system. Even if
the primary purpose of a test is to measure rotor performance,
ignoring the question of dynamic stability introduces the risk of
catastrophic failure of the aircraft. [81]

This computer program was developed to incorporate an
analytical model of the aero-elastic behavior of a wide range of
rotorcraft. Such an analytical model is desirable for both pretest
predictions and posttest correlations. The program is also
applicable in investigations of isolated rotor aero-elasticity and
helicopter flight dynamics and could be employed as a basis for
more extensive investigations of aero-elastic behavior, such as
automatic control system design. [81]

The program incorporates an analytical model which is
applicable to a wide range of rotors, helicopters, and operating
conditions. The equations of motion used in the model were
derived using an integral Newtonian method, which provides
considerable insight into the blade inertial and aerodynamic
forces. The rotor model includes coupled flap-lag bending and
blade torsion degrees of freedom, and is applicable to
articulated, hinge-less, gimbaled, and teetering rotors with an
arbitrary number of blades. The aerodynamic model is valid for
both high and low inflow, and for both axial and non-axial
flight. Rotor rotational speed dynamics, including engine
inertia and damping, and perturbation inflow dynamics are
included in the aerodynamic model. [81]

For a rotor on a wind-tunnel support, a normal mode
representation of the test module, strut, and balance is used.
The aero-elastic analysis for rotorcraft in flight is applicable to
a general two-rotor aircraft, including single main-rotor and
tandem helicopter configurations, and side-by-side or tilting
prop-rotor aircraft configurations. The rotor model includes
rotor-rotor aerodynamic interference and ground effect. The
aircraft model includes rotor-fuselage-tail aerodynamic
interference, engine dynamics, and control dynamics. A
constant-coefficient approximation is used for non-axial flow
and a quasistatic approximation is used for the low frequency
dynamics. The coupled system dynamics results are a set of
linear differential equations which are used to determine the
stability and aero-elastic response of the system. [81]

Unfortunately, this program is a “work in progress” and is
not ready for general release. However, source codes may be
seen in [81].

11) Wireframe generator (MAKEWGS)
Many computing procedures in engineering require the

definition of a surface or solid object by means of an ordered
lattice of points which define a grid of quadrilaterals.
MAKEWGS can create wireframe models of simple wings and
bodies and enables to make some of the classic shapes of
aerodynamic theory with a minimum of effort. [87]

A script or input file describes the objects to be defined.
The program reads the script and creates an output file with the
grid points in NASA Langley Wireframe Geometry Standard
format (LaWGS). [87]

Wings are defined by their root and tip chords and their
grid densities. Several common airfoil sections are available.
Bodies are defined by nose length, after-body length and
overall length and maximum diameter. The common body
shapes such as parabolic, conical, Sears-Haack, von Karman
Ogive, and ellipsoidal are coded. [87]

12) 3-VIEW and SILHOUETTE
SILHOUETTE gives perspective views of an arbitrary

configuration defined by wireframe meshes of grid points with
hidden line removal. 3-VIEW produces plan, side, and rear
views from the same input file (LaWGS) as SILHOUETTE
uses. [9]

a) 3-VIEW

For many applications, it is simple and fast to make views
of the configuration in the plan, side, and rear or front view.
Even though hidden lines are shown, they are not usually as
confusing as they are in isometric views. An example of an
aircraft in the plan view can be seen in Fig. 31. [88]

Fig. 31. The plan view of an aircraft [88]

This simple program takes a configuration in LaWGS
format and produces several output files which may be used to
visualize your vehicle. The files plan.gnu, side.gnu, and
rear.gnu are formatted to be displayed with Gnuplot [104] or
any other plotting package. [88]

b) SILHOUETTE - Hidden Line Program (HLP)

This program draws a perspective view of an object which
has been defined as a wire frame and analyzes the image to
remove the hidden lines. [89]

A polygonal representation of objects, even with hidden
lines removed, is not always desirable. A more pleasing
pictorial representation often can be achieved by removing
some of the remaining visible lines, thus creating silhouettes
(or outlines) of selected surfaces of the object. Additionally, it
should be noted that this silhouette feature allows warped
polygons, i.e. any polygon can be decomposed into constituent
triangles. The consideration that these triangles are members of
the same family will result in a polygon with no interior lines,
and thus, the restriction of flat polygons will be removed. [89]

SILHOUETTE is a program for calligraphic drawings
which can render any subset of polygons as a silhouette with
respect to itself. The program is flexible enough to be
applicable to every class of an object. SILHOUETTE offers all
possible combinations of silhouette and non-silhouette
specifications for an arbitrary solid. Thus, it is possible to
enhance the clarity of any three-dimensional scene presented in
two dimensions. [89]

Input to the program can be line segments or polygons.
Polygons designated with the same number will be drawn as a
silhouette of those polygons. The output is a plot file, encoded
for Gnuplot [104], of the object in question. [89]

13) Geometry Conversion to LaWGS (2WGS)
PANAIR (described in the chapter V.E.8)) allows the user

to define the geometry of a vehicle and reads a wire frame
mesh as part of its input file. PANAIR was developed before
the definition of the LaWGS and have their own input
schemes. As a result, 2WGS package with utility program
which converts the input files for PANAIR (and for other
programs in PDAS; e.g. WINGBODY) into the LaWGS format
was developed. A program named a5022wgs converts the input
file of PANAIR into a file with extension of .WGS. The
converted file may be then inserted to the SILHOUETTE, 3-
VIEW, and other viewers. [90]

14) Geometry Conversion to VRML World (VRML)
This program makes a VRML model (a .WRL file) from

wireframe geometry in LaWGS format. This is an experimental
program in the initial phases of testing and produces a file in
VRML 1.0 format. The idea is to display the data (input and
output) from a general class of CFD programs. [91]

The program asks for the name of the input file. This must
be a file in LaWGS format. After reading the input data, the
program produces a file with extension of .WRL which may be
used as input to a VRML browser. [91]

F. Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD) provides a
qualitative (and sometimes even quantitative) prediction of
fluid flows by means of: [137]

 Mathematical modelling (partial differential equations)

 Numerical methods (discretization and solution
techniques)

 Software tools (solvers, pre- and post-processing
utilities)

In other words, CFD uses numerical methods to solve how
liquids and gases interact with surfaces. [143] [51]

1) Stanford University Unstructured (SU
2
)

The Stanford University Unstructured (SU
2
) suite is an

open-source collection of C++ based software tools. This
computational analysis and design software collection is being
developed to solve complex, multi-physics analysis and
optimization tasks using arbitrary unstructured meshes, to
perform Partial Differential Equation (PDE) analysis and solve
PDE constrained optimization problems. The toolset is
designed with computational fluid dynamics and aerodynamic
shape optimization in mind, but is extensible to treat arbitrary
sets of governing equations such as potential flow,
electrodynamics, chemically reacting flows, and many others.
SU

2
 is under active development in the Aerospace Design Lab

(ADL) of the Department of Aeronautics and Astronautics at
Stanford University, and is released under an open-source
license. [138] [139]

The SU
2
 software suite specializes in high-fidelity PDE

analysis and in the design of PDE-constrained systems on
unstructured meshes. The suite itself is composed of several
C++ analysis modules which handle specific jobs, including:
[139]

 SU2_CFD - The main PDE solution module which
started primarily as an Euler and RANS CFD solver,
but has been modified to treat many other governing
equations, including the adjoint equations for many of
the supported governing equation systems.

 SU2_DDC - The Domain Decomposition Code, used
to prepare SU

2
 for computations involving multiple

processors.

 SU2_MAC - The Mesh Adaptation Code which can be
used to refine the unstructured computational meshes
to improve the accuracy of the predictions.

 SU2_GPC - The Gradient Projection Code which
allows for the calculation of sensitivities for use in
optimization and uncertainty quantification.

 SU2_MDC - The Mesh Deformation Code which can
be used to perturb an existing unstructured volume
mesh to conform to new surface geometries dictated
by either shape optimization processes or aero-
structural simulations.

 SU2_PBC - The Periodic Boundary Code, a pre-
processor to allow for the solution of PDEs on
periodic domains.

 SU2_SMC - The Sliding Mesh Code, a pre-processor
which enables the solution of PDEs on meshes which
slide (translational or rotational capabilities included)
past each other.

Additional modules may be added as further capabilities are
needed and included in the software. This structure makes SU

2

an ideal tool for performing multi-physics simulations,
including multi-species thermochemical non-equilibrium flow
analysis, combustion modelling, two-phase flow simulations,
magneto-hydrodynamics simulations, and other simulations.
[139]

The SU
2
 software suite was conceived as a common

infrastructure for solving Partial Differential Equation (PDE)
problems, using the Finite Volume Method (FVM) or Finite
Element Method (FEM). The code structure and the high-level
time and spatial integration structure is shared by all of the
applications, and only specific numerical methods for the
convective, viscous and source terms are re-implemented for
different models where necessary. There is no fundamental
limitation on the number of state variables or the number of
governing equation systems which can be solved
simultaneously in a coupled or segregated way (other than the
physical memory available on a given computer architecture),
and the more complicated algorithms and numerical methods,
including parallelization, multigrid and linear solvers, have
been implemented in such a way that they can be applied
without special consideration during the implementation of a
new physical model. [139]

Several forms of the Reynolds-averaged Navier-Stokes
(RANS) equations have also been implemented in SU

2
; for

instance compressible, incompressible, Arbitrary Lagrangian-
Eulerian, etc. Moreover, both the laminar Navier-Stokes and
Euler equations are also available in the code as subsets of the
RANS equations by disabling turbulence modelling and,
respectively, by completely removing viscosity. [139]

Numerical discretization of the governing fluid dynamic
equations using a conservative formulation often results in
excess artificial viscosity at low Mach numbers. This degrades
the performance of a compressible solver in regions of low
Mach number flow. Preconditioning techniques such as Roe-
Turkel have been developed for solving nearly incompressible
flow problems using the same numerical methods developed
for compressible flows. This can be particularly useful when
only part of a flow field is essentially incompressible. For
example, flow over a multi-element airfoil at high angles of
attack has regions of both compressible and incompressible
flow. [139]

SU
2
 is built to enable vertical integration with optimizers

and to reduce the amount of user overhead required for setup.
There are five levels of components in the optimization control
architecture, and most rely on Python scripts to modify the
configuration input, execute lower-level components and post-
process any resulting data. To simplify and shorten overhead
time during problem setup, all levels start from a common
configuration file, which is modified as needed when passed to
lower levels. Listed in order from lowest to highest, these
levels are: [139]

 Core tools

 Solution decomposition/re-composition

 Sensitivity analysis

 Design evaluation

 Design optimization

A set of tutorials which cover all the basic capabilities of
SU

2
 was created and is distributed with SU

2
. There can be

found, for example, the flow and adjoint simulation of external,
inviscid flow around a 2D geometry (NACA 0012 airfoil) by
using steady, 2D, Euler and continuous Adjoint Euler equations
[140], and optimal shape design of a rotating airfoil [141].
[139]

Moreover, compressible RANS simulations, low-Mach
number simulations, airfoil and fixed wing optimization, wing
design using RANS equations, redesign of a rotor in hover
(Fig. 32), Adaptive Mesh Refinement, goal-oriented mesh
adaptation, engine propulsion effect adaptation and other
applications of SU

2
 are described in [139].

Fig. 32. A comparison of a baseline and optimized rotor geometries [139]

2) OpenFOAM
The OpenFOAM (Open Field Operation and Manipulation)

CFD Toolbox is a free, open source CFD software package
which has a large user base across most areas of engineering
and science, from both commercial and academic
organizations. For example, in [149], OpenFOAM was used for
simulation of flow around flapping wings, and in [143] as a
part of system for optimization of wing, body, and tail of
aircraft. [142]

OpenFOAM has an extensive range of features to solve
anything from complex fluid flows involving chemical
reactions, turbulence and heat transfer, to solid dynamics and
electromagnetics. It includes tools for meshing, notably
snappyHexMesh, a parallelized mesher for complex CAD
geometries, and for pre- and post-processing. Almost
everything (including meshing, and pre- and post-processing)
runs in parallel as standard, enabling users to take full
advantage of computer hardware at their disposal. [142] [143]
[144]

The core technology of OpenFOAM is a flexible set of
efficient C++ modules, used primarily to create executables,
known as applications – overview of OpenFOAM structure can
be seen in Fig. 33. The applications fall into two categories:
solvers, which are each designed to solve a specific problem in
continuum mechanics; and utilities, that are designed to
perform tasks which involve data manipulation. OpenFOAM
includes over 80 solver applications which simulate specific
problems in engineering mechanics and over 170 utility
applications which perform pre- and post-processing tasks, e.g.
meshing, data visualization, etc. [144] [142]

Fig. 33. The overview of the OpenFOAM structure [144]

An extensive set of OpenFOAM solvers has evolved.
Despite OpenFOAM is used mainly for CFD, it has found use
in other areas such as stress analysis, electromagnetics and
finance because; it is fundamentally a tool for solving partial
differential equations rather than a CFD package in the
traditional sense. OpenFOAM has standard solvers for: [145]

 Basic CFD codes (Laplace, potential flow, and scalar
transport solvers)

 Incompressible flow

 Compressible flow

 Multiphase flow

 Direct Numerical Simulation (DNS) and Large Eddy
Simulation (LES)

 Combustion

 Particle-tracking flows

 Heat transfer and buoyancy-driven flows

 Molecular dynamics methods

 Direct simulation Monte Carlo methods

 Electromagnetics

 Stress analysis of solids

 Finance

Moreover, OpenFOAM offers ODE solvers for non-stiff
systems including: fifth-order Cash-Karp Runge-Kutta with
error estimation and adaptive time step control. [146]

OpenFOAM also offers ODE solvers for stiff systems
including: the fourth-order semi-implicit Runge-Kutta scheme
of Kaps, Rentrop and Rosenbrock with error estimation and
adaptive time step control, and the semi-emplicit Bulirsch-
Stoer method of Bader and Deuflhard. [146]

OpenFOAM contains a suite of numerical tools to solve a
range of problems in engineering and science. It includes
methods to solve problems where matter is represented as a
continuum and where it is represented by discrete particles. To
solve equations for a continuum, OpenFOAM uses a numerical
approach with the following features: [147]

 Segregated, iterative solution - For the system of
equations governing our problem of interest, separate
matrix equations are created for each equation, and are
solved within an iterative sequence (as opposed to
created one, big matrix equation for the entire system
of equations).

 Finite volume method - Matrix equations are
constructed using the finite volume method applied to
arbitrary shaped cells (any number of faces, any
number of edges).

 Collocated variables - The solution variable for each
matrix equation is defined at cell centers.

 Equation coupling - The coupling between equations,
particularly pressure and velocity is performed using
adapted versions of well-known algorithms such as
e.g. PISO and SIMPLE.

OpenFOAM contains a range of dynamic mesh
functionality within a set of libraries that is plugged into a
range of dynamic mesh solvers. The type of dynamic mesh
functionality includes the following: [148]

 Solid body motion of a mesh according to prescribed
motion function, e.g. sloshing in a tank.

 Internal motion (e.g. distortion) of a mesh calculated
from boundary motion, e.g. object floating at a free
surface.

 Dynamic refinement/unrefinement of hex meshes, e.g.
about a fluid interface, shock, etc.

 Prescribed motion of a mesh, e.g. according to a
periodic boundary motion.

There are also a number of tools to specify the boundary
motion in conjunction with mesh motion: [148]

 Prescribed six degree of freedom (6DOF) motion
functions, e.g. translations and rotations.

 Tabulated 6DOF motion which interpolates discrete
data.

 Specialized Ship design analysis (SDA) 3DOF motion
function.

 6DOF motion caused by flow, e.g. floating object,
which can also permit constraints (fixed points) and
restraints (springs and dampers).

