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This survey paper reviews results on heuristics for two weighted matching problems: 
matchings where the vertices are points in the plane and weights are Euclidean dis- 
tances, and the assignment problem. Several heuristics are described in detail-and 
results are given for worst-case ratio bounds, absolute bounds, and expected bounds. 
Applications to practical problems and some mathematical complements are also 
included. 

1. INTRODUCTION 

Edmonds’ algorithm [ 101 for finding a minimum weighted matching in a graph has 
stood for almost two decades as one of the paradigms in the search for polynomial- 
time algorithms for integer programming problems. Given the plethora of combin- 
atonal problems for which no such algorithm is known, it is little wonder that heur- 
istics for solving the weighted matching problem have not received much attention 
during this time. However, in the past few years, several important developments have 
occurred in the applications area, where largescale problems have meant that even an 
0(n3) implementation of Edmonds’ algorithm (see, e.g., [18)) is too expensive. On 
the theoretical side also, the inherent complexity of Edmonds’ algorithm has resisted 
analysis of the expected weight of the optimal solution, given a known distribution 
of the edge weights. Suboptimal but conceptually simpler heuristics are easier to 
analyze and provide bounds on this expected value. 

In this survey paper, we review the rapid progress that has been made in the analysis 
of matching heuristics during the last few years. The remainder of this section contains 
an outline of the paper and a description of some of the applications that motivate 
the study of matching heuristics. An attempt is made in this section to present a brief 
historical summary of the relevant papers, and to present the applications in some 
detail. The remainder of the paper is divided into two main sections: weighted match- 
i n g  where the weights are Euclidean distances and matching where the weights are 
arbitrary positive numbers. In each of these sections, representative heuristics are 
described along with the most recent results on their analyses. Unfortunately not all 
heuristics can be included: there have been well over twenty heuristics proposed for 
the Euclidean case alone. It is hoped that the heuristics presented are a good repre- 
sentation of this group, and that the interested reader will be able to explore the 
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original papers to discover those heuristics that space did not allow us to include. 
Where available, numerical results are included that compare various heuristics on 
empirical data, Finally, in each section we attempt to connect the results obtained 
with related theoretical questions of a primarily mathematical interest. The fourth 
section of this survey contains conclusions on which heuristics are likely to be the 
most useful in practice, a summary of comparative results, and a list of some open 
problems. 

Let us now return to  outline the development of heuristics for the weighted match- 
ing problem. An early paper is that of Kurtzberg [ 151, who studied heuristics for the 
assignment problem. When the weights are uniformly distributed in the interval [0,1], 
he exhibits heuristics for which the expected minimum weight of the perfect matching 
found is at most In n. This opened the question of finding the expected value of the 
optimum matching. Further progress was made by Donath [9], who presented experi- 
mental evidence to  show that thls expected value was in fact bounded by a constant 
of about 1.6, independent of n, a most remarkable observation. In 1977, this question 
was settled when Walkup [26, 271 showed that the expected weight of the optimal 
matchmg was bounded above by 3. Walkup’s proof was, however, nonconstructive. 
Most recently, Lai [ 161, in his thesis, has given a constructive proof of Walkup’s result 
by exhibiting an O(n2) heuristic which fiids a solution to the assignment problem 
with an expected weight of at most 6 .  Heuristics for weighted matchings in the 
complete graph K, are discussed in Avis [3]. This paper contains average- and worst- 
case results for two “greedy” heuristics which repeatedly match vertices adjacent 
along an edge of lowest possible cost. 

The above papers all concern matchings where the edge weights are arbitrary. Fur- 
ther, several of the papers were motivated by theoretical considerations. A separate 
literature has arisen around the problem of finding a minimum-weight matching in K, 
where the vertices are points in the Euclidean plane and where the Euclidean distance 
between two points is the weight assigned to the corresponding edge. Since these 
weights satisfy the triangle inequality, much stronger results are possible. This series 
of papers arises from the problem of determining the efficient use of a mechanical 
plotter, an application which appears to have been discovered in North America and 
independently rediscovered later in Japan. 

