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With the advent of visual sensor networks (VSNs), energy-aware compression algorithms have gained wide attention. That is,
new strategies and mechanisms for power-efficient image compression algorithms are developed, since the application of the
conventional methods is not always energy beneficial. In this paper, we provide a survey of image compression algorithms for
visual sensor networks, ranging from the conventional standards such as JPEG and JPEG2000 to a new compression method,
for example, compressive sensing. We provide the advantages and shortcomings of the application of these algorithms in VSN, a
literature review of their application in VSN, as well as an open research issue for each compression standard/method. Moreover,
factors influencing the design of compression algorithms in the context of VSN are presented. We conclude by some guidelines
which concern the design of a compression method for VSN.

1. Introduction

Recent advances in microelectromechanical systems, wireless
communication technology together with low-cost digital
imaging cameras, have made it conceivable to build in an
ad hoc way a wireless network of visual sensors (VSs), called
visual sensor network (VSN). Inside a VSN, each VS node has
the ability to acquire, compress, and transmit relevant frames
to the base station, also called sink, through the path between
the source and the sink; see Figure 1. Generally, the base
station is defined as a powerful collecting information node
located far away from the other (nonpowerful) nodes. Such
networks have a myriad of potential applications, ranging
from gathering visual information from harsh environment
to monitoring and assisting elderly peoples [1].

Unlike classical wired networks and scalar data wireless
sensor networks (WSNs), VSN faces new additional chal-
lenges. Compared to conventional wired networks, VSNs
encounter more problems due to their inherent wireless
nature and the resource constrained of VS. VSNs differ from
their predecessor’s scalar WSN basically in the following
points. (1) The nature and the volume of visual flows, which
are pixel based, are quite different from simple scalar data

manipulated by WSN, such as temperature or humidity. (2)
VSN’s cameras have a restricted directional sensing field of
view, which is not the case for scalar data sensor. (3) Contrary
to WSN, important resources in memory, processing, and
communication power are required for VS nodes to manipu-
late visual flows. (4) Energy-aware compression algorithms
are mandatory to handle images, compared to data scalar
sensor where the compression is not required.

Typically, compression is performed by exploiting data
correlation and redundancy. In VSN, three scenarios of
data redundancy are observed. First, redundancy between
successive frames captured by the same sensor within an
interval of time, which is known as interimage redundancy or
temporal redundancy. Second, redundancy between neigh-
boring sensors monitoring the same scene which is also
called interimage redundancy. Finally, redundancy between
neighboring pixel values of an image, called spatial redund-
ancy. In case of color image, we note the existence of a fourth
type of redundancy, called spectral redundancy.

A few number of related review papers have been pro-
posed in the literature [1–5]. An extensive survey of wireless
multimedia sensor networks is provided in [1], where the
state of the art in algorithms and protocols at the application,
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Figure 1: Visual sensor network.

transport, network, link, and physical layers of the communi-
cation protocol stack are investigated. Open research issues
are discussed at each layer. Moreover, architecture and
hardware for wireless multimedia sensor networks are sup-
plied and classified. The authors concentrate only on recent
advances on low complexity encoders based on Wyner-Ziv
coding. In [2], the authors present a survey on multimedia
communication in WSN with a main focus on the network
layer, the application layer, and some considerations on the
transport layer. The authors in [2] do not discuss deeply the
compression algorithm, where they consider only the DSC
paradigm. The authors in [3] complement their successors in
[2] by categorizing the requirements of multimedia streams
at each layer of the communication protocol stack and survey
cross-layer mechanisms for multimedia streaming. More-
over, they outline some future research directions at each
layer of the stack as well as for a cross-layer scheme. Their
work is not compression oriented. They consider only some
compression algorithms proposed in the literature. Another
work is suggested in [5], where the authors present an
overview on several challenging issues influencing the design
of VSN, such as network architectures and energy-aware
communication and processing scheme. In the same con-
text, the authors in [4] provide an overview of the current
state of the art in VSN and explore several relevant research
directions.

While the aforementioned studies have considered some
VSN aspects including the requirements of multimedia
streams at each layer of the communication protocol stack
and cross-layer synergies and optimizations, only few of
them (e.g., [1, 3]) have considered some aspects around
image compression, and none of them have discussed the
compressive sensing-based algorithms for VSN or Fractals
imaging for VSN. In this survey paper, we focus on the state
of the art in image compression and point out different com-
pression methods, ranging from the conventional standards
(JPEG and JPEG2000), and their application in VSN, to a
new compression methods including compressive sensing.
More precisely, we focus on individual source coding (ISC)
schemes, while the distributed source coding (DSC) methods
are given little explanation (see [1, 3] for more details). Our
survey complements the aforementioned surveys as follows:

(1) we survey and classify the ISC compression methods
suggested in the literature,

(2) we introduce some notions behind the compressive
sensing, and its possible application to VSN,

(3) we provide a brief overview of each compression
method, the advantages and shortcomings of their
application in VSN, a literature review of their appli-
cation in VSN, as well as an open research issue for
each compression method,

(4) we conclude by some guidelines which concern the
design of a compression method for VSN.