3) Code_Saturne
Code_Saturne is open-source CFD software which solves

the Navier-Stokes equations for 2D, 2D-axisymmetric and 3D
flows, steady or unsteady, laminar or turbulent, incompressible

or weakly dilatable, isothermal or not, with scalars transport if
required. [150] [151]

Several turbulence models are available, from Reynolds-
Averaged models (RANS models) to Large-Eddy Simulation
models (LES models). In addition, a number of specific
physical models are available as modules: gas, coal, biomass,
pollutant, and heavy-fuel oil combustion, semi-transparent
radiative transfer, particle-tracking with Lagrangian modelling,
Joule effect, electric arcs, multi-physics modelling of arc
welding, weakly compressible flows, atmospheric flows,
rotor/stator interaction for hydraulic machines. [150] [151]

Code_Saturne has been under development since 1997 by
EDF R&D (Electricité de France). The software is based on a
co-located Finite Volume Method (FVM) that accepts three-
dimensional meshes built with any type of cell (tetrahedral,
hexahedral, prismatic, pyramidal, and polyhedral) and with any
type of grid structure (unstructured, block structured, hybrid).
[152] [151]

Code_Saturne is composed of two main elements and an
optional GUI (as shown in Fig. 34): [151]

 The Kernel module which is the numerical solver

 The Preprocessor module which is in charge of mesh
import

Fig. 34. The Code_Saturne elements [151]

Code_Saturne can use different numerical methods: [153]

 Discretization

 Velocity-pressure coupling

 Linear system resolution (Jacobi (default for velocity,
temperature, turbulent variables, passive scalars),
algebraic multigrid (default for pressure), conjugate
gradient, and stabilized bi-conjugate gradient (BI-
CGSTAB))

 Convective scheme (First order Upwind Scheme,
Centered scheme, Second Order Linear Upwind
(SOLU) Scheme, and Blended scheme between
upwind and second order scheme)

 Gradient calculation

The supported compatible mesh generators’ formats
include: SALOME SMESH, I-DEAS Nx, Gmsh, Gambit
(Fluent), Simail, Harpoon, ICEM-CFD, and Star-CCM+. [154]

Code_Saturne also relies on the PLE (Parallel Location and
Exchange) library for the management of code coupling; this
library can also be used independently. [151]

Code_saturne can be coupled with: [155]

 itself (in order to couple different models
(RANS/LES), to model fluid-structure interaction with
large displacement or the rotating machines)

 Code_Aster (in order to model the fluid-structure
interaction)

 SYRTHES (in order to model the conjugate heat
transfer)

4) High Fidelity Large Eddy Simulation (HiFiLES)
High-order numerical schemes may have the potential to

advance CFD beyond the current plateau of second-order
methods and RANS turbulence modelling, ushering in new
levels of accuracy and computational efficiency in turbulent
flow simulations. [156] [160]

Because of new aircraft roles (e.g. very small or large
concepts, Reynolds numbers 10

4–10
7
, very high or low altitude,

Mach numbers between ca. 0.01–1.0, quiet vehicles, low fuel
consumption vehicles, etc.), the need for high-fidelity
simulation techniques to predict their performance is growing;
furthermore, revolutionary aircraft design concepts may appear
in the near future. As a result, high-order numerical methods
may find their place in the aeronautical industry. [157] [50]
[160]

Unsteady simulations, including those of flapping wings,
wake capturing, noise prediction, and turbulent flows via Large
Eddy Simulation (LES), are just a few examples of
computations that could benefit from high-order numerical
methods. In particular, high-order methods have a significant
edge in applications that require accurate resolution of the
smallest scales of the flow. Such situations include the
generation and propagation of acoustic noise from an airframe,
or at the limits of the flight envelope where unsteady, vortex-
dominated flows have a significant effect on aircraft
performance. On a given grid, utilizing a high-order
representation enables smaller scales to be resolved with a
greater degree of accuracy than standard second-order
methods. Furthermore, high-order methods are inherently less
dissipative, resulting in less unwanted interference with the
correct development of the turbulent energy cascade. [157]
[160]

HiFiLES is open-source software, written in C++. HiFiLES
is high-order numerical methods for flow simulations capture
complex phenomena like vortices and separation regions using
fewer degrees of freedom than their low-order counterparts.
The High Fidelity (HiFi) provided by the schemes, combined
with turbulence models for small scales and wall interactions,
gives rise to a powerful LES software package. [156]

HiFiLES is compressible flow solver for unstructured grids
built from the ground up to take full advantage of parallel
computing architectures. In general, the code is designed as an
ideal base for further development on a variety of architectures;
for example, it is especially well-suited for Graphical

Processing Unit (GPU) architectures. The code uses the MPI
protocol to run on multiple processors, and CUDA to harness
GPU performance. [156] [157]

HiFiLES v. 0.1 contains the following capabilities: [156]
[157]

 High-order compressible Navier-Stokes and Euler
equations solver in 2D and 3D with support for
triangular, quadratic, hexahedral, prismatic, and
tetrahedral elements. Implementation for spatial orders
of accuracy 2 through 4 has been verified.

 Numerical scheme: Energy-Stable Flux
Reconstruction.

 Time advancement: explicit time-stepping with low-
storage RK45 method (4

th
 order) or forward Euler (1

st

order). Local time-stepping when running on CPUs.

 Boundary conditions: Wall: no-slip isothermal, no-slip
adiabatic, and symmetry (slip wall). Inflow and
outflow: characteristic, supersonic, subsonic. Periodic.

 High-order surface representation.

 Mesh format compatibility: neutral (.neu) and Gmsh
(.msh).

 Large Eddy Simulation: Sub-grid Scale Models:
Smagorinsky, WALE, similarity, and combinations of
these. Wall models: log-law, three-layer Breuer-Rodi.

 Parallelization: MPI, and GPU (strong scalability 88%
of ideal for up to 16 GPUs; weak scalability above
90% of ideal for up to 16 GPUs).

In [157], the SD7003 airfoil flows with Re = 10,000;
22,000; 60,000 (Fig. 35); and other simulation cases performed
by using HiFiLES are described.

Fig. 35. A density contour for the flow with Re = 60,000 around the SD7003

airfoil [157]

5) PyFR
PyFR is an open-source Python based framework for

solving advection-diffusion type problems on streaming
architectures using the Flux Reconstruction approach of
Huynh. The framework is designed to solve a range of
governing systems on mixed unstructured grids containing
various element types. PyFR is also designed to target a range
of hardware platforms via use of an in-built domain specific
language derived from the Mako template engine. The current
release (v. 0.2.4) has the following capabilities: [158] [159]
[160]

 Governing equations - Euler, Navier Stokes

 Dimensionality - 2D, 3D

 Element types - Triangles, Quadrilaterals, Hexahedra,
Prisms, Tetrahedra, Pyramids

 Platforms - CPU clusters, Nvidia GPU clusters, AMD
GPU clusters

 Spatial discretization - High-order flux reconstruction

 Temporal discretization - Explicit Runge-Kutta

 Precision - Single, Double

 Mesh files read - Gmsh (.msh)

 Solution files produced - Unstructured VTK (.vtu)

PyFR is being developed in the Vincent Lab, Department
of Aeronautics, Imperial College London, UK. However, PyFR
is not currently a fully-fledged production flow solver; in
addition, no level of support is guaranteed. [158]

PyFR aims to expand the industrial CFD envelope from its
current RANS plateau; enabling affordable and accurate
simulation of currently intractable unsteady flow problems via
scale resolving approaches such as LES. As a result, it is
envisaged that PyFR may have significant impact in a range of
application areas including design of next-generation
unmanned aerial vehicles, aircraft noise reduction, design of jet
engines, and other areas. [159]

G. Computer-Aided Design (CAD)

Computer Aided Design (CAD) is a set of methods and
tools to assist product designers in creating a geometrical
representation of the artifacts, in dimensioning, configuration
management, archiving, exchanging part and assembly
information between organizations, feeding subsequent design
steps (analysis and manufacturing – Computer-Aided
Engineering (CAE) and Computer-Aided Manufacturing
(CAM)) by means of a computer system. These applications
came out of the manufacturing world; thus, they have certain
characteristics which make them well suited for manufacturing.
[161] [177]

1) FreeCAD
FreeCAD is a fully multi-platform, open-source, general-

purpose, parametric 3D CAD/CAE modeler. FreeCAD is
aimed directly at mechanical engineering and product design;
however it also fits in a wider range of uses around
engineering, such as architecture. [162] [163] [131] [166]

FreeCAD's focus is to allow user to create high-precision
3D models, to keep tight control over those models (being able
to go back into modelling history and change parameters), and
eventually to build those models (via 3D printing, CNC
machining or even construction worksite). [163]

FreeCAD has many 2D components in order to sketch 2D
shapes or extract design details from the 3D model to create 2D
production drawings; Nevertheless, direct 2D drawing (like
AutoCAD LT) is not the focus, neither animation or organic
shapes are (like in Maya, 3ds Max, Blender, or Cinema 4D).
[162]

FreeCAD features tools are similar to Catia, SolidWorks or
Solid Edge; as a result it also falls into the category of MCAD,
PLM, CAx and CAE. Key features of FreeCAD are: [164]
[162] [166]

 A complete Open CASCADE Technology-based
geometry kernel

 A full parametric model

 A modular architecture which makes to provide
additional functionality without modifying the core
system

 Import/export to standard formats, such as STEP,
IGES, OBJ, STL, DXF, SVG, STL, DAE, IFC or
OFF, NASTRAN, VRML, in addition to FreeCAD’s
native FCSTD file format

 A Sketcher with constraint-solver, allowing to sketch
geometry-constrained 2D shapes

 A Robot simulation module which allows to study
robot movements

 A Drawing sheets module which permit to put 2D
views of 3D models on a sheet

 A Rendering module which can export 3D objects for
rendering with external renderers

 An Architecture module

One of the most powerful features of FreeCAD is the
scripting environment. From the integrated python console (or
from any other external Python script), almost any part of
FreeCAD can be accessed; for example it may create or modify
geometry, modify the representation of objects in a 3D scene,
or access and modify the FreeCAD interface. Python scripting
can also be used in macros, which provide an easy method to
create custom commands. [163] [131] [166]

The main concept behind the FreeCAD interface is that it is
separated into workbenches. A workbench is a collection of
tools suited for a specific task, such as working with meshes, or
drawing 2D objects, or constrained sketches. The current
workbench can be switched with the workbench selector at any
time. The tools included in each workbench, add tools from
other workbenches, or even self-created tools (macros) can be
customized. There is also a generic workbench which gathers
the most commonly used tools from other workbenches, called
the complete workbench. [163]

The selection of a workbench depends on the type of job
which is needed to be done; for instance, PartDesign
Workbench is focused on mechanical models or more generally
any small-scale objects, Draft Workbench works in 2D, as well
as Sketcher Workbench which, in addition, uses constraints;
there is also Arch Workbench, special Ship Workbench,
OpenSCAD Workbench and other Workbenches. [163]

However, FreeCAD is still in the early stages of
development; thus, although it already offers a large list of
features, many of them is still missing, specially comparing it
to commercial solutions. Nevertheless, there is a fast-growing
community of enthusiastic users, and it can already be found
many examples of quality projects developed with FreeCAD.
[163]

For example, the tutorial of the creation of a very simple,
elemental airplane model in Part Workbench is described in
[165]; more complicated geometry is shown in [131], where a
particular aircraft configuration for the Long Endurance
Electric UAV (LEEUAV), which can be seen in Fig. 36, was
designed by using FreeCAD and developed scripts.

Fig. 36. LEEUAV designed with FreeCAD [131]

2) SALOME
SALOME is open-source software which provides a

generic platform for Pre- and Post-Processing for numerical
simulation. It is based on an open and flexible architecture
made of reusable components. [222] [223]

SALOME can be used as standalone application for
generation of CAD model, its preparation for numerical
calculations and post-processing of the calculation results.
Moreover, SALOME can be used as a platform for integration
of the external third-party numerical codes to produce a new
application for the full life-cycle management of CAD models.
[222] [223]

SALOME can: [222] [223]

 Support interoperability between CAD modelling and
computation software (CAD-CAE link)

 Make easier the integration of new components into
heterogeneous systems for numerical computation

 Set the priority to multi-physics coupling between
computation software

 Provide a generic user-friendly and efficient user
interface, which helps to reduce the costs and delays of
carrying out the studies

 Reduce training time to the specific time for learning
the software solution based on this platform

 Provide access to all functionalities via the integrated
Python console

The following operations can be done with SALOME:
[222] [223]

 Create/modify, import/export (IGES, STEP, BREP),
repair/clean CAD models

 Mesh CAD models, edit mesh, check mesh quality,
import/export mesh (MED, UNV, DAT, STL)

 Handle physical properties and quantities attached to
geometrical items

 Perform computation using one or more external
solvers (coupling)

 Display computation results (scalar, vector)

 Manage studies (create, save, reload)

3) BRL-CAD
BRL-CAD is a powerful cross-platform open-source

combinatorial Constructive Solid Geometry (CSG) solid
modelling system which includes interactive 3D solid
geometry editing, high-performance ray-tracing support for
rendering and geometric analysis, network-distributed
framebuffer support, image and signal-processing tools, path-
tracing and photon mapping support for realistic image
synthesis, a system performance analysis benchmark suite, an
embedded scripting interface, and libraries for robust high-
performance geometric representation and analysis. [167] [168]
[169]

BRL-CAD is a collection of more than 400 tools, utilities,
and applications comprising more than a million lines of source
code. For more than 20 years, BRL-CAD has been the primary
tri-service solid modelling CAD system used by the U.S.
military to model weapons systems for vulnerability and
lethality analyses. The solid modelling system is frequently
used in a wide range of military, academic, and industrial
applications including in the design and analysis of vehicles,
mechanical parts, and architecture. The package has also been
used in radiation dose planning, medical visualization,
computer graphics education, CSG concepts and modelling
education, and system performance benchmark testing among
other purposes. [167] [168] [169]

BRL-CAD supports a great variety of geometric
representations including an extensive set of traditional CSG
primitive implicit solids such as boxes, ellipsoids, cones, and
tori, as well as explicit solids made from closed collections of
Uniform B-Spline Surfaces, Non-Uniform Rational B-Spline
(NURBS) surfaces, n-Manifold Geometry (NMG), and purely
faceted mesh geometry. All geometric objects may be

combined using boolean set-theoretic CSG operations
including union, intersection, and difference. [167] [168]

Although BRL-CAD has been used for a wide variety of
engineering and graphics applications, the package's primary
purpose continues to be the support of ballistic and
electromagnetic analyses. Accordingly, developers have found
CSG modelling to be the best approach in terms of model
accuracy, storage efficiency, precision, and speed of
computational analysis. [168]

While polygonal and boundary representation (B-rep)
modelling often focuses on just the surfaces of objects, CSG
modelling focuses on the entire volume and content of objects.
This gives BRL-CAD the capability to be “more than skin
deep” and build objects with real-world materials, densities,
and thicknesses so that physical phenomena such as ballistic
penetration and thermal, radiative, neutron, and other types of
transport can be studied. [168]

For example in [170], the methodology of the aircraft
survivability analysis considering vulnerability of the aircraft
against fragmenting warhead threat was studied, and for the
shot-line analysis, the functions and required libraries of the
BRL-CAD software are integrated in the code which is used as
the shot-line subroutine of the main survivability analysis code.

The BRL-CAD libraries are designed primarily for the
geometric modeler who also wants to edit software and,
perhaps, design custom tools. Each library fits into one of three
categories: creating and/or editing geometry, ray-tracing
geometry, or image handling. [168]

The application side of BRL-CAD also offers a number of
tools and utilities. They primarily concern is geometric
conversion, geometric interrogation, image format conversion,
and command-line-oriented image manipulation. An overview
of libraries, tools, and utilities of BRL-CAD can be found in
[168].

4) QCAD
QCAD is a multi-platform, open source application for

computer aided drafting (CAD) in two dimensions (2D).
Technical drawings such as plans for aircraft models (Fig. 37),
buildings, interiors, mechanical parts, or schematics and
diagrams can be created with QCAD. QCAD was designed
with modularity, extensibility and portability in mind;
moreover, QCAD has intuitive user interface. [171]

Fig. 37. The wings and airfoil of the ZLIN 526 AF/AFS aircraft model in

QCAD

Main Features of QCAD are: [171] [172]

 Layers

 Blocks (grouping)

 35 CAD fonts included

 Support for TrueType fonts

 Various Metrical and Imperial units

 DXF and DWG import and export

 Import bitmaps into drawing and export drawing as
bitmap (BMP, JPEG, PNG, TIFF, ICO, PPM, XBM,
XPM)

 Printing to scale

 Printing on multiple pages

 Over 40 construction tools

 Over 20 modification tools

 Construction and modification of points, lines, arcs,
circles, ellipses, splines, polylines, texts, dimensions,
hatches, fills, raster images

 Various entity selection tools

 Object snaps

 Measuring tools

 QCAD Library Browser with over 5000 CAD parts

 Complete ECMAScript scripting interface

Using the QCAD 3 scripting interface, new interactive tools
and user interface components can be added to QCAD without
having to set up a development environment or requiring a
special developer license. In the same manner, completely new
applications can be developed using only the script interface of
QCAD. [173]

If an extension of QCAD by using scripts is not possible, a
QCAD C++ plugin which wraps developer’s library can be
created; however, the necessary hooks to access library
functionality through the script interface have to be added.
[173]

H. OpenVSP

OpenVSP (Vehicle Sketch Pad) is a parametric aircraft
geometry tool which allows the user to create a 3D model of an
aircraft defined by common engineering parameters. This
model can be processed into formats suitable for engineering
analysis, for example into STL, MSH, HRM, 3DM, FEL, X3D
and other formats. OpenVSP was successfully used, for
instance, in [143] as a part of system for the optimization of
wing, body, and tail of aircraft. Furthermore, in [180], four
types of reduced-fidelity geometric representations were
defined in response to a need for bridging the gap between
conceptual design and analysis. [174] [177] [178] [179]

The predecessors to OpenVSP have been developed by
NASA since the early 1990's. In January 2012, OpenVSP was

released as an open source project under the NOSA 1.3 license;
the logo of OpenVSP can be seen in Fig. 38. [174] [175] [178]

Fig. 38. The Logo of OpenVSP [175]

In [176], there is a VSP Hangar where over 170 aircraft
VSP models of various types can be found. Fig. 39 shows
Dragon Eye UAV which was downloaded from VSP Hangar
and displayed in OpenVSP application.