Consider the problem of plotting a graph G = ( V ,  E )  where the vertices are given by 
their ( x , y )  coordinates. Figure 1 contains a typical example, a map of the major roads 
in Tokyo. If the graph contains an Eulerian cycle or path then it can be drawn with 
no wasted pen movement. Since a graph has an Eulerian cycle or path if and only if it  
has at most two vertices of odd degree, this condition can be easily checked. Further- 
more, such a cycle or path can easily be found in linear time using depth-first search 
(see, e.g., [18]). Otherwise the pen must be moved in the “up” position, resulting in 
wasted pen motion. The graph G can be made Eulerian by matching the edges of odd 
degree, but remembering to lift the pen “up” when these matched edges are traversed. 
If the vertices are matched arbitrarily, the wasted pen movement can be quite large. 
Figure 2(i) shows the pen movement wasted in using this technique, by the device of 
reversing the pen “up” and “down” instructions. Thus the lines plotted represent the 
wasted pen movement. Finding a minimum-weight matching will reduce the waste to 
a minimum: this is illustrated in Figure 2(iii). Large plotting problems can involve 
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FIG. 1. A street map of Tokyo (courtesy In et al. [ 131). 

thousands of vertices (e.g., VLSI circuits), and so the computation required to com- 
pute this matchmg would be much more expensive than the wasted plotter time. A 
linear-time heuristic known as the spiral rack was implemented and results in the pen 
wastage shown in Figure 2(ii). This heuristic takes about 0.1% of the CPU time re- 
quired for the optimal solution, and produces a matching of weight about 50% greater. 
This compares with the approach in Figure 2(i) where a matching of weight some five 
times greater than optimal was found. 

The reader may have noted that the above problem is none other than the Chinese 
postman problem in a different guise. The plotter application appears in Reingold 
and Tarjan [20] and Iri and Taguchi [ 1 1 1 .  The former reference describes the worst- 
case ratio of a “greedy” heuristic to the optimal solution. The latter paper describes 
some experiments on the example of Figure 1. In Avis [4], a case is made for an 
alternative worst-case measure based on the absolute difference between the heuristic 
and optimal solutions. An analysis is given of the greedy heuristic under this measure. 
Both measures are discussed in the comprehensive paper of Supowit et al. [23], which 
appears in more detail as [24] and [25]. In Iri et al. [12,13] extensions are made to 
results in their earlier preliminary paper, describing linear heuristics. Finally, in Rein- 
gold and Supowit [ 191, some average-case results are given for the heuristics described 
in their earlier papers. Expected-case results for a different heuristic had previously 
appeared in Papadimitriou [ 171, although not in the context of the plotting problem. 
A new proof of this and related results is contained in Steel [22]. Little of qualitative 
nature is known about the optimum Euclidean matching. Such information would be 
useful in the design of fast heuristics. Akl [2] has examples to show that the optimum 
matching is not a subgraph of either the Delaunay or minimum-weight triangulation. 
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(3 (iii) 
FIG. 2. Wasted pen movement for various matching strategies (courtesy In et al. [ 131). 
(i) points matched in arbitrary order. (ii) points matched by SPIRAL RACK heuristic. 
(iii) points matched by optimal algorithm. 

Matching heuristics also find application as subprocedures in heuristics for the travel- 
ing salesman problem (TSP). Christofides' heuristic for the TSP involves finding a 
matching in K, ([8], [ 181). Similarly, the assignment problem appears as a subprob- 
lem in a heuristic for the TSP due to Karp [15]. Since both of these procedures for 
the TSP are approximate, it seems worthwhile to consider using heuristics for the 
matching subproblem, reducing the overall running time. This allows for several 
heuristic solutions to  be tried within the original time bound. Further discussion of 
these topics as well as the application of local neighborhood search to matching prob- 
lems can be found in [ 11, An example by Friese (private communication) shows that 
the worst-case ratio bound of this method is very bad [!2(n2)]. 

We conclude this section by remarking that while most of the results in this survey 
have appeared previously, there are some new results. In particular, the analysis of 
Kurtzberg's decomposition heuristic in Sections 1II.A-1II.C is new. In addition, 
Theorem 4 of Section 1II.B generalizes a result of [3]. 
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II. HEURISTICS FOR EUCLIDEAN MATCHING 

A. Description of Heuristics 

Let n be an even integer and let P = { p l ,  . . . , p, }  be a set of n points in the plane. 
A (perfect) matching M is a set of i n  edges connecting points in P such that each 
point in P is the endpoint of exactly one edge. The cost ofMis the sum of lengths of 
edges in M. Normally we will assume the lengths are given in the Euclidean L2 metric, 
although some results will also be presented for the L ,  metric, which is often a more 
appropriate measure for the plotting application mentioned in Section I. We will 
sometimes add the additional condition that P is a subset of a bounded Euclidean 
region, for example, the unit square. 

