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Abstract. Efficient IPv6 packet forwarding is still a major bottleneck
in todays networks. Especially in the internet core we are faced with
very large routing tables and a high number of high-speed links. In addi-
tion economical restrains exist in terms of manufacturing and operation
costs. So demand is high for efficient IPv6 packet forwarding mecha-
nisms. In the last few years a lot of work has been done on hash tables
and summaries that allow compact representations and constant lookup
time. The features sound attractive for IPv6 routing, thus a survey and
evaluation of these data structures seems appropriate.

1 Introduction

The standard networking protocol used today is the Internet Protocol version
4 (IPv4). However, its address space is too small to serve the highly increased
number of hosts. IPv6 promises to solve that problem by providing a virtually
unlimited (in the sense of not to be expected to ever get exhausted) number of
addresses. But efficient forwarding of IPv6 packets still is a major problem. That
holds especially in the internet core where the routing tables contain millions
of entries and packets arrive on a thousand high-speed links. Here, finding the
correct route is an extensive task that requires specialized hardware, efficient
algorithms and optimized data structures to be able to process the packets at
line speed.

The main bottleneck is the number of memory accesses needed to successfully
lookup the prefix. This number depends on the longest prefix matching (LPM)
technique and the underlying hash table. Summaries which are kept in fast but
expensive on-chip memory can be used to improve the lookup process. This doc-
ument concentrates on hash tables and their summaries suitable for IP Lookup
applications. We are especially interested in the number of bits per item and the
total size needed for the summary representation, since the amount of on-chip
memory is quite limited due to its high cost.

2 Hashing with multiple Choices

The näıve hash table can be seen as an array of linked lists. Each item to be
inserted is hashed to find a bucket in the hash table and is appended to the
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list of items in this bucket. The problem in this scheme is that lookup requires
following multiple next pointers (and thus multiple memory accesses) to find
the correct item. Furthermore, depending on the number of items and the size
of the table the load of buckets can get quite high. To reduce the maximum
load, Broder and Mitzenmacher [1] suggest using multiple hash functions. The
n buckets of the hash table are split into d equal parts imagined to run from left
to right. An item is hashed d times to find d possible locations. It is then placed
in the least loaded bucket, ties are broken by going left. A lookup now requires
examining the d locations. However, since the d choices are independent, the
lookup can be done in parallel or pipelined. Interestingly, breaking ties by going
left improves the load of the buckets as first shown by Vöking [2].

3 Bloom Filter Summaries

3.1 Bloom Filter

Bloom filters, first introduced by Burton H. Bloom [3], are used to represent
set memberships of a set S from a universe U . They allow false positives, that
is, they can falsely report the membership of an item not in the set, but never
false negatives. Basically a Bloom filter is a bit array of arbitrary length m
where each bit is initially cleared. For each item x inserted into the set k hash
values h0, . . . , hk−1 are produced while ∀h ∈ N : 0 ≤ h < m. The bits at the
corresponding positions are then set. When querying for an item y, the k bits
y hashes to are checked. If all of them are set y is reported to be a member of
S. If at least one of the bits is clear y is not present in the set. A false positive
occurs, if all bits corresponding to an item not in the set are 1. The probability
that this happens depends on the number of items n inserted, the array length
m and the number of hash functions k used. It is given as

ε = (1− (1− 1

m
)kn)k.

It can be proven, that for given n and m the optimal number of hash functions
is

k =
m

n
ln2.

To minimize the false positive probability m must be chosen appropriately large.
To keep it constant m must grow linearly with n. Generally

m = ζ ∗ n

for sufficiently large constant ζ. The number of bits per item βbf is equal to ζ,
so the total storage requirement is equal to m.

