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We performed an electronic database search of published works from 2012 to mid-2021
that focus on human gait studies and apply machine learning techniques. We identified six
key applications of machine learning using gait data: 1) Gait analysis where analyzing
techniques and certain biomechanical analysis factors are improved by utilizing artificial
intelligence algorithms, 2) Health and Wellness, with applications in gait monitoring for
abnormal gait detection, recognition of human activities, fall detection and sports
performance, 3) Human Pose Tracking using one-person or multi-person tracking and
localization systems such as OpenPose, Simultaneous Localization and Mapping (SLAM),
etc., 4) Gait-based biometrics with applications in person identification, authentication, and
re-identification as well as gender and age recognition 5) “Smart gait” applications ranging
from smart socks, shoes, and other wearables to smart homes and smart retail stores that
incorporate continuousmonitoring and control systems and 6) Animation that reconstructs
human motion utilizing gait data, simulation and machine learning techniques. Our goal is
to provide a single broad-based survey of the applications of machine learning technology
in gait analysis and identify future areas of potential study and growth. We discuss the
machine learning techniques that have been used with a focus on the tasks they perform,
the problems they attempt to solve, and the trade-offs they navigate.
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1 INTRODUCTION

Smart Gait (SG) is a term for any integrated human gait data analysis system utilizing Artificial
Intelligence (AI). It is a growing research field capitalizing on the advancements in modern sensing
technologies, automation, cloud computing, data analytics, parallel processing, and Internet of
Things (IoT).

Some of the most prominent tasks SG performs are gait phase detection, gait event prediction,
human activity recognition, fall detection, recognition of a person’s age and gender, abnormal gait
detection such as fatigued state, stroke and neurological disease (ND), Parkinson’s Disease (PD),
estimation of joint angles and moments, the walking person’s intent recognition and trajectory
prediction, human pose estimation, localization andmapping, person identification, re-identification
and authentication, step counting, assessment of physical skill and mobility, balance assessment, fall
risk assessment, gait modeling, and simulation. Often SG performs a combination of two or more
tasks simultaneously.

SG systems can analyze single or multiple gaits simultaneously. The multi-gait SG performs tasks
such as crowd and occupancy sensing, crowd behavior prediction, multi-gait recognition as in
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identifying a person walking with one or more others, generating
multi-gait for animation and virtual environments, and detecting
abnormal gait in crowds or indoors for security applications. SG
is thus a smart tool in the toolbox of experts in many fields such as
health and wellness, security, user privacy, forensics, enhanced
user experience, animation, energy, wearables and related fields
like insurance, longevity, geriatrics, workplace safety, and
productivity. SG can also easily be integrated with other smart
systems that utilize heart rate, audio, haptic, speech, etc., for an
even wider reach across many applications and industries. As
such, SG is a component of many smart devices, smart homes,
stores, cities, and energy grids.

This work reviews most of the research in the field of smart
gait in recent years. It provides a broad-based survey of the
current state of the field and identifies future areas of potential
study and growth. First, we performed an electronic database
search on six well-known electronic libraries: IEEE Xplore,
Science Direct, PubMed Central, Google Scholar, ACM, and
Web of Science. We searched for “artificial intelligence” AND
“human” AND “gait” in the full text (when available), title,
keywords, and abstract. Due to the sheer volume of the work
and based on the assumption that most of the more recent works
build and improve upon previous work, we limited our search to
2012 to mid-year 2021. We started our work in early 2020 by
reviewing papers published in 2012–2019, and updated our
review with papers from 2020 and the first half of 2021 as we
continued our work through the end of July 2021. All references
were downloaded into EndNote. Figure 1 offers an overview of
the number of references located by this original search and
reflects the fast growth of SG research. Google Scholar, even
though at first glance it shows the number of references in the
10,000 range, it allows downloads only up to 1,000 references.
However, during our work, we came across other relevant papers
that we included in this review. For instance, to identify all the
work in studying fatigue by SG, we performed another search to
include the word “fatigue” in our search.

Our search resulted in over 6,000 references. First, all papers
were reviewed by title, and those not relevant to this study were
excluded. These included papers with 1) no “gait” - such as
research on upper limb movement 2) no “human” - such as

research on animal and robotic gait, and 3) no AI - such as human
gait studies that do not incorporate machine learning methods.
After the exclusions by title, our database was reduced to about
3500 papers, which were then reviewed by title and abstract. The
final selection criteria included at least one paper for each
application, even smaller niche examples such as depression
detection by gait (Fang et al., 2019). In areas where many
papers existed for the same application, such as neurological
disease gait detection, the most impactful papers were selected by
looking at the overall influence of the paper by the number of
citations on Google Scholar and the journal’s impact factor.

Additionally, 393 review papers were originally excluded from
this study. None of the works in our database search presents a
comprehensive review of the applications of AI in gait studies.
These works fall in one of the three categories as below:

1) studies in related fields but not exactly within the inclusion
criteria of this work, For instance, Najafi and Mishra (2021)
compiled a narrative review on digital health technologies for
diabetic foot syndrome. While ML algorithms are probably
embedded in some of the technologies they discuss, the study
does not mention or discuss artificial intelligence.

2) studies that partially overlap with our studies, such as the
literature review on PD diagnosis by Mei et al. (2021), that in
addition to PD diagnosis by gait, also discuss other modalities
such as voice, handwriting, magnetic resonance imaging
(MRI), etc.

3) studies that are in the scope of this review but only cover a
specific topic such as human motion trajectory prediction
(Rudenko et al., 2020), wearable sensing technologies for
sports biomechanics (Taborri et al., 2020), self-powered
sensors and systems (Wu et al., 2020), person re-Identification
(Wang et al., 2016), (Nambiar et al., 2019), (Karanam et al.,
2019), machine learning in soft robotics (Kim et al., 2021),
ambient assisted living technologies (mostly AI-enabled and
gait-related) (Cicirelli et al., 2021), human action recognition
(Gurbuz and Amin, 2019), biomechanics (Halilaj et al., 2018),
gait recognition (Kusakunniran, 2020), (Singh et al., 2018), (Wan
C. et al., 2018), gait event detection and gait phase recognition
(Prasanth et al., 2021), clinical gait diagnostics of knee
osteoarthritis (Parisi et al., 2020), knee pathology assessment
(Abid et al., 2019), data preprocessing in gait classification
(Burdack et al., 2019), age estimation (Aderinola et al., 2021),
and banchamrk datasets (Nunes et al., 2019). A survey paper by
Alzubaidi et al. (2021) provides an overview of deep learning,
with helpful definitions and a discussion of strengths, limitations,
and future trends of various deep learning techniques. Similarly,
Abiodun et al. (2019) review Artificial Neural Network (ANN)
applications in pattern recognition. Our paper’s goal is to review
applications of SG technology, in a wider, all-encompassing
overview. The above-mentioned papers were not used in our
study; the reader is encouraged to read them if they wish to go
deeper into any of the discussed topics.

We identified six main applications of SG: 1) Gait analysis
where analyzing techniques are improved through AI
algorithms, 2) Health and Wellness, with applications in

FIGURE 1 | Number of papers by year of publication.
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gait monitoring for abnormal gait detection, recognition of
human activities, fall detection, and sports performance, 3)
Human Pose Tracking covering one-person or multi-person
tracking and localization systems, 4) Gait-based biometrics with
applications in person identification, authentication, and re-
identification as well as gender and race recognition 5) Smart
Gait devices and environments ranging from smart socks, shoes,
and other wearables, to smart homes and smart retail stores that

incorporate continuous monitoring and control systems and 6)
Animation that reconstructs human motion through gait
modeling, simulation, and machine learning techniques. The
categories are sometimes not easy to separate and overlap. For
instance, gait phase detection algorithms could belong to Health
and Wellness, SG Devices, or Gait Recognition categories.

The paper is organized in the following sections: Section 2)
Smart Gait Vocabulary, sections 3–8 discuss the applications of

TABLE 1 | Smart gait vocabulary.

SG Vocabulary Definition/Context in our
papers

Artificial Intelligence Artificial Intelligence is a technology that enables computers and devices to act intelligently and make decisions like humans
(Amisha et al., 2019)

Machine Learning (ML) Machine Learning is a subfield of AI that enables computers and devices to learn from data without being explicitly
programmed (Mahesh, 2020). It includes supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement learning. DL is a subfield of ML that extracts useful information directly from raw data to learn representations
for pattern recognition (Esteva et al., 2019), (Pouyanfar et al., 2018). It is often referred to as the “black box” approach to
reflect the abstract layers of human brain-like neural networks it consists of

Abnormal Gait Detection The task of distinguishing a healthy gait from a pathological gait. Some of the pathologies that affect the walking pattern as
discussed in this paper include dementia, Huntington’s disease (HD), PD, Autism Spectrum Disorder (ASD), Amyotrophic
Lateral Sclerosis (ALS), Post-Stroke Hemiparetic (PSH), Acquired Brain Injury (ABI), depression, neuromuscular disease,
lower extremity muscle fatigue, spastic diplegia, Cerebral Palsy (CP), etc.

Human Identification Presented gait data is compared to a set of gait data with known identities (labeled training data) to determine whom the
unknown gait belongs to

Human Re-identification The task of identifying images of the same person from non-overlapping camera views at different times and locations. Gait is
a behavioral biometric feature that is unobtrusive, hard to fake or conceal, and can be perceived from a distance without
requiring the subject’s active collaboration (Nambiar et al., 2019)

Fall Detection A binary classification task, usually concurrent with activity recognition that classifies an activity as fall or no fall
Activity Recognition A classification task that maps features extracted from various sensor raw data to classes corresponding to activities such as

sitting, lying, running, walking, stair climbing
Gender Recognition Gender Recognition is a binary classification that maps features to qualitative outputs: male and female
Smart Home A smart home utilizes context-aware and location-aware technologies to create intelligent automation and ubiquitous

computing home environment for comfort, energy management, safety, and security (Hsu et al., 2017)
Gait Event Detection Detection of a sequence of events that specifies the transition from one gait phase to another during each gait cycle. (Mannini

et al., 2014)
Kinetic and Kinematic analysis Kinematics studies the motion of body segments without considering masses or causal forces. Kinetics studies the relation

between motion and its causes
Biometric Authentication An automated method of verifying a person’s identity based on their biometric (gait) characteristics
Crowd Density The density level of people in a crowded scene
Anomaly detection It labels a behavior pattern that is "far away" from a trained model as anomalous, where “far away” is measured by a time-

varying threshold (Sun et al., 2017)
Gait estimation from Pose Parameters such as step length, stride length, stride time, cadence, etc., are estimated from the human pose
Human Gait Motion Modelling A probabilistic manifold-based motion modeling framework able to model with a variety of walking styles from different

individuals and with different strides (Ding and Fan, 2015)
Occupant Activity Sensing Actively knowing the identity of the people within a monitored area and what they are doing (Yang et al., 2018)
Multi-Gait Recognition Multi-gait is a term used by authors (Chen et al., 2018) to refer to the changed gait of a person walking with other people.

Multi-gait recognition is the task of identifying a person when he is walking with different people
Brain-Computer Interface (BCI) A technology that translates signals from human brain activity such as walking intention to a command sent to an external

assistive, adaptive, or rehabilitative device, such as a prosthetic leg (Belkacem et al., 2020), (Khan et al., 2018)
Hybrid BCI (hBCI) A system that fuses two bio-signals, where at least one is intentionally controlled. The different signals, such as data from

electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), are processed in real-time to establish
andmaintain communication between the brain and the computer. The output is evaluated through a feedback control loop.
Compared with systems that use one modality alone, hBCI improves classification accuracy and the number of control
commands by integrating the complementary properties of different modalities and removing artifacts (Khan et al., 2021)

Kinetic Energy Harvesting (KEH) Technology that converts kinetic motion into energy. The individuality of the gait pattern can be captured in the output
voltage signals of KEH systems, with the added benefit of energy savings, compared to accelerometers. Thus KEH systems
are used as sensors and energy sources simultaneously (Lan et al., 2020) (Xu et al., 2021)

The Digital Human Digital replicate of a human in the virtual space. Automatic, continuous gait monitoring will be an integral part of such systems
(Zhang et al., 2020g)

IoT IoT is a ubiquitous system of objects that are connected to the network, uniquely identifiable, capable of collecting,
communicating, and processing data and AI-enabled to make autonomous decisions, individually or collectively (Chettri and
Bera, 2019). Gait is an important biometric feature for continuous behavioral authentication in IoT systems (Liang et al., 2020)
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AI in 3) Gait Analysis 4) Health and wellness 5) Tracking Human
Pose 6) Gait Based Biometrics 7) Smart Gait devices and 8)
Animation. In sections 9 and 10, we conclude with 9) Discussion
and Future Trends and (10) Conclusions.

2 THE SMART GAIT VOCABULARY

Here we introduce certain key definitions of essential terms
commonly used in SG studies (See Table 1).