In this section we describe four heuristics that have received significant analysis and 
span the range of time complexities from “medium” speed to linear, in terms of the 
given number of points. The first heuristic, GREEDY, is perhaps the most obvious: 

procedure. GREEDY 
begin 

while P contains at least two points 
do begin 

Choose the closest pair (pi, pi) E P; 

Deletepi,pi fromP 
Add (Pi, PI) to  M; 

end 
end; 

Although easily stated, the worst-case time complexity of GREEDY is not immediately 
obvious. In discussing time complexity, we shall use the usual real RAM model with 
floor function [XI available at unit cost. Under this model it is straightforward to 
implement GREEDY in O(n2 log n) time by fnst computing and sorting all edge 
lengths and then by scanning this sorted list once. In fact GREEDY can be imple- 
mented in O(n3” log n) time as shown in [7], and this is the best known time com- 
plexity although it seems unlikely that this is optimum. The GREEDY heuristic 
appears in [3 ,4 ,15,20] .  

All of the other heuristics we consider apply to the situation where the points in P 
lie in a bounded region. The first such utilizes the notion of dividing the region into 
strips. This idea has been useful in analyzing the traveling salesman problem [ 6 ] ,  
although its application to the matching problem occurs in [17]. The variation de- 
scribed here, which improves the worst-case performance without increasing the time 
Complexity, is taken from [ 23,251. 

procedure STRIP 
begin 

1. Set r = [ i n ]  and divide the unit square into r vertical strips. 
2. Form paths PI, . . . , P, by joining each point in strip i to the point with the 

3. Link the paths to form a traveling salesman tour TI by joining the top element 
next-greatest vertical coordinate. 
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of P1 to the top of P2, the bottom element of P2 to the bottom element of P3,  
etc. Finally link the two remaining endpoints. 

4. Form a new partition of the unit square by shifting the partition of step 1 by 
i r  to the right; repeat steps 2 and 3 for this partition, obtaining a new tour Tz .  

5 .  Each of the tours TI and T2 contains two matching; choose the smallest of the 
four matchmgs. 

end; 

STRIP is illustrated in Figure 3. In analyzing the time complexity of STRIP it is appar- 
ent that the partition into strips in Steps 1 and 4 can be performed in O(n) time, using 
the floor function. Step 2 can be implemented by sorting the points in each strip by 
their vertical coordmate, at a cost of O(n log n). Steps 3 and 5 take O(n) time, thus 
the overall time complexity of STRIP is O(n log n), making it considerably faster than 

Our thud heuristic, again due to Supowit et al. [24], also applies to  a bounded 
region, which will be assumed to be of dimension f i x  1 for convenience in describ- 

GREEDY. 

1 

(ii) 
FIG. 3. (i) Tour Tl produced by STRIP. (ii) The two sets of STRIP boundaries. 
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ing the algorithm. Applications to other region sizes are straightforward. This heur- 
istic, called X-RECTANGLE, is recursive and employs the parameter X to control the 
depth of the recursion. The special case when X = [log n] is particularly important, 
and in this case we drop the parameter and refer to the RECTANGLE heuristic. The 
variable “level” measures the depth of the recursion and is initially zero. R is the 
rectangle containing the points to be matched. 

procedure X-RECTANGLE (level& 
begin 

if level Q X and R contains at least two points 
then begin 

Bisect R to form rectangles R 1  and R2 having sides of ratio @ 1 ; 
A-RECTANGLE (leveltl , R1); 

if R, and R2 contain unmatched points p i  and pi, 
A-RECTANGLE (leVel+l, Rz); 

add ( P i ,  P / )  to M 
end 

else 
arbitrarily match the points in R until at most one point is left unmatched 

end; 

The recursive version of RECTANGLE given above can be implemented in time 
O(n log n) without using the floor function. With the floor function, RECTANGLE can 
be implemented in a bottom-up fashion nonrecursively in time O(n) [24]. Note that 
at level [log n] there are approximately n rectangles into which points must be placed. 
The analysis of RECTANGLE appears in [ 19,23,24]. 