3.2 Counting Bloom Filter

Standard Bloom filters cannot handle deletions. Since one cannot know how
many items hash to specific locations in the filter the bits cannot be cleared
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upon removal of an item. Thus when items are deleted the filter must be com-
pletely rebuilt. Fan et al [4] address this issue by introducing a Counting Bloom
Filter (CBF). Instead of a bit array, the CBF maintains an array of counters
C = {c0, . . . , cm−1} to represent the number of items that hash to its cells. Inser-
tions and deletions can now be handled easily by incrementing and decrementing
the corresponding counters. The counters are typically three to four bits wide,
so the CBF needs about three to four times the space of a standard Bloom filter.
Using a small fixed amount of bits to represent the counters introduces the prob-
lem of a possible counter overflow. If more items hash to a counter than it can
represent an overflow occurs. Thus the counter-width must be chosen appropri-
ately large for a given application. In general the counter-width is derived from
the expected maximum counter value max(C), which is equal to the expected
maximum number of collisions per counter and can be easily computed using
probabilistic methods. There are multiple approaches for dealing with overflows.
One is to simply ignore counters that have reached their maximum value and
stop updating them. Though this is a simple solution it leads to inaccuracies in
the filter that must somehow be resolved. Another solution is to keep the exact
counter value in additional dedicated memory and check this area whenever a
counter at the maximum value is seen. If it is an overflown counter, only the
value in the extra memory is updated and evaluated. The number of bits per
item β is

βcbf = log max(C) ∗ ζ.

3.3 Multilayer Compressed Counting Bloom Filters

Recently, Ficara et al [5] introduced a compression scheme for counting Bloom
filters that also allows updates which they name ML-CCBF (MultiLayer Com-
pressed Counting Bloom Filter). It is based on Huffman coding. They use a sim-
ple code, where the number of 1s denote the value of the counter. Each string
is terminated by 0. So the number of bits needed to encode a counter value ϕ is
ϕ + 1 except for the value 0. Since with an optimal Bloom filter configuration
the probability of increasing counters falls exponentially this poses an optimal
encoding. Increasing or decreasing a counter is also simple by just adding or re-
moving 1. To avoid indexing and memory alignment issues the counters are not
stored consecutively but each one is distributed over multiple layers of bitmaps
L0, . . . , LN , with N dynamically changing on demand. Thus Li holds the ith
bit of the string. The first layer is a standard bloom filter representing items
with ϕ ≥ 1. To index the bitmaps k + N hash functions are needed. The k
hash functions are random hash functions used for the Bloom filter. The other
N hash functions index the bitmaps L1, . . . , LN and must be perfect to prevent
collisions. To retrieve a counter value it’s position u0 in L0 is first determined.
If the bit at u0 is 0 then ϕ = 0. Else L1 must be examined. Let popcount(ui)
be the number of ones in bitmap i before index u. popcount(ui) is then hashed
using the perfect hash function Hk+i to find the index in Li+1. If this bit is set,
1 is added to the current counter value and the next bitmap must be examined.
Otherwise, the end of the code is reached. Note that N must be as large as
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the maximum counter value + 1. With increasing counter values new layers of
bitmaps can simply be added. This scheme provides near optimal counter stor-
age. However, while it is easy to check the membership of an item by probing
the Bloom filter L0 retrieving all counters for an item is very expensive due to
the need of computing popcount(ui) for all k counters.

4 Fast Hash Tables

The major problem with data structures with d choices is that they require
at least d lookups in the hash table. Though these are usually independent
and can be done in parallel if the structure is built accordingly, it is inefficient
to do so. In [6] Song et al present a data structure named Fast Hash Table
(FHT) that eliminates the need for parallel lookups by using counting Bloom
filter summaries. In their scheme always only one bucket access is needed. They
use a CBF with m = 2dlog 12.8∗ne counters each representing the number of items
hashing to the corresponding bucket in the hash table. Thus the k = m

n ln2 hash
functions are used to index both the CBF and the hash table.When searching for
an item x it is hashed to find its k counters. The minimum z of these counters is
computed. If z = 0 the item is not present in the hash table, else it is retrieved
from the most left bucket corresponding to z. Note, that while there is only one
access to a bucket, it may be necessary to follow next pointers to traverse the
list of items in one bucket. Insertion and deletion of items depend on the type
of FHT of which there are three. This setting requires

βfht =
m

n
βcbf

bits per item in the summary.