3 GAIT ANALYSIS

Machine learning techniques are successfully utilized to improve
many aspects of gait analysis. In this collection of papers AI 1)
helps with data aggregation and pre-processing, 2) works along
with another AI to improve its performance, interpretability, or
accuracy, and 3) classifies gait phases and predicts gait events.

3.1 Data Aggregation and Pre-processing
Using ML Techniques
Deep learning models can automatically extract the optimal
features directly from raw spatiotemporal gait data without
requiring data preprocessing or engineering (end-to-end
approach) (Costilla-Reyes et al., 2021), (Morbidoni et al.,
2019), etc. In other cases, when conventional machine learning
techniques are deployed, much work goes into feature extraction
and selection to ensure that the input features explain most of the
variance in the data and achieve good performance and high
accuracy of the algorithm. Of the six commonly used data pre-
processing techniques, Ground Reaction Force (GRF) filtering,
time derivative, time normalization, data reduction, weight
normalization, and data scaling, (Burdack et al., 2020) found
that only GRF filtering and supervised data reduction techniques
such as Principal Component Analysis (PCA) increased the
performance of ML classifiers, with Random Forest (RF) being
more robust in feature reduction than Support Vector Machines
(SVM), Multi-Layer Perceptron (MLP) and Convolutional
Neural Networks (CNN).

PCA is a dimension reduction technique that transforms the
original feature space into a set of linearly uncorrelated variables
called principal components (PCs). The first few PCs alone are
usually enough to account for most of the variance in the data.
For instance, the first 3–6 PCs alone accounted for 84–99% of the
overall variance (Dolatabadi et al., 2017). Other variants of PCA
have been suggested in the SG literature, such as kernel-based
PCA (Semwal et al., 2015), multi-linear PCA that achieves sparse
and discriminative tensor to vector projection (Zhang et al.,
2015), or a combination of PCA, linear discriminant analysis
(LDA) and other feature reduction techniques (Wu C. et al.,
2019). (Phinyomark et al., 2015) attempt to evaluate the
importance of intermediate to higher-order PCs in running
biomechanics, finding that low order PCs (that account for up
to 90% of the cumulative variance in the data) can be successfully
used for age and gender recognition. Still, the more subtle

running behavior patterns such as between-group variations in
improvements after a 6-weeks rehabilitation program of runners
with patellofemoral pain (PFP) can be captured by intermediate
and high order PC’s (that explain 90–99% and 99–100% of the
variance of the data correspondingly). PCA, some variation of
PCA, or a combination of PCA and other linear dimension
reduction techniques were used in most papers we reviewed.
t-Distributed Stochastic Neighbor Embedding (t-SNE) was used
by Costilla-Reyes et al. (2021) to achieve a 2D representation and
visualization of different age clusters of the trained data. Besides
feature reduction, AI is employed for data augmentation
(Bhattacharya et al., 2020) or data engineering (Johnson et al.,
2021).

Other considerations in carefully selecting the input features
are avoiding overfitting (Zhang et al., 2020a), improving
interpretability, especially in medical applications (Dindorf
et al., 2020b), (Horst et al., 2019), reducing the energy
expenditure of wearable sensors (Lan et al., 2020), (Russell
et al., 2021), improving patient comfort (Di Nardo et al.,
2020), fairness to people with disabilities (Trewin et al., 2019)
and user experience (Kim et al., 2020). To achieve the highest
possible accuracy, usually, more complex sensing technology is
required. The goal is to apply feature reduction and selection to
avoid redundant features such that only the significant features
are extracted from the minimum sensing hardware (Khademi
et al., 2019). Information Gain (IG) and not PCA is used to
improve interpretability by preserving and ranking the original
features (Onodera et al., 2017).

3.2 AI2AI
We define AI2AI as an AI-based procedure whose purpose is to
make another AI better. Better AI is defined based on the task. As
indicated above, it includes better performance, higher accuracy,
better interpretability, robustness, lower cost, lower energy
expenditure, reduced overall system complexity, unobtrusive
sensing technology, and automatic and real-time processing.
For instance, Zhu et al. (2020) use an Improved Artificial Fish
Swarm Algorithm (IAFSA) to optimize the parameters of the RF
algorithm for knee contact force (KCF) prediction. Bhattacharya
et al. (2020) use a novel Conditional Variational Autoencoder
(CVAE) trained on an annotated dataset of 4,227 human gaits
recorded on video to generate thousands of new realistic
annotated gaits. Their data augmentation generative network
improves the accuracy of their novel Spatial-Temporal Graph
Convolutional Network (ST-GCN) algorithm to classify the four
human emotions: happy, sad, angry, and neutral by 6%. Lu et al.
(2021b) apply transfer learning and domain adaptation to label
the data for a cross-domain human activity recognition task.

Similarly, as a first phase to creating an activity recognition
algorithm for construction workers (Kim and Cho, 2020), the
authors first implemented five ML algorithms 32 times each, once
for every possible combination of the number of Inertial
Measurement Unit (IMU) sensors and their location in the
body, and compared their performance by a cross-validation
(CV) technique. This systematic approach of evaluating how
many sensors are sufficient for activity recognition and where
they should be placed in the construction workers’ body revealed
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that using two motion sensors located at a certain distance will
achieve motion recognition performance like using all 17 motion
sensors located throughout the entire body. Using the first phase
results, the authors then proceed to build a long-short term
memory (LSTM) algorithm for activity recognition that
achieves 94.7% accuracy with just two sensors placed in the
hip and neck.

Another example of AI2AI is using AI to label the training
data for another AI. Labeling data manually often requires a
lot of time and expertise, is expensive, requires an elaborate
lab-like setup involving obtrusive sensing technology, and
must comply with safety protocols. A computer vision
algorithm trained on ImageNet (He et al., 2016) labels the
data with sufficient accuracy for many applications such as
sports biomechanics, training, and rehabilitation (Cronin
et al., 2019). Similarly, a stream-based Active Learning
(AL) algorithm minimizes data labeling effort (Loy et al.,
2012).

3.3 Gait Phase Classification and Gait Event
Prediction
Gait analysis evaluates a person’s walking pattern, which is
seen as a sequence of gait cycles, where each gait cycle follows
the movement of a single limb from heel-strike to heel-strike
again (Gage et al., 1995). The two main gait phases are the
stance phase and the swing phase. Depending on the reason for
gait analysis, detecting just these two phases can be enough.
That simplification permits less complex and cheaper gait
analysis, which is desirable, especially in wearable systems
(Di Nardo et al., 2020). A more common four-phase cycle
includes initial contact, mid-stance, pre-swing, and swing
(Jiang et al., 2018). The importance of AI in these studies is
in facilitating real-time gait analysis, appreciated in many
control devices like orthotics and prosthetics, rehabilitation
monitoring, and fall detection systems for aging-in-place
applications. (See Table 2).

4 HEALTH AND WELLNESS

Clinical gait analysis, though by itself not reliable for a definitive
diagnosis of neurological disease or other impairment, often
suggests a pathology if it detects a pattern different from a
typical walking behavior considered the normal gait. Normal
gait is a controlled, coordinated, and repetitive series of limb
movements that advance the body in the desired direction with
minimum energy expenditure (Gage et al., 1995). There are four
reasons for performing a clinical gait analysis: diagnosis,
assessment, monitoring, and prediction (Baker et al., 2016). In
these applications, the AI can continuously monitor and learn
data, look for patterns, classify human activities and detect the
anomaly. If connected to a display, it is an excellent monitoring
and assessment tool. AI also predicts a future gait event, in which
case it can either alert a human operator such as a clinician,
caretaker, or facility supervisor or, if integrated with a control
device, activate an automatic response to prevent falls or injury.
For instance, WeedGait passively monitors the gait of a person
and then alerts them if they are at risk of Driving Under the
Influence of Marijuana (DUIM) (Li et al., 2019), while an in-
home rehabilitation system provides qualitative and quantitative
feedback to post-stroke survivors (Lee et al., 2019).

We identified four major applications of ML gait analysis in
health and wellness: 1) detecting abnormal gait due to a person’s
condition or disease, 2) sports management, 3) fall detection, and
4) activity recognition.

4.1 Abnormal Gait
AI is well suited at learning patterns and detecting an anomaly in
the data based on a pre-defined abnormal event (supervised
learning) or a clustering algorithm (unsupervised learning), or
a combination of the two. A very wide range of human diseases
and conditions can affect the way a person walks such as
Parkinson’s (Flagg et al., 2021), (Wahid et al., 2015),
Huntington’s (Acosta-Escalante et al., 2018), ALS (Aich et al.,
2018), idiopathic normal-pressure hydrocephalus (iNPH)

TABLE 2 | Gait phase recognition and gait event prediction.

Reference Algorithm Input data AI task

Vaith et al. (2020) LSTM-Net, DENSE-Net 12 subjects, 7 IMUs, 2 IMU pressure insoles offline AL to reduce labeling cost, online gait phase
classification

Pérez-Ibarra et al.
(2020)

Hybrid SA/GA 3 subjects, 1 HC, 2 impaired gaits, IMU at the back of
the heel

online gait event detection

Di Nardo et al. (2020) MLP 23 subjects, 1 electro-goniometer per leg gait phase classification, 2 phases: stance/swing
Morbidoni et al.
(2019)

MLP 23 healthy subjects, sEMG and barographic data,
natural walking conditions

gait phase classification, 2 phases: stance/swing. Gait
event prediction, HS/TO

Jiang et al. (2018) LDA 9 healthy subjects, TW, 8 pressure sensors in an ankle-
worn band

wearable gait phase recognition system

Farah et al. (2017) DT, RF, MLP and SVM 31 subjects, an inertial sensor at the thigh gait event detection
Taborri et al. (2014) novel DC w/hierarchical,

weighted HMMs
10 healthy subjects, TW, 2–3 IMU gyroscopes gait phase recognition

Mannini et al. (2014) HMM with STV 9 healthy subjects, TW, 1 IMU gyro at the instep of left
foot

online gait event detection

Legend: Distributed Classifier (DC), Hidden Markov Models (HMM), Short-Time Viterbi (STV), Treadmill Walking (TW), Heel-Strike/Toe-Off (HS/TO), Simulated Annealing (SA), Genetic
Algorithm (GA), Surface Electromyography (sEMG).
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(Ishikawa et al., 2019), ASD (Hasan et al., 2018) neuromuscular
disease (Gotlin et al., 2018), pediatric hereditary spastic
paraplegia (HSP) (Pulido-Valdeolivas et al., 2018), aging
(Strath et al., 2015), (Costilla-Reyes et al., 2021), dementia
(Kenney et al., 2018), (Arifoglu and Bouchachia, 2017), fatigue
(Zhang J. et al., 2014), depression (Fang et al., 2019), anxiety
(Zhao et al., 2019), emotional state (Bhattacharya et al., 2020),
dual task, or walking while performing a cognitive task (Costilla-
Reyes et al., 2021), knee osteoarthritis, (Kotti et al., 2017), stroke
(PSH gait), (Cui et al., 2018), (Clark et al., 2015), diabetes
(Sutkowska et al., 2019), COVID-19 (Maghded et al., 2020),
inflammation (Lasselin et al., 2020), (Renner et al., 2021), level
of physical activity (Renner et al., 2021), kidney disease
(Yadollahpour et al., 2018), vertigo (Cao et al., 2021), sleep
quality (Liu X. et al., 2019), Trendelenburg (Michalopoulos
et al., 2016), arthritis (Karg et al., 2015), (Struss et al., 2018),
idiopathic toe walking (Kim et al., 2019), drunkenness (Arnold
et al., 2015) and influence of marijuana (Li et al., 2019). Thus,
monitoring human gait can provide key insight into a person’s
health. Gait data can serve as a biomarker by itself or in
association with other biomarkers, demographic data, other
measured or calculated body and health parameters
(Andersson et al., 2014), and patient-generated health data
(PGHD) (Jim et al., 2020).

The main role of ML techniques for this cluster of studies is in
classifying 1) healthy control from pathology or 2) healthy
control from multiple classes of functional gait disorders.
Some frequently used words in these papers, such as
unobtrusive, plug-and-play system, automatic, affordable,
integrated into the home or clinic, adaptable, etc., shed light
on the perceived values of these applied systems and where most
of the research is focused.

The benefits of utilizing machine learning in abnormal gait
detection for health applications are as follows:

1) Deep learning models can automatically extract the optimal
features directly from raw spatiotemporal gait data without
the need for data preprocessing or engineering. (Costilla-
Reyes et al., 2021).

2) A combination of ML techniques can deploy simultaneously
to perform more than one task automatically. For instance,
ML can simultaneously detect pathological gait and
automatically identify which body part has been affected
the most by the disease (Dolatabadi et al., 2017).

3) ML can process a lot of data fast, including active online learning
from streams of live and repository data (Flagg et al., 2021).