Fig. 39. Dragon Eye UAV displayed in OpenVSP

Traditional CAD tools generate a static solution to a design
problem. However, many of the strengths of CAD which make
it beneficial in the preliminary and detailed design phases
actually become either of little benefit or even hindrances in
the conceptual design phase. Instead of manually creating a
CAD model by dragging and dropping components, the
parametric design is specified using variables and functions.
Parametric design defines the relationships between
components in a design. As a result, changing a variable which
defines part of a model will adapt all the connected
components so as to maintain a coherent design. Although
there is a longer lead time to implement the initial model, once
the model is developed, the user can easily create endless
variations of the original. In other words, parametric design
systems make the computer a generative design tool and are
already used extensively as a rapid prototyping technique in
architecture and aeronautics. [143] [177] [178] [179]

OpenVSP builds a text file which is filled out through a
series of forms presented graphically to the user, and the
geometry is displayed in real-time in a three-dimensional
display window. [177] [178] [179]

In order to provide real-time performance, the true wetted
surface of the aircraft is not generated or updated with every
design change. Instead, aircraft components are modeled and
displayed independently but simultaneously; the wing and
fuselage are both represented, but the wing-fuselage

intersection is not calculated and the components are not
trimmed at the intersection. [179]

At any point in the design process, the designer may elect
to calculate the component intersections and generate the outer
mold lines of the vehicle. This true wetted surface can be used
by OpenVSP to perform a number of analysis tasks. The
surface representation generated by OpenVSP can be used as
the starting point for volume mesh generation to be used in
CFD analysis. Moreover, it can be used as input to a rapid
prototyping machine or 3D printer. The surface model output
by OpenVSP can also be used to create high quality
illustrations and renderings of the design concept. [179]

Mesh grid density is defined and controlled by using point,
line and box sources. These sources specify the desired edge
length near the source. The radius of the source dictates the
volume affected by that source. The target length is decreased
by the square of the fractional distance away from the source.
The source size may be automatically increased to prevent the
edge length from changing more than 20% at source borders.
The position of the sources is specified in the parameter space
of the components. This allows the user to change the
geometry without having to redefine sources as can be seen in
Fig. 40 and Fig. 41. [179]

Line and box sources require two points to specify location
and size. To improve the speed of the mesh density
specification, the meshing process is split into two parts:
intersect and mesh. If the geometry does not change, only the
mesh process is required to see changes in density. When the
mesh density is satisfactory, the mesh can be exported, for
example, in Nascart (DAT) or STL format. [179]

Fig. 40. The original geometry [179]

Fig. 41. The altered geometry [179]

The primary mesh control interface presented to the user is
depicted in Fig. 42. This interface allows the user to create and
modify the grid density control sources. [179]

Fig. 42. CFD Mesh control dialog

OpenVSP has the capability to automatically create a
default set of mesh control sources for each geometric
component in the model. These default sources provide a
reasonable foundation for tweaking and customization. In
addition to the controls for the individual sources, the user can
adjust some global parameters scaling mesh size and limiting
the largest triangle in the mesh. These global parameters allow
the user to quickly adjust a mesh as a whole, thereby creating a
series of related meshes. [179]

An example of how parameterization can be used
effectively is in the area of defining high-lift devices.
OpenVSP allows for arbitrary airfoil coordinates in relation to
the traditional zero to one chord reference. This means that the
cruise configuration wing can be defined, and if the high-lift
configuration airfoils are defined properly, then multiple copies
of the cruise wing only have to differ by the airfoil file chosen
in order to correctly size and position all of the elements. Any
other high-lift flap settings need only to have different airfoil
files read in to define them as well. The accuracy of the
positioning is only dependent upon the accuracy of the airfoil
file. If for any reason the cruise wing geometry is altered, then,
everything that is necessary to be done is updating the copies to
the same values. Unfortunately, this update must be performed
manually. However, a future feature may be to automate this
process by allowing the designer to specify dependencies down
to the individual parameter level. Currently, parent-child
dependencies only extend to position and rotation. [177]

OpenVSP also has some capability to do arbitrary shapes.
In general, this should be avoided because it negates the main
advantage which OpenVSP has over CAD, namely parametric
input and the ease with which the geometry can be modified.
[177]

I. JavaFoil

JavaFoil uses several traditional methods for airfoil
analysis. The following two methods build the backbone of the
program: [229] [230]

 The potential flow analysis is performed with a higher
order panel method. It calculates the local, inviscid
flow velocity along the surface of an airfoil for any
desired angle of attack by using a set of airfoil
coordinates.

 The boundary layer analysis module steps along the
upper and the lower surfaces of the airfoil, starting at
the stagnation point. It solves a set of differential
equations to find the various boundary layer
parameters; it is a so called integral method. The
equations and criteria for transition and separation are
based on the procedures described by Eppler. The
boundary layer module works best in the Reynolds
number regime between 500,000 and 20,000,000.

A standard compressibility correction according to Karman
and Tsien has been implemented to take mild Mach number
effects into account. As long as the flow stays subsonic (this
usually means that Mach numbers are between zero and 0.5),
the results should be fairly accurate. Airfoils in supersonic flow
cannot be analyzed with the methods in JavaFoil. [229]

First, it calculates the distribution of the velocity on the
airfoil surface which can be integrated to get the lift and the
moment coefficient. Then, it calculates the behavior of the flow
close to the airfoil surface (the boundary layer). The boundary
layer data can be used to calculate the friction drag of the
airfoil. Both steps are repeated for the given range of angle of
attacks, which yields a complete polar of the airfoil for one
fixed Reynolds number. [229] [230]

JavaFoil does not model laminar separation bubbles and
flow separation, the results will be incorrect if either of these
occur. Flow separation, as it occurs at stall, is modeled to some
extent by empirical corrections, so that maximum lift can be
predicted for “conventional” airfoils. If an airfoil beyond stall
is analyzed, the results will be quite inaccurate. Two
dimensional analysis methods should not be used at all in this
regime, as the flow field beyond stall is fully three dimensional
with spanwise flow and strong vortices. [229] [230]

If laminar separation is detected, the method switches to
turbulent flow and continues. When turbulent separation is
found, the boundary layer integration is stopped and an
empirical drag penalty depending on the length of the separated
region is added to the result. [230]

The drag is applied by examining the boundary layer
parameters at the trailing edge using the Squire-Young
formula. [230]

The following empirical transition criteria have been
implemented and can be selected by the user: [230]

 Eppler 1

 Eppler 2

 Michel 1

 Michel 2

 Granville

 Drela’s en
 approximation 1

 Drela’s en
 approximation 2

 Arnal e
n
 approximation by Würz

The JavaFoil program contains a row of tabs on top and a
card area below. Each tab shows its associated card which
contains input and output elements for a certain topic. The
cards are divided in topics like Geometry, Modify, Velocity,
Flow Field (see Fig. 43), Boundary Layer, Polars and Options.
[231]

Fig. 43. The flow field card in JavaFoil with an analysis of an airfoil

JavaFoil may create the following standard airfoils: [231]

 4-digit series (like NACA 2415)

 5-digit series (like NACA 23015)

 16-series (like NACA 16-412)

 6-series (like NACA 64-412)

 TsAGI “B” series airfoils

 NPL “EC”, “EH” series airfoils

 Symmetrical Circular Arc airfoils

 Symmetrical Double Wedge airfoils

 Cambered Plate airfoils

 Van de Vooren conformal mapping airfoil

 Newman airfoil

 Helmbold-Keine airfoil

J. JavaProp

JavaProp is based on the blade element theory presented in
[234]. The blade is divided into small sections, which are
handled independently from each other. Each segment has a
chord and a blade angle, and associated airfoil characteristics.
The theory makes no provision for three dimensional effects,
like sweep angle or cross flow; however it is able to find the
additional axial and circumferential velocity added to the
incoming flow by each blade segment. This additional velocity

results in an acceleration of the flow and thus thrust. Usually
this simplified model works very well, when the power and
thrust loading of the propeller (power per disk area) is
relatively small, as it is the case for most aircraft propellers.
[232] [233] [235]

Based on the theory of the optimum propeller (as developed
by Betz, Prandtl, Glauert), only a small number of design
parameters must be specified. These are: [233]

 The number of blades B

 The axial velocity v of the flow (flight speed or boat
speed)

 The diameter D of the propeller

 The selected distributions of airfoil lift and drag
coefficients CL and CD along the radius

 The desired thrust T or the available shaft power P

 The density ρ of the medium (air: ~1.22 kg/m
3
, water:

~1000 kg/m
3
)

The design procedure creates the blade geometry in terms
of the chord distribution along the radius as well as the
distribution of the blade angle. The influence of blade number
and tip loss are taken into account by the “Prandtl Tip-Loss
Factor”. [233] [235]

JavaProp offers two ways to use the analysis procedure:
[235]

 Analyze the propeller for its full operating range, from
static to the beginning of the wind-milling range.

 Perform an analysis for one advance ratio only which
gives a user more details for the aerodynamic
conditions along the radius.

The local chord length c depends mainly on the prescribed
lift coefficient CL - if designer would like to have wider blades,
he have to choose a smaller design lift coefficient (or angle of
attack) and vice versa. It should be noted that the design
procedure does not work accurately for high thrust loadings as
they occur under static conditions. If nonsense values for the
blade chord are received, the power loading of the propeller is
probably too high. The power coefficient PC should be less
than 1.5; otherwise the theory is not fully applicable and may
lead to errors. [233]

However, the blade element method is limited when flow
separation occurs e.g. at static conditions. Moreover, JavaProp
comes with a set of airfoil polars which can represent only a
limited model of the whole range of possible airfoil sections.
[236] [235]

Finally, the flow field around a propeller is complex and
fully three dimensional with boundary layers, Mach number
effects and local flow separation. This problem may also be
difficult to model accurately with the most sophisticated tools
such as Navier-Stokes solvers which typically require long
time to calculation. On the other hand, JavaProp can give a first
answer in fractions of a second for price of the accuracy.
However, results may be overestimated. [236]

The JavaFoil program contains a row of tabs on top and a
card area below. Each tab shows its associated card which
contains input and output elements for a certain topic. The
cards are divided in topics like Design, Airfoils, Geometry (see
Fig. 44), Analysis and Options. [237]

Fig. 44. The geometry card in JavaProp with the geometry of a propeller

A user can work only with a single propeller in JavaProp. It
means that he has a single propeller, which can be designed,
analyzed, modified, and analyzed again. All manipulations
such as the airfoil choice, specification of diameter, or RPM
setting, applying modifications to the blade shape, and
importing new blade geometry will alter this virtual propeller.
The unit system is metric for all entries and results if not noted
otherwise. [237]

K. Other Software

In this section, other interesting or acceptable software
which can be used for modelling, simulation, and development
is briefly described or only mentioned.

1) Larosterna
The Larosterna software includes a surface modelling tool

and mesh generator (SUMO), and a visualization program
(SCOPE). [225]

The surface modeler SUMO is a graphical tool aimed at
rapid creation of aircraft geometries and automatic surface
mesh generation. The plan and side views of a fuselage in
SUMO are shown in Fig. 45 and the meshed aircraft can be
seen in Fig. 46. [225] [226]

SUMO is not a CAD system, but rather an easy-to-use
parametric sketchpad, highly specialized towards aircraft

configurations. SUMO can import IGES, STEP, STL, CGNS,
SU2, CEASIOM and other files. After the generation of a
mesh, the surface can be exported to CGNS, MSH, STL, SU2,
and ZML files. [225] [226]

Fig. 45. The plan and side views of a fuselage in SUMO

Fig. 46. A meshed aircraft generated with SUMO

SCOPE is a visualization program to display surface data,
flutter mode-shapes and flight trajectories. Furthermore, it can
read NASTRAN as well as modal analysis results and animate
Eigen-mode shapes. SCOPE can also import/export CGNS,
SU2, MSH, STL and other files. [225] [227]

2) VAMPzero, CPACS, and TiGL
VAMPzero is an open-source software tool for the

conceptual design of aircraft. Based on well-known handbook
methods (e.g. Raymer and Roskam), the design of new
configurations includes outer geometry as well as structures,
engines, systems, mission analysis and costs. It supports
working in multi-disciplinary and multi-fidelity environments.
VAMPzero can interpret data from CPACS (Common
Parametric Aircraft Configuration Schema) and can be used to
generate CPACS files. [181] [178] [182] [183]

VAMPzero is based on an object oriented structure and, as
a result, is highly flexible. Furthermore, the structure
distinguishes feature aspects (file handling, convergence
control, and process control) and design aspects (parameter
definition, calculation methods) in a way that makes extensions
easy to implement. The design aspects are grouped into
components, disciplines and parameters, whereas the
parameters contain the actual design knowledge. [181] [178]
[182] [183]

As VAMPzero is a supportive analysis module for CPACS,
it has to handle two tasks: initialization and integration.
Obviously, a design process needs to go through requirements
definition and conceptual design before preliminary methods
can be applied. VAMPzero handles the conceptual design stage

but also initializes the CPACS data set; thus, higher level
analysis modules can be triggered. It creates geometries
following a knowledge-based engineering approach and writes
necessary process data like, for example, tool-specific settings.
[183]

The Common Parametric Aircraft Configuration Schema
(CPACS) is a data definition for the civil and military aircraft,
rotorcraft, jet engines, and entire air transportation systems.
CPACS is based on XML technology and enables engineers to
exchange information between their tools. As a result, CPACS
is a driver for multidisciplinary and multi-fidelity design in
distributed environments. CPACS describes the characteristics
of aircraft, rotorcraft, engines, climate impact, fleets and
mission in a structured, hierarchical manner. Not only product
but also process information is stored in CPACS. The process
information helps in setting up workflows for analysis
modules. Since CPACS follows a central model approach, the
number of interfaces is reduced to a minimum. [184] [178]
[183]

The TiGL Geometry Library can be used for easy
processing of geometric data stored inside CPACS data sets.
TiGL offers query functions for the geometry structure. These
functions can be used, for example, to detect how many
segments are attached to a certain segment, which indices these
segments have, or how many wings and fuselages the current
airplane configuration contains. This functionality is necessary
because not only the modelling of simple wings or fuselages
but also the description of quite complicated structures with
branches or flaps is targeted. TiGL uses OpenCASCADE to
represent the airplane geometry by B-spline surfaces in order to
compute surface points and also to export the geometry in the
IGES/STEP/STL/VTK format. The library provides external
interfaces for C, C++, Python, Java, MATLAB and
FORTRAN. The TiGLViewer is an application used to
visualize the geometries. [185]

3) TetrUSS
TetrUSS is a time-tested computational aerodynamic

capability servicing the configuration aerodynamic needs of
NASA's airframe and exploration programs. Present
capabilities include rapid grid generation, inviscid and viscous
flow analysis and design, special functional boundary
conditions, and ease of use. TetrUSS also includes a modular
capability for computing aero-elastic effects, iterative design,
and interactive boundary layer. Future goals are focused on
improving process automation, better integrating functional
capabilities, and increasing its impact on new NASA projects
and programs. [186] [188]

However, TetrUSS is only available to U.S. entities,
citizens, and permanent residents because the software has
been developed by the United States government and is subject
to US export regulations and NASA policy. As a result,
TetrUSS cannot be tested by the author of this paper. [187]

4) Extensions and Tools of Computational Environments
Tornado for Octave (also for Matlab) is a Vortex Lattice

Method for linear aerodynamic wing design applications in
conceptual aircraft design or in aeronautical education. By
modelling all lifting surfaces as thin plates, Tornado can solve

for most aerodynamic derivatives for a wide range of aircraft
geometries. [22]

Aerospace blockset for Scilab/XCos is an external module
providing aerospace palette. It is based on CelestLab aerospace
library. Although Scilab/XCos and aerospace blockset are very
interesting compensation for Matlab/Simulink, Aerospace
blockset is now designed rather for satellites than aircraft.
However, there is an example named “Quadrocopter attitude
estimation with TRIAD” which demonstrates that UAV
simulation is also possible. [23]

OpenFDM is an open source flight dynamics library for
Modelica and has basic functions for the modelling of aircraft,
aerodynamics, control, navigation, and propulsion. [192]

a) Flapping Flight Simulation Package

Flapping Flight Simulation package can be used to simulate
the physics of flapping-wing flight which includes simulating
the flight of living organisms, such as birds and insects, and
also man-made flapping-wing air vehicles. [196]

This package contains three applications for simulation
flapping flight: [193] [196]

 FLAPSIM - An inverse dynamics application which
simulates the dynamics of flapping wings, predicting
aerodynamic forces and torques, and mechanical
power.

 FLAPOPTIMISE - A numerical optimization tool
which predicts the most energy efficient wing
kinematics.

 WAKESIM - A point vortex simulator which
simulates the geometry of wake shed by flapping
wings.

Wing dynamics for a hoverfly cruising at 3m/s is shown in
Fig. 47 [194]. Detailed information about Flapping Flight
Simulation package can be found in [195] and [196].

Fig. 47. Wing dynamics for a hoverfly cruising at 3m/s [194]

Applications in the package require the Matlab Compiler
Runtime (MCR) to be installed. MCR is a standalone set of
shared libraries which enables the execution of compiled

MATLAB applications. Installing MCR does not install a
complete version of Matlab; as a result, no Matlab license is
required. [193]

b) CEASIOM

CEASIOM is a free conceptual aircraft design tool and
involves stability and control driven sizing and optimization in
the design cycle earlier than is standard practice nowadays.
CEASIOM is the result of the EU funded project SimSAC
(SIMulating Aircraft Stability and Control) which had as
objective to build an integrated simulation environment for
computing stability and control information with quantifiable
uncertainty. [189] [178]

CEASIOM integrates into one application the main design
disciplines, aerodynamics, structures, and flight dynamics,
impacting on the aircraft's performance. In other words,
CEASIOM is a tri-disciplinary analysis which should
participate in the design of the aero-servo-elastic aircraft. [189]
[178]

Significant features developed and integrated in CEASIOM
as modules are: (see also Fig. 48) [190] [178] [183]

 Geometry module / Aircraft Builder (ACBuilder) - A
customized geometry construction system coupled to
surface and volume grid generators; port to CAD via
IGES.

 Aerodynamic Module (AMB-CFD) - A replacement
of current handbook aerodynamic methods (Digital
Datcom) with new adaptable-fidelity modules: Steady
and unsteady TORNADO vortex-lattice code for low-
speed aerodynamics and aero-elasticity, Panel method,
Inviscid Euler solver EDGE for high-speed
aerodynamics, and RANS flow simulator for high-
fidelity analysis of extreme flight conditions.

 Stability and Control module (SDSA) - A static and
dynamic stability and control analyzer, and flying-
quality assessor. Test flights with 6DOF flight
simulation, and performance prediction, also includes
human pilot model, Stability Augmentation System
(SAS) and a LQR-based (Linear-Quadratic Regulator)
flight control system package are among the major
functionalities of this module. The standalone version
of SDSA is described in the chapter V.K.8).

 Aero-elastic module (NeoCASS) - Quasi-analytical
structural analysis methods which support aero-elastic
problem formulation and solution.

 Flight Control System Design Toolkit (FCSDT) - A
designer toolkit for flight control-law formulation,
simulation and technical decision support, permitting
flight control system design philosophy and
architecture to be coupled early in the conceptual
design phase.