Our final heuristic has been dubbed the “spiral rack” by its inventors, Iri et al. [12], 
and relies on a partition of the unit square into an array of X n112 subsquares. 
The name derives from the order in which the subsquares are visited, which is illus- 
trated in Figure 4. For convenience in describing the algorithm, we assume k = a n1I2 
is an integer where a is a parameter of the algorithm to be determined. 

procedure SPIRAL RACK 
begin 

Divide the points into an array of k2 subsquares of dimension l /k  X Ilk. 
Order the cells according to the spiral rack order (Fig. 4), forming the sequence 
C1,Czr...,Cn. 

fori= 1 t o n  
do begin 

if Ci # qj form a path arbitrarily through the points in Ci; 
if i > 1 link this path to a vertex of degree 1 in Ci-l 
end 

Link the two remaining vertices of degree 1, forming a traveling salesman tour. 
Choose the smaller of the two matchings that form the tour. 

end; 
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FIG. 4. SPIRAL RACK cell order (courtesy Iri et d. [ 131). 

The performance of SPIRAL RACK can be improved by the addition of the following 
preprocessing step: first match as many points as possible within each cell separately, 
then apply SPIRAL RACK to the remaining points. The parameter 01 has a substantial 
influence upon both the worst-case and average-case behavior of SPIRAL RACK. For 
practical purposes, the authors suggest a value of OL = 1.29 for the L2 metric and 
01 = 1.26 for the L, metric [ 131. 

It is straightforward to implement this heuristic in O(n) time using the floor func- 
tion. Other linear heuristics can be constructed by altering the order in which the cells 
are visited. An alternative ordering is shown in Figure 5, and has been dubbed the 
“serpent” ordering. 

This concludes the description of four heuristics that have appeared in the recent 
literature. The next subsections contain a synopsis of known results concerning these 

FIG. 
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FIG. 6. First three of a series of examples to  show that the bound in Theorem 1 is 
sharp (from [201): solid edges, GREEDY solution; dashed edges, optimal solution. 

heuristics. To this end we require some further notation. Let CGR(P), Cs(P), CR(P), 
CSR(P), CMIN(P) be the cost of the matching obtained by GREEDY, STRIP, RECT- 
ANGLE, SPIRAL RACK, and the optimum algorithm, respectively. Since the depen- 
dence on P is usually clear, we will normally write CGR, Cs, CR, CSR, and CMlN for 
brevity. 

B. Worst-case Results: Ratio Bounds 

One of the most common performance measures for a heuristic bounds the ratio of 
the worst-case costs of the heuristic and optimal solutions in terms of a function of 
the size of the input: 

Ideally, f( Ip I) is a small constant independent of P. This type of bound is particularly 
useful when the size of the input space is unbounded, implying that the solution is 
unbounded even for fmed IPI. 

The only heuristic from Section I1.A for which a ratio bound is known is GREEDY, 
for which Reingold and Tarjan proved 

Theorem 1 [20]. 
4 101.5. CGRKMIN < 5" 

Here lg represents the logarithm to the base 2. The bound is in fact sharp as illustrated 
by the examples in Figure 6. This result shows that the greedy solution can be very 
much larger than the optimum solution, even for rather small values of n = PI. A 
constant-ratio bound of is known for the maximum weighted matching problem 
using the GREEDY heuristic modified in the obvious way. This bound holds indepen- 
dent of the Euclidean metric. and so is deferred to Section 1II.B. 

C. Worst-case Results: Absolute Bounds 

In the plotting application described in Section I the cost of wasted plotter move- 
ment must be balanced against the CPU cost of finding a good matching. The cost of 
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increased plotter time is proportional to the difference C H E U ~  - CMIN rather than to 
the ratio. The example of Figure 6 does not therefore result in much wasted pen 
movement since the points are collinear: CGR is bounded by the diameter of the 
plotting region, which is often constant in practice. It is therefore of interest to study 
the behavior of the various heuristics in regions of bounded size, the unit square being 
the most convenient such region. AU four heuristics have been analyzed to find upper 
bounds on the size of the worst-case solution, as a function of n. The following 
results are known: 

Theorem 2. If P is a set of n points lying in the unit square, then 

(i) O.8474n1l2 < Sup CGR(P) 4 1.074n1/' + O(1og n) (GREEDY [4]), 
P 

Sup Cs(P) < 0.707n1/' + O(1) (STRIP [23]), 

Sup CR(P) = 1.436n"' t 0(1) (RECTANGLE [23]), 

P (fi) 

(iii) 

(iv) 0.932n'I' < Sup CsR(P) < 1.014n1'2 t o(n'/') (SPIRAL RACK [12]), 

(v) 0.537n1/' Q Sup CMIN(P) Q 0.707n1/' t O(1). 