4) ML community can benefit from the collaborative effort. It
fosters competition against established benchmarks and open
research promoted by initiatives such as the Parkinson’s
Disease Digital Biomarker (PDDB) DREAM Challenge
(Zhang et al., 2020a)

5) ML-driven gait-based studies can benefit from large-scale
population data through smartphones, smartwatches, and
other wearable devices (Frey et al., 2019), as well as
individual or small-scale data easily collected at low cost,
via pervasive techniques such as MS Kinect (Dolatabadi et al.,
2017), smartphone (Pepa et al., 2020), triboelectric

nanogenerator (TENG) smart shoes (Zou et al., 2020) and
socks (Zhang et al., 2020g) which makes them suitable for
implementation at home, clinic, etc. These systems stand to
benefit from the recent fast and continuing advancements in
sensing technology, textiles, parallel processing, cloud
computing, and IoT grids.

From a practical viewpoint, using the analogy of a human
operator driving a car, some common issues with these
studies are:

1) Can’t drive faster than sight: the problem of data labeling.

The accuracy of the algorithm is prone to human error during
the training stage. For example, to label the training data in
fatigue/non-fatigue states, subjective self-reported thresholds
were used for the participants in a study (Zhang J. et al.,
2014). Still, the participant’s perception of fatigue is not
necessarily aligned with the physical changes and walking
patterns due to fatigue (Baghdadi et al., 2021). Even in stricter
clinical settings where experts manually label the data, there is the
problem of changed gait due to the controlled environment.
Researchers usually adopt measures to mitigate these issues to
some degree by studying normal walking behavior versus
treadmill walking (Morbidoni et al., 2019), discarding the first
few gait strides from the walking test data, instructing
participants to watch a smiley on the wall to get distracted
from targeting the force plate at the expense of a natural
walking behavior (Horst et al., 2019) or hiding the floor
sensors under the walking surface (Slijepcevic et al., 2020).

There is a need to minimize the distance between the
experimental setup and the real-life application of a system.
For instance, the use of a home monitoring system for
abnormal gait was studied (Guo et al., 2019), but the subjects
used in the study were healthy subjects imitating abnormal gaits
such as in-toeing, out-toeing, drop foot, supination, and
pronation. To study the gait of dementia patients, an
artificially generated dataset was proposed (Arifoglu and
Bouchachia, 2017) where a dataset of normal ADL data was
injected with instances of skipped or repeated activities during the
day and sleep disruptions at night to mimic the abnormal
activities that people with dementia (PwD) would manifest. A
biped that imitates human motion was used to train the data for
the recognition of anterior cruciate ligament (ACL) injury of the
knee (Zeng et al., 2020). Often, studies are performed on normal
gait subjects and cannot be extended to a pathological gait.
Trewin et al. (2019) discuss considerations of fairness for
people with disabilities and outline a few guideposts on
problem scoping, data sourcing and pre-processing, AI model
training, and deployment. They advocate inclusive, participatory,
and value-sensitive design.

Similarly, there is also the problem of a small sample size. Given
the clinical nature of these studies and the impaired gait participants
they require, the barriers to experimentally collecting sufficient data
are understandable. For instance, 19 healthy participants had to
consent to intravenous injection of lipopolysaccharide to induce
inflammation in a fatigued gait study and were paid 3500SEK each
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(Lasselin et al., 2020). In some scenarios, the number of input
features is larger than the sample size (Zhang et al., 2015). In others,
the sample size is too small to be representative enough to support
any assertions fully and reduces the paper to the level of an
exploratory effort (Baghdadi et al., 2021). In others, researchers
generate synthetic data (Arifoglu and Bouchachia, 2017) that reflect
features similar to the disease for an abnormal gait detection task;
apply deep AL technique to reduce the number of required labels
and consequently the time cost of manual labeling in a gait phase
detection task. Finally, there is a developing trend to take
measurements out of the lab (Russell et al., 2021) and into the
subjects’ natural environments and implement deep learning
techniques to do the labeling (Costilla-Reyes et al., 2021), (Cronin
et al., 2019).

Many of these techniques in aggregating, pre-processing, and
learning the data, often represent work-around strategies to cost,
user privacy, and clinical constraints. They both simplify the
systems and introduce some errors in them simultaneously.

2) Can’t see in the dark: The Black Box problem.

This refers to the low interpretability of complex AI systems
which can pose a problem, especially in medical applications.
Explainable AI (XAI) is a recent trend in AI research that
attempts to address this concern and the related issues of
transparency, trustworthiness, and clinical acceptance (Dindorf
et al., 2020b), (Khodabandehloo et al., 2021). Interpretable deep
gait is the first attempt to make deep learning gait analysis more
interpretable using layer-wise relevance propagation (LPR) while
still achieving high accuracy (Horst et al., 2019).

3) Can’t leave the parking lot: the research to commercialization
gap and the need for government approval.

Medical devices that utilize data and ML techniques will need
Food and Drug Administration (FDA) approval and general buy-
in from medical professionals and their patients. Doctors,
clinicians, therapists, carers, et al. will need to be willing and
capable of embracing the newness of the technology. To date, the
authors are not aware of any FDA-approved medical devices that
utilize AI and gait data. Neurodegenerative diseases are not
symptomatic until years after their onset, but clinical
usefulness needs to be demonstrated for the approval of a
medical device. The cost of developing, installing, and
maintaining such systems also becomes a barrier to their
commercialization and practical usefulness (König et al., 2015).

The most recent advancements seem to address some of these
concerns, but those are only in the beginning phases, and the
long-term implications on user safety and privacy, as well as their
actual performance, remain to be proved.

4.1.1 Fatigued Gait
Fatigue is defined as “a lower level of strength, physical capacity,
and performance” (Lu et al., 2017). Detecting the onset of fatigue
and creating systems that manage the associated risks is an
important part of production quality and human factors
engineering in the workplace.

Measuring and analyzing gait for fatigue monitoring makes
sense because 1) walking is a task that is possible to track via
unintrusive technology suitable to workplace settings, such as
video, wearable sensors, radar, and force plates on the floor or
any combination of these. 2) Walking is a significant part of
occupational tasks for workers in manufacturing, mining,
construction, nursing, warehouse and distribution centers
(Baghdadi et al., 2021). 3) in the context of advanced
manufacturing (known as Industry 4.0) for example (but other
modern occupational settings as well), in which a worker’s daily
tasks involve interacting with automation, computing, and sensing
technologies, the most relevant features extracted from readily
available gait data can be pre-processed and analyzed through ML
techniques, often real-time, which makes it possible to detect the
onset of fatigue with accuracy and speed, at a relatively low cost. 4)
Lastly, fatigue in the walking behavior is correlated to fatigue in
other physical tasks, and while safety systems in the workplace
should be custom-tailored to the relevant tasks, detecting fatigue in
a worker’s gait could serve as an excellent general fatigue
monitoring technique applicable to most industrial settings.

There are two main goals in fatigued gait studies: 1) intra-person
recognition or continuous recognition of the person walking in
different fatigue states 2) inter-person recognition or the recognition
of fatigue in an individual. The first one answers the question: Can
we still identify the person by their gait in a fatigued state? The
second one answers the question: Can we recognize the onset of
fatigue to avoid overtraining and injury in sports or improve worker
safety in the workplace? Researchers conclude that a person’s gait
pattern maintains its individuality even while manifesting situation-
dependency, as is the case with fatigue (Janssen et al., 2011).

Only seven features extracted from one wearable sensor are
needed for fatigue detection, with an average accuracy of greater
than 0.85 (Sedighi Maman et al., 2020). Still, in the workplace, the
individual fatigue detection accuracy of 0.85 may mean high
misclassification rates across many subjects (Baghdadi et al.,
2021), thus the authors suggest a multivariate hierarchical time
series clustering algorithm using Dynamic Time Wrapping
(DTW) as a dissimilarity measure. Detecting fatigue from
smartphone sensors was suggested (Maghded et al., 2020) as
part of a multi-modal sensing and machine learning framework
to detect Covid-19 and predict its severity and outcome through
an app on the user’s phone.

Overall, fatigue studies utilizing gait data and AI point to the
importance of SG in managing fatigue in the workplace, sports
performance management, rehabilitation exercises, reducing fall
risk in the elderly, and finally, as part of an integrated system for
overall health management, both at the individual level and in
public health applications, as is the case with Covid-19 related
studies. The fact that most studies we reviewed collected gait data
from just one sensor or just the smartphone (Karvekar, 2019)
shows that effort is already invested in making these systems
unintrusive, cost-effective, and adaptable (see Table 3).

4.1.2 Neurological Disease
Gait-based detection and classification algorithms for disease
diagnosis and monitoring are one of the major applications we
saw, and Parkinsonian gait, with its many classifiable features,
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such as freezing of gait (FoG), shuffling steps, slow gait, gait
asymmetry, etc., is the most prevalent disease in the studies (See
Table 4). Researchers propose an automated, accurate, and
sensor-free gait detection deep learning algorithm that
depends on video recordings from pervasive devices such as
smartphones, web cameras, and surveillance cameras as
cheaper and more accessible alternatives to Vicon camera
systems (Ajay et al., 2018). Procházka et al. (2015) move away
from expensive, complex camera systems and recommend using
MS Kinect image and depth sensors for synchronized data
acquisition and spatial modeling of a moving person. The
recommended Bayesian Classification (BC) algorithm
distinguishes PD gait from healthy gait based on decision
boundaries of three features: gait speed, stride length, and age,
with an achieved accuracy of 94.1%. Wahid et al. (2015)
contribute to the gait-based PD detection by suggesting that
the spatial-temporal gait data be normalized first using
multiple regression to account for the patient’s age, height,
body mass, gender, and walking speed. (Wan S. et al., 2018)
employ a deep MLP to analyze both movement and speech data
captured through a smartphone and estimate the severity of PD.
Ye et al. (2018) go a step further and propose a Neural Network
(NN) combined with Fuzzy Logic (FL) approach that recognizes
the gait of patients with neurodegenerative disease (ND) from
normal gait. Since the motor function impairment in various NDs
such as ALS, HD, and PD is caused by different factors, the
particle swarm optimization (PSO) algorithm was used along
with an adaptive neuro-fuzzy inference system (ANFIS) to
classify the non-linear gait dynamics. Bilgin (2017) also
attempts to distinguish ALS from other ND diseases and
healthy patients using Discrete Wavelet Transform (DWT),
LDA, and Naïve Bayesian Classifier (NBC).

One of the most encouraging recent developments in ND gait
research using AI is the DREAM PDDB Challenge launched by
Sage Bionetworks that promotes an open and competitive
research infrastructure with large-scale data for developing

digital signatures of PD. Similar challenges in computer vision,
such as the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) (Russakovsky et al., 2015), have shown to be conducive
to tremendous growth with classification accuracy improving
year after year against the previously established benchmark. The
DREAM PDDB challenge utilizes the self-reported and sensor
data collected through the mPower app (Bot et al., 2016) from
15,000 PD and healthy control (HC) subjects. The best
performing team as of July 2021 reported Area Under the
Receiver-Operating Characteristic Curve (AUROC) of 0.86
with a deep CNN algorithm that employs three spatial and
temporal data augmentation techniques to deal with overfitting.

Another initiative, still in the early phases but very promising,
is the Early Detection of Neurodegenerative Diseases (EDoN)
project. Launched in February 2020, it is a global research
initiative that has secured generous funding, prominent cross-
disciplinary expertise, and UK government support (Wakefield,
2020). It is already in the first phase of collecting smartwatch data
(gait data along with heart rate, sleep, navigation data, etc.) from
volunteers in the Greater Boston area through a partnership with
Boston University Alzheimer’s Disease Research Centre
(BUADRC). The data will be used to generate a digital
“fingerprint” for dementia which, in the application phase, will
detect dementia 10–15 years earlier than the current clinical
methods.

4.2 Sports
The general trend we see in sports and fitness applications of
ML-based gait analysis systems is to create low-cost, adaptable,
fast, easy, and scalable systems that reach the right balance of
accuracy and comfort for the given application (See Table 5). In
sports management and sports injury prevention, gait data is
lower limb movements signals acquired from various sensing
technologies: video, IMUs, force plates, etc. SG monitors
walking and running activities but also water sports,
basketball, and football.

TABLE 3 | Summary of fatigued gait studies.