Fig. 48. The core modules in CEASIOM [189]

CEASIOM can be linked to VAMPzero via CPACS
(briefly described in the chapter V.K.2)). The main reason why
modules must be interfaced to a code like VAMPzero is that
CEASIOM does not perform the initial sizing of a baseline
configuration. [178] [183]

Despite CEASIOM is freeware, to use it, Matlab is need to
be installed (Release 2008a or later), including Simulink for
use of FCSDT. As a result, CEASIOM can be used without fee
when an institution has already owned a Matlab license. [191]
[189]

5) Calculators
FlapDesign (Fig. 49) is a simple, free software program

which runs within a web browser with installed Java plug-in. It
can find the correct dimensions of an ornithopter wing-flapping
mechanism. [197]

Fig. 49. A graph of the wing angle as the crank rotates in FlapDesign [197]

Orni calculation tools are based on the calculation method
specified for Ornithopters and can determine the power and the
twisting of the wing at stationary flight situations. Furthermore,
the calculation method permits at least an approximate
quantitative specification of dynamics and aerodynamics of
profiled flapping wings. Primarily, the numerical comparison
of various factors influencing of flapping wings. [198]

Profiled flapping wings and quasi-stationary flow
conditions are presumed; thus, calculations lead to useful
results only for a fast forward flight with a relatively low
flapping frequency (large birds, flying with lift). [198]

The mathematical models are executable with the relevant
software applications. The Orni calculation tools contains:
[198]

 Orni 1 (XLS or XLSX file) is a simple calculation tool
to describe the wing twisting.

 Orni 2 (MathCAD file) is a calculation method for
ornithopter models. For the construction of a flapping
wing model, the calculation method describes progress
of various force and moment at the wing. Furthermore,
the required power and, especially, the wing twisting
along the span are being calculated.

 Orni 3 (MathCAD file) is mathematical model for
ornithopters which is based on the calculation tool
Orni 2. Gliding and power flights of a flapping wing
model can be analyzed singly and in series.

 Comparison (XLSX file) - the flight performance of a
mute swan is compared with the performances of a
propeller and a flapping wing model.

However, Orni 2 and Orni 3 cannot be imported into
MathCAD Express (free for use) because these files were
developed with commercial MathCAD Professional 13 and 14,
and furthermore, they are in XMCDZ format.

WebOcalc (Fig. 50) was created to make the easy selection
of motors, propellers, gearbox ratios, and batteries for electric-
powered model airplanes. Moreover, WebOCalc includes
several app wizards to recommendation of battery chemistry,
cell capacity and pack voltage, current draw, propeller size,
motor Kv, etc. This is a fast way how to get a model in the air.
However, the experienced user still has complete flexibility to
insert any values of his choice. [200]

Traditional motor calculator programs ignore airframe
characteristics, and can result in poor-flying systems. On the
other hand, WebOCalc matches airframe and power system
characteristics every time. This may ensure great performance
for model aircraft. [200]

Fig. 50. WebOcalc 1.7.6 with estimated data

PowerCalc is motor/propeller simulation software which
can help a user to effectively choose a motor and propeller for
his electric powered model airplane. It may be used along with
WebOCalc to quickly focus on the power system. [201]

The traditional mathematical model for motor simulation
uses three motor constants, Kv, Rm, and I0. This three-constant
model works well, but has significant inaccuracies. In contrast,
PowerCalc is based on a four-constant mathematical model
which should predict motor performance better than the
traditional three-constant motor model does. [201]

Web site [202] contains the series of calculators, and
Aerodynamics, Beginners' Guide. The links to calculators (or
calculators themselves) are often placed inside the text of the
Guide. There are at least these calculators:

 Aircraft Center of Gravity Calculator [203]

 Canard Center of Gravity Calculator [204]

 Wing loading Calculator [205]

 Stall Speed Calculator [206]

 Level Flight Speed Calculator [207]

 Motor Efficiency Calculator [208]

 Propeller's Static Thrust Estimation [209]

 Electric Motor & Prop Combination Estimation [210]

 Power/Weight Performance Estimation [211]

eCalc is a set of four calculators as can be seen in Fig. 51.
eCalc provides web-based services to calculate, evaluate, and
design electric motor driven systems for remote controlled
(RC) models. However, despite eCalc can be useful, only its
restricted demo version with reduced functionality and 25%
random database is free for use. [199]

Fig. 51. The set of four eCalc calculators [199]

6) Apame
Apame is a 3D Panel Method program used for calculating

aerodynamic forces and moments acting on an aircraft in flight
as can be seen in Fig. 52. [220]

 Apame can replace CFD programs (like Fluent,
OpenFOAM, etc.) for subsonic attached flows where
calculation time is important and friction drag can be ignored
(optimization problems, conceptual designs, aerodynamic load
generation, etc.). The calculation time is much shorter
compared to classic CFD; seconds vs. hours. [220] [221]

Project can perform two operations; evaluation and
optimization: [220] [221]

 Evaluation: for this purpose, ApameGUI is used to
import already available meshes (e.g. meshes in

NASTRAN and FLUENT format), pre-process it, send
it to the ApameSolver and evaluate results.

 Optimization: in this case, user-defined scripts are
used to parametrically generate mesh and send it to the
ApameSolver in a single optimization step. For this
purpose, ApameScripts are given inside Apame
package as base examples.

Fig. 52. An analysis of an aircraft by using APAME [220]

7) PANUKL 2012
PANUKL is a package to compute the aerodynamic

characteristics of an aircraft using low order panel method,
where the Dirichlet problem is solved and the quadrangle
panels are used. The flat vortex wake, parallel to the free
stream velocity or parallel to chord is assumed. Moreover, it
contains functions for pre- and post-processing. [238] [239]
[240]

Current version contains new editor and mesh generator;
however, the old version of mesh generator is still embedded.
New geometry definition methods are available only in the new
mesh generator. Current version contains also option to export
the geometry and the results (pressure distribution) to FEM
analysis (Calculix). [238]

Computational method strongly depends on the way of
aircraft body modelling; generally, there are two methods in
which the body of an aircraft is modeled using: [239]

 Thin surfaces

 A three dimensional model

PANUKL 2012 application is composed of three main
subprogram groups: [239]

 The data preparation programs

 The programs to process data and make computations

 The managing program for showing the obtained
results and make appropriate changes and
modifications.

PANUKL can be used to create a grid (made from
quadrangle panels as can be seen in Fig. 53) which describes an
aircraft body. To create the grid file (.INP), the following input
files have to be prepared: [239]

 Main aircraft geometry description file (.MS2) -
contains aircraft reference data, information about
wing, tail, fuselage overall geometry

 Wing airfoil geometry file (.PRF, .DAT, .KOO)

 Fuselage geometry file (.F)

Fig. 53. A model displayed in the Grid Viewer of PANUKL [239]

8) Simulation and Dynamic Stability Analysis (SDSA)
SDSA module was developed as the CEASIOM (described

in the chapter V.K.4)b)) module; however it can be run as a
standalone application as well. SDSA was developed for
stability and control analysis and is able to compute stability
characteristics using linear and nonlinear simulation model as
well. [240] [241]

SDSA uses the same 6-DOF mathematical nonlinear model
of the aircraft motion for all functions. For the eigenvalue
analysis, the model is linearized numerically by computing the
Jacobian matrix of state derivatives around the equilibrium
(trim) point. Eigenvalues and eigenvectors analysis allow
automatic recognition of the typical modes of motion and their
parameters. The flight simulation module can be used to
perform test flights and record flight parameters in real-time.
The recorded data can be used for identification of the typical
modes of motions and their parameters (period, damping
coefficient, phase shift). The stability analysis results can be
assessed on basis of CS/FAR, ICAO, and MIL requirements.
[240] [241]

Necessary data (aerodynamics, mass, inertia) can be
imported to SDSA as an XML file or as a set of plain text files.
The second option is useful e.g. for experimental data. The data
set contains aerodynamic coefficients or/and stability
derivatives tables, mass and inertia data, propulsion data,
control derivatives and reference dimensions. The control and
propulsion data can be completed and edited using special
options of SDSA. SDSA accepts aerodynamic data as tables of
stability derivatives as function of angle of attack and Mach
number. SDSA also accepts a multidimensional array of force
and moment coefficients versus six state parameters (angle of
attack, Mach number, sideslip angle and rotational velocity
components). A similar array is defined for control derivatives
and stability derivatives versus selected accelerations (i.e. alpha
dot derivatives). All aerodynamic data (derivatives) can be
reviewed and are checked by comparison with typical values.
[240] [241]

SDSA may run in the batch mode and can send necessary
output data for an optimization procedure without any
prompting; as a result, the optimization process can run
completely in an automatic way; however, SDSA needs an

external application for the optimization process because it is
not included. [240]

9) XFLR5
XFLR5 is an analysis tool for airfoils, wings and planes

operating at low Reynolds Numbers and includes: [212] [213]
[214]

 XFoil's Direct and Inverse analysis capabilities

 Wing design and analysis capabilities based on the
Lifting Line Theory, on the Vortex Lattice Method,
and on a 3D Panel Method

The code has been intended and written exclusively for the
design of model sailplanes, for which it gives reasonable and
consistent results. One analysis of a sailplane can be seen in
Fig. 54. [214] [213]

Fig. 54. An analysis of a sailplane by using XFLR5 [213]

10) JBLADE
JBLADE is an open-source propeller design and analysis

code based on QBLADE and XFLR5. The airfoil performance
figures needed for the blades simulation come from
QBLADE’s coupling with XFOIL. This integration allows the
fast design of custom airfoils and computation of their polars.
[215] [216]

JBLADE uses the classical Blade Element Momentum
(BEM) theory modified to account for the 3D flow equilibrium.
The code can estimate the performance curves of a given
propeller design for off-design analysis. The software has a
graphical interface making easier to build and analyze the
propeller simulations. [215] [216]

JBLADE Capabilities are, for example, Extrapolation of
XFOIL generated or imported polar data to 360° Angle of
Attack with improved airfoil leading edge radius correlation,
Blade design and optimization including 3D visualization,
parametric simulations including evaluation of performance
over an airspeed, rotational speed, and pitch range, analysis and
prediction of performance curves for a given blade geometry,
manual selection of BEM correction algorithms, manual
selection of all simulation parameters, data browsing and

visualization as post processing, export functionality for all
created simulation data, blade geometry export functionality,
and storing of projects, blades, propellers and simulations in a
runtime database. [215] [216]

11) NACA Airfoil Generation – FoilGen and LADSON
FoilGen is an interactive FORTRAN program which allows

the user to construct airfoils using the NACA 4 digit or
modified 4 digit airfoil thickness distributions and the NACA 4
digit, 5 digit or 6- and 6A series camber lines. A variety of
output options are available on the screen. It can also create a
file for use as input to airfoil analysis programs. [217]

LADSON is a FORTRAN program which allows the user
to approximately obtain the NACA 6 digit or 6A digit airfoils.
The thickness distribution of these airfoils is not described by a
single equation. [217]

12) Gmsh
Gmsh is a 3D finite element grid/mesh generator with a

build-in CAD engine and post-processor. Its design goal is to
provide a fast, light and user-friendly meshing tool with
parametric input and advanced visualization capabilities. Gmsh
is built around four modules: geometry, mesh, solver and post-
processing. The specification of any input to these modules is
done either interactively using the graphical user interface or in
ASCII text files using Gmsh’s own scripting language. [218]

Gmsh may import MSH, STL, STEP, IGES, BREP, and
other files. Export to MSH, STL, MED, UNV, SU2, WRL and
others are possible. It can also be used in collaboration with,
for example, Code_Saturne, HiFiLES, PyFR, and enGrid
(described in the chapter V.K.13)). [224] [154] [156] [158]

13) enGrid
enGrid is an open-source mesh generation software which

is used predominantly for CFD applications. enGrid uses an in-
house development for surface meshing and prismatic
boundary layers. Internally, enGrid uses the VTK data
structures as well as the VTU file format. Currently, enGrid has
interfaces to Gmsh, STL, and few other file formats. [224]

enGrid provides native export to OpenFOAM and SU
2
.

This includes export capabilities for complete OpenFOAM
cases (including boundary conditions), as well as support for
polyhedral cells. [224]

14) Mission Planner
Mission Planner has more features than its name indicates:

it can interface with a PC flight simulator (FlightGear, JSBSim,
Xplane, and AeroSim RC) to create a full hardware-in-the-loop
(HIL) UAV simulator. Furthermore, Point-and-click waypoint
entry using Google Maps/Bing/Open street maps/Custom
WMS may be created. [219]

VI. RESULTS AND DISCUSSION

As can be seen in previous chapters, many applications can
be used for design, analysis, modelling, and simulation of a
UAV. However, all of them may not be used in one UAV
project because they are, for example, focused on different
types of UAVs (fixed-wing, rotary-wing, flapping-wing,
lighter-than-air, etc.), or have better alternatives.

Fig. 55 shows all software which can create, or supports the
items required for the efficient modelling and simulation of a
UAV as described in the chapter IV (i.e. a UAV mathematical
model, a control system, FDM, etc.)

The extended version of the categories in Fig. 55 may be
listed as follows (the applications may not be limited only to
this classification):

 Conceptual/Preliminary Design

 OpenVSP (V.H)

 Larosterna (V.K.1))

 VAMPzero (V.K.2))

 CEASIOM (V.K.4)b))

 CAD

 FreeCAD (V.G.1))

 SALOME (V.G.2))

 BRL-CAD (V.G.3))

 QCAD (V.G.4))

 Aerodynamics and Mechanics

 Airfoil

 JavaFoil (V.I)

 XFOIL (V.D.2))

 The Eppler Airfoil Code (PROFILE - V.E.1))

 Tornado (V.K.4))

 Minimum Drag Camber Surface by Vortex
Lattice (VLMD - V.E.2))

 Induced Drag from Span Load Distribution
(INDUCED - V.E.3))

 Flutter Analysis by Strip Theory (FLUTTER -
V.E.4))

 Mean Aerodynamic Chord of a Wing
(GETMAC - V.E.5))

 NACA Airfoil Coordinates (NACA456 -
V.E.6))

 AirfoilTools.com (V.E.6)a))

 NACA Airfoil Generation (FoilGen and
LADSON - V.K.11))

 Complete Aerodynamics

o CFD

 Stanford University Unstructured (SU
2
 -

V.F.1))

 OpenFOAM (V.F.2))

 Code_Saturne (V.F.3))

 High Fidelity Large Eddy Simulation
(HiFiLES - V.F.4))

 PyFR (V.F.5))

 Athena Vortex Lattice (AVL - V.D.1))

 Apame (V.K.6))

 PANUKL 2012 (V.K.7)) & SDSA (V.K.8))

 Digital Datcom (V.E.9)), Datcom R2 and
OpenDatcom (V.E.9)a)), or Datcom+
(V.E.9)b))

 Predicting Subsonic or Supersonic Linear
Potential Flows about Arbitrary
Configurations Using a Higher Order Panel
Method (PANAIR - V.E.8))

 XFLR5 (V.K.7))

 CEASIOM (V.K.4)b))

 Aeroelastic Analysis for Rotorcraft in Flight
or in a Wind Tunnel (ROTOR, work-in-
progress - V.E.10))

 Propulsion

 JavaProp (V.J)

 QPROP/QMIL (V.D.3))

 CROTOR/XROTOR (V.D.4)a) / V.D.4))

 Ducted Fan Design Code (DFDC / DFDC
v070-ES - V.D.5) / V.D.5)a))

 JBLADE (V.K.10))

 Mass Analyzer

 Mass Properties of a Rigid Structure
(MASSPROP - V.E.7))

 Calculators (V.K.5))

o Aerodynamics

 Aircraft Center of Gravity

 Canard Center of Gravity

 Wing loading

 Stall Speed

o Propulsion

 WebOcalc

 PowerCalc

 Motor Efficiency

 Propeller's Static Thrust

 Electric Motor & Prop Combination

 Level Flight Speed

 Power/Weight Performance

 eCalc

o Flapping-Wing Calculators

 FlapDesign

 Orni

 Flight Dynamics Model (FDM)

 JSBSim (V.A)

 YASim (V.B)

 UIUC (V.B)

 Aerospace blockset for Scilab/XCos (V.K.4))

 SDSA (V.K.8))

 CEASIOM (V.K.4)b))

 Simulation Software (Application/Framework)

 FlightGear (V.B)

 OpenEaagles (V.C)

 Simulation and Dynamic Stability Analysis
(SDSA - V.K.8))

 Flapping Flight Simulation Package (V.K.4)a))

 Dynamic Soaring simulation and optimization
program (DSOPT - V.D.6))

 CEASIOM (V.K.4)b))

 Mission Planner (HIL Simulation - V.K.14))

 Propulsion and Control System

 JSBSim (V.A)

 YASim (V.B)

 FlightGear (V.B)

 OpenEaagles (V.C)

 Digital Datcom (V.E.9))

 SDSA (V.K.8))

 CEASIOM (V.K.4)b))

 View

 3-VIEW and SILHOUETTE (V.E.12))

 The TiGL Geometry Library and TiGLViewer
(V.K.2))

 OpenVSP (V.H)

 CAD applications (V.G)

 Many other 3D/2D Viewers.

 Geometry Generators or Converters

 Wireframe generator (MAKEWGS - V.E.11))

 PANAIR input pre-processor (PANIN - V.E.8)a))

 Aeromatic (V.A.1))

 Gmsh (V.K.12))

 enGrid (V.K.13))

 OpenVSP (V.H)

 Larosterna (V.K.1))

 FreeCAD (V.G.1))

 CEASIOM (V.K.4)b))

 Geometry Conversion to LaWGS (2WGS -
V.E.13))

 Geometry Conversion to VRML World (VRML -
V.E.14))

 The Common Parametric Aircraft Configuration
Schema (CPACS - V.K.2))

 Other generators or converters; for example, in the
CAD applications.

Fig. 55. The block diagram of the free software for the design, analysis, modelling, and simulation of UAVs

If we consider the structure of the UAV system as
illustrated in the chapter III, software for airframe, wings, and
airfoil creation and for aerodynamics analysis represent a
majority in Fig. 55. This situation is not surprise because the
aerodynamics of a UAV is probably always the most important
section due to its maneuverability, stability, and energy
efficiency; thus, the modelling of any new UAV should always
start with this part.

Propulsion and control systems are the second most often
investigated area of UAVs and are predominantly solved in
FDMs, simulators, and calculators. However, detailed
aerodynamics and efficiency of propellers, rotors, or ducted
fans should be analyzed by using separate applications such as
JavaProp, QPROP/QMIL, CROTOR/XROTOR, DFDC, and
JBLADE.

Energy storage systems are mostly included in FDMs,
simulators, and calculators. However, the models of energy
storage should be innovated, e.g. the electric storage in JSBSim
should simulate its charge and discharge process, and the new
energy source models such as solar cells or chemical fuels may
be added.