The upper bound for the optimal solution given in (v) derives from the STRIP heur- 
istic analyzed in [23]. The lower bound appears in several places 14, 13, 231 and is 
obtained by considering the regular hexagonal lattice which is known to give the 
densest packing of the plane by unit circles [21]. Consideration of this lattice also 
gives the lower bound for GREEDY in (i). The upper bound for GREEDY is obtained 
by first computing the largest possible minimum distance between a set of n points in 
the unit square. This again relates to several classical packing problems in the mathe- 
matical literature. GREEDY can of course be used in arbitrary dimensional spaces, and 
upper bounds for arbitrary dimensions can be obtained by using Blichfeldt's theorem 
for packing hyperspheres into the unit hypercube [4]. The upper bound for STRIP 
comes from the clever trick of superimposing the two partitions of the unit square and 
then by computing a simple bound on the length of the two tours combined. An aver- 
aging argument shows that there must be a matching of weight at most one-quarter of 
this total [23]. The analysis of RECTANGLE is much more complex, partly because 
the depth of the recursion is fixed in advance and also because the region is a rect- 
angle, rather than the unit square, requiring additional arguments [24]. The results in 
(iv) concerning SPIRAL RACK are obtained by a completely different technique. The 
bound is obtained in a very compact and elegant manner by formulating and solving 
a small linear program. The method is quite general and is used in [13] to obtain 
bounds for many alternative linear heuristics in both the L2 and L ,  metrics. This 
bound was obtained with the tuning parameter a set at approximately 1.712, and 
holds both with and without the preprocessing step. 

P 

P 

P 

D. Average-Case Results 

In this section we review some results on the expected size of the matchings pro- 
duced by the various heuristics, when the input points are located uniformly in the 
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unit square. These results are interesting for two reasons. From a practical stand- 
point, the points in a dense drawing to be plotted are very likely to be approximately 
uniformly distributed; thus this measure may be more appropriate than the absolute 
worst-case bound. From a mathematical viewpoint, it is of independent interest to 
find the expected size of the optimal minimum-weight matching. It is here that the 
advantage of heuristics become apparent: it is virtually impossible to  do an average- 
cost analysis on Edmonds' algorithm. Indeed, a version of the STRIP heuristic for the 
traveling salesman problem was devised in [6] to analyze the expected size of the 
optimal tour. Papadimitriou [17] extended these results for matchings. A short proof 
is contained in Steele [22]. The following theorem presents the known results for 
three of the heuristics: no results are known for GREEDY. 

Theorem 3. If Pis a set of n points distributed uniformly in the unit square, then 
(i) E(Cs(P)) = 0.474n'l2 t o(n'j2) (STRIP using only T1 [23]), 
(ii) E(CR(P)) = 0.516n1'2 t ~ ( n " ~ )  (A-RECTANGLE with A = [logn] t 7 [23]), 
(iii) E(CSR(P)) = 0.484n1/' + o(n'l2) (SPIRAL RACK, with a = 1.12 and prepro- 

(iv) E(CMIN(P)) Q 0.402n1/2 + ~ ( n " ~ )  [(17)]. 
cessing [ 13]), 

The bound (iv) for the optimal solution is obtained from a modified STRIP heuristic 
which also runs in O(n log n) time. Papadimitriou conjectures that E(CMIN(P)) = 
0.35n1l2 and empirical studies indicate values close to this [13]. Probabilistic results 
for other matching heuristics are contained in [ 19 J and [ 131. Both papers also con- 
tain results for the L ,  metric. 

E. Numerical Results for a Practical Example 

The most comprehensive numerical tests have been performed by Iri et al. and are 
reported in [13]. We reproduce some of their results in Table I. Some words of 
explanation are in order. The data is a road map of the Tokyo area with n = 254 
points. The first row of the table indicates the plotter utilization when the edges are 
plotted as they appear; i.e., no attempt is made to find an Eulerian path. The second 
row indicates the results obtained by forming an Eulerian path by arbitrarily matching 
the vertices of odd degree, i.e., by using a random matching. The next three rows indi- 
cate the results obtained by using the SPIRAL RACK and STRIP heuristics. Unfor- 
tunately, no results are available for the GREEDY and RECTANGLE heuristics. In the 
column representing wasted pen movement, both the absolute waste and the waste 
normalized to the unit square and divided byn'/' are given. [I31 also contains some 
extensive Monte Carlo experiments which were used to tune the various heuristics. 