Reference Algorithm/best
accuracy reported

How is data collected Task

Russell et al. (2021) CNN 97.8% accelerometer worn around the chest, GPS
watch for location tracking, 1 person

HAR: Climb Gate/Lay/Sit/Walk/Run. Variations in terrain and
fatigue

Baghdadi et al.
(2021)

MHTSCA with DTW as a
dissimilarity measure

IMU worn at the right ankle 15 subjects fatigue development over time

Sedighi Maman
et al. (2020)

RF with BSS 85.5% one sensor in the torso, 15 subjects 4-phase fatigue management framework in the workplace (1)
detection (2) Identification (3) diagnosis: whole-body vs. localized
(4) recovery

Maghded et al.
(2020)

CNN/RNN smartphone sensors, images and videos from
the camera

detection of fatigue due to Covid-19

Karvekar, (2019) 2-class SVM 91% 24 subjects, smartphone attached to the shank detection of fatigue: baseline, low, medium, and strong fatigued
states3-class SVM 76%

4-class SVM 61%
Baghdadi et al.
(2018)

SVM 90% one IMU in the ankle, 20 subjects detection of fatigue after MMH tasks

Zhang et al. (2014a) SVM 96% 17 subjects, IMU at sternum level recognition of localized fatigued/non-fatigued state
Janssen et al.
(2011)

SVM and SOM with
PCA 98.1%

9 subjects GRFs inter and intra-personal gait classification before, during, and after
leg exhaustion

Legend: Best Subset Selection (BSS), Manual Material Handling (MMH), Multivariate Hierarchical Time Series Clustering Algorithm (MHTSCA).
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TABLE 4 | The pathological gait.

Reference Algorithm/Best Accuracy Data Collection/Input Pathology/Task Output

Lu et al. (2020) SVM with PCA 88.89% Kinect camera with image rectification Automatic depression detection
Khodabandehloo et al.
(2021)

HealthXAI CART Partial CASAS dataset, 192 subjects: 19 PwD, 54 MCI Numerical score and explanation of the decline
of cognitive functions of the elderly

Iosa et al. (2021) ANN 93.9% IMU at the waist belt, N � 33, HC � 17, stroke � 16 Stroke prognostic tool, able/unable to return to
work

Flagg et al. (2021) Bidirectional GRU GaitNDD, GaitPDB. Streaming of live and historical GRFs ND: PD, HD, ALS gait normality analysis
Costilla-Reyes et al.
(2021)

Novel DNN with t-SNE
F-score: 97.33%

Own dataset: UOM-GAIT-69. Tomography floor sensor raw
data. N � 69, healthy normal/fast/dual-task

Age-related differences in healthy adults
undertaking dual tasks

Zhu et al. (2020) RF with IAFSA RMSE �
0.073

3 patients with knee replacement. Public dataset/challenge2 Knee joint impairment KFC prediction

Zhou et al. (2020) Kernel PCA with SVM, RF,
ANN: 90%

N � 239, young � 57, old healthy � 55, 127 � old-geriatric
condition

Geriatric condition

Zhang et al. (2020a) Deep CNN AUC � 0.87 DREAM PDDB Challenge PD vs healthy gait; Large scale screening
Zeng et al. (2020) RBF neural network with DL

95.61%
Kinematic modeling using a biped,N � 43 participants. Mocap,
and force plates to test the model

Chronic unilateral ACL deficiency. Classify ACL-
D/ACL-I knees

Pepa et al. (2020) Novel FL Sp � 95.2%, Se
� 84.9%

Smartphone data Real time, interpretable FoG detection

Lasselin et al. (2020) MLR N � 19, lipopolysaccharide-induced inflammation. Kinect
camera data

Effects of inflammation on human gait

Kaur et al. (2020) LR, SVM, RF 4 people with MS. GRFs from instrumented treadmill GML4MS framework, HC/MS mild and
moderate classifier

Bhattacharya et al.
(2020)

ST-GCN and CVAE 88% 4,277 human gaits in video and synthetic gaits by novel
STEP-Gen

Emotion classification: happy, sad, angry, or
neutral

Li et al. (2019) WeedGait, by LSTM and
SVM 92.1%

N � 10, smartphone data assesses marijuana-induced gait impairment
passively, warns against DUIM online

Guo et al. (2019) SVM and BiLSTM N � 16, light-weight telepresence robot equipped with a single
RGB-D camera with no additional sensing feedback

normal, in-toeing, out-toeing, and drop-foot gait

(Zhang et al., 2019b) ANN (a � 50) 93.5% N � 200, 8-camera mocap and 3 force platforms Gait classification for CP patients with spastic
diplegia

Sato et al. (2019) ST-ACF DTW, KNN with
OpenPose

CASIA-B dataset. Frontal videos of two PD patients Quantifying normal and Parkinsonian gait
features from home movies

Fang et al. (2019) RF 91.58% 95 graduate students. 52 score-depressed, 43 HC. Two MS
Kinect cameras

Depression analysis

Acosta-Escalante et al.
(2018)

Logitboost & RF 94.5% on
raw data

N � 14, HD � 7, HC � 7. Smart phones (iPhone 5S) affixed to
both ankles

HD gait classification

Ye et al. (2018) ANFIS/PSO with LOOCV.
94.44%

64 subjects, ALS � 13, PD � 15, HD � 20, HC � 16, ND Public
dataset. Force-sensitive switches are placed on subjects’
shoes.

Classification of Gait Patterns in Patients with
various ND

Pulido-Valdeolivas et al.
(2018)

RF with DTW 26 HSP and 33 healthy children. Optokinetic IGA system Monitoring HSP progression and personalizing
therapies

Wan et al. (2018b) DMLP. 97.9% N � 50, phone worn on the waist. Biomedical voice recordings
(UCI dataset) and smartphone 3-axial acceleration

Analyze speech and movement data captured
by smartphone to estimate the severity of PD

Hasan et al. (2018) ANN, SVM with
SWDA 93.3%

3D GRF data of 60 children: 30 ASD and 30 typically
developing

Identifying ASD Gait

Cui et al. (2018) SVM w/PCA 98.21% N � 42, 21 post-stroke, 21 HC MT, GRF and EMG Recognition and Assessment of PSH Gait
Ajay et al. (2018) DT. 93.75% 49 YouTube videos of varying resolution. Video obtained

through any pervasive devices
PD gait classification

Arifoglu and
Bouchachia, (2017)

LSTM HAR: 96.7% AAD:
91.43%

Public dataset collected in 3 households through
environmental sensors (Van Kasteren et al., 2011)

HAR and AAD for elderly people with dementia

Bilgin, (2017) LDA, NBC. 90.93% GaitNDD. Force-sensitive resistors. 3 ALS, 15 PD, 20 HD, and
16 HC

Classification of ALS among other ND diseases
and healthy subjects

Dolatabadi et al. (2017) GPLVM-thold and KNN-
DTW F1-score > 0.94

N � 40, HC � 20, mobility impared � 20. Two Kinect sensors Discriminate between healthy and pathological
gait patterns because of stroke or ABI

Shetty and Rao, (2016) SVM with Gaussian
RBF 83.3%

GaitNDD. GRFmeasurements. N � 64, 15 PD, 18 HD, 13 ALS,
16 HC

Distinguish PD gait from HD, ALS, and HC

Procházka et al. (2015) NBC 94.1% N � 51, 18 PD, 18 HC - age-matched, and 15 young HC. MS
Kinect Image and depth

PD diagnosis

Wahid et al. (2015) RF with MR
normalization. 92.6%

N � 49: PD � 23 HC � 26. 15 Reflected markers, 2 force
platforms

PD diagnosis and management
using normalized spatial-temporal gait

Legend: Decision Tree (DT), K-Nearest Neighbors (KNN), Center for Advanced Studies in Adaptive Systems (CASAS) (Cook et al., 2015), Classification and Regression Trees (CART),
Gated Recurrent Unit (GRU), Root Mean Square Error (RMSE), Receiver-Operating Characteristic (ROC), ACL Deficient (ACL-D), ACL-intact (ACL-I), Radial Basis Function (RBF),
Deterministic Learning (DL), Multivariable Linear Regression (MLR), Multiple Sclerosis (MS), Gait data-based ML framework for MS prediction (GML4MS), Linear Regression (LR),
Abnormal Activity Detection (AAD), Gaussian Process (GP) Latent Variable Models (GPLVM), OpenPose (Cao et al., 2017).
Datasets: CASIA-B (Yu et al., 2006), Gait in Neurodegenerative Disease Database (GaitNDD) (Hausdorff et al., 2000), Gait in Parkinson’s Disease (GaitPDB) (Goldberger et al., 2000),
CASAS (Cook et al., 2015), 2 https://simtk.org/projects/kneeloads, ND Public Dataset (Hausdorff et al., 2000).
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A deep learning algorithm trained with a relatively small
number of labeled images was able to predict the locations of
joint markers with the same accuracy as a human labeler, thus
providing a low-cost system for kinematic analysis with sufficient
accuracy for applications in sports biomechanics, training,
coaching, and rehabilitation (Cronin et al., 2019). A kinematic
and kinetic analysis aided by ML techniques was carried out to
identify the effects of the shoes on the biomechanics of running.
The conclusion: changes in the midsole resilience are more
subject-dependent, but the changes in the upper shoe structure
seem to be more subject-independent (Onodera et al., 2017). A
smart exercise mat unobtrusively recognizes which exercise the
subject is performing and counts the number of repetitions. It is
soft, cheap, and smart, and it has an accuracy like pedometers
when it comes to monitoring strength-related exercises
performed on the ground. This is a great alternative to the
exercise mats athletes commonly use in the gym (Sundholm
et al., 2014).

SG systems in sports applications are diverse, performing data
engineering (Johnson et al., 2021) and data labeling (Cronin et al.,
2019), evaluating the role of the shoe structure on running
biomechanics (Onodera et al., 2017), monitoring fatigue to
prevent injury (Russell et al., 2021), (Zhang J. et al., 2014),
counting steps (Kang et al., 2018), assessing physical
autonomy and functional ability (Khan et al., 2015),
articulating real-time control of an electrical muscle
stimulation (EMS) device for sports training (Hassan et al.,
2017), predicting and preventing injury (Taborri et al., 2021),
achieving multi-player tracking, identification, and re-
identification (Zhang R. et al., 2020), classifying and counting
different sports activities (Sundholm et al., 2014), and recognizing
and analyzing sports behavior (Guo and Wang, 2021).

Researchers voice concern over the validity of the laboratory
setting-based AI models versus real-world scenario-based models
in sports. CNN and LSTM perform better than SVM (previously
suggested in the literature) in the football shot and pass detection
task in three scenarios closer to the real-world setting. The
integrity of the collected data, selected features, and evaluation
method must be reconsidered once AI systems are deployed in
the real world (Stoeve et al., 2021). Estimating kinematic data
(that would usually be collected in a lab, using force plates) from
kinetic data that is easily measured in the field using IMU sensors
is the focus of the study by (Johnson et al., 2021). Further studies
will be needed to translate the research done in the lab to systems
that can reliably and accurately deploy in their practical, real-
world setting, especially for time-sensitive applications such as
preventing sports injury in near real-time after detecting a
potentially harmful event. Additionally, an area of potential
growth in the future will be the application of sports
monitoring, injury prevention, and training optimization for
people with disabilities (Rum et al., 2021).

4.3 Fall Detection and Human Activity
Recognition
Gait analysis is beneficial in monitoring the activities of daily
living (ADL) in the elderly to improve the quality of their lives

and health care in their homes and outside hospitals. HAR using
wearables poses four main concerns, and often there are tradeoffs
to navigate: 1) Energy considerations 2) Activity recognition
accuracy 3) robustness over different users and different
activities 4) user experience. These SG systems recognize
several ADLs such as bending, squatting, walking, lying down,
rolling out of bed, and the transitions between them to detect falls,
minimize the false alarms on lying down versus falling events
while trying to keep these systems low cost, automatic, adaptable,
and unobtrusive. To the effect of the low-cost fall detection
systems, (Ma et al., 2014b) propose to extract curvature scale
space (CSS) features of human silhouette from video clips
recorded with an inexpensive Kinect depth camera. They find
that their Extreme Learning Machine (ELM) algorithm,
combined with a variable-length PSO algorithm, performs no
worse than state-of-the-art systems that depend on expensive,
complex multi-camera systems. The performance of the
algorithm is enhanced by using calibration techniques to
address issues of misplaced or misaligned sensors (Yu et al.,
2018). The detection time is essential for fall prevention systems,
such that a control device has enough time to respond and
prevent the fall (Mori et al., 2020). Researchers have been
concerned with the false alarms in automatic fall detection
systems, especially in activities such as lying in bed and falling.
Chelli and Pätzold (2019) report 100% fall detection accuracy
without any false alarms when implementing quadratic SVM and
ensemble bagged tree (EBT) algorithms on acceleration and
angular velocity data from two public datasets. In an earlier
paper, Hakim et al. (2017) also reported near-flawless
accuracies on their SVM classifier using smartphone data.