4.1 Basic Fast Hash Table.

In the Basic FHT (BFHT) items are simply inserted k times, once in every
location it hashes to. The corresponding counters are incremented. In this case
the counter value also equals the actual load of a bucket. Due to collisions it
is possible that an item is inserted less than k times. In this case the counter
experiencing the collision is incremented only once. Deletions are equally simple.
The item is removed from the buckets and the counters decremented. Though
simple, this scheme leads to heavily loaded buckets and thus retrieval of an item
is most certainly accompanied by following multiple pointers.

4.2 Pruned Fast Hash Table.

The Pruned FHT (PFHT) is an improvement on the BFHT by only storing the
item at the most left bucket with minimum counter value. Counters are handled
as in the BFHT. This improves bucket load and lookup time, but insertions and
deletions are more complicated. Insertion and deletion can influence the counters



Hash Table Survey 5

of already present items. Since an item is retrieved by examining its counters
and lookup the bucket which has the lowest counter value, this counter value
might have been changed leading to lookup in the wrong bucket. For insertions
the items present in affected buckets must be considered for relocation. Deletions
require even more effort. Decrementing a counter may result in this counter being
the smallest one for items hashing to it. But since a bucket does not store all
items hashing to it, it is not possible to find the items that have to be relocated.
This can either be achieved by examining the whole PFHT and check every item
(which obviously is very expensive), or by keeping an offline BFHT which allows
examining all the items hashing to a bucket. Thus the PFHT is only suitable for
applications where updates are much rarer than queries.

4.3 Shared-node Fast Hash Table.

The Shared-node FHT (SFHT) provides support for update critical application
at the cost of slightly higher memory consumption than the BFHT. Here the
buckets only store a pointer to the first item that has been inserted. The items
themselves are stored in extra memory and carry a next pointer to the next item
in the list. Special care must be taken, when an item is inserted, that hashes to
empty as well as filled buckets. Appending this item to the linked lists would
lead to inconsistencies, so it must be replicated and pointers set in the empty
buckets and the linked lists accordingly. Counters are again treated as in the
BFHT. Though updates are much easier compared to the BFHT lookup now
requires following at least one pointer, resulting in more memory accesses.

5 Simple Summaries for Multilevel Hash Tables

The Fast Hash Table uses one counter per bucket to keep track of the number
of items stored. While this is a straightforward approach which is also easy to
implement, it has rather high memory requirements for the counting Bloom filter
summary which has to grow with bigger table sizes. Kirsch and Mitzenmacher
[7] observe, that the summary structure need not correspond to a bucket in
the underlying data structure. This allows separation of the hash table and
its summary and independent optimization. They use a Multilevel Hash Table
(MHT), first introduced by Broder and Karlin [8], to store the items. The MHT
consists of d = log log n + 1 sub-tables where each sub-table Ti has ci−12 c2n
single item buckets with c1 > 1 and c2 < 1. Thus |Ti| is decreasing for increasing
i. An occupancy bitmap is kept in on-chip memory with one bit per bucket,
allowing efficient queries for available empty buckets. When an item is inserted,
it is hashed d times to find one possible bucket in each sub-table. The item is
put in Ti with the lowest i for which the bucket is empty. A crisis can occur
when all d buckets are occupied. However, it can be proven that for any c1c2 > 1
the crisis probability is insignificantly small. Kirsch and Mitzenmacher present
three summary data structures which will now be reviewed.
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5.1 Interpolation Search Summary

All items inserted are hashed to a b-bit string, where b must be uniformly dis-
tributed and sufficiently large. The index i of Ti where the item is placed is stored
along with its string b. Interpolation search is used to search for an item, which
requires the array of strings to be ordered. Insertions and deletions correspond
to addition and removal of the string and index and requires shifting subsequent
strings to keep the ordering. A failure can occur if two items inserted hash to
the same b-bit string. The failure probability is

pfail(n, b) = 1−
n+1∏
k=0

2b − k + 1

2b

A false positive occurs when an item not inserted hashes to a string present in
the summary. Supposed no failure occurred the false positive probability is

pfp(n, b) =
n

2b
.