111. HEURISTICS FOR MATCHINGS WITH 
POSITIVE EDGE WEIGHTS 

A. Description of Heuristics 

The heuristics described in this section are designed to find matchings in the com- 
plete graph K ,  or the complete bipartite graph K,, , .  The latter problem is better 
known as the assignment problem and is often stated in terms of an n X n cost manix. 
The first published study of heuristics for the assignment problem appears in Kurtz- 
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berg’s master’s thesis, which was published in [15]. This paper contains four heu- 
ristics: the matrix scan method, the row scan method, the row/column scan method, 
and the decomposition method. The matrix scan method turns out to  be the GREEDY 
heuristic introduced in Section 1I.A with very minor modifications to this context. 
This heuristic was also analyzed independently by the author for the complete graph 
K ,  in [ 3 ] ,  where it was called GREEDYII. Although Kurtzberg reports an 0 ( n 3 )  time 
complexity, th is  can be reduced to O(nz log n) by sorting. Kurtzberg’s row/column 
scan heuristic uses the following variation of the greedy principle: 

procedure VERTEX-SCAN 
begin 

while some vertex is unmatched 
do begin 

Pick some vertex i at random. 
Choose edge ( i , j )  of minimum weight. 
Delete i ,  j and all adjacent edges to both vertices. 

end 
end; 

The row/column scan is in fact two calls to VERTEX-SCAN. In the first call, all 
vertices i chosen in the while loop are selected from the same part of the bipartite 
graph. In the second call, all vertices are chosen from the other part. (In terms of 
matrices, first the rows are scanned and then the columns; hence the name row/ 
column scan). The minimum of the two matchings obtained is chosen. This heuristic 
is easily implemented in 0(n2) time. The procedure VERTEX-SCAN can, of course, be 
applied to the complete graph K,. It appears in this context in [ 3 ]  where it is called 

Kurtzberg’s decompose heuristic can best be described in terms of matrices. Let 
D[l * - - n ,  1 - * n] be the cost matrix corresponding to the weighted graph K,,,. 
A parameter k, which is assumed to divide n, is fixed in advance. 

GREEDYI. 

procedure DECOMPOSE 
begin 

1. Partition D into k’ submatrices Rij ,  1 < i, j < k, of size n/k X n/k. 
2. Solve each Rii using an optimal algorithm obtaining costs aq and permutation 

3 .  Solve A = (aij), 1 < i ,  j Q k, using an optimal algorithm obtaining permutation 

4. Build the permutation matrix M [ 1  . - - n, 1 - - - n ]  by inserting those blocks 

matrices Yij. 

matrix Q = (@. 

Yii for which qq = 1, and setting all other elements to zero. 
end; 

Kurtzberg does not include a time Complexity analysis of DECOMPOSE, so we include 
one here. The heuristic requires the solution of kZ assignment problems each of size 
n/k X n/k,  in Step 2. This takes time 0 ( n 3 / k 3 )  using the Hungarian algorithm [18]. 
Step 3 requires the solution of one problem of size k X k taking 0 ( k 3 )  time. Steps 1 
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and 4 require O(n2) time each; hence the overall complexity is O(n2) + O(k3) t 
O(n3/k), which is minimized when k = 2 1 ' .  Thus the overall complexity of DECOM- 
POSE is O(n2*2s). One motivation for using DECOMPOSE is the situation where the 
given matrix is too large to tit into main memory. Then setting k = n112 ensures that 
no problem of size n1I2 X n112 need ever be considered; however, the overall com- 
plexity is O(n2*') for this value of k. 

Donath [9] improves on the row/column scan method by introducing a multi- 
column scan heuristic, This heuristic involves successive investigation of the next 
smallest element in the columns being scanned, whenever the current element being 
considered is in a row which was assigned to another column in a previous step. The 
multiscan heuristic can be implemented in O(n2 log n) time. 

Finally, a new O(n2) heuristic for the assignment problem, SELECT, was analyzed by 
Lai in his master's thesis. This procedure involves selecting a linear number of low- 
cost edges from K f l , f l  and then finding a maximumcardinality matching on these 
edges. Fill in is used in case a perfect matching is not found. The success of the pro- 
cedure depends on the choice of low-cost edges. 

procedure SELECT 
begin 

1. 

2. 