Gait data for these studies were collected from force sensors
and three-axis accelerometers concealed under intelligent tiles
(Daher et al., 2017), built-in smartphone IMU sensors (Hakim
et al., 2017), wearable sEMG sensors (Xi et al., 2017), wearable
motion sensors (Özdemir and Barshan, 2014), or from an
integrated data collection system such as inertial sensor and
Bluetooth nodes data captured on a smartphone (Santoyo-
Ramón et al., 2018). Sensor data from both a smartwatch
and a smartphone is shown to work better than either one
individually (Weiss et al., 2019). The smart home prides itself in
capturing data real-time and device-free, utilizing wi-fi enabled
IoT platforms (Yang et al., 2018). Finally, radar data from
continuous-wave radar systems can be used for activity
recognition and fall detection providing an unobtrusive
solution for data collection and posing no privacy concerns
(Wu Q. et al., 2015), (Seyfioğlu et al., 2018). CapSense sensing
technology uses KEH capacitor voltage traces to recognize
among five different activities with an accuracy of over 90%
(Lan et al., 2017). In subsequent work, the accuracy was
improved by using two capacitors, one in the sole of a shoe
and one in front (Lan et al., 2020). The overall system energy
usage was also reduced by 75% since the conventional machine
learning algorithms such as NB or KNN used accumulated
voltage data as input, reducing the computational load of the
system. Future work will make these sensors fully self-powered
and battery-free and address activity recognition accuracy and
user experience issues.
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In summary, SG systems have performed with increasing
accuracy, minimizing false alarms, thus providing accurate,
low-cost, automatic activity recognition and fall detection
systems (see Table 6).

5 TRACKING HUMAN POSE

Applications of gait analysis to indoor environments include
indoor positioning and localization algorithms. Wang et al.
(2015) designed four schemes for indoor positioning. They
found that WiFi Pseudo-Odometry integration with a
combination of topology-constrained KNN and a multi-
threshold Pedestrian Dead Reckoning (PDR) algorithm
achieves higher accuracy with a smaller number of particles
when a floor map is used. Other researchers (Tariq et al.,
2017) found that RF performs best out of all the Weka ML
collection algorithms using capacitive sensors for indoor person
localization. Robertson et al. (2013) achieve SLAM using
distortions of the local magnetic field. A foot-mounted sensor,
for instance, can serve to localize a moving person or robot and
generate a map of the indoor space while exploiting odometry.
Low-cost 2D LiDAR has been recommended to preserve user’s
privacy in human tracking (Hasan et al., 2020) (See Table 7).

6 GAIT BASED BIOMETRICS

Gait is a soft biometric feature enabling the identification of
people by their gait. The individuality of the gait pattern persists
over time (Horst et al., 2017) and many pathologies. The main
applications of gait recognition are person identification, person
re-identification, person authentication, gender recognition, age
estimation (Dindorf et al., 2020a), occupancy sensing (Yang et al.,
2018), crowd density estimation (Zhou et al., 2018), crowd
monitoring and anomaly detection for video surveillance
applications (Sun et al., 2017), and multi-player tracking and

identification (Zhang R. et al., 2020). We will look into the first
four categories in more detail in sections 6.1 through 6.4.

6.1 Person Identification
Human identification is the process of determining an
individual’s identity. Methods include but are not limited to
those based on vision, identification cards, and biological data.
Human gait-based identification is the process of determining an
individual’s identity by their distinctive walking style. Person
identification and re-identification through gait recognition have
a growing importance in security systems and video surveillance
in public spaces such as airports, banks, shoppingmalls, etc., since
gait provides a non-invasive biometric feature. The task includes
identifying a subject from a camera and matching him/her to
persons in the other cameras with non-overlapping fields of view,
an operation known as “tag-and-track” (Wu et al., 2015c). These
gait recognition systems face challenges due to variable
parameters that influence the size and quality of video and
image inputs, such as camera viewpoint, lighting, occlusion,
image resolution, and the subjects’ dressing and carrying
conditions. For this reason, most papers we reviewed tried to
address one or more of these difficulties by improving previously
studied and implemented algorithms. To validate their work,
authors conduct experiments to analyze the performance of their
algorithms against benchmarks using public datasets. For
instance, when CNN was first proposed for gait recognition
(Wu et al., 2017), the authors evaluated their proposed
algorithm on the CASIA-B (Yu et al., 2006), OU-ISIR (Iwama
et al., 2012), and USF (Sarkar et al., 2005).

Most person identification SG systems deal with the case when
gait data is extracted from video. These systems are model-based
(Hu et al., 2012), (An et al., 2020), or appearance-based (Guan et
al., 2012; Zhang W. et al., 2019), also called model-free. Gait
Energy Image (GEI) is an average of all the human body
silhouette images in one gait cycle (Han and Bhanu, 2005). It
is widely used in appearance-based person identification
algorithms because it allows for a simple representation of gait

TABLE 5 | SG in sports.

Reference Algorithm Data Collection/Input AI Task/Output

Taborri et al. (2021) Linear SVM 96% N � 39, inertial sensors, and
optoelectronic bars

ACL risk prediction in female basketball players via LESS score

Johnson et al. (2021) CNN, not enough
accuracy

Wearable accelerometer predict near real-time GRF/Ms from kinematic data

Nguyen et al. (2020) CNN 7 IMU’s Gait classification: athlete vs. foot abnormalities
Guo and Wang,
(2021)

TS-DBN Public datasets of videos KTH and UCF HAR/sports behavior recognition

Gholami et al. (2020) CNN shoe-mounted accelerometer Abnormal running kinematics Activity recognition
Cronin et al. (2019) DeepLabCut single GoPro camera Markerless 2D kinematic analysis of underwater running
Kang et al. (2018) FFT Smartphone (unconstrained) Detects walking, counts steps, irrespective of phone placement
Onodera et al. (2017) ANN with IG infrared cameras and force plates Influence of shoe midsole resilience and upper structure on running

kinematics and kinetics
Sundholm et al.
(2014)

KNN with DTW pressure sensor mat Exercise detection and exercise count

Legend: Fast Fourier Transform (FFT), Time-Space Deep Belief Network (TS-DBN), Landing Error Score System (LESS), Ground Reaction Forces andMoments (GRF/M), DeepLabCut as
in (Mathis et al., 2018).
Datasets: Royal Institute of Technology (KTH) (Jaouedi et al., 2020) and University of Central Florida (UCF) (Perera et al., 2019).
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data, removing noise while preserving relevant gait information.
It strikes a good balance between reducing computational cost
and maintaining a good gait recognition rate. On the other hand,
GEI is sensitive to appearance variations such as camera view
angles and whether a subject is wearing a coat or carrying a bag,
and it loses temporal information. There have been efforts to
replace GEI with a representation that preserves more of the
temporal gait information such as Chrono Gait Image (CGI)
(Wang et al., 2011) or to fuse GEI features with temporal features
(Liu et al., 2018). Chao et al. (2019) proposed GaitSet, which uses

unordered sets of equally sized gait silhouettes as the input to a
CNN architecture with set pooling, providing an effective way to
preserve spatial and temporal information without the sequential
constraints. argued that not all body parts contain discriminative
information for gait recognition tasks, and they proposed
GaitPart, a part-based and micro-motion model that preserves
only the relevant part-dependent spatial features and the local
short-range temporal information. An et al. (2020) acknowledges
the challenges of appearance-based models and proposes a pose-
based model approach for gait recognition. The gait poses are

TABLE 6 | Fall detection and human activity recognition.

Reference AI Algorithm Best
Achieved accuracy

Data Acquisition Task

Chang et al. (2021) HMM with OpenPose Two cameras Fall risk assessment. Evaluation of
imbalanced gait

Shioiri et al. (2021) SVM, 79% micro-Doppler radar Classification of gait differences associated
with fall riskCNN 73%

Lu et al. (2021b) SOT, improved accuracy by 6% Public HAR datasets UCI-DSADS, UCI-HAR,
USC–HAD, PAMAP2

Cross-domain HAR, utilizing transfer
learning from auxiliary labeled data

Mori et al. (2020) NN 11 men, TW, induced disturbances Predict falls caused by an unexpected
disturbance in time for CD to deploy

Chelli and Pätzold,
(2019)

ANN, KNN, QSVM, EBT. fall detection �
100%, false alarms � 0, ARA � 97.7%

Wearable sensors Public datasets (Anguita et al.,
2013) and (Ojetola et al., 2015) that record falls,
near-falls, and 7 ADL

ADL recognition. Fall detection

Kondragunta et al.
(2019)

OpenPose for 2D pose estimation Kinect images and sensor gait data from 250
subjects, 4 times, over 3 years

Estimation of Gait Parameters for Elderly
Care from 3D Pose

Weiss et al. (2019) RF, DT, KNN with K � 5. EER � 9.3 by RF.
RF performs best in most of the sensor
combinations

51 subjects, 18 ADL. Smartphones in right pocket
and smartwatch on the dominant hand

Continuous biometrics authentication and
identification on smartphones or
smartwatches.

Santoyo-Ramón et al.
(2018)

SVM, KNN, NB, DT. Error 14.162% by SVM. Inertial sensors. 19 subjects at home, 3 falls and
11 ADL

Wearable Fall Detection System

Yang et al. (2018) CSVD-NMF. 96.8% occupancy detection.
90.6% activity recognition

WiFi-enabled CSI measurements of 5 ADL Device-Free Occupancy Sensing and
activity recognition

Yu et al. (2018) Gaussian HMM. Sensitivity of 0.992.
Positive predictive value of 0.981

Own data. 200 fall events and 385 normal activities Fall detection system

Seyfioğlu et al. (2018) DCAE vs. CNN, SVM, AE. micro-Doppler signatures Radar-based activity recognition
Xi et al. (2017) ARA � 97.35% by GK-SVM. FD: sensitivity

98.70% and specificity 98.59% by GK-FDA.
3 subjects, 7 ADL Wireless wearable sEMG sensors Automatic activity recognition and fall

detection
Daher et al. (2017) HCM-SFS on fused GRF and accelerometer

data. ARA> 90% on all 5 ADL.
Force sensors and accelerometers under intelligent
tiles. 6 subjects, 5 ADL

Fall detection and ADL recognition in
independent living senior apartments

Hakim et al. (2017) SVM, NN, DT, DA. 99% by SVM. Smart phone IMU. 8 healthy subjects, 4 fall events,
6 ADL

ADL recognition and threshold-based fall
detection

Gao et al. (2017) SVM WiFi CSI measurements Device-free wireless localization and activity
recognition

Wu et al. (2015a) Sparse BC+RVM. 2 falling, 6 ADL, Spectrograms from continuous-
wave radar

Radar-based Fall Detection

(Wannenburg and
Malekian 2017)

KNN, kStar, HMM, SVM, DTC, RF, NB
LR, ANN

smartphone Activity recognition

Ngo et al. (2015) SVM, KNN inertial sensor Recognition for similar gait action classes
Semwal et al. (2015) k-means and KNN ANN + PCA vision and sensor-based gait data Abnormal gait detection
Ma et al. (2014b) Variable-length PSO+ELM. 91.15%

sensitivity, 77.14% specificity, and 86.83%
accuracy

10 young subjects, intentionally falling, and 6 ADL
Kinect depth camera

Shape-based fall detection that is invariant
to human translation, rotation, scaling and
action length

Özdemir and Barshan,
(2014)

KNN, LSM Over 99% 14 subjects, 20 falls, 16 ADL, 6 wearable sensors Automated fall detection system

(Mannini and Sabatini,
2012)

HMM wireless IMU and an optical motion analysis system Gait phase detection and walking/jogging
discrimination

Legend: Quadratic SVM (QSVM), HCM (HistogramComparisonMethod), Sequential Forward Selection (SFS), Least squares method (LSM), Gaussian Kernel Fisher Discriminant Analysis
(GK-FDA), Non-Negative Matrix Factorization (NMF), Class Estimated Basis Space Singular Value Decomposition (CSVD), Equal Error Rate (EER), Relevance Vector Machine (RVM),
Gaussian Kernel SVM (GK-SVM), Substructural Optimal Transport (SOT), Channel State Information (CSI).
Datasets: UCI-DSADS (Anguita et al., 2012) UCI-HAR (Barshan and Yüksek, 2014), USC–HAD (Zhang and Sawchuk, 2012), PAMAP2 (Reiss and Stricker, 2012).
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extracted from video using deep learning techniques AlphaPose
(Fang et al., 2017) and OpenPose (Cao et al., 2017). Tracking the
3-D pose of walking pedestrians in video surveillance systems in
cases where multiple people move together and cast a shadow or
cause occlusion has also been attempted (Rogez et al., 2014).