Transmission and sensors have not been sufficiently solved
in the free software. Some principles of transmission and
sensors can be found inside OpenEaagles and FlightGear
source codes; however, more development is necessary in this
area. The best candidates for these innovations are, of course,

OpenEaagles and FlightGear; nevertheless also JSBSim and
CEASIOM may be appropriate.

A. Evaluation, Compatibility and Conversion

The software in Fig. 55 can be separated into the
aerodynamic and mechanical part, and the modelling and
simulation part. The diagram also shows the ways how
information can be exchanged between the software. In fact,
there could also be illustrated the potential feedback from
simulation to aerodynamic or mechanical part. However, when
the modelling and simulation part starts, the aerodynamic and
mechanical part should be already solved. It is obvious, that
when all the aerodynamic and mechanical properties of a UAV
are known, the aerodynamic and mechanical part does not have
to be performed.

All applications have an indirect connection between
themselves. It means that their results may affect inputs to
other programs; however, these dependencies have to be
recorded and applied manually by user. On the other hand,
some applications also contain a direct connection which
means that an exchange file format exists. It applies especially
for 3D geometric and mesh formats.

If we start with the conceptual design, OpenVSP seems to
be the best option because the parametric modelling provides
an easy way for the building of an initial UAV model.
Moreover, OpenVSP may import and export various types of
formats, such as STL, MSH, 3DM, HRM, FEL, X3D,

NASTRAN, and other formats which simplify the use in other
software.

Larosterna cleverly combines the 2D and 3D visual
parametric designs which make it the great second option for
conceptual design. This approach gives designers the
possibility to perform easy and precise changes. Larosterna can
import/export various types of the exchange files; as a result,
the connection from/to OpenVSP, CEASIOM, FreeCAD, SU

2
,

OpenFOAM, Code_Saturne, and other applications may be
found.

Another approach is to use CEASIOM which can be linked
to VAMPzero via CPACS. The reason for this connection has
been described in the chapter V.K.4)b). CEASIOM can be used
in the wide range of the design areas, e.g. conceptual design,
aerodynamic analysis, flight control system simulation, etc.;
thus, the problems with conversion are not important unless a
more accurate or other method for analysis is needed.
However, the dependence on Matlab and maybe also the closed
source code are the main disadvantages of CEASIOM. It is
obvious that when the institution owns a Matlab license, the
first disadvantage becomes irrelevant; and consequently user
can use this comprehensive software for conceptual and
preliminary design without major problems.

CAD applications can also be used for conceptual design;
for example, FreeCAD was presented as appropriate software
for this in [131]. Moreover, FreeCAD may convert many file
formats, such as STL, VRML, DXF, NASTRAN, DAE, SVG
and other formats; consequently, a 3D model can be imported
to many other programs, including OpenVSP which may be
advantageous to easy mesh generation.

SALOME has almost same advantages as FreeCAD; it can
import or export IGES, STEP, BREP, MED, UNV, DAT, STL
files. Consequently, exported files can be imported to CFD
applications such as Code_Saturne or SU

2
. In fact, the process

of the conversion to SU
2
 is not direct; SALOME has to export

the file to enGrid, Larosterna, or Gmsh (Gmsh is not
recommended for the SU2 file in 3D), which may export the
file to SU

2
. Nevertheless, a script was written to perform the

direct conversion from SALOME to SU
2
 in [228]. Since the

script may be incomplete, the conversion via mesh convertors
seems to be better. The same way for the conversion to SU

2

can be used also in other applications, such as OpenVSP and
FreeCAD. The mesh of the SU2 format may be displayed
probably only in Larosterna.

The MSH format (and other formats) may be used to
import files to CFD applications (OpenFOAM, Code_Saturne,
HiFiLES, and PyFR), where an aircraft can be analyzed by
using quality methods and algorithms. Some other applications
for aerodynamic analysis might also import different types of
formats, for example Apame may import NASTRAN format.
Another interesting choice of the interconnection of the
applications can be seen in the CAELinux distribution which is
based on open-source CAD/CAM, CFD, FEA, and CAE
software such as Freecad, LibreCAD, PyCAM, Cura, Salome,
Code_Saturne, OpenFOAM, Code_Aster, and ParaView. [242]
[243]

The collection of PDAS (V.E) has mostly possibility to
interchange UAV’s information via LaWGS file format. If not,
the internal formats of some applications can be converted via
2WGS to the LaWGS format. Moreover, LaWGS may be
converted to VRML 1.0 via VRML World program; thus it can
be imported to FlightGear or FreeCAD.

An example of the indirect connection can be seen in
calculators. The results from calculators may be used as an
input to OpenVSP, Larosterna, FreeCAD, JSBSim models, and
especially to propulsion applications. The calculators mostly
solve the problems in the area of engines, propellers, power,
batteries, and aerodynamics.

The section for the wing and airfoil analysis can be used
nearly separately from other parts of design. Nevertheless,
results may be applied to conceptual and preliminary design;
e.g. OpenVSP can read an airfoil file and thus change the
airfoil of a designed UAV.

The software for the analysis of propellers, rotors, and fans
can be used almost separately from other parts of design.
However, when we want to use, for example, ducted fan, we
must take into account its placement, and thus, suitably change
the physical design of the UAV. In addition, data from these
applications may be manually inserted to, for instance,
JSBSim.

Since JSBSim is based predominantly on aerodynamic and
control derivatives, the conversion to the JSBSim model should
be simple. The elemental structure of the JSBSim model may
be created with Aeromatic. Then, the particular generated
values should be changed to correct values. It is always
important to check the Aeromatic results because they are
questionable and may not always meet the specific
requirements for the UAV (as described in the chapter V.A.1)).

However, it is self-evident that a direct conversion to the
JSBSim model would be better. The direct conversion is
implemented in Datcom+ and Datcom2JSBSim applications;
however, it is necessary to define a new airframe specification
of the UAV in Datcom format. Moreover, the output JSBSim
model depends on Datcom results only.

Because JSBSim is the default FDM in FlightGear and
OpenEaagles, there is no problem with the conversion.
However, the creation of other important files, such as the 3D
model or electrical file, may be necessary. Nevertheless,
FlightGear can import 3D formats, such as VRML1 and DXF,
thus a simple exchange from, for example, FreeCAD or
applications of PDAS should be possible.

If we compare FlightGear and OpenEaagles: OpenEaagles
may be better used as a battle manager or for the development
of a multi-agent cooperation and complex cybernetic system of
the UAV; in contrast, FlightGear is more appropriate for the
visualization of a UAV during flight and the examination of
UAV flight control system. Moreover, OpenEaagles is a
framework with the possibility to simulate tanks, boats,
lifeforms, etc. On the other hand, FlightGear is the complete
application focused mainly (but not only) on aircraft and may
use more FDMs to simulation.

All the flight simulators contain FDM; however, only some
of them may be easily separated (at least partially) from the rest
of the program. This is the reason why these two categories
have been divided in the diagram (Fig. 55).

Because the development seems to be cyclical process, the
results from simulation systems may be the reason for
modification of the aerodynamic design of the UAV which is
being developed. However, after the successful design of the
UAV, the production drawings can be created with CAD tools,
such as FreeCAD, to help with the physical realization of the
UAV. In addition, the 3D model may also be usable for the
physical realization; e.g. because of the 3D printing of a
prototype or due to a more intelligible display.

B. Possible Future Improvements

The aerodynamic and mechanical part is the most variable
section in the free software. There are many of these
applications which are being developed, and as a result, new
programs in this field may signify the wastage of resources. On
the other hand, the support and extension of these already
developing applications should be the proper way.

The main lack seems to be the exchange formats of the free
software system. Although the direct conversion paths between
applications exist, some of them may not be optimal. As a
result, the development of new import/export formats might be
the key to creation of the complex system with the variable
possibilities of use. For example, a direct conversion between
internal parametric formats of OpenVSP and Larosterna
together with a direct conversion of aerodynamic characteristic
to JSBSim model may be usable. Moreover, import/export
formats can reduce the time of the development of a UAV in
future.

In CAD or conceptual-design programs, the automatic
generation of production drawings from 3D model with all
necessary views, spot heights and UAV proportions might
simplify the process of the following manufacture. FreeCAD
seems to be the best option for this purpose because it contains
the module to create the 2D production drawings which can be
easily extended.

In modelling and simulation part, there are more things
which need additional programming for efficiently simulation
of UAVs. For instance, in JSBSim and FlightGear, the situation
about electric engines, electric sources, and electronic circuits
should be improved; for example, these applications might
simulate the engine temperature, accumulators, solar cells, fuel
cells, methanol and hydrogen energy sources, differences
between AC and DC engines, etc.

A LQR- or Artificial Intelligence-based control system
should be implemented into flight control system of JSBSim,
FlightGear, or OpenEaagles. In addition, an optimal control
setting could be calculated with solving the LQG (Linear-
Quadratic-Gaussian) problem or with using an evolution
algorithm. However, LQR-based flight control system is
included in SDSA application; thus, this type of control can
also be simulated.

Furthermore, tests of new algorithms intended for
intelligent UAVs which should detect living beings (target

tracking), possible collisions, and perform reconnaissance
might be implemented into FlightGear and OpenEaagles. There
is also the basis to program the physical principles of various
radio communications which can be applied to the
investigation of radio communication failure and to the testing
of the UAV behavior when the failure occurs. The simulation
of an interface for the command adjustment from control
ground station to the UAV may be another interesting
improvement.

OpenEaagles and FlightGear are probably the best
candidates for the simulation of the sensors and cameras. In
this case, appropriate sources (e.g. chemical substances) for
sensor activation should also be programmed. This
functionality might be added by using an external library.
However, the integration of OpenEaagles framework into
FlightGear seems to be an interesting option; these two
applications may be used, for example, for the investigation of
multi-agent cooperation.

Other software, such as Orni tools might be a suitable basis
for the flight dynamics model of ornithopters. The theory
described in Flapping Flight Simulation Package may also be
usable. However, another computational environment or
programming language, than that which was used for Orni, (for
instance, C++, Python, Scilab/Xcos, Octave, etc.) should be
used for Orni Flight Dynamics Model because the original
computational environment is not appropriate for FDM
development for free use.

The rewriting of ROTOR program to a more convenient
programming language (such as C++ or Python) would enable
to create the extensive options for the modelling of a rotorcraft.
Moreover, a rotorcraft-based FDM may be developed on basis
of ROTOR.

VII. CONCLUSION

This paper has described the most interesting free software
for the design, analysis, modelling, and simulation of a UAV.
Although the selection of the free software has been focused on
small (mini) subsonic UAVs, the software can be used for
other categories of aircraft in some cases; e.g. for MAVs, large
gliders, transonic airplanes, etc. The fundamentals of airplane
flight mechanics and aerodynamics, the general structure of a
UAV, and the basics of the modelling and simulation of a UAV
have also been presented.

The design, analysis, modelling and simulation are
probably the first steps in development of a UAV. This
approach is advantageous because a computer model allows
better repeatability in testing. Consequently, it reduces the
probability that the UAV and especially the autopilot will be
designed and implemented incorrectly which could result in the
UAV crash in the real world; and every crash can increase the
distrust of UAVs and of their commercial using, especially in
cities.

It has been explained that FDM and Flight Simulators are
used in the development process of a UAV for the testing of its
design and control systems. The combination of JSBSim Flight
Dynamic Model and FlightGear Flight Simulator provide an
excellent base for building the simulation environment.

However, because the aerodynamic coefficients and other
parameters are not generally provided by FDM, a large number
of the programs for the UAV aerodynamic and mechanical
analysis have been described in detail in this paper. Despite the
many connections between applications have been presented in
the chapter VI.A, there may be found other possible
connections.

The CFD programs (such as SU
2
, OpenFOAM,

Code_Saturne, HiFiLES, and PyFR) have the prominent
position in the aerodynamic analysis nowadays. Moreover,
HiFiLES and PyFR represent the high-order methods which
should be very flexible and accurate; however, further
development of these applications may be necessary. Finite
Element Method (FEM) software, e.g. Calculix, might also be
used in an analysis process. Nevertheless, these methods are
focused more on the structural analysis than the aerodynamic
analysis.

We can agree with the statement in [143] that the
parametric design systems, such as OpenVSP or Larosterna,
are excellent tools for a rapid prototyping technique in
aeronautics.

The free software for the design, analysis, modelling, and
simulation of the fixed-wing configuration is extensive. There
is not such a wide selection for the rotary-wing configuration;
however, the selection should be satisfactory. The creation of a
hybrid UAV should also be possible, at worst in a limited
degree. On the other hand, the number of the free software for
the flapping-wing and especially for the lighter-than-air
configuration may not be sufficient.

The future of any UAV system is open to a wide range of
research topics: collision avoidance, autonomous formation
flight, navigation without the use of GPS, the automatic
detection of a potential criminal, and other research topics.

ACKNOWLEDGMENT

This work was supported by the Internal Grant Agency of
Tomas Bata University in Zlín under the projects No.
IGA/FAI/2015/001 and IGA/FAI/2014/006.

REFERENCES

[1] X.Q. Chen, Y.Q. Chen, and J.G. Chase. Mobile Robots - State of the Art
in Land, Sea, Air, and Collaborative Missions. Croatia: In-Teh, May
2009, pp.177-201.

[2] N. M. Jodeh. Development of Autonomous Unmanned Aerial Vehicle
Research Platform: Modeling, Simulating, and Flight Testing. Ohio,
USA: Wright-Patterson Air Force Base, March 2006, 185 p.

[3] T. Abdunabi. Modelling and Autonomous Flight Simulation of a Small
Unmanned Aerial Vehicle. Sheffield, UK: The University of Sheffield,
August 2006, 61 p.

[4] T. M. Foster. Dynamic Stability and Handling Qualities of Small
Unmanned-Aerial-Vehicles. Brigham, USA: Brigham Young University,
April 2005, 125 p.

[5] R. Austin. Unmanned Aircraft Systems: UAVs Design, Development and
Deployment. Wiltshire, UK: Wiley, 2010, 332 p.

[6] D. G. Hull. Fundamentals of Airplane Flight Mechanics. Springer, 2007,
298 p.

[7] T.V. Chelaru, V. Pana, and A. Chelaru. “Dynamics and flight control of
the UAV formations,” WSEAS Transactions on Systems and Control,
vol. 4 no. 4, pp. 198-210, April 2009.

[8] R. Carmichael. (2013, January 31). Public Domain Aeronautical
Software. [Online]. Available: http://www.pdas.com

[9] R. Carmichael. (2013, March 28). Public Domain Aeronautical
Software: Contents. [Online]. Available:
http://www.pdas.com/contents15.html

[10] R. Carmichael. (2013, April 21). Description of Digital Datcom.
[Online]. Available: http://www.pdas.com/datcomDescription.html

[11] R. Carmichael. (2013, February 7). Addressable Configurations in
Digital Datcom. [Online]. Available:
http://www.pdas.com/datcomTable1.html

[12] JSBSim contributors. JSBSim Open Source Flight Dynamics Model.
[Online]. Available: http://jsbsim.sourceforge.net/

[13] JSBSim contributors. (2005, December 31). Aeromatic: version 0.9.
[Online]. Available: http://jsbsim.sourceforge.net/aeromatic2.html

[14] FlightGear contributors. FlightGear Flight Simulator: Introduction.
[Online]. Available: http://www.flightgear.org/about/

[15] FlightGear contributors. FlightGear Flight Simulator: Features.
[Online]. Available: http://www.flightgear.org/about/features/

[16] FlightGear contributors. (2014, May 12). FlightGear Wiki - UIUC.
[Online]. Available: http://wiki.flightgear.org/UIUC

[17] D. Hodson. (2014, January 10). OpenEaagles Simulation Framework.
[Online]. Available: http://www.openeaagles.org

[18] D. Hodson. (2012, December 03). OpenEaagles Simulation Framework:
Overview. [Online]. Available:
http://www.openeaagles.org/wiki/doku.php?id=overview:overview

[19] D. Hodson, D. Gehl, and R. Baldwin. “Building Distributed Simulations
Utilizing the EAAGLES Framework,” Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC), vol. 5, no. 2, May
2006.

[20] D. Hodson. “OPENEAAGLES, An Open Source Simulation
Framework,” A Publication of the AIAA Modeling and Simulation
Technical Committee, vol. 1, no. 1, January 2008.

[21] M. Drela. (2013, December 23). XFOIL: Subsonic Airfoil Development
System. [Online]. Available: http://web.mit.edu/drela/Public/web/xfoil/

[22] Redhammer Consulting Ltd. (2010). TORNADO. [Online]. Available:
http://www.redhammer.se/tornado/index.html

[23] P. Zagórski and C. David. (2013). Aerospace Blockset for Xcos.
[Online]. Available: http://forge.scilab.org/index.php/p/aerospace-
blockset/

[24] Luca Petricca, Per Ohlckers, and Christopher Grinde. “Micro- and
Nano-Air Vehicles: State of the Art,” International Journal of
Aerospace Engineering, vol. 2011, Article ID 214549, 17 pages, 2011.
doi:10.1155/2011/214549

[25] M. G. Perhinschi, M. R. Napolitano, and S. Tamayo. “Integrated
Simulation Environment for Unmanned Autonomous Systems—
Towards a Conceptual Framework,” Modelling and Simulation in
Engineering, vol. 2010, Article ID 736201, 12 pages, 2010.
doi:10.1155/2010/736201

[26] Madhava Syamlal, Thomas J. O'Brien, Sofiane Benyahia, Aytekin Gel,
and Sreekanth Pannala. “Open-Source Software in Computational
Research: A Case Study,” Modelling and Simulation in Engineering,
vol. 2008, Article ID 937542, 10 pages, 2008. doi:10.1155/2008/937542

[27] W. L. Oberkampf and T. G. Trucano. “Verification and validation in
computational fluid dynamics,” Sandia Report SAND2002-0529, Sandia
National Laboratories, Albuquerque, NM, USA, March 2002.