This paper is structured as follows. In Section 2, we
discuss some requirements and characteristics of VSN, then
we study the relationship between compression and trans-
mission costs, and after that we suggest the classification of
the main individual compression algorithms. In Section 3,
we present the main idea behind DCT and some related com-
pression algorithms in the context of VSN. The explanations
of DWT, DWT-based schemes such as EZW, SPIHT, EBCOT,
or SPECK, and their applications in VSN are presented
in Section 4. The non-transform-based algorithms includ-
ing vector quantization, Fractal compression, and their
introduction in VSN is explained in Sections 5.1 and 5.2,
respectively. The distributed source coding paradigm as well
as some research works incorporating this paradigm in
VSN is presented in Section 7. In Section 8, another para-
digm called compressive sensing is presented, along with
some applications in VSN context. Some guidelines for
designing a compression scheme for VSN are presented in
Section 9. Finally, we conclude this paper by Section 10.

2. Overview of Image Compression for VSN

This section provides some background information to
follow this paper. Recall that VSNs are spatially distributed
networks consisting of small sensing devices equipped with
low-power CMOS imaging sensors such as Cyclops. Ideally,
VSNs are deployed in the region of interest to collect and
transmit data in multi-hop way. VSNs are involved in many
domains such as environmental monitoring, video surveil-
lance, and object detection and tracking.

VSNs differ from their predecessor’s scalar data WSN
mainly in the following.

(i) Information volume and nature of VSN, which is
in general pixel based, is quite different from simple
scalar data manipulated by WSN, such as tempera-
ture.

(ii) Lost information in VSNs is tolerated due to the
redundancy nature of visual flows. Whereas in WSN,
the loss of some packets may affect seriously the value
of collected data (e.g., temperature value).

(iii) VSN’s camera has a restricted directional sensing field
of view, which is not the case for scalar data sensors.

(iv) VS neighbors monitoring the same small local region
of interest have multiple and different views of this
scene, compared to scalar data sensor where a unique
value (e.g., temperature) is collected by neighbor’s
nodes (situated in the same region).
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Figure 2: Classification of ISC algorithms.

(v) Important resources in memory, processing, and
communication power are required for VS node to
manipulate the huge amount of visual flows.

(vi) Efficient compression algorithms, in terms of power
dissipation, are mandatory to handle information
flows, compared to scalar data sensor where the com-
pression is not very required.

Most significant studies in scalar data WSN have typically
assumed the computational costs, including acquisition and
compression, insignificant compared to the related com-
munication costs (e.g., [6]). This assumption may be suitable
for scalar data sensors, where the computation cost of data
compression, if performed, is negligible compared to the
communication cost.

In case of WSN handling images (or video), this assump-
tion may not hold, since visual flows always necessitate com-
pression. In this section, we show the relationship between
the compression cost and the transmission cost in the
context of VSN. Deciding to precede transmission by com-
pression or not depends mainly on the specific compression
algorithm, and possibly on the processor and the radio trans-
ceiver if we include the time factor.

Usually, image transmission preceded by compression
is the ideal choice to gain in time and energy. It is well
known that some compression algorithms are more time and
energy consuming than others. Those algorithms are, gen-
erally, used for storage purpose, or also used when no power
or time restrictions are required. For instance, compression
using Fractals or JPEG2000 is very time and energy consum-
ing [7], and their applications to VSN seem less efficient.
However, when applied to traditional wired networks,
JPEG2000 gives the highest compression ratio regardless
of the consumed energy. Another example is described in
[8], where the authors have shown that compressing, using
JPEG, and transmitting an image is more energy inefficient
than transmitting the uncompressed image at higher quality
level. In such a case, compression is not justified, since
the transmission of the uncompressed image consumes less
energy.

Different image compression classifications are found in
the literature. In general, they are categorized in terms of
data loss, or whether they use a transform coding or pre-
dictive coding [9]. Our goal is not to survey all of them,
but rather we review those ISC algorithms that their

applications in VSN domain seem practical. In particular,
basic algorithms for coding images are still considered. Based
on the requirements of reconstruction, image compression
schemes are commonly provided into two categories: lossless
and lossy scheme. Lossless image compression algorithms
refer to the perfect reconstruction of the original image
from the compressed one. On the other hand, with lossy
image compression scheme, merely an approximation of the
original image is achieved. The main benefit of lossy image
compression algorithm over lossless one is to gain in encod-
ing/decoding time, compression ratio [9], or also in case of
power-constrained applications, in energy. That is, we believe
that lossy schemes are highly encouraged in VSN, compared
to lossless techniques. However, if lossy and lossless com-
pression algorithms yield the same results in terms of power
dissipation, lossless algorithms are encouraged.