3. 
4. 

end; 

Suppose n is even and partition the two parts of Kfl," into S1, S2 and T 1 ,  T2 
each with in vertices; fix d 2 5 .  
For each u E S1 choose the d lowest-cost edges to TI ; 
for each u E S2 choose the d lowest-cost edges to T,; 
for each u E TI choose the d lowest-cost edges to  S2; 
for each u E T2 choose the d lowest-cost edges to  S1. 
Find a maximum carhali ty matching on the edges chosen in Step 2. 
Use a greedy heuristic to complete the matching from Step 3 into a perfect 
matching. 

Figure 7 illustrates the selection process of Step 2. Note that at most 2dn edges 
are chosen. By fucing d (in practice d = 5 is chosen) the procedure SELECT can be 

A-B 

FIG. 7. Illustrating the second step of SELECT: for each vertex u E A ,  choose the 
d smallest-weight edges into B. 
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implemented in U(nz )  time. This heuristic was motivated by a nonconstructive 
technique of Walkup [27] used to  obtain a remarkable upper bound on the expected 
optimal value of the assignment problem. This result is discussed in Section 1II.C. 

This concludes our description of heuristics for the arbitrarily weighted matching 
problem. The remaining subsections contain results on the cost performance of 
these heuristics. 

6. Worst-case Results 

Very few worst-case results are available for the minimum-weight matching problem 
with arbitrary positive edge weights, either with relative error bounds or with absolute 
error bounds. The reason for this is the fact that maximum-cardinality matching in an 
arbitrary graph G = (V, E) can be embedded into this problem. If G has n vertices 
then G can be embedded into a weighted graph K, by setting the weight on (i, j )  to 
one if (i, j )  E E and to some other constant N otherwise. Any heuristic that delivers 
a guaranteed bound on the relative or absolute error must therefore be powerful 
enough to find maximum-weight matchmgs in arbitrary graphs. 

A ratio bound is, however, possible for the case of maximum weight matching. Let 
CER(G) be the weight of the matching obtained by GREEDY on an arbitrary weighted 
graph G with non-negative edge weights modified to pick the heaviest available edge. 
Let CMAX(G) be the weight of the maximum-weight matching. 

Theorem 4. 

Proof. Let x be the weight of the first edge ( i , j )  that is selected by GREEDY, so 
that x is in fact an edge of maximum weight in G. Now when ( i , j )  and all incident 
edges are deleted, at most two edges of the optimal matching may be removed. 
Further, the sum of their weights cannot exceed 2 x .  The other n - 2 or more edges of 
the optimal matching are candidates for selection at the next iteration of GREEDY. 
The argument may be repeated for each of the first fn iterations of GREEDYII. Since 
all edge weights are non-negative, the theorem is proved. 

This result appears in [4] for the case where G = K,; however, the proof holds for 
arbitrary G. Thus GREEDY (MATRIX-SCAN) produces a matching of at least half the 
weight of the maximum. A bound can also be found for DECOMPOSE modified in the 
obvious way to find maximum-weight matchings with weight C;(K,,,).  

Theorem 5. 

Proof. (sketch). Referring to Step 3 of procedure DECOMPOSE, it is clear that 2i,i 
ai,i 2 CMAX(K,, ,) .  Now K,,,  can be decomposed into k independent and disjoint 
matchings, hence 
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Now consider the matrix A* = (ati), 1 < i, j < k, defined by 

if Ri,/ contains an element in optimum matching, 
a?/ = { 2 j 3  otherwise. 

Then A* can have at most rn non-negative entries in each row and column, and these 
non-negative entries can be decomposed into at most rn perfect matchings. Further, 
Zi , jat j  3 CMAX(&,~), hence 

which proves the theorem. 
It can be shown that the bound in Theorem 5 is best possible; this is immediate for 

the boundary situations when k = 1 or n .  Assuming an implementation of DECOM- 
POSE with k = n3I4, we obtain a worst-case ratio bound of n1I4. Examples can easily 
be constructed to show that no similar bounds are possible for the other two heuristics 
described in Section 1II.A. 

C. Average-Case Retults 

Considerably more is known about average-case bounds for the weighted matching 
problem with non-negative edge weights. Let K,," (En) represent a random weighted 
complete bipartite graph (complete graph), with edge weights chosen independently 
and uniformly ontheinterval [0 ,1 ] .  Let C G R ( E ~ , ~ ) ,  C R C ( K ~ , , ) ,  C D ( K ~ , ~ ) ,  CS(K~,~), 
CMIN(Xn,") be the costs obtained by the procedures GREEDY (MATRIX-SCAN), Row/ 
Column Scan, DECOMPOSE, SELECT, and by the optimum algorithm on Fn,n. Let 

Kz,. Finally, let H ,  = 1 t t - * * t l / n  be the nth harmonic number. Then the 
following theorem summarizes known results on the expected value of these costs. 