[28] T. J. Mueller and J. D. DeLaurier. Aerodynamics of small vehicles.
Annu. Rev. Fluid Mech, vol. 35, no. 1, pp. 89-111. 2003. DOI:
10.1146/annurev.fluid.35.101101.161102.

[29] P. B. S. Lissaman. Low-reynolds-number airfoils. Annu. Rev. Fluid
Mech, vol. 15, no. 1, pp. 223-239. 1983. DOI:
10.1146/annurev.fl.15.010183.001255.

[30] P. Shankar, W. Chung, J. Husman, and V. Wells. “A novel software
framework for teaching aircraft dynamics and control,” Computer
Applications in Engineering Education, 9 pages. 2013. DOI:
10.1002/cae.21579.

[31] H. Boussalis, K. Valavanis, D. Guillaume, F. Pena, E. U. Diaz, and J.
Alvarenga. “Control of a simulated wing structure with multiple

http://www.pdas.com/
http://www.pdas.com/contents15.html
http://www.pdas.com/datcomDescription.html
http://www.pdas.com/datcomTable1.html
http://jsbsim.sourceforge.net/
http://jsbsim.sourceforge.net/aeromatic2.html
http://www.flightgear.org/about/
http://www.flightgear.org/about/features/
http://wiki.flightgear.org/UIUC
http://www.openeaagles.org/
http://www.openeaagles.org/wiki/doku.php?id=overview:overview
http://web.mit.edu/drela/Public/web/xfoil/
http://www.redhammer.se/tornado/index.html
http://forge.scilab.org/index.php/p/aerospace-blockset/
http://forge.scilab.org/index.php/p/aerospace-blockset/

segmented control surfaces,” 21st Mediterranean Conference on Control
and Automation (Med), pp. 501-506. 2013.

[32] C. Lafountain, K. Cohen, and S. Abdallah. Use of XFOIL in design of
camber-controlled morphing UAVs. Computer Applications in
Engineering Education, vol. 20, no. 4, pp. 673-680. 2012. DOI:
10.1002/cae.20437.

[33] A. Swarup and Sudhir. “Comparison of Quadrotor Performance Using
Backstepping and Sliding Mode Control,” Proceedings of the 2014
International Conference on Circuits, Systems and Control, Interlaken,
Switzerland, February 22-24, 2014, pp. 79-82.

[34] Chao Yun, Xiaomin Li. “Design of UAV Flight Simulation Software
Based on Simulation Training Method,” WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS, volume 10, issue 2,
February 2013, pp. 37-46.

[35] G. Gol, N. F. Bayraktar, and E. Kiyak. “PID Controlling of the
Quadrotor and Sensor Performance Tests,” INTERNATIONAL
JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING,
Volume 8, 2014, pp. 266-275.

[36] Y. Naidoo, R. Stopforth, and G. Bright. “Development of an UAV for
search & rescue applications: mechatronic integration for a quadrotor
helicopter,” IEEE Africon 2011, Livingstone, Zambia, September 13-15,
2011.

[37] O. Gonzalez-Espasandin, T. J. Leo, and E. Navarro-Arevalo. “Fuel cells:
A real option for unmanned aerial vehicles propulsion,” The Scientific
World Journal. Volume 2014, Article ID 497642, 12 pages. DOI:
10.1155/2014/497642.

[38] B. Uragun. “Energy efficiency for unmanned aerial vehicles,” 2011 10th
International Conference on Machine Learning and Applications,
Honolulu, Hawaii, USA, December 18-21, 2011. DOI:
10.1109/ICMLA.2011.159

[39] M. B. Srikanth, Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky. “A
robust environment for simulation and testing of adaptive control for
mini-UAVs,” 2009 American Control Conference, St. Louis, MO, USA,
June 10-12, 2009.

[40] E. Kahale, P. C. Garcia, and Y. Bestaoui. “Autonomous path tracking of
a kinematic airship in presence of unknown gust,” J. Intell. Robot. Syst,
vol. 69, no. 1-4, pp. 431-446. 2013. DOI: 10.1007/s10846-012-9709-2

[41] U.S. Department of Transportation. Rotorcraft Flying Handbook.
[Online]. U.S. Department of Transportation, Federal Aviation
Administration, Flight Standards Service, FAA-H-8083-21, Washington,
D.C., USA, 2000. Available:
http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/me
dia/faa-h-8083-21.pdf

[42] U.S. Department of Transportation. Helicopter Flying Handbook.
[Online]. U.S. Department of Transportation, Federal Aviation
Administration, Flight Standards Service, FAA-H-8083-21A, USA,
2012. Available:
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/h
elicopter_flying_handbook/media/helicopter_flying_handbook.pdf

[43] Dai Jing and Wang Haifeng. “System Health Management for
Unmanned Aerial Vehicle: Conception, State-of-Art, Framework and
Challenge,” The 11th IEEE International Conference on Electronic
Measurement & Instruments, Harbin, China, August 16-18, 2013.

[44] Tomáš Vogeltanz and Roman Jašek. “Free Software for the Modelling
and Simulation of a mini-UAV,” Mathematics and Computers in
Science and Industry, Varna, Bulgaria, September 13-15, 2014, pp. 210-
215.

[45] S. Kurnaz, O. Cetin, and O. Kaynak. “Adaptive neuro-fuzzy inference
system based autonomous flight control of unmanned air vehicles,”
Expert Systems with Applications, vol. 37, issue 2, 2010, pp. 1229-1234.

[46] P. Fabiani, V. Fuertes, A. Piquereau, R. Mampey, F. Teichteil-
Königsbuch. “Autonomous flight and navigation of VTOL UAVs: from
autonomy demonstrations to out-of-sight flights,” Aerospace Science
and Technology, vol. 11, issue 2-3, pp. 183-193, 2007.

[47] J. Qi, J. Liu, B. Zhao, S. Mei, J. Han, and H. Shang, “Visual simulation
system design of soft-wing UAV based on FlightGear,” IEEE
International Conference on Mechatronics and Automation, IEEE ICMA
2014, Tianjin, China, August 2-5, 2014, pp. 1188-1192.

[48] O. Cetin, S. Kurnaz, and O. Kaynak. “Fuzzy logic based approach to
design of autonomous landing system for unmanned aerial vehicles,”
Journal of Intelligent and Robotic Systems: Theory and Applications,
vol. 61, issue 1-4, 2011, pp. 239-250.

[49] V. Kumar, H. Yong, D. Min, and E. Choi, “Auto landing control for
small scale unmanned helicopter with flight gear and HILS,” Proceeding
- 5th International Conference on Computer Sciences and Convergence
Information Technology, ICCIT 2010, Seoul, Korea, November 30 -
December 2, 2010, pp. 676-681.

[50] J. Ye, H. Guo, S. Tang, and Q. Wang. “The research on visual flight
simulation for unmanned helicopter,” Communications in Computer and
Information Science, vol. 325 CCIS, 2012, pp. 332-341.

[51] F. Mazhar, A. M. Khan, I. A. Chaudhry, and M. Ahsan. “On using
neural networks in UAV structural design for CFD data fitting and
classification,” Aerospace Science and Technology, vol. 30, issue 1,
2013, pp. 210-225.

[52] David W. Babka. Flight Testing in a Simulation Based Environment.
San Luis Obispo, California, USA: California Polytechnic University,
2011, 18 p. [online] Available:
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1045&co
ntext=aerosp

[53] Douglas J. Pederson. Conceptual design tool to analyze
electrochemically-powered micro air vehicles. Ohio, USA: Wright-
Patterson Air Force Base, March 2011, 193 p.

[54] Q. R. Wald. “The aerodynamics of propellers,” Progress in Aerospace
Sciences, vol. 42, issue 2, 2006, pp. 85-128.

[55] Jon S. Berndt. “JSBSim: An open source flight dynamics model in
C++,” Collection of Technical Papers - AIAA Modeling and Simulation
Technologies Conference, vol. 1, 2004, pp. 261-287.

[56] J. S. Berndt, A. De Marco, “Progress on and usage of the open source
flight dynamics model software library, JSBSim,” AIAA Modeling and
Simulation Technologies Conference, Chicago, Illinois, USA, August
10-12, 2009.

[57] Jon S. Berndt and the JSBSim Development Team. (2011, June 9).
JSBSim: An open source, platform-independent, flight dynamics model
in C++. [Online]. Available:
http://jsbsim.sourceforge.net/JSBSimReferenceManual.pdf

[58] Ser Keong Lim and Chua Ching Hao. (2012). Modeling Unmanned
Vehicle System. [Online]. Available:
https://engineering.purdue.edu/HSL/uploads/papers/UVG_S10.pdf

[59] Anders Gidenstam. (2013, June 25). Lighter-than-air support for airship
and balloon simulation in JSBSim and FlightGear. [Online]. Available:
http://www.gidenstam.org/FlightGear/Airships/

[60] Michael Basler, Martin Spott, Stuart Buchanan, Jon Berndt et al. (2014,
August 11). The FlightGear Manual. [Online]. Available:
http://mapserver.flightgear.org/getstart.pdf

[61] Michael S. Selig, Rob Deters, and Glen Dimock. (2002, March 10).
Aircraft Dynamics Models for Use with FlightGear: Modeling and
Simulation. [Online]. Available: http://m-
selig.ae.illinois.edu/apasim/Aircraft-uiuc.html

[62] J. Zhang, Q. Geng, and Q. Fei, “UAV flight control system modeling
and simulation based on flightgear,” IET Conference Publications,
Xiamen, China, March 3-5, 2012.

[63] 3DRobotics. (2014, May 27). HIL Quad Simulator. [Online]. Available:
http://copter.ardupilot.com/wiki/hil-quad/

[64] R. Carmichael. (2014, February 13). Properties Of The U.S. Standard
Atmosphere 1976. [Online]. Available: http://www.pdas.com/atmos.html

[65] R. Carmichael. (2013, March 5). Real Gas Properties. [Online].
Available: http://www.pdas.com/gasp.html

[66] R. Carmichael. (2013, February 8). Thermodynamic and Transport
Properties of Fluids. [Online]. Available:
http://www.pdas.com/fluid.html

[67] R. Carmichael. (2013, February 12). vuCalc - A Compressible Flow
Calculator. [Online]. Available: http://www.pdas.com/vucalc.html

[68] R. Carmichael. (2013, February 12). A segmented mission analysis
program for low and high speed aircraft (NSEG). [Online]. Available:
http://www.pdas.com/nseg.html

http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/media/faa-h-8083-21.pdf
http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/media/faa-h-8083-21.pdf
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/media/helicopter_flying_handbook.pdf
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/media/helicopter_flying_handbook.pdf
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1045&context=aerosp
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1045&context=aerosp
http://jsbsim.sourceforge.net/JSBSimReferenceManual.pdf
https://engineering.purdue.edu/HSL/uploads/papers/UVG_S10.pdf
http://www.gidenstam.org/FlightGear/Airships/
http://mapserver.flightgear.org/getstart.pdf
http://m-selig.ae.illinois.edu/apasim/Aircraft-uiuc.html
http://m-selig.ae.illinois.edu/apasim/Aircraft-uiuc.html
http://copter.ardupilot.com/wiki/hil-quad/
http://www.pdas.com/atmos.html
http://www.pdas.com/gasp.html
http://www.pdas.com/fluid.html
http://www.pdas.com/vucalc.html
http://www.pdas.com/nseg.html

[69] R. Carmichael. (2013, February 27). Conical relaxation program for
supersonic wing design and analysis (COREL). [Online]. Available:
http://www.pdas.com/corel.html

[70] R. Carmichael. (2013, March 9). W12SC3: Supersonic Wing Design And
Analysis. [Online]. Available: http://www.pdas.com/w12sc3.html

[71] R. Carmichael. (2013, February 13). Two-Dimensional Grids About
Airfoils And Other Shapes By The Use Of Poisson's Equation (GRAPE).
[Online]. Available: http://www.pdas.com/grape.html

[72] R. Carmichael. (2013, February 13). PROFILE - The Eppler airfoil
code. [Online]. Available: http://www.pdas.com/eppler.html

[73] R. Carmichael. (2013, March 5). Modified Strip Analysis Method For
Predicting Wing Flutter At Subsonic To Hypersonic Speeds. [Online].
Available: http://www.pdas.com/flutter.html

[74] R. Carmichael. (2013, March 5). Induced Drag from Span Load
Distribution. [Online]. Available: http://www.pdas.com/induced.html

[75] R. Carmichael. (2013, February 13). Mean Aerodynamic Chord of a
Wing. [Online]. Available: http://www.pdas.com/getmac.html

[76] R. Carmichael. (2013, February 9). Mass Properties Of A Rigid
Structure. [Online]. Available: http://www.pdas.com/massprop.html

[77] R. Carmichael. (2013, March 7). NACA Airfoil Coordinates. [Online].
Available: http://www.pdas.com/naca456.html

[78] R. Carmichael. (2013, February 10). PANAIR: Predicting Subsonic Or
Supersonic Linear Potential Flows About Arbitrary Configurations
Using A Higher Order Panel Method. [Online]. Available:
http://www.pdas.com/panair.html

[79] R. Carmichael. (2013, February 14). Input Pre-Processor for PanAir.
[Online]. Available: http://www.pdas.com/panin.html

[80] R. Carmichael. (2013, March 9). NASA-AMES WingBody Panel Code.
[Online]. Available: http://www.pdas.com/wingbody.html

[81] R. Carmichael. (2013, March 8). Aeroelastic Analysis For Rotorcraft In
Flight Or In A Wind Tunnel (ROTOR). [Online]. Available:
http://www.pdas.com/rotor.html

[82] R. Carmichael. (2013, March 9). Turbulent Skin Friction by the
Reference Temperature Method of Sommer and Short. [Online].
Available: http://www.pdas.com/turbsf.html

[83] R. Carmichael. (2013, March 9). V/STOL Aircraft Sizing And
Performance (VASCOMP II). [Online]. Available:
http://www.pdas.com/vascomp.html

[84] R. Carmichael. (2013, March 9). Minimum Drag Camber Surface by
Vortex Lattice. [Online]. Available: http://www.pdas.com/vlmd.html

[85] Holy Cows, Inc.. Datcom by Holy Cows, Inc.. [Online]. (accessed 2014,
November 24). Available: http://www.holycows.net/datcom/

[86] DATCOM-GUI contributors. (2011, August 2). datcom-gui:
Development of a GUI for the DATCOM program. [Online]. Available:
http://code.google.com/p/datcom-gui/

[87] R. Carmichael. (2013, February 14). MakeWgs. [Online]. Available:
http://www.pdas.com/makewgs.html

[88] R. Carmichael. (2013, February 26). Three View Program. [Online].
Available: http://www.pdas.com/3view.html

[89] R. Carmichael. (2013, February 8). Hidden Line Program. [Online].
Available: http://www.pdas.com/hlp.html

[90] R. Carmichael. (2013, January 21). Conversion to LaWGS. [Online].
Available: http://www.pdas.com/2wgs.html

[91] R. Carmichael. (2013, February 11). VRML World. [Online]. Available:
http://www.pdas.com/wgs2wrl.html

[92] Richard Eppler and Dan M. Somers. A Computer Program for the
Design and Analysis of Low-Speed Airfoils. NASA Technical
Memorandum 80210, August 1980.

[93] J. L. Lundry. “Calculation of lift and induced drag from sparse span
loading data,” Journal of Aircraft, vol. 14, no. 3, pp. 309-311, 1977.

[94] R. Carmichael. (2010, September 27). Example 4 - Wing Similar to B-2 -
page 1. [Online]. Available: http://www.pdas.com/macex13.html

[95] R. Carmichael. (2010, September 27). Example 4 - Wing Similar to B-2 -
page 2. [Online]. Available: http://www.pdas.com/macex14.html

[96] R. Carmichael. (2010, September 27). Example 4 - Wing Similar to B-2 -
page 3. [Online]. Available: http://www.pdas.com/macex15.html

[97] Reid A. Hull, John L. Gilbert, and Phillip J. Klich. Computer Program
for Determining Mass Properties of a Rigid Structure. NASA Technical
Memorandum 78681, March 1978.

[98] Reynolds number calculator. [Online]. (accessed 2014, December 12).
Available: http://airfoiltools.com/calculator/reynoldsnumber

[99] Airfoil Tools. [Online]. (accessed 2014, December 12). Available:
http://airfoiltools.com/

[100] R. Carmichael. (2010, November 3). Computation of NACA Airfoil
Coordinates. [Online]. Available:
http://www.pdas.com/naca456pdas.html

[101] Ralph L. Carmichael. “Algorithm for Calculating Coordinates of
Cambered Naca Airfoils At Specified Chord Locations,” 1st AIAA,
Aircraft, Technology Integration, and Operations Forum, November
2001.

[102] Gary R. Saaris. A502I User's Manual-PAN AIR Technology Program for
Solving Problems of Potential Flow about Arbitrary Configurations.
Cage Code 81205, Document no. D6-54703, Boing, February 1992.

[103] T. Derbyshire and K.W. Sidwell. PAN AIR Summary Document,
(Version 1.0). NASA Contractor Report 3250, 1982.

[104] Gnuplot contributors. gnuplot homepage. [Online]. (accessed 2014,
December 12) Available: http://www.gnuplot.info/

[105] Ilan Kroo and Juan Alonso. Skin Friction and Roughness Drag.
[Online]. (accessed 2014, December 16) Available:
http://adg.stanford.edu/aa241/drag/skinfriction.html

[106] R. Carmichael. (2013, April 21). Digital Datcom. [Online]. Available:
http://www.pdas.com/datcom.html

[107] R. Carmichael. (2013, February 7). Program Modules of Digital
Datcom. [Online]. Available: http://www.pdas.com/datcomc.html

[108] J.E. Williams and S.R. Vukelich. The USAF Stability And Control
Digital Datcom: Volume I, Users Manual. USAF Technical Report
AFFDL-TR-79-3032, April 1979.

[109] Mustafa Turan. Tools for the conceptual design and engineering
analysis of micro air vehicles. Ohio, USA: Wright-Patterson Air Force
Base, March 2009, 156 p.