Thus by choosing b appropriately large for given n both the failure and false
positive probability can be optimized. The authors suggest b = 61 for n =
100.000. Note, that b must grow with larger n to keep the probabilities constant.
log d bits are additionally needed to represent i. With d = 8 the total number
of bits per item needed for the summary is 64 and is derived by

βis = b+ log d.

5.2 Single Bloom Filter

The Single Bloom Filter summary (SF) has m = n log n cells initialized to 0 and
represents the type t of an item where t is the sub-table the item is stored in.
k = log n hash functions are used to access the Bloom filter. To insert an item
first its type is identified by inserting it into the MHT. Then it is hashed k times
and the k cell values are replaced with the maximum of its value and the type
of the item. To search for an item the k cells are examined and the minimum
z is computed. If z = 0 the item is not present in the MHT. Otherwise, it has
a type of at most z. In addition to false positives this structure can also return
type failures, iff z yields an incorrect type for an item. With d = log log n + 1
types the Bloom filter summary needs

βsf = log n log log log n

bits per item.

5.3 Multiple Bloom Filters

The single filter approach introduces type failures and care must be taken during
construction since false positives and type failures are not independent. The Mul-
tiple Bloom Filter summary (MBF) eliminates this additional effort by making
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use of the skew of the items in the MHT. Since the number of items in subse-
quent sub-tables decreases rapidly an array of Bloom filters B = {B0, ..., Bt−1}
with decreasing size can easily be used to represent the set of items of a specific
type. Each filter Bi represents the set of items with type at least i + 1. Thus
a false positive on Bi is equal to a type i failure. Obviously the false positive
probability must be extremely small for successful lookup. This leads to the need
of significantly more hashing. The authors give examples of 15 hash functions
for B0 and 49 for each of the other filters. However, the hash functions between
Bloom filters need not to be independent, so the same set of hash functions can
be used for each filter and the result modulo the size of each filter used for access.
With a well designed MHT the total number of bits for the MBF is n log n,
leading to

βmbf = log n.

5.4 Deletions

The Bloom filter based summaries only support inserts. To allow deletions signif-
icantly more effort is needed in terms of additional data structures. Two deletion
schemes are proposed in [7], the lazy deletions and the counter based deletions

Lazy Deletions. A simple approach for adding deletion support is lazy dele-
tions. A deletion bit array is kept with one bit for every bucket in the MHT.
When an item is deleted the corresponding bit is simply set to 1. During lookup,
items in buckets with set deletion bit are simply ignored. However, problems can
occur if too many newly inserted items collide with deleted buckets. Thus after
a certain threshold the whole MHT must be rebuilt, that is, all items must be
examined for relocation.

Counter Based Deletions. As with counting Bloom filters this scheme adds
counters to the Bloom filter based summaries to keep track of the number of
items inserted. The single filter summary must now contain one counter for each
possible type in each of its cells. In the multiple Bloom filter summary the Bloom
filters are replaced by counting Bloom filters. Since the number of items decreases
throughout the sub-tables the counter-width can also decrease. No evaluation is
given by the authors for the modified single filter summary but given d choices
it would require

βsfm = dc log n

bits per item. Generalizing the amount of bits needed for the modified multiple
Bloom filter summary is not as straightforward since the choice of how many
bits per counter and filter should be used depends on the type of application and
also personal taste. However, the authors give some examples and state that the
modified version occupies 3.3 times more space than the simple multiple Bloom
filter summary. This leads to

βmbfm = 3.3log n

bits per item.
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6 Discussion

Though the provided data structures show a lot of improvements over näıve hash
tables and sound appealing for IPv6 lookup applications, their usability in the
internet core is quite limited. The reasons are 1) missing evaluation for millions
of entries, 2) need for pointer following and 3) high requirements of fast on-chip
memory.