C G R ( ~ ~ ~ )  - and Cvs(K2,)  be the costs obtained by GREEDY and VERTEX-SCAN on 

(lower bound from [ 151 ) 

Result (vii) was obtained by Walkup using nonconstructive methods. Donath [9] gives 
empirical evidence that the multicolumn scan heuristic obtains an expected solution of 
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at most 1.6. This paper also gives an argument to show an upper bound of 2.37; how- 
ever, there seem to be some difficulties with the proof [27]. Motivated by (vii), Lai 
has provided a constructive proof of Walkup's theorem [ 161. He also reports com- 
putational experience with SELECT on random problems of the type described above. 
On problems of size up to 150 X 150, he reports that SELECT obtains the optimum 
solution at least two-thirds of the time. The average relative error was only 0.2%. On 
problems of size 50 X 50 and 150 X 150, SELECT ran respectively twice and five times 
as fast as the optimum algorithm, which was an implementation of the Hungarian 
primal-dual [ 181. For the value of the optimum solution, Lai's results support Donath's 
findings of an upper bound of about 1.6. 

IV. CONCLUSIONS AND OPEN PROBLEMS 

This paper contains a survey of known results for matching heuristics in two areas: 
the Euclidean matching problem and the assignment problem. A brief summary of the 
results presented in Sections I1 and 111 are contained in Tables I1 and 111, respectively. 
The STRIP and SPIRAL RACK heuristics appear to be good choices for the Euclidean 
problem. Both are straightforward to implement, with STRIP having the better worst- 
case bound and SPIRAL RACK having the better time bound. RECTANGLE is also a 
very fast heuristic, but is more complex to program and has a poorer worst-case per- 
formance. GREEDY seems to have little to compensate for its slow running time. 

For the minimum-cost assignment problem, SELECT gives near optimum perfor- 
mance with O(n2) time complexity. On the other hand, the algorithm is rather com- 

TABLE 11. Summary of results for Euclidean matching of n points in the unit square. 
Empirical resultsb 
(see Section 1I.E) Upper bound on 

Time worst case Relative 
Algorithm complexity (unit square) error Weight Time 

0.707n'I' 1 0.23n'I2 34,000 
GREEDY O(n312 log n )  1.0474n'I' $n'*'*' 

1 .O 14n ' I 2  SPIRAL RACK O(n)  
RECTANGLE O(n) 1.436n'I' 

... ... Optimal" a n 3 )  

STRIP O(n log n) 0.707n'I' ... 0.3 3 n '1' 12 
0.4 1 n '1' 3 ... 

... ... ... 
"Coded in PASCAL; other heuristics coded in FORTRAN 77. 
bEmpirical results for Tokyo road map, n = 254. 

TABLE 111. Summary of results for n X n assignment problem. 
Upper bound on Ratio of optimal 

Time expected cost to heuristic costs 
Algorithm complexity (minimization) (maximization) 
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plex to program. For an easily programmable heuristic, Row/Column Scan appears to 
be a good choice. For the maximization problem, GREEDY (MATRIX-SCAN) has the 
advantage of a guaranteed bound on the relative error. DECOMPOSE has poor perfor- 
mance on all counts. 

We conclude with some open problems. 

(i) What is the worst-case and expected value of the minimum-cost matching on n 

(ii) What is the expected weight of the GREEDY matching on n points in the unit 

(iii) Find an optimal implementation of GREEDY for either the Euclidean or the 

(iv) Find U(n) or O(n log n) heuristics for the Euclidean problem with good ratio 

points in the unit square? 

square? 

Assignment problem. 

error bounds. 

The collection of the material for this survey was greatly facilitated by the enthusi- 
astic cooperation of several people. In particular, I would like to thank Ed Reingold 
for many stimulating correspondences on the subject matter of this survey. I am also 
most grateful t o  Masao Iri and Kazuo Murota of the University of Tokyo for many 
useful materials, including photographs of their figures. In this connection I would 
also like to thank Takao Nishizeki for helping bring our groups together. This work 
was supported by NSERC Grant No. A3013 and FCAC Grant No. EQ-1678. 
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