[110] Xian-Zhong Gao, Zhong-XiHou, ZhengGuo, Rong-FeiFan, Xiao-
QianChen. “Analysis and design of guidance-strategy for dynamic
soaring with UAVs,” Control Engineering Practice, vol. 32, pp. 218-
226. 2014.

[111] Mark Drela. (2008, October 1). DSOPT: Dynamic Soaring simulation
and optimization program. [Online]. Available:
http://web.mit.edu/drela/Public/web/dsopt/summary.txt

[112] Harold Youngren and Mark Drela. (2005, December 4). DFDC 0.70
User Primer. [Online]. Available inside:
http://web.mit.edu/drela/Public/web/dfdc/DFDC_v0.70.zip

[113] Harold Youngren, Mark Drela, and Scott Sanders. (2005, December 10).
DFDC Summary. [Online]. Available:
http://web.mit.edu/drela/Public/web/dfdc/

[114] Philip Carter. (2014, October 25). DFDC: Ducted Fan Design Code - A
Diamond in the Rough. [Online]. Available:
http://www.esotec.org/sw/DFDC.html

[115] Mark Drela and Harold Youngren. (2011, February 10). XROTOR
Download Page. [Online]. Available:
http://web.mit.edu/drela/Public/web/xrotor/

[116] Mark Drela and Harold Youngren. (2003, November 13). XROTOR
User Guide. [Online]. Available:
http://web.mit.edu/drela/Public/web/xrotor/xrotor_doc.txt

[117] C. Thipyopas, S. Kaewsutthi, and A. Tohwae-A-Yee. High performance
propeller system for a multi-mission micro aerial vehicle. International
Journal of Micro Air Vehicles, vol. 5, no. 3, pp. 179-191. 2013.

[118] Philip Carter. (2014, April 4). CROTOR: XROTOR on Steroids.
[Online]. Available: http://www.esotec.org/sw/crotor.html

[119] Philip Carter. (2011, October 5). SUBROUTINE CROTOR User Guide.
[Online]. Available: http://www.esotec.org/sw/dl/CRotor_doc.txt

[120] Philip Carter. (2014, April 5). ESPROP. [Online]. Available:
http://www.esotec.org/sw/esprop.html

[121] Philip Carter. (2014, January 19). SUBROUTINE ESLOFTX User
Guide. [Online]. Available: http://www.esotec.org/sw/dl/Esloftx_doc.txt

http://www.pdas.com/corel.html
http://www.pdas.com/w12sc3.html
http://www.pdas.com/grape.html
http://www.pdas.com/eppler.html
http://www.pdas.com/flutter.html
http://www.pdas.com/induced.html
http://www.pdas.com/getmac.html
http://www.pdas.com/massprop.html
http://www.pdas.com/naca456.html
http://www.pdas.com/panair.html
http://www.pdas.com/panin.html
http://www.pdas.com/wingbody.html
http://www.pdas.com/rotor.html
http://www.pdas.com/turbsf.html
http://www.pdas.com/vascomp.html
http://www.pdas.com/vlmd.html
http://www.holycows.net/datcom/
http://code.google.com/p/datcom-gui/
http://www.pdas.com/makewgs.html
http://www.pdas.com/3view.html
http://www.pdas.com/hlp.html
http://www.pdas.com/2wgs.html
http://www.pdas.com/wgs2wrl.html
http://www.pdas.com/macex13.html
http://www.pdas.com/macex14.html
http://www.pdas.com/macex15.html
http://airfoiltools.com/calculator/reynoldsnumber
http://airfoiltools.com/
http://www.pdas.com/naca456pdas.html
http://www.gnuplot.info/
http://adg.stanford.edu/aa241/drag/skinfriction.html
http://www.pdas.com/datcom.html
http://www.pdas.com/datcomc.html
http://web.mit.edu/drela/Public/web/dsopt/summary.txt
http://web.mit.edu/drela/Public/web/dfdc/DFDC_v0.70.zip
http://web.mit.edu/drela/Public/web/dfdc/
http://www.esotec.org/sw/DFDC.html
http://web.mit.edu/drela/Public/web/xrotor/
http://web.mit.edu/drela/Public/web/xrotor/xrotor_doc.txt
http://www.esotec.org/sw/crotor.html
http://www.esotec.org/sw/dl/CRotor_doc.txt
http://www.esotec.org/sw/esprop.html
http://www.esotec.org/sw/dl/Esloftx_doc.txt

[122] Mark Drela. (2007, December 23). QPROP: Propeller/Windmill
Analysis and Design. [Online]. Available:
http://web.mit.edu/drela/Public/web/qprop/

[123] Mark Drela. (2006, June). QPROP Formulation. [Online]. Available:
http://web.mit.edu/drela/Public/web/qprop/qprop_theory.pdf

[124] A. Betz. Airscrews with minimum energy loss. Report, Kaiser Wilhelm
Institute for Flow Research, 1919.

[125] S. Goldstein. “On the vortex theory of screw propellers,” Proceedings of
the Royal Society, 123, 1929.

[126] T. Theodorsen. Theory of Propellers. McGraw-Hill, New York, 1948.

[127] E.E. Larrabee and S.E. French. “Minimum induced loss windmills and
propellers,” Journal of Wind Engineering and Industrial Aerodynamics,
vol. 15, issue 1-3, pp. 317–327, 1983. DOI: 10.1016/0167-
6105(83)90201-5.

[128] Mark Drela. (2007, July 6). QPROP User Guide. [Online]. Available:
http://web.mit.edu/drela/Public/web/qprop/qprop_doc.txt

[129] Mark Drela. (2005, October 4). QMIL User Guide. [Online]. Available:
http://web.mit.edu/drela/Public/web/qprop/qmil_doc.txt

[130] Mark Drela. (2001, November 30). XFOIL 6.9 User Primer. [Online].
Available: http://web.mit.edu/drela/Public/web/xfoil/xfoil_doc.txt

[131] Nuno António Silva. Parametric Design, Aerodynamic Analysis and
Parametric Optimization of a Solar UAV. Lisboa, Portugal: Instituto
Superior Técnico, May 2014, 10 p.

[132] Mark Drela and Harold Youngren. (2014, February 23). AVL Overview.
[Online]. Available: http://web.mit.edu/drela/Public/web/avl/

[133] Mark Drela and Harold Youngren. (2010, August 18). AVL 3.30 User
Primer. [Online]. Available:
http://web.mit.edu/drela/Public/web/avl/avl_doc.txt

[134] Philip Carter. (2014). SOFTWARE. [Online]. Available:
http://www.esotec.org/sw/swhome.html

[135] Mark Drela. (2014, August 30). Index of /drela/Public/web. [Online].
Available: http://web.mit.edu/drela/Public/web/

[136] Mark Drela. (2010, March 20). TASOPT 2.00: Transport Aircraft System
OPTimization - Technical Description. [Online]. Available:
http://web.mit.edu/drela/Public/web/tasopt/TASOPT_doc.pdf

[137] Dmitri Kuzmin. Introduction to Computational Fluid Dynamics.
[Online]. (accessed 2014, December 19). Available:
http://www.mathematik.uni-dortmund.de/~kuzmin/cfdintro/lecture1.pdf

[138] T. D. Economon. (2014, October 28). SU2: The Open-Source CFD
Code. [Online]. Available: https://github.com/su2code/SU2/wiki

[139] F. Palacios, M. R. Colonno, A. C. Aranake, A. Campos, S. R. Copeland,
T. D. Economon, Amrita K. Lonkar, Trent W. Lukaczyk, Thomas W. R.
Taylor, and Juan J. Alonso, “Stanford University Unstructured (SU2):
An open-source integrated computational environment for multi-physics
simulation and design,” 51st AIAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Exposition,
Grapevine (Dallas/Ft. Worth Region), Texas, USA, January 7-10, 2013.

[140] T. D. Economon. (2014, November 6). Quick Start. [Online]. Available:
https://github.com/su2code/SU2/wiki/Quick-Start

[141] T. D. Economon. (2014, November 14). Optimal Shape Design of a
Rotating Airfoil. [Online]. Available:
https://github.com/su2code/SU2/wiki/Optimal-Shape-Design-of-a-
Rotating-Airfoil

[142] OpenFOAM Foundation. (2014). Features of OpenFOAM. [Online].
Available: http://www.openfoam.org/features/

[143] J. Byrne, P. Cardiff, A. Brabazon, and M. O'Neill. “Evolving parametric
aircraft models for design exploration and optimisation,”
Neurocomputing, vol. 142, 39-47, 2014.

[144] Gertjan Glabeke. The influence of wind turbine induced turbulence on
ultralight aircraft, a CFD analysis. Oostende, Belgium: Katholieke
Hogeschool VIVES, 2011, 99 p.

[145] OpenFOAM Foundation. (2014). Standard Solvers. [Online]. Available:
http://www.openfoam.org/features/standard-solvers.php

[146] OpenFOAM Foundation. (2014). ODE System Solvers. [Online].
Available: http://www.openfoam.org/features/ODE-solvers.php

[147] OpenFOAM Foundation. (2014). Numerical Method. [Online].
Available: http://www.openfoam.org/features/numerical-method.php

[148] OpenFOAM Foundation. (2014). Dynamic Meshes. [Online]. Available:
http://www.openfoam.org/features/mesh-motion.php

[149] Hester Bijl. Flow around flapping wings with Open FOAM at
Aerodynamics, TU Delft. [Online]. (accessed 2014, December 22)
Available:
http://www.tudelft.nl/fileadmin/UD/MenC/Support/Internet/TU_Websit
e/TU_Delft_portal/Onderzoek/Kenniscentra/Delft_Research_Centres/Co
mputational_Science/Events/Seminars/previous/doc/Hester_1.pdf

[150] EDF R&D. (2014). Description of Code_Saturne. [Online]. Available:
http://code-saturne.org/cms/features

[151] EDF R&D. (2014, May). Code Saturne documentation: Code Saturne
version 3.3.0 practical user's guide. [Online]. Available: http://code-
saturne.org/cms/sites/default/files/docs/3.3/user.pdf

[152] Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A. G. Sunderland, and J.
C. Uribe. “Optimizing Code_Saturne computations on Petascale
systems,” Computers and Fluids, vol. 45, issue 1, pp. 103-108, 2011.

[153] EDF R&D. (2014). Numerical Method. [Online]. Available: http://code-
saturne.org/cms/features/numerics

[154] EDF R&D. (2014). Mesh flexibility. [Online]. Available: http://code-
saturne.org/cms/features/mesh

[155] EDF R&D. (2014). Code_Saturne coupling. [Online]. Available:
http://code-saturne.org/cms/features/modules/coupling

[156] HiFiLES Developers. (2014). HiFiLES: High Fidelity Large Eddy
Simulation. [Online]. Available: https://hifiles.stanford.edu/

[157] M. López-Morales, J. Bull, J. Crabill, T. D. Economon, D. E.
Manosalvas, J. Romero, A. Sheshadri, J. E. Watkins, D. Williams, F.
Palacios, and A. Jameson, “Verification and validation of HiFiLES: A
high-order LES unstructured solver on multi-GPU platforms,” 32nd
AIAA Applied Aerodynamics Conference, Atlanta, Georgia, USA, June
16-20, 2014.

[158] Vincent Lab. (2015). PyFR: Home. [Online]. Available:
http://www.pyfr.org/

[159] Peter Vincent. (2014). PyFR: A GPU-Accelerated Next-Generation
Computational Fluid Dynamics Python Framework. [Online]. Available:
http://www.techenablement.com/pyfr-a-gpu-accelerated-next-
generation-computational-fluid-dynamics-python-framework/

[160] F. D. Witherden, A. M. Farrington, and P. E. Vincent. “PyFR: An open
source framework for solving advection-diffusion type problems on
streaming architectures using the flux reconstruction approach,”
Computer Physics Communications, vol. 185, issue 11, pp. 3028-3040,
2014.

[161] Olivier de Weck. (2005, January 6). Computer Aided Design (CAD).
[Online]. Available: http://ocw.mit.edu/courses/aeronautics-and-
astronautics/16-810-engineering-design-and-rapid-prototyping-january-
iap-2005/lecture-notes/l4.pdf

[162] FreeCAD Contributors. (2014, September 27). About FreeCAD.
[Online]. Available:
http://www.freecadweb.org/wiki/index.php?title=About_FreeCAD

[163] FreeCAD Contributors. (2014, September 1). Getting started. [Online].
Available:
http://www.freecadweb.org/wiki/index.php?title=Getting_started

[164] FreeCAD Contributors. (2014, December 6). Feature list. [Online].
Available: http://www.freecadweb.org/wiki/index.php?title=Feature_list

[165] FreeCAD Contributors. (2013, December 8). Aeroplane. [Online].
Available: http://www.freecadweb.org/wiki/index.php?title=Aeroplane

[166] J. W. Kim, K.-K. Kang, and J. H. Lee, “Template-based traditional
building component modelling,” International Conference on Advanced
Communication Technology, ICACT, Pyeongchang, Korea (South),
February 16-19, 2014, pp. 653-656.

[167] BRL-CAD Contributors. About BRL-CAD. [Online]. (accessed 2014,
December 22). Available: http://brlcad.org/d/about

[168] BRL-CAD Contributors. Overview. [Online]. (accessed 2014, December
22). Available: http://brlcad.org/wiki/Overview

[169] J. Keyser, T. Culver, M. Foskey, S. Krishnan, and D. Manocha.
“ESOLID - A system for exact boundary evaluation,” CAD Computer
Aided Design, vol. 36, issue 2, pp. 175-193, 2004.

http://web.mit.edu/drela/Public/web/qprop/
http://web.mit.edu/drela/Public/web/qprop/qprop_theory.pdf
http://web.mit.edu/drela/Public/web/qprop/qprop_doc.txt
http://web.mit.edu/drela/Public/web/qprop/qmil_doc.txt
http://web.mit.edu/drela/Public/web/xfoil/xfoil_doc.txt
http://web.mit.edu/drela/Public/web/avl/
http://web.mit.edu/drela/Public/web/avl/avl_doc.txt
http://www.esotec.org/sw/swhome.html
http://web.mit.edu/drela/Public/web/
http://web.mit.edu/drela/Public/web/tasopt/TASOPT_doc.pdf
http://www.mathematik.uni-dortmund.de/~kuzmin/cfdintro/lecture1.pdf
https://github.com/su2code/SU2/wiki
https://github.com/su2code/SU2/wiki/Quick-Start
https://github.com/su2code/SU2/wiki/Optimal-Shape-Design-of-a-Rotating-Airfoil
https://github.com/su2code/SU2/wiki/Optimal-Shape-Design-of-a-Rotating-Airfoil
http://www.openfoam.org/features/
http://www.openfoam.org/features/standard-solvers.php
http://www.openfoam.org/features/ODE-solvers.php
http://www.openfoam.org/features/numerical-method.php
http://www.openfoam.org/features/mesh-motion.php
http://www.tudelft.nl/fileadmin/UD/MenC/Support/Internet/TU_Website/TU_Delft_portal/Onderzoek/Kenniscentra/Delft_Research_Centres/Computational_Science/Events/Seminars/previous/doc/Hester_1.pdf
http://www.tudelft.nl/fileadmin/UD/MenC/Support/Internet/TU_Website/TU_Delft_portal/Onderzoek/Kenniscentra/Delft_Research_Centres/Computational_Science/Events/Seminars/previous/doc/Hester_1.pdf
http://www.tudelft.nl/fileadmin/UD/MenC/Support/Internet/TU_Website/TU_Delft_portal/Onderzoek/Kenniscentra/Delft_Research_Centres/Computational_Science/Events/Seminars/previous/doc/Hester_1.pdf
http://code-saturne.org/cms/features
http://code-saturne.org/cms/sites/default/files/docs/3.3/user.pdf
http://code-saturne.org/cms/sites/default/files/docs/3.3/user.pdf
http://code-saturne.org/cms/features/numerics
http://code-saturne.org/cms/features/numerics
http://code-saturne.org/cms/features/mesh
http://code-saturne.org/cms/features/mesh
http://code-saturne.org/cms/features/modules/coupling
https://hifiles.stanford.edu/
http://www.pyfr.org/
http://www.techenablement.com/pyfr-a-gpu-accelerated-next-generation-computational-fluid-dynamics-python-framework/
http://www.techenablement.com/pyfr-a-gpu-accelerated-next-generation-computational-fluid-dynamics-python-framework/
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-810-engineering-design-and-rapid-prototyping-january-iap-2005/lecture-notes/l4.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-810-engineering-design-and-rapid-prototyping-january-iap-2005/lecture-notes/l4.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-810-engineering-design-and-rapid-prototyping-january-iap-2005/lecture-notes/l4.pdf
http://www.freecadweb.org/wiki/index.php?title=About_FreeCAD
http://www.freecadweb.org/wiki/index.php?title=Getting_started
http://www.freecadweb.org/wiki/index.php?title=Feature_list
http://www.freecadweb.org/wiki/index.php?title=Aeroplane
http://brlcad.org/d/about
http://brlcad.org/wiki/Overview

[170] H. E. Konokman, A. Kayran, and M. Kaya, “Analysis of aircraft
survivability against fragmenting warhead threat,” 55th
AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and
Materials Conference, National Harbor, Maryland, USA, January 13-17,
2014.

[171] QCAD Contributors. (2014, October 24). QCAD - 2D CAD for
Windows, Linux and Mac. [Online]. Available: http://www.qcad.org/en/

[172] QCAD Contributors. (2014, November 27). QCAD Features. [Online].
Available: http://www.qcad.org/en/qcad-documentation/qcad-features

[173] QCAD Contributors. (2014, November 26). The QCAD 3 Scripting
Interface. [Online]. Available: http://www.qcad.org/en/qcad-
documentation/qcad-scripting

[174] OpenVSP Contributors. (2012, January 10). OpenVSP. [Online].
Available: https://github.com/nasa/OpenVSP

[175] OpenVSP Contributors. (2014, December 11). OpenVSP. [Online].
Available: http://openvsp.org/

[176] OpenVSP Contributors. (2014, December 2). VSP Hangar. [Online].
Available: http://hangar.openvsp.org/

[177] A. S. Hahn, “Vehicle sketch pad: A parametric geometry modeler for
conceptual aircraft design,” 48th AIAA Aerospace Sciences Meeting
Including the New Horizons Forum and Aerospace Exposition, Orlando,
Florida, USA, January 4-7, 2010.