All the Fast Hash Table types need following next pointers during lookup.
Only the Pruned FHT seems appealing, since bucket loads are lower than in its
sister structures. However, the number of bits per item needed for the summary
is quite high. With millions of entries in the lookup table the expected summary
size exceeds the available lookup-dedicated on-chip memory by far. Compressing
the counting Bloom filter summary by using a ML-CCBF is not an option be-
cause of its need for multiple perfect hash functions and the expensive counter
computation. The simple summaries for MHTs provide a constant lookup of
O(1), which is the optimum. However, the Interpolation Search (IS) summary
has high memory requirements, stated 64 bits for n = 100, 000 and expected
to be much higher for millions of entries. In addition, interpolation search is an
expensive task and at the time of this writing cannot be done in hardware. The
Single Filter (SF) summary needs less space but does not support deletions.
No evaluation is given for deletion support, but can easily be computed. The
smallest summary is the multiple Bloom filter summary (MBF), but it has sim-
ilar constraints as the SF regarding deletions. In addition to the summaries, the
occupancy and optional deletion bitmaps are also kept in on-chip memory for
efficiency reasons, which further increases the the needed amount of memory.
However, this is not a requirement for the functionality of the summaries.

Structure Bits per item total size in KiB

PFHT 83.89 1,024
IS 64 781.25
SF lazy 33,54 410.43
SF counter 265,75 3,244.07
MBF lazy 16.61 202.75
MBF counter 54.81 699.09

Table 1. Number of bits for n = 100,000

Table 1 summarizes the expected number of bits per item and total size
in KiB needed for n = 100, 000. For the MHT summaries the occupancy and
deletion bitmaps are neglected. We assume a counter-width of 4 for the PFHT
and 2 for the counter-based SF. Figure 1 shows a size comparison for n ≤ 1.5·106.
Since no information is given on how to appropriately choose b, the interpolation
search summary is neglected in this figure.
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Fig. 1. Total summary sizes
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7 Conclusion

IP lookup, as the name implies, is a heavily lookup driven application where
updates occur rarely and need not take effect instantly. Under these conditions
the lookup engine can be separated from the update engine. Applying this ob-
servation to the available MHT summaries allows us to resign the occupancy
bitmap completely and check every bucket during inserts. With deletions the
lazy deletion scheme suffices. Thus, the lazy multiple Bloom filter summary per-
forms best in terms of memory requirement and false-positive probability, if only
the filters are kept in on-chip memory. However, it requires significantly more
hashing than other structures. Though the same set of hash functions can be
used for all the filters, computing modulo is pretty expensive and should be
avoided. Apart from this, the MHT summaries do not seem to leave room for
further improvements. The PFHT can be further tuned to better suit IP lookup
applications. First, the counting Bloom filter could be compressed using easily
implementable encoding schemes like Huffman encoding. The counters could be
encoded sequentially in on-chip memory and the code-book stored in registers.
This allows easy encoding/decoding while still allowing updates. However, to
allow direct indexing, a fixed number of counters must be encoded per memory
word. To prevent overflows, the word cannot be completely filled which limits the
achievable compression factor. The length of the CBF and the number of buckets
is optimized for a vanishing false positive probability. By reducing the length m
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at the cost of a higher false positive rate the filter size can also be significantly
reduced. This is not an option for the bloom filter based MHT summaries since
here the false positive probability is coupled to the type failure probability which
must be kept extremely small. Optimizing the PFHT is subject of [9] and can
not be reviewed here in detail. However, reducing the memory requirements of
the PFHT by supporting a constant lookup time of O(1) can shift the tuned
PFHT in favor over the MBF summary.
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