Besides video, gait data can come from depth sensors, force
plates, radar, Wi-Fi-enabled IoT devices, and IMU sensors. Radar-
Id, a radar-based human identification algorithm (Cao et al., 2018),
employs a CNN with architecture similar to that of AlexNet
(Krizhevsky et al., 2012) to learn the necessary features from raw
micro-Doppler spectrograms directly without a need to explicitly
design the features. This algorithm has excellent anti-noise
performance, and it can identify one person amid up to 20
other people. Similarly, Vandersmissen et al. (2018) use radar
device data for indoor person identification and intruder
detection. Costilla-Reyes et al. (2019) propose a footstep
recognition system that can differentiate between the legitimate
users (clients) and the impostor users of a biometric system from
sensors on the floor. Biometric recognition by gait makes it possible
to identify intruders since gait is difficult to fake. Deep CNN
architectures that utilize footstep representations extracted from
GRFs serve as automatic continuous person identification and
verification systems with applications in security and anomaly
detection at airports, workplace environments, and smart homes.
Zhong and Deng (2014) propose a gait representation using
accelerometer and gyroscope data invariant to sensor orientation.
Haque et al. (2016) present amethod for human identificationwhen
given only depth images. Zou et al. (2018) propose Auto-ID, a
human identification system that collects CSI measurements data
from WiFi-enabled IoT devices referred to as shapelet “signatures”
of human identification. Yang et al. (2018) also use the CSI curve of
the human body for occupancy sensing and activity recognition.
This system is good for anomaly detection, such as identifying
intruders in a smart home automatically. A person walking in a
smart space equipped with RFID devices affects the radio frequency
(RF) signals. The effect can be captured by Received Signal Strength
Indicator (RSSI) and the phase of the RF signal and then used for
person identification. A system that employs TSNet, a tag selection
deep reinforcement learning algorithm, PCA for feature reduction,
and an attention-based LSTM algorithm performs RFID-based gait
recognition that can easily be integrated into a smart home or smart
office environment (Luo et al., 2020).

Person identification studies have benefitted from the
developments in computer vision, established benchmarks, and

public datasets. The code proposed in the studies is often made
public, encouraging continued and collaborative research (Chao
et al., 2019). Recent studies employ deep learning approaches that
extract gait representations directly from raw gait data and learn
discriminative features for human identification (see Table 8)

6.2 Person Re-Identification
Human reidentification is the task of identifying images of the
same person from non-overlapping camera views at different
times and locations. A re-identification problem has three major
components: identifying which human parts should be
compared, constructing invariant features to represent those
parts, and computing an appropriate similarity metric between
them. (Saghafi et al., 2014). SG as a soft biometric feature allows
continuous tracking and behavior analysis of a person over a large
camera network for forensics, surveillance, and security
applications. Traditional ReID methods usually focused on
building robust feature representations of the gait and
estimated the similarity between a probe and gallery image by
calculating their Euclidian distances. This method faces
challenges in cross-view and cross-walking conditions, such as
when the gait pair is in different camera viewpoints and carrying
and dressing conditions (Wu et al., 2017). Wu et al. (2015c)
proposed that current classifiers be enhanced with a combination
of Pose Prior (PP) algorithm and subject-discriminative feature
selection algorithm to construct a view-invariant ReID system.
One solution is to view the ReID task as a link probability
prediction problem where each person represents an instance
node in a graph structure. The ReID algorithm computes the
likelihood of the link between the two (Liu H. et al., 2021).
Another solution, suggested by Chtourou et al. (2021), includes
an offline and an online phase. During the offline phase, an
optimized GEI feature representation is constructed combining a
dynamic selection of most relevant parts and a transformation of
the probe or the gallery image, so the two of them have the same
view before a matching score is calculated. This offline phase
serves to train the Part View Transformation Model (PVTM),
which will be used online to transform the gallery image to the
same view as the probe image before classification.

ReID algorithms involve feature learning and metric learning.
They learn gait features attributable to a person and then learn a
similarity measure which should be greater if a gait pair belongs to
different people than when it belongs to the same person. Song
et al. (2018) introduced binary segmentation masks and region-

TABLE 7 | Tracking human pose.

Reference AI Algorithm Best
Achieved accuracy

Data Acquisition Purpose

Vandersmissen et al.
(2018)

Deep CNN. Error 21.54% Low-power Radar. IDRad dataset made
publicly available

Indoor PI invariant to the exact radar placement, room
setup, and walking direction

Tariq et al. (2017) Weka collection ML classifiers. 0.05
localization error. Accuracy > 93%

4 Capacitive Sensors in load mode Indoor Person Localization

(Li et al., 2015) Improved PDR algorithm The best
achieved accuracy is within 2 m

Samsung Galaxy Note3 and Bluetooth
beacons

PDR algorithm integrated with Bluetooth beacons for
indoor positioning without additional infrastructure

Robertson et al.
(2013)

MagSLAM Achieves a position accuracy
of 9–22 cm

Foot mounted IMU sensors. Low-power
radar device. No a priori map

Dynamic positioning (SLAM) of indoor pedestrians derives
a multi-floor indoor map
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level contrastive learning. Joint feature learning and similarity
measure learning have also been attempted to perform both tasks
well. The algorithm simultaneously extracts local convolutional
features and enhances the discrimination capability by focusing
only on distinct regions when looking for similarities between
videos. It jointly learns features and similarity values for a pair or
triplet of values (Wu L. et al., 2019). A deep Siamese attention
architecture that consists of a conventional GRU and an attention
mechanism can learn spatiotemporal representations and similarity
metrics and learn to discriminate which local spatial representations
are relevant (Wu L. et al., 2019). With large datasets of gait images,
one faces the issue of multiple pedestrians having similar
appearances. Chen et al. (2015) observed that the similarity
metric was larger for images of the same pedestrian than for two
different pedestriansMultiple deepmetric learning utilizingmultiple
stacked auto-encoder networks and classification networks has been
used to characterize different pedestrian images belonging to the

same person based on multiple similarity probabilities (Xiong et al.,
2019). These deep learning networks have integrated the feature
learning and dissimilarity learning tasks of the traditional ReID
systems into a unified deep neural network that learns
representations robust to variations in image quality, background
clutter, camera viewpoint and subjects’ carrying and dressing
conditions directly from raw gait images at pixel level. (See Table 9)

6.3 Person Authentication
Proper authentication includes user authentication: whether the
user has authorized access, and person identification: who the
current user is (Liang et al., 2020). Sensor-based user
authentication uses biological features categorized in physical,
physiological, and behavioral (Hernández-Álvarez et al., 2021).
Gait provides behavioral biometric-based authentication, which
by comparison with knowledge-based (passwords, personal
identification number (PIN)) and physiological biometric-

TABLE 8 | Person identification (PI).

Reference Dataset/Input data Proposed method for
person identification

(Liu et al., 2018; Chao et al., 2019; Fan et al.,
2020; Liu et al., 2021b)

CASIA-B and OU-MVLP GaitPart: learns frame-level part spatial features and local short-
range temporal features. Each body part has its own spatial-
temporal representation

Zhang et al. (2020d) CASIA-B, OULP, and OUMVLP. Proposed a gait-specific loss function called angle center loss. It
uses learned horizontal partitions of gait templates and a temporal
attention model

Luo et al. (2020) RSSI and phase features extracted from RF signals, 18
subjects

GRaaS; an RFID-based wireless gait recognition system using
DRL tag selection algorithm and attention-based LSTM model

Chao et al. (2019) CASIA-B and OU-MVLP GaitSet: Deep set-based PI using Set Pooling to aggregate
silhouettes into one set

(He et al., 2019; Song et al., 2019) OU-ISIR, CASIA-B, and USF Multi-task GANs learn view-specific gait feature presentations.
Proposed PEI, a new multi-channel gait template

Costilla-Reyes et al. (2019) SfootBD Biometric Footstep Recognition using
Ensemble of ResNet and SVM with floor-only sensor
data

Martinho-Corbishley et al. (2019) VIPER, CUHK, and TownCentre Crowd prototyping. Age, gender, and ethnicity recognition using
ResNet-152 CNN

(Sokolova and Konushin 2018) TUM-GAID, CASIA-B, and OU-ISIR Pose-based deep PI using WideResNet with OpenPose
Zou et al. (2018) CSI measurements using two routers in IoT network, 20

subjects
AutoID: WiFi-Based PI using C3SL

Cao et al. (2018) Radar micro-Doppler spectrograms, 24 subjects RadarId: Deep CNN architecture based on raw radar micro-
Doppler signatures

Vandersmissen et al. (2018) Constructed own IDRad dataset from FMCW radar, 5
subjects

Indoor PI using Deep CNN with radar data; PI in the dark, privacy-
preserving, intruder detection

Chen et al. (2018) USF, CASIA-B, and OU-ISIR Own multi-gait image
dataset from videos, 120 subjects in groups of 3

Amodel-based method for multi-gait recognition using the L-CRF
model

Haque et al. (2016) BIWI, IIT PAVIS, and IASLab Depth-Based PI using a RNN/LSTM model. Suitable for PI in the
dark

Wu et al. (2015b) CASIA-B, PEC Set-based PI using CNN, MLP, initialized with pretrained AlexNet
Alotaibi and Mahmood, (2015) CASIA-B Deep CNN framework for cross-view gait recognition,
Zhong and Deng, (2014) McGill University and Osaka University gait datasets KNN using GDI extracted from phone IMU data
Hu et al. (2013) USF and CASIA-B A unitary ViDP, matrix projects the gait templates into a latent

space for view-invariant PI
Wang et al. (2012) CASIA-B 1-NN using proposed CGI as a gait template that preserves

temporal information

Legend: Convex Clustered Concurrent Shapelet Learning (C3SL), Latent Conditional Random Field (L-CRF), Gait Dynamics Image (GDI), View-Invariant Discriminative Projection (ViDP),
Generative Adversarial Network (GAN), Period Energy Image (PEI), Radio Frequency Identification (RFID), Received Signal Strength Indicator (RSSI), Deep Reinforcement Learning (DRL),
Gait Recognition as a Service (GRaaS), Frequency-Modulated Continuous-Wave (FMCW), ResNet-152 CNN (He et al., 2016), WideResNet (Zagoruyko and Komodakis, 2016).
Datasets: CASIA-B (Yu et al., 2006), OU-MVLP (Takemura et al., 2018), OU-ISIR (Iwama et al., 2012), OULP (Iwama et al., 2012), TUM-GAID (Hofmann et al., 2014), USF (Sarkar et al.,
2005), PEC (Bossard et al., 2013), BIWI (Munaro et al., 2014), IIT PAVIS (Barbosa et al., 2012), and IASLab (Barbosa et al., 2012), McGill University Gait Dataset (Frank et al., 2010), Osaka
University Gait Dataset (Ngo et al., 2014), SfootBD (Vera-Rodriguez et al., 2012), AlexNet (Krizhevsky et al., 2012).
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based (face recognition, fingerprint) is unobtrusive, continuous,
less prone to attacks, and easily tracked through wearable devices,
videos, and smartphones in the context of IoT environments.
Gait-based authentication is studied either by itself (Qin et al.,
2019) or as part of an authentication system that uses multiple
modalities (Hintze et al., 2019) (Acien et al., 2019) (See Table 10).
Authors (Acien et al., 2019) showed that the fusion with
behavioral data improves the authentication system results.

6.4 Gender Recognition
SG performs gender recognition reliably and unobtrusively (See
Table 11). The gender classification task is usually conducted
alongside human identification, and human re-identification tasks
(Lu et al., 2014) since a person’s gender can serve as a soft feature in
identifying a person. For instance, gender classification is done first
to prune a subset of subjects before human identification is
performed (Castro et al., 2017), (Meena and Sarawadekar, 2020).
Gender classification is also done first to improve the accuracy of a
subsequent age estimation algorithm (Zhang S. et al., 2019). Gender
and age classification, in certain commercial and electronic
consumer applications specifically, can be sufficient to enhance
user experience (Duan et al., 2018).

The authors have explored different input features for this task.
Joint Swing Energy (JSE) is a static feature extracted from the
skeleton, namely the distance of the body joints from anatomical
planes. It can easily be extracted from gait data and performs well
with various classifiers to recognize someone’s gender (Kwon and
Lee, 2021). Histogram of Gradient (HG) method reduces the three-
dimensional (3D) accelerometer and gyroscope data from
smartphones into 1D temporal descriptors, used as input for a
bootstrapped DT algorithm (Jain and Kanhangad, 2018). Small
walking speed variations do not affect the classification accuracy,
but larger variations do, suggesting that spatial features are probably
better suited for gender recognition tasks using conventional
classifiers. Authors (Wazzeh et al., 2019) suggested that extracting
features that are invariant to walking speeds variations could
improve the performance of their gender recognition algorithm.
Castro et al. (2017) proposed a CNN-based end-to-end approach
that uses optical flowmaps extracted from very low-resolution video
to represent each person by their gait signature and recognize their
gender and identity with high accuracy. A multi-task CNN setup,
where the deep network learns multiple attributes simultaneously,
improves the accuracy further (Zhang S. et al., 2019).

Some authors focus on recognizing gender from gait data when
subjects walk in different directions (Lu et al., 2014), at different
walking speeds (Jain and Kanhangad, 2018), carrying a bag, wearing
a coat (El-Alfy and Binsaadoon, 2019), etc. SG for gender recognition
is non-intrusive, does not require the subject to cooperate, and has
better performance invariant to carrying and clothing conditions,
even with the low-resolution quality of videos.

7 SMART GAIT DEVICES AND
ENVIRONMENTS

This section reviews systems that incorporate ML, IoT, and
advanced sensing and textile technologies for automatic, real-

time gait data processing to perform an intelligent task with
health, sports, entertainment, and security applications.