[178] D. Böhnke, B. Nagel, M. Zhang, and A. Rizzi, “Towards a collaborative
and integrated set of open tools for aircraft design,” 51st AIAA
Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas,
USA, January 7-10, 2013.

[179] J. R. Gloudemans and R. McDonald, “Improved geometry modeling for
high fidelity parametric design,” 48th AIAA Aerospace Sciences Meeting
Including the New Horizons Forum and Aerospace Exposition, Orlando,
Florida, USA, January 4-7, 2010.

[180] J. B. Belben and R. A. McDonaldy, “Enabling rapid conceptual design
using geometry-based multi-fidelity models in VSP,” 51st AIAA
Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas,
USA, January 7-10, 2013.

[181] VAMPzero Contributors. VAMPzero - Conceptual Design for the Needs
of MDO. [Online]. (accessed 2014, December 22). Available:
http://code.google.com/p/vampzero/

[182] D. Böhnke, B. Nagel, and V. Gollnick, “Explicit modeling of technology
improvement over time in conceptual aircraft design,” 29th Congress of
the International Council of the Aeronautical Sciences, ICAS 2014, St.
Petersburg, Russia, September 7-12, 2014.

[183] A. Rizzi, M. Zhang, B. Nagel, D. Boehnke, and P. Saquet, “Towards a
unified framework using CPACS for geometry management in aircraft
design,” 50th AIAA Aerospace Sciences Meeting Including the New
Horizons Forum and Aerospace Exposition, Nashville, Tennessee, USA,
January 9-12, 2012.

[184] CPACS Contributors. CPACS – A Common Language for Aircraft
Design. [Online]. (accessed 2014, December 22). Available:
http://code.google.com/p/cpacs/

[185] TIGL Contributors. TIGL: A library for generating 3D geometries from
parametrized CPACS/XML data sets. [Online]. (accessed 2014,
December 22). Available: http://code.google.com/p/tigl/

[186] N. T. Frink. (2006, August 25). TetrUSS: CFD software for complex
real-world aerodynamics problems. [Online]. Available:
http://tetruss.larc.nasa.gov/index.html

[187] N. T. Frink. (2009, March 27). Requesting TetrUSS Software. [Online].
Available: http://tetruss.larc.nasa.gov/download.html

[188] N. T. Frink, S. Z. Pirzadeh, P. C. Parikh, M. J. Pandya, and M. K. Bhat.
“NASA tetrahedral unstructed software system (TetrUSS),”
Aeronautical Journal, vol. 104, issue 1040, pp. 491-499, 2000.

[189] CEASIOM Contributors. (2014, September). CEASIOM: Computerised
Environment for Aircraft Synthesis and Integrated Optimisation
Methods. [Online]. Available: http://www.ceasiom.com/index.php

[190] CEASIOM Contributors. (2014) CEASIOM Modules. [Online].
Available: http://www.ceasiom.com/ceasiom-modules.html

[191] CEASIOM Contributors. (2014, April 11) CEASIOM NEWSLETTER.
[Online]. Available: http://www.ceasiom.com/newsletter.html

[192] James Goppert. (2012, September 2). OpenFDM: An open source flight
dynamics library for Modelica. [Online]. Available:
https://github.com/arktools/openfdm

[193] Ben Parslew. Downloads. [Online]. (accessed 2014, December 27).
Available: http://www.flappingwings.co.uk/main/downloads

[194] Ben Parslew. Gallery. [Online]. (accessed 2014, December 27).
Available: http://www.flappingwings.co.uk/main/gallery

[195] Ben Parslew. Simulating Avian Wingbeats and Wakes. Manchester, UK:
The University of Manchester, the Faculty of Engineering and Physical
Sciences, 2012, 158 p.

[196] Ben Parslew. (2012, July 30). Flapping Flight Simulation v1.1: User
Manual. [Online]. Available: http://www.flappingwings.co.uk/main/wp-
content/uploads/2012/06/FlappingFlightSimulationManualV1.1.pdf

[197] Nathan Chronister. FlapDesign - How to Use. [Online]. (accessed 2014,
December 29). Available:
http://www.ornithopter.org/flapdesign.info.shtml

[198] Horst Räbiger. Calculation tools for ornithopter models. [Online].
(accessed 2014, December 29). Available:
http://www.ornithopter.de/english/calculation.htm

[199] Markus Müller. (2014, December 28). eCalc: the most reliable RC
Calculator on the Web. [Online]. Available: http://www.ecalc.ch/

[200] John Carri. WebOCalc FAQ. [Online]. (accessed 2014, December 4).
Available: http://flbeagle.rchomepage.com/software/webocalc.html

[201] John Carri. PowerCalc. [Online]. (accessed 2014, December 4).
Available: http://flbeagle.rchomepage.com/software/powercalc.html

[202] Adam One. Welcome to Model Aircraft: Aerodynamics, Beginners'
Guide and lots of info about R/C Model Aircraft. [Online]. (accessed
2014, December 30). Available:
http://adamone.rchomepage.com/index.html

[203] Adam One. Aircraft Center of Gravity Calculator. [Online]. (accessed
2014, December 30). Available:
http://adamone.rchomepage.com/cg_calc.htm

[204] Adam One. Canard Center of Gravity Calculator. [Online]. (accessed
2014, December 30). Available:
http://adamone.rchomepage.com/cg_canard.htm

[205] Adam One. Trainer Design. [Online]. (accessed 2014, December 30).
Available: http://adamone.rchomepage.com/design.htm#calculate

[206] Adam One. Calculate Stall Speed. [Online]. (accessed 2014, December
30). Available: http://adamone.rchomepage.com/calc_stallspeed.htm

[207] Adam One. Calculate Level Flight Speed. [Online]. (accessed 2014,
December 30). Available:
http://adamone.rchomepage.com/calc_speed.htm

[208] Adam One. Calculate Motor Efficiency. [Online]. (accessed 2014,
December 30). Available:
http://adamone.rchomepage.com/calc_efficiency.htm

[209] Adam One. Estimate Propeller's Static Thrus. [Online]. (accessed 2014,
December 30). Available:
http://adamone.rchomepage.com/calc_thrust.htm

[210] Adam One. Estimate Electric Motor & Prop Combo. [Online]. (accessed
2014, December 30). Available:
http://adamone.rchomepage.com/calc_motor.htm

[211] Adam One. Beginners' Guide. [Online]. (accessed 2014, December 30).
Available: http://adamone.rchomepage.com/guide5.htm

[212] XFLR5 Contributors. XFLR5. [Online]. (accessed 2014, December 31).
Available: http://www.xflr5.com/xflr5.htm

[213] XFLR5 Contributors. XFLR5. [Online]. (accessed 2014, December 31).
Available: http://sourceforge.net/projects/xflr5/

[214] XFLR5 Contributors. (2013, February 28). XFLR5: Analysis of foils and
wings operating at low Reynolds numbers. [Online]. Available:
http://heanet.dl.sourceforge.net/project/xflr5/Guidelines.pdf

[215] J. Morgado. JBLADE: a Propeller Design and Analysis Code. [Online].
(accessed 2014, December 31). Available:
https://sites.google.com/site/joaomorgado23/Home

[216] J. Morgado. (2013, September 20). JBLADE v17 Tutorial. [Online].
Available:

http://www.qcad.org/en/
http://www.qcad.org/en/qcad-documentation/qcad-features
http://www.qcad.org/en/qcad-documentation/qcad-scripting
http://www.qcad.org/en/qcad-documentation/qcad-scripting
https://github.com/nasa/OpenVSP
http://openvsp.org/
http://hangar.openvsp.org/
http://code.google.com/p/vampzero/
http://code.google.com/p/cpacs/
http://code.google.com/p/tigl/
http://tetruss.larc.nasa.gov/index.html
http://tetruss.larc.nasa.gov/download.html
http://www.ceasiom.com/index.php
http://www.ceasiom.com/ceasiom-modules.html
http://www.ceasiom.com/newsletter.html
https://github.com/arktools/openfdm
http://www.flappingwings.co.uk/main/downloads
http://www.flappingwings.co.uk/main/gallery
http://www.flappingwings.co.uk/main/wp-content/uploads/2012/06/FlappingFlightSimulationManualV1.1.pdf
http://www.flappingwings.co.uk/main/wp-content/uploads/2012/06/FlappingFlightSimulationManualV1.1.pdf
http://www.ornithopter.org/flapdesign.info.shtml
http://www.ornithopter.de/english/calculation.htm
http://www.ecalc.ch/
http://flbeagle.rchomepage.com/software/webocalc.html
http://flbeagle.rchomepage.com/software/powercalc.html
http://adamone.rchomepage.com/index.html
http://adamone.rchomepage.com/cg_calc.htm
http://adamone.rchomepage.com/cg_canard.htm
http://adamone.rchomepage.com/design.htm#calculate
http://adamone.rchomepage.com/calc_stallspeed.htm
http://adamone.rchomepage.com/calc_speed.htm
http://adamone.rchomepage.com/calc_efficiency.htm
http://adamone.rchomepage.com/calc_thrust.htm
http://adamone.rchomepage.com/calc_motor.htm
http://adamone.rchomepage.com/guide5.htm
http://www.xflr5.com/xflr5.htm
http://sourceforge.net/projects/xflr5/
http://heanet.dl.sourceforge.net/project/xflr5/Guidelines.pdf
https://sites.google.com/site/joaomorgado23/Home

https://drive.google.com/viewerng/viewer?a=v&pid=sites&srcid=ZGVm
YXVsdGRvbWFpbnxqb2FvbW9yZ2FkbzIzfGd4OjFjYzE3ZjhlYmY3Y
zBlNzE

[217] W. H. Mason. (2012, May 3). Software for Aerodynamics and Aircraft
Design (W.H. Mason, Virginia Tech). [Online]. Available:
http://www.dept.aoe.vt.edu/~mason/Mason_f/MRsoft.html#foilgen

[218] Christophe Geuzaine and Jean-François Remacle. (2014, July 9). Gmsh:
a three-dimensional finite element mesh generator with built-in pre- and
post-processing facilities. [Online]. Available: http://geuz.org/gmsh/

[219] 3DRobotics. Mission Planner. [Online]. (accessed 2014, December 31).
Available: http://planner.ardupilot.com/

[220] Daniel Filkovic. Apame - Aircraft 3D Panel Method. [Online]. (accessed
2015, January 14). Available: http://www.3dpanelmethod.com/

[221] Daniel Filkovic. Apame - Aircraft 3D Panel Method: Features. [Online].
(accessed 2015, January 14). Available:
http://www.3dpanelmethod.com/features.html

[222] SALOME Contributors. SALOME. [Online]. (accessed 2015, January 5).
Available: http://www.salome-platform.org/

[223] SALOME Contributors. About SALOME. [Online]. (accessed 2015,
January 5). Available: http://www.salome-platform.org/user-
section/about

[224] enGrid Contributors. enGrid - open-source mesh generation. [Online].
(accessed 2015, January 5). Available: http://engits.eu/en/engrid

[225] David Eller. Larosterna: about. [Online]. (accessed 2015, January 6).
Available: http://www.larosterna.com/index.html

[226] David Eller. Larosterna: aircraft modeling & mesh generation. [Online].
(accessed 2015, January 6). Available:
http://www.larosterna.com/sumo.html

[227] David Eller. Larosterna: visualization for aeroelasticity. [Online].
(accessed 2015, January 6). Available:
http://www.larosterna.com/scope.html

[228] Imanol Garcia and William Tougeron. Read Group of Faces TUI from
GUI. [Online]. (accessed 2015, January 6). Available:
http://www.salome-platform.org/forum/forum_10/83373997

[229] Martin Hepperle. (2007, January 27). JavaFoil — Analysis of Airfoils.
[Online]. Available: http://www.mh-aerotools.de/airfoils/javafoil.htm

[230] Martin Hepperle. (2006, August 29). The Boundary Layer Method.
[Online]. Available: http://www.mh-
aerotools.de/airfoils/jf_analysis_boundarylayer.htm

[231] Martin Hepperle. (2008, February 16). Users Manual. [Online].
Available: http://www.mh-aerotools.de/airfoils/jf_users_manual.htm

[232] Martin Hepperle. (2003, September 8). JavaProp - Design and Analysis
of Propellers. [Online]. Available: http://www.mh-
aerotools.de/airfoils/javaprop.htm

[233] Martin Hepperle. (2003, September 8). Design of a Propeller. [Online].
Available: http://www.mh-aerotools.de/airfoils/jp_propeller_design.htm

[234] Charles N. Adkins and Robert H. Liebeck. “Design of optimum
propellers,” Journal of Propulsion and Power, vol. 10, no. 5, pp. 676-
682, 1994.

[235] Martin Hepperle. (2006, December 24). Analysis of a Propeller.
[Online]. Available: http://www.mh-
aerotools.de/airfoils/jp_propeller_analysis.htm

[236] Martin Hepperle. (2008, February 16). A Validation Exercise. [Online].
Available: http://www.mh-aerotools.de/airfoils/jp_validation.htm

[237] Martin Hepperle. (2008, February 16). Users Manual. [Online].
Available: http://www.mh-aerotools.de/airfoils/jp_users_manual.htm

[238] Tomasz Goetzendorf-Grabowski. (2014, June 1). PANUKL 2012.
[Online]. Available:
http://www.meil.pw.edu.pl/add/ADD/Teaching/Software/PANUKL

[239] Tomasz Goetzendorf-Grabowski. (2013, February 11). Users Manual
for PANUKL: Version ENGv1. [Online]. Available:
http://itlims.meil.pw.edu.pl/zsis/pomoce/PANUKL/2012/PanuklMan_en
g.pdf

[240] T. Goetzendorf-Grabowski, J. Mieloszyk, and D. Mieszalski, “MADO -
software package for high order multidisciplinary aircraft design and
optimization,” 28th Congress of the International Council of the
Aeronautical Sciences, ICAS 2012, Brisbane, Australia, September 23-
28, 2012, pp. 481-490.

[241] Tomasz Goetzendorf-Grabowski. (2012, February 7). SDSA –
Theoretical Basics. [Online]. Available inside package:
http://itlims.meil.pw.edu.pl/zsis/pomoce/SDSA/2015/SDSA_Setup.zip

[242] Joël Cugnoni. (2005, October 14). Welcome to CAELinux. [Online].
Available:
http://www.caelinux.com/CMS/index.php?option=com_content&view=
article&id=12:welcome-to-caelinux&catid=1:news&Itemid=29

[243] Joël Cugnoni. (2014, March 9). New release: CAELinux 2013. [Online].
Available:
http://www.caelinux.com/CMS/index.php?option=com_content&view=
article&id=56:new-release-caelinux-2013&catid=1:news&Itemid=29

[244] Jarret M. Lafleur. “Derivation and Application of a Method for First-
Order Estimation of Planetary Aerial Vehicle Power Requirements”.
[Online]. Available:
http://solarsystem.nasa.gov/docs/7_16LAFLEUR_paper.pdf

https://drive.google.com/viewerng/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxqb2FvbW9yZ2FkbzIzfGd4OjFjYzE3ZjhlYmY3YzBlNzE
https://drive.google.com/viewerng/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxqb2FvbW9yZ2FkbzIzfGd4OjFjYzE3ZjhlYmY3YzBlNzE
https://drive.google.com/viewerng/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxqb2FvbW9yZ2FkbzIzfGd4OjFjYzE3ZjhlYmY3YzBlNzE
http://www.dept.aoe.vt.edu/~mason/Mason_f/MRsoft.html#foilgen
http://geuz.org/gmsh/
http://planner.ardupilot.com/
http://www.3dpanelmethod.com/
http://www.3dpanelmethod.com/features.html
http://www.salome-platform.org/
http://www.salome-platform.org/user-section/about
http://www.salome-platform.org/user-section/about
http://engits.eu/en/engrid
http://www.larosterna.com/index.html
http://www.larosterna.com/sumo.html
http://www.larosterna.com/scope.html
http://www.salome-platform.org/forum/forum_10/83373997
http://www.mh-aerotools.de/airfoils/javafoil.htm
http://www.mh-aerotools.de/airfoils/jf_analysis_boundarylayer.htm
http://www.mh-aerotools.de/airfoils/jf_analysis_boundarylayer.htm
http://www.mh-aerotools.de/airfoils/jf_users_manual.htm
http://www.mh-aerotools.de/airfoils/javaprop.htm
http://www.mh-aerotools.de/airfoils/javaprop.htm
http://www.mh-aerotools.de/airfoils/jp_propeller_design.htm
http://www.mh-aerotools.de/airfoils/jp_propeller_analysis.htm
http://www.mh-aerotools.de/airfoils/jp_propeller_analysis.htm
http://www.mh-aerotools.de/airfoils/jp_validation.htm
http://www.mh-aerotools.de/airfoils/jp_users_manual.htm
http://www.meil.pw.edu.pl/add/ADD/Teaching/Software/PANUKL
http://itlims.meil.pw.edu.pl/zsis/pomoce/PANUKL/2012/PanuklMan_eng.pdf
http://itlims.meil.pw.edu.pl/zsis/pomoce/PANUKL/2012/PanuklMan_eng.pdf
http://itlims.meil.pw.edu.pl/zsis/pomoce/SDSA/2015/SDSA_Setup.zip
http://www.caelinux.com/CMS/index.php?option=com_content&view=article&id=12:welcome-to-caelinux&catid=1:news&Itemid=29
http://www.caelinux.com/CMS/index.php?option=com_content&view=article&id=12:welcome-to-caelinux&catid=1:news&Itemid=29
http://www.caelinux.com/CMS/index.php?option=com_content&view=article&id=56:new-release-caelinux-2013&catid=1:news&Itemid=29
http://www.caelinux.com/CMS/index.php?option=com_content&view=article&id=56:new-release-caelinux-2013&catid=1:news&Itemid=29
http://solarsystem.nasa.gov/docs/7_16LAFLEUR_paper.pdf

