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Today, a dozen years after the discovery of the RSA encryption algorithm [12], 

there are many chips available for performing RSA encryption [l] [3] [4] [S] [S] [9] [13] 

[15]. The purpose of this paper is to briefly describe some of the different compu- 

tational algorithms that have been used in the chip designs and to provide a list of 

all of the currently available chips. In this abstract, we will simply mention some of 

these computational algorithms and give references. The full paper will contain more 

details of these algorithms and will appear in a book on survey articles in Cryptology 

which is being edited by Gus Simmons and will be published by IEEE in 1990. 

Recall that the RSA encryption function consists of computing me mod N, where 

N = pq for primes p and q. All of the chips perform the exponentiation as a series 

of modular multiplications. The modular multiplications are computed either as a 

standard multiplication followed by a modular reduction, or, more commonly, the 

computation of the multiplication and the modular reduction is combined. Finally, 

the multiplications are implemented as a series of additions. 

For each of these arithmetic functions, we will mention some choices in how they 

can be implemented on a chip. By using redundant number systems to avoid carries 

the addition can be speeded up at a cost of more storage. Multiplication can be 

speeded up by the techniques of multiple bit scanning. See for instance [S]. There 

are several techniques that have been developed for implementing modular reduction. 

The quotient digits can be approximated using only the high order bits of the divisor 

and the current remainder[3]. D ivision can be avoided all together by several different 

methods. The reciprocal of the modulus can be stored, thus replacing division by 

multiplication. For well chosen values of i, the reduced values of 2’ mod N can be 

stored, so that modular reduction can be achieved through multiplication by these 

values. Peter Montgomery (101 h as a method for modular reduction without division 

which uses a nonstandard technique of identifying the residue classes. 

There are also techniques available to save on the number of multiplications needed 

to perform an exponentiation. Compared with the standard binary method of expo- 
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nentiation, addition chains [7] can give a significant savings in the number of mul- 
tiplications needed at  a cost of increasing the storage necessary. For the user who 

knows the factorization of N ,  it is possible to speed up the computation by the use of 

the Chinese Remainder Theorem[7]. Since some of the chip manufacturers give their 

speeds assuming the use of the Chinese Remainder Theorem while others do not, it is 

often difficult to compare the performance of the different chips. The following chart 

contains all of the actual RSA chips that the author is aware of. 

Sandia 

Bus. Sim. 

AT&T 
Cylink 

Cryptech 

CNET 
Brit. Telecom 

Plessy 

Sandia 

Philips 

Year 

1981 

1985 

1987 

1987 

1988 

1988 

1988 

1989 

1989 

1989 

Tech. 

3Clm 
Gate Array 

1.5pm 

1.5pm 

Gate Array 

1Pm 
2.5pm 

2pm 
1.2pm 

# bits 

per chip 

168 

32 

298 

1024 

120 

1024 

256 

,512 

272 

512 

Clock 

4MHz 

5MHz 

12MHz 

l6MHz 

14MHz 

25MHz 

lOMHz 

8MHz 
16MHz 

Baudrate 

(# bits) 

1.2K (336) 

3.8K (512) 

7.7K (1024) 

3.4K (1024) 

1°K (512) 

5.3K (512) 

10.2K (256) 

10.2K (512) 

10K (512) 

2K (512) 

# Clocks 

per 512 bit 

encryption 

4.0 * lo6 

.67 * lo6 

.4 * lo6 

1.2 * lo6 

.4 * lo6 

2.3 * lo6 

1 * lo6 

.4 * lo6 
4.1 * lo6 

The last column in this table was estimated if the chips could not do a 512 bit 

encryption or if the timing for a 512 bit encryption was not available. The 12MHz 

listed for the AT&T chip is for 1024 bit encryption. For a 512 bit encryption, it runs 

at 15MHz. AT&T has recently come out with an improved version of their chip which 

has 520 bit slices per chip and is slightly faster. At first glance, the Philips design 

does not appear competitive with the others. However, this is a design for smart 

cards and only takes 4mm2 of silicon. Cylink and Siemanns are also planning smart 

card implementations. 

There are chip designs that promise much greater speeds than current chips Ill, 

141, but chips based on these designs have not yet been built. 

In recent years, digital signal processors (DSP) have become a viable alternative 

to building a custom chip for RSA encryption. Kochanski [8] was the first to consider 

this possibility. DSPs have improved since his work and Michael Weiner of BNR 
has announced an implementation on the Motorola 56000 that achieves a 125 ms 

encryption on a 512 bit modulus for a throughput of 4K bits per second without 

using the Chinese Remainder Theorem. Using the Chinese Remainder Theorem, he 

can achieve a 50 ms encryption. 

Another alternative to custom design has been recently proposed by Bertin, 

Roncin, and Vuillemin [a]. They implemented RSA on a pair of Programmable Active 

Memory chips. The maximum modulus size that they can accommodate on two chips 

is 508 bits. Using the Chinese Remainder Theorem, the encryption time is 17 ms for 

a baudrate of 30K bits per second. 
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