7.1 Smart Gait Devices
The domain of smart gait devices and environments is exciting,
brave, creative, extensive, and ever-growing (See Table 12). SG
devices include wearable shoes (Zou et al., 2020), socks (Zhang
et al., 2020f), kneepads and anklets (Totaro et al., 2017), insoles
(Low et al., 2020), as well as devices attached to the body, such
as smartphones (Poniszewska-Maranda et al., 2019),
smartwatches (San-Segundo et al., 2018), (Sigcha et al.,
2021), etc., implantable medical devices such as ActiGait
(Sturma et al., 2019), wearable robotics (Shi et al., 2019)
such as prosthetics (Gao et al., 2020) orthotics (Zhang
et al., 2020e), (Choo et al., 2021), assistive devices such as
smart walkers (Jimenez et al., 2018), and environmental
devices such as smart tiles (Daher et al., 2017). SG devices
use gait data to facilitate health monitoring, including passive
mental health assessment (Rabbi et al., 2011) and transfer data
to control devices for health, sports, security, and
entertainment applications. For instance, UbiHeld
(Ubiquitous Healthcare for Elderly) incorporates gait and
other data from a smartphone as well as additional data
from an inexpensive Kinect camera to keep a status of the
overall health, location, and activities of the elderly at home
(Ghose et al., 2013).

The requirements for soft smart wearable garments can be
conflicting: stretchable, entirely conformable to the body,
designed ergonomically and esthetically pleasing, small size
and weight, flexible, washable, robust, unobtrusive, reliable,
and durable (Yang and Yin, 2021). Person identification is an
integral part of smart gait devices due to the need for customized
user experience, which introduces the need to preserve users’
privacy. Additionally, continuous, seamless user authentication is
vital to prevent malicious attacks on users’ medical records
without the burden of frequently entering a personal
identification number (PIN) (Xu et al., 2021). Finally, other
requirements include water-proof capability, mechanical
durability, and connectivity with other smart devices and
environments depending on the specific use (Zou et al., 2020).
To accommodate these requirements, the main focus of the
research is on sensing technology. Sensors for wearables are
IMUs, capacitive sensors (Lan et al., 2020), KEH (Xu et al.,
2017; Xu et al., 2018), (Ma et al., 2018), solar cells (Sandhu
et al., 2021), resistive sensors, stretchable conductive micro fluids
(Low et al., 2020), and TENGs (Zhang et al., 2020g).

There is generally a trade-off between the complexity of
sensing technology in smart gait devices and the accuracy of
the intelligent task they perform (Khademi et al., 2019).
Depending on the task and granted sufficient accuracy, one
can stop the chase for performance and focus on patient
comfort (Di Nardo et al., 2020). A multi-object optimization
(MOO) technique is implemented (Khademi et al., 2019) to
navigate this trade-off: it selects an optimal feature subset that
maximizes accuracy while minimizing sensing hardware. Fusing
different bio-signals in hBCI systems for gait applications
improves classification accuracy and the number of control
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commands. Still, it introduces the problem of channel
configuration, information transfer rate, and temporal
synchronization between the modalities (Khan et al., 2021).

SG devices will be an integral part of smart cities, smart
buildings, smart homes, smart transportation, smart factories,
energy grids, and e-Healthcare and are poised for tremendous
growth in the future as IoT in the 5G framework will facilitate
better and faster inter-connectivity between the devices (Chettri
and Bera, 2019), end-to-end deep learning algorithms will
provide real-time intelligence, and sensing technology will be

embedded more comfortably into our everyday objects and
clothing.

7.2 Smart Homes
A smart home environment is defined as one that acquires and
applies knowledge about its residents and their physical
surroundings to improve their experience in that setting (See
Table 13). The smart home sensors, the wearable sensors, and the
classifying algorithms in the CASAS smart home (Cook et al.,
2015) serve to perform health monitoring, early detection of

TABLE 9 | Human Re-Identification.

Reference Dataset Proposed
method for ReID

Liu et al. (2021a) Market1501, DukeMTMC-reID and CUHK03 PrGCN; Graph based method. Predicts the link probability of the node pair
Chtourou et al.
(2021)

CASIA-B PVTM: Transforms gallery image to the same view as the probe and uses only most informative
human gait parts

Wu et al. (2019b) iLIDS-VID, PRID 2011, and MARS. Deep Siamese Attention Network Joint learning of spatiotemporal features and similarity
metrics

Zhang et al. (2019c) PRID 2011, iLIDS-VID, and SDU-VID Multiple CNN networks Compact appearance representation of selected frames rather than
whole sequence

Liu et al. (2019a) MARS and iLIDS-VID D3DNet, Deep metric learning
Joint learning of spatiotemporal features and
similarity metrics

Xiong et al. (2019) VIPeR, CUHK01 Stacked Auto-Encoders Deep metric learning of multiple similarity probabilities
Song et al. (2018) MARS, Market-1501 and CUHK03 MGCAM Binary segmentation mask and region-level triplet loss; Contrastive Learning
Wang et al. (2018) VIPeR, PRID 450S, and CUHK01 Fine-tuned CNNwith DM³. Matrix metric learning of discrepancymatrix instead of characteristic

vector
Zhao et al. (2017) ViPeR and CUHK01 KNN, SVM ReID by saliency learning and matching
Wu et al. (2015c) ViPeR, ETHZ, SAIVT-SoftBio, and iLIDS MCTS Improved RDC, RankSVM and PCCA by using pose priors, image rectification and online

person-specific weights
Chen et al. (2015) VIPeR, GRID, iLIDS MCTS, and CAVIAR4REID RMLLC ReID as image retrieval task using relevance metric learning
Tao et al. (2015) VIPeR and ETHZ MCE-KISS Improved KISS metric learning by MCE and a smoothing technique
Ma et al. (2014a) GRID and VIPeR MtMCML; multi-task learning. Designed multiple distance metrics
Zheng et al. (2013) ETHZ, iLIDS MCTS, and VIPeR Ensemble RDC model. Relative Distance Comparison Learning

Legend: Probability Graph Convolutional Network (PrGCN), Dense 3D-Convolutional Network (D3DNet), Mask-guided Contrastive Attention Model (MGCAM), Discrepancy Matrix and
Matrix Metric (DM³), Relevance Metric Learning with Listwise Constraints (RMLLC), Minimum Classification Error (MCE) Keep it simple and straightforward (KISS) Metric Learning, Multi-
task Maximally Collapsing Metric Learning (MtMCML), Relative Distance Comparison (RDC), Support Vector Ranking (RankSVM), Pairwise Constrained Component Analysis (PCCA).
Datasets: VIPeR (Gray and Tao, 2008), CUHK01(Li et al., 2012), iLIDS-VID (Wang et al., 2014), PRID 2011 (Hirzer et al., 2011), and MARS (Zheng et al., 2016), SDU-VID (Liu et al., 2015),
Market1501 (Felzenszwalb et al., 2008; Zheng et al., 2015), DukeMTMC-reID (Ristani et al., 2016), CUHK03 (Li et al., 2014), PRID 450S (Roth et al., 2014), GRID (Loy et al., 2009), iLIDS
MCTS (Zheng et al., 2009), and CAVIAR4REID (Cheng et al., 2011), ETHZ (Schwartz and Davis, 2009), SAIVT-SoftBio (Bialkowski et al., 2012).

TABLE 10 | Person authentication (PA).

Reference AI Algorithm Dataset/Data Modality Purpose

Zhang et al. (2020b) SVDD and PCA for illegal user
detection, LSTM for PI

Velocity and acceleration from the smartphone at the leg PI and illegal user detection

Li et al. (2020) Two-stream CNN with SVM BrainRun dataaset. Own dataset of gait and other behavioral
features from smartphones, 100 subjects.

SCANet: Continuous PA, distinguishes
legitimate vs impostor users

(Zhang et al., 2014b; Qin
et al., 2019)

Multi-layer LSTM and Extreme
Value Statistic

ZJU-GaitAcc, 3D accelerations from smartphones PI and PA of the learned user, reject
unauthorized user

(Wu et al., 2018; Hintze
et al., 2019)

SVM, KNN, DT acceleration, angular velocity, magnetic intensity, and PPG
signals from fingertip device

Multisensor PA, HAR

Vandersmissen et al. (2018) Deep CNN Own IDRad Dataset: micro-Doppler signatures, 5 subjects Automatic intruder detection, indoor PI
Jorquera Valero et al.
(2018)

Semi-supervised ML, Isolation
Forest

Tracking current vs. known usage of the device and motion
sensor data from phone

Adaptive and continuous PA system,
anomaly detection

Neverova et al. (2016) Dense clockwork RNN HMOG, Google Abacus Dataset: time series of inertial
measurements

distinguishes legitimate vs impostor users

Legend: Photoplethysmography (PPG), Support Vector Data Description (SVDD), Growing Neural Gas (GNG).
Datasets: BrainRun (Papamichail et al., 2019), ZJU-GaitAcc (Zhang Y. et al., 2014), HMOG (Yang et al., 2014), UMN (Raghavendra et al., 2006), UCSD Ped (Li et al., 2013), Avenue (Lu
et al., 2013).
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disease, health care, and treatment. The smart home integrates
wearable sensing technology, AI technology, and sensor fusion
technology to automatically control home appliances via a gesture
recognition algorithm, to turn lights on and off via an indoor
positioning algorithm, and to set the alarm off via a fire detection
algorithm (Hsu et al., 2017). With a focus on XAI, a numerical
score of anomaly level is output on the monitor along with
natural language explanations (Khodabandehloo et al., 2021).
The privacy and security of health data are major concerns of
smart homes. With the recent advancements in blockchain
technology and its wider acceptance, a possible solution is to
build smart blockchain networks to securely store and share
health data (Taralunga and Florea, 2021) (Cernian et al., 2020).

Of interest in this discussion is the project HABITAT (Home
Assistance Based on the Internet of Things for the Autonomy of
Everybody) that had only four key AI applications at the time this
paper was written: an indoor localization system, smart armchair,
smart belt, and a wall panel and mobile devices as the user

interface (Borelli et al., 2019). The smart home embeds smart
objects into objects of everyday life. The belt, which assesses body
movement, is of interest to this study since it captures postural
transitions and gait biometric data. The AI modules follow the
Event Calculus (EC) modelling approach, which makes it easy to
define the properties of the system. The system is expandable,
more smart devices can be incorporated into it, and is an example
of what is possible when activities and objects of our daily lives
become “smart.” In summary, AI algorithms take care of the
“smart” part of the home. Instead of being a passive recipient of
care, the patient becomes an active agent of an intelligent health
ecosystem (Najafi and Mishra, 2021).

SG extends beyond the context of smart home and will play a
major role in the future smart cities (Lozano Domínguez and
Mateo Sanguino Tde, 2021), smart factories (Pech et al., 2021),
smart retail stores (Zhang et al., 2019a), smart rehabilitation labs
(Sessoms et al., 2015), and smart devices (Lozano Domínguez and
Mateo Sanguino Tde, 2021)

TABLE 11 | Gender recognition (GR).

Reference AI Algorithm Best
Achieved accuracy

Dataset/Input features Task

Kwon and Lee, (2021) KNN, SVM, NB, DT, 100% UPCVgaitK1, UPCVgaitK2 GR
Zhang et al. (2019b) multi-task CNN, AE: MAE � 5.47,

GR: 98.1%
OULP-Age dataset GEI from video GR and AE

El-Alfy and Binsaadoon,
(2019)

LK-SVM with FLBP Normal: 96.40% CASIA-B GEI from video GR
Carrying: 87.97%
Wearing coat: 86.54%

(Jain and Kanhangad,
2018)

Bootstrap DT 94.44% 1D HG extracted from Smartphone in the front pocket GR

(Castro et al., 2017) CNN F:77%, M:96% TUM-GAID: extracted from low-resolution video streams recorded with MS
Kinect

automatic PI
and GR

Lu et al. (2014) AP clustering + SRML PI: 87.6%
GR: 93.1%

Own dataset: ADSCAWD USF and CASIA-B C-AGI instead of GEI from MS
Kinect Depth Sensor

PI and GR

Legend: Sparse Reconstruction-based Metric Learning (SRML), Cluster-based Averaged Gait Image (C-AGI), Affinity Propagation (AP), Optical Flow (OF), Person Identification (PI),
Gender Recognition (GR), Age Estimation (AE), Fuzzy Local Binary Pattern (FLBP), Linear Kernel SVM (LK-SVM).
Datasets: UPCVgaitK1 (Kastaniotis et al., 2013), UPCVgaitK2 (Kastaniotis et al., 2016), OULP-Age (Iwama et al., 2012), CASIA-B (Yu et al., 2006), TUM-GAID (Hofmann et al., 2014), USF
(Sarkar et al., 2005).

TABLE 12 | Smart gait devices.

Reference AI Algorithm AI task Sensing Technology Application

Yang and Yin, (2021) LSTM with CAE estimating joint torque for motion intent
prediction

three soft pneumatic sensors
two 3D IMUs

soft smart shoes

Xu et al. (2021) attention-based
LSTM

gait recognition while preserving privacy of
users

KEH PrivGait, a KEH-equipped wearable
device

Sandhu et al. (2021) RF human activity recognition wrist-worn solar cell SolAR, a solar self-powered wearable
device

Zhang et al. (2020g) 1D CNN gait and human activity recognition textile TENGs smart socks for long-term gait monitoring
Lan et al. (2020) NB, RF, DT, KNN human activity recognition two capacitors and two

transducers
a self-powered shoe with embedded
CapSense technology

Gao et al. (2020) RNN imitation learning for real-time prosthetic
control

built-in motion sensors powered transfemoral prosthesis

Zhang et al. (2020e) RL assist-as-needed control for robot-assisted
gait training

built-in motion sensors SAFE orthosis

Llorente-Vidrio et al.
(2020)

DDNN classification of EMG signals to activate an
event-driven controller

EMG sensors mobile lower limb active orthosis

Legend: Deep Differential Neural Networks (DNNN), Stevens Ankle-Foot Electromechanical (SAFE), Reinforcement Learning (RL).
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8 ANIMATION AND VIRTUAL
ENVIRONMENTS

For this review, we consider studies requiring and using gait
data and implementing an ML algorithm to create animated
characters for movies, video games, and virtual reality
environments. These studies include research in gait
modeling, motion reconstruction, and character control. (See
Table 14)

In Virtual Reality (VR) applications, the virtual character is
controlled real-time by the user’s behavior. The task of the AI
algorithm is to correctly recognize the user’s gait phases, with no
delay, for a good real-time visual representation of the avatar’s
motion. In video games, deep reinforcement learning is the
algorithm of choice where the policy controls the action at
each step. The policy is defined carefully to positively reward
the desired action at each step, such as maintaining balance,
tracking pose and orientation, alignment, mimicking the
reference motion, surviving perturbations, and negatively
rewarding actions such as falls. The avatars must be real-
looking, preserving both the motion extracted from the
skeleton features and the shape (Loper et al., 2014), (Huang
et al., 2015).

Responsiveness to user demand, quality of visual
representation, robustness to different walking styles and
terrains, system runtime performance, adaptation to
disturbances, maintaining balance, and retargeting to different
morphologies are some of the key goals of these systems. Usually,
motion data is extracted from expensive high-quality multi-
camera motion capture systems. Authors have studied the
possibility of retrieving high-quality representations from low-
cost video clips recorded with pervasive monocular videos such as
YouTube clips (Peng et al., 2018b) and reconstructing human
pose from inertial measurements, in the case when direct-line-of-

sight camera recording is not available due to occlusion for
instance (Huang et al., 2018).

9 DISCUSSION AND FUTURE TRENDS

In this study, we reviewed different applications of the smart gait
with a focus on the various tasks artificial intelligence algorithms
perform across many industries and disciplines, such as health
and wellness, security, forensics, and energy management. We
further identify four emerging trends in the SG research: 1)
population-wide scale health data will be available and
empower end-to-end automatic, ubiquitous, and continuous
deep learning approaches for big data-driven intelligent
systems, 2) Fast-growing innovations in other technologies
such as cloud computing, smart textiles, blockchain, and 5G
will offer new opportunities and pose new challenges for SG
systems and demand fast congruent growth, 3) SG systems will
need to address concerns about user privacy, safety, comfort, and
experience captured by the paradigm, “human-in-the-loop”
(Sedighi Maman et al., 2020); these will be enforced by human
rights advocates and regulatory bodies, and 4) the need for AI in
health applications to benefit from the fast, low-cost, and
accuracy of “black box” intelligent systems while still being
transparent and understandable, as captured by the paradigm
of XAI. SG is a valuable tool in kinetic and kinematic analysis,
disease monitoring, diagnosis, and rehabilitation, sports
performance, fall risk assessment, detection and prevention,
gait-based biometrics for person identification, re-identification
and continuous automatic authentication, age and gender
recognition, physical skill and mobility assessment, fitness
tracking, gait modeling and simulation, crowd monitoring and
anomaly detection, human pose estimation, indoor tracking, and
localization. SG is often integrated with other smart systems that

TABLE 13 | Smart home applications.

Reference AI Algorithm Data Acquisition Purpose

Borelli et al.
(2019)

AI algorithms are built into smart objects Wall light for indoor localization. This paper provides a complete description of the
HABITAT project regarding methodology,
architecture, design, and smart objects
development

The smart armchair and the smart belt perform
activity recognition algorithms.

Armchair for sitting posture monitoring.
The belt for movement information.

The wall light sends input to a fall detection
algorithm

The Wall panel and mobile devices are the user
interface

Hsu et al.
(2017)

3D gesture recognition: 95.3% using PNN and
10-fold CV.
Pedestrian navigation: distance and positioning
accuracies were 0.22 and 3.36% of the total
distance traveled in the indoor environment.
Home safety and fire detection: classification rate
98.81%.

Wearable IMU on wrist tracks hand gesture and
on feet walking data and energy management
Environmental sensors.
Experimental smart home testbed. Web
camera. Multisensory circuit module for home
safety and fire detection

Design and implementation of a smart home system
that integrates wearable intelligent technology,
artificial intelligence, and sensor fusion technology
to complete these tasks:
Automated household appliance control.
Smart energy management.

PNN, DTW, SVM, LDA, PDR, PCA-PNN. Fire detection and home safety
Cook et al.
(2015)

DT, NBC, RF, SVM, Ada/DT, Ada/RF are tried out,
and Ada/DT provides the best classification accuracy.

CASAS smart home and wearable sensors.
Analysis 1: N � 75 PD � 25 HC � 50.

In home health monitoring for early detection of
changes associated with PD and MCI and
evaluation of treatmentPCA is used to reduce features k-Means

clustering and random resampling are used to
add features in smaller (individual activities)
datasets

Analysis 2:N � 52, PD ann NoMCI � 16, PDwith
MCI � 9, HC � 18, MCI and no PD � 9
Subjects perform IADL tasks in a CASAS smart
home testbed

Legend: Pseudo-odometry (P-O), Adaptive Boosting (Ada), Probabilistic Neural Network (PNN), Mild Cognitive Impairment (MCI), Instrumental ADLs (IADLs), Dynamic Bayesian
Network (DBN).
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utilize biomedical signals such as electrocardiograms, body
parameters such as temperature, blood pressure, respiration
rate, energy expenditure, and heart rate, and environmental
signals such as room temperature and humidity. SG is often
part of a smart IoT framework embedded with sensors,
monitoring devices, and AI-enabled actuators that are all
connected and in continuous communication. SG is
everywhere, in our smart devices, smart homes, classrooms,
cars, stores, cities, and energy grids. Smart Gait research will
continue to grow fast in the future and will benefit from
advancements in other technologies such as sensors,
blockchain, IoT, textiles, 5G, cloud computing, and big data.
These new technologies will also pose new demands and offer
new opportunities for smart gait research. SG research will
continue to address user privacy issues, security of health data,
patient comfort, worker safety in the workplace, enhanced user
experience, fatigue monitoring and injury prevention in sports.

We also identify these three needs for the SG research
community: 1) inter-disciplinarity 2) the need for SG to
become an organized field of study with specific definitions
and good practices in place, and 3) the need for open
competition and collaboration. Looking into the future, digital
technologies such as smartwatches, headbands, and smartphones
will be exploited to collect population-wide scale data to facilitate
health monitoring and early detection of various diseases. One
aspect of such systems is the multimodality of the data (Frey et al.,
2019), (Abeysekara et al., 2020). Their integrated approach will

demand cross-disciplinary research and collaborations. The gait
research teams will need to include experts across many
disciplines. We see the collaborative culture becoming more
prevalent in the future both, within the SG community and
between the SG community and the larger research
community across many fields. With the recent development
of programming languages and the open research community
around them on Github, Kaggle, and other online and app-based
forums, it is possible and important that the Smart Gait research
community is open and the datasets, AI code, and suggested
strategies for improvement are available for future collaborative
work. For instance, some authors have made the data and the ML
toolbox public and available for other researchers (Baghdadi et al.,
2021) and (Horst et al., 2019). Wherever such open and
collaborative efforts have flourished in the past, the results
have been outstanding. Computer vision studies have seen
tremendous results by reducing the cost of entry to new
research and encouraging collaboration and competition
towards a goal. The authors of this paper are excited to see
similar growth in the SG research community.

10 CONCLUSION

The utilization of AI in gait analysis is a growing field. In this paper,
we refer to it as the Smart Gait. It is compellingly multi-disciplinary,
drawing from cutting-edge research in multiple mathematical and

TABLE 14 | Animation and virtual environments.

Reference AI Algorithm/Characteristics Data Acquisition/Inputs Task

Feigl et al. (2020) THR, COR, SVM and BiLSTM, tested N � 6, head-mounted accelerometer
data

Motion reconstruction
- COR has the best accuracy for real-time VR applications (low
delay)

Gait phase detection

Bergamin et al. (2019) DReCon: motion matching and deep RL Unstructured motion data from
mocap

Real-time physics-based character
control for video games- responsive to user demands, natural-looking. Trained on flat

terrain
Peng et al. (2018b) OpenPose/HMR and DRL Simulated character model and

YouTube video clip
Learning dynamic physics-based
character controllers from video clips- Learning from inexpensive video clips, robust

Peng et al. (2018a) DeepMimic: DRL Character model, kinematic
reference motion from video clip

Physics-based character controllers
from video clips- Diverse skills/terrains/morphologies, realistic response to

perturbations
Huang et al. (2018) SMPL body model and BiLSTM 6 IMUs 3D human pose reconstruction from a

sparse set of IMUs- Useful when camera-based data is not available due to
occlusion, fast motion, etc

Holden et al. (2016) CAE CMU Motion Capture Database ³ Unsupervised learning of a human
motion manifold- Capable of fixing corrupt data, filling in missing data, motion

interpolation along the manifold, and motion comparison
Huang et al. (2015) SMG and part-based Laplacian deformation Three 4DPC datasets 4 A data-driven approach for animating

4DPC character models- Simultaneously captures both motion and appearance for
video-like quality

Ding and Fan, (2015) Multilayer JGPMs/topologically constrained GPLVMs CMU Motion Capture Database +
Simulated data

Human gait modeling
- diversity of walking styles, motion interpolation, reconstruction,
and filtering

Alvarez-Alvarez et al.
(2012)

FFSM with automatic learning of the fuzzy KB by GA N � 20 Human gait modeling
- Fuzzy states and transitions are still defined by experts,
interpretable, generalizes well for each person’s gait

Accelerometer attached to the belt

Legend: Threshold Based Method (THR), Pearson Correlation-based Method (COR), Data-Driven Responsive Control (DReCon), Human Mesh Recovery (HMR), Deep Deterministic
Policy Gradient (DDPG), Skinned Multi-Person Linear (SMPL) as in (Loper et al., 2015), 4D Performance Capture (4DPC), Surface Motion Graphs (SMGs), Carnegie Mellon University
(CMU), Joint Gait-Pose Manifolds (JGPMs), Fuzzy Finite State Machines (FFSM), Knowledge Base (KB).
Datasets: ³ http://mocap.cs.cmu.edu/4 http://cvssp.org/cvssp3d.
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engineering fields, and it continues to welcome new approaches and
new data-capturing methods. With the constant advances in
wearable sensors technology, cloud computing, and new advances
in ML, the progress is formidable. Coupled with the growing
realization of real-world applications such as non-invasive person
identification, person re-identification, intruder detection, medical
diagnosis and treatment, advanced fall detection, etc., will keep the
demand for new gait detection and analysis methods high and keep
AI at the forefront of the research. The field should only grow and
expand in scope over the next 10–15 years. From smart home
devices to smart grids and smart cities, AI is here to stay, and it
will become very pervasive. AI-driven gait-based systems will take
the shape of a chair you sit on, shoes youwear, amat you exercise on.
The smart door of your homewill open as it recognizes your walk via
a continuous SG authentication system, and the phonewill lock itself
in the hands of the thief as the abnormal gait is recognized. A crowd
density algorithm will warn you of high Covid-19 risk when you
enter a store.

With the growing demand and promising results,
accessibility remains a limitation. ML is a tool, and as such,
it should be in the hands of those who need it; early detection of
PD in the hands of the clinician, monitoring of treatment in the
hands of the caregiver, occupancy sensing in the hands of a
family who cares about energy management in their home,
indoor tracking and localization in the hands of the police in

your town police station, kinematic analysis in the hands of a
competing athlete. For ML systems to be more accessible, the
technology will need to become easy to understand and
implement. It must become less expensive and more scalable.
XAI is a trend that will continue. The experts in related fields
and the general population will continue to become more AI
savvy. In a not-too-distant future, knowing how to use an open-
source Python library or write your line or two of code in R will
be as common a task as writing an email today. With that will
come privacy concerns, ethical concerns, and a need to adjust
our laws and regulations as a society.
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