We regroup the ISC algorithms discussed in this paper
into two categories: transform-based algorithms, such as
discrete cosine transform- (DCT-) and discrete wavelet
transform- (DWT-) based algorithms, and non transform-
based algorithms, such as vector quantization or fractals; see
Figure 2. We note that the typical design of a transform-
based algorithm is based on three stages: spatial decorre-
lation (also called source encoder), followed by quantizer,
and entropy encoder. Other schemes (non-transform-based
algorithms) such as vector quantization or fractals do not
follow this design.

3. Transform-Based DCT Algorithms

Before reviewing the main DCT-based algorithms found in
the literature, we briefly describe the principal idea behind
DCT. The DCT is a technique for converting a signal into
elementary frequency components. The image is decom-
posed into several blocks, and for each block, DCT is math-
ematically expressed as a sum of cosine functions oscillat-
ing at different frequencies. Since we concentrate on images,
we consider only the two dimensional representation of DCT
(2D DCT), which can be obtained from the cascade of two
1D DCTs.

The well-known compression scheme based on DCT
is the standard JPEG [10]. In this survey paper, JPEG is
analyzed in the context of power-constrained application.
Other variants of the compression scheme based on DCT
are proposed in the literature to enhance JPEG features, such
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as minimizing the blocking artifacts, minimizing the com-
plexity at the encoder and/or the decoder, and increasing the
compression ratio.

Since the DCT transform consumes the most power
within a DCT-based compression scheme (more than 60%
of the computation cost of the JPEG algorithm [11]), many
attempts to decrease its computational complexity have been
suggested in the literature. Some of them, which are helpful
for VSN designers, are cited as follows.

(1) Parallel and pipelined implementation of multidi-
mensional DCT: the authors in [12] use a parallel and
pipelined row-column decomposition method based
on two 1D DCT processors and an intermediate
buffer. The proposed architecture allows the main
processing elements and arithmetic units to operate
in parallel, which reduce both the computational
complexity and the internal storage, and allows a high
throughput [12]. The same idea is explored in [13]
with the integer cosine transform (a reduced com-
putational complexity version of DCT) to further
reduce the computational complexity of the whole
system. To the best of our knowledge, the exploration
of parallel and pipelined implementation of 2D DCT
has not yet been investigated in VSN.

(2) Working with fixed-point instead of the more com-
plicated floating-point DCT: compared to fixed-
point DCT, working with the floating-point DCT
exhibits high energy consumption. For illustration
purpose, let us consider the following example from
[14]. Encoding a grayscale QCIF image at 1 bit-
per-pixel using the processor StrongARM SA1110
with JPEG-integer-point DCT requires 2.87 mJ. The
same operation using floating-point DCT necessi-
tates more than 22 mJ. This justifies the possible
choice of fixed-point DCT over floating-point DCT
in case of VSN.

(3) Converting the greedy operations such as multipli-
cations into light operations: indeed, DCT can be
implemented using light operations such as shifts and
additions only. For instance in [15], a multiplierless
version of DCT based only on shift and addition
operations is suggested. This scheme enables low-cost
and fast implementation compared to the original
DCT, due to the elimination of the multiplication
operations [15].

In the following section, we introduce JPEG, the well-
known DCT-based scheme, its advantages and shortcoming,
as well as a discussion about its possible application in VSN.

3.1. JPEG Background. The process of baseline JPEG com-
pression consists of the following stages. First, the input
image is divided into several blocks of fixed size 8 × 8 pixels,
and, then, the DCT is applied to each block to separate
the high and low frequency information. In order to com-
press an image, the DCT blocks are quantized uniformly.
The quantization result is then reordered in zigzag way
from lower to higher frequencies. After that, the run-length
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Figure 3: Lossy JPEG compression scheme.

encoding (RLE) is applied to reduce the length of the gen-
erated sequences. Finally, the reversible entropy-coding pro-
cess (such as Huffman or arithmetic coding) is performed on
the quantized data to generate fixed or variable length code-
words [10] (Figure 3).

DCT-based image compression provides acceptable com-
pression results, and it gives a low memory implementation,
since the encoding is done on small individual blocks of
size 8 × 8 pixels. However, blocks tiling (which is the pro-
cess of splitting the original image into several blocks) causes
blocking artifacts which lead to a degradation in perform-
ance especially at very low bit rates.

3.2. DCT-Based Methods for VSN. The adoption of JPEG
as a compression tool in VSN is not very beneficial in
terms of power consumption [16]. This is due to the relat-
ively complex coder, and precisely to the DCT stage which
consumes at least 60% of the whole power encoder. Our
preliminary studies on JPEG show the possibility of its
application as a compression tool for VSN images at the cost
of decreasing the network lifetime [16]. Another confirma-
tion comes from [17], where the authors show the possibility
to integrate successfully JPEG as a compression scheme for
VSN.

In what follows, we briefly present the main DCT-based
schemes for VSN. We begin this section by the work pre-
sented in [18], where the authors study the problem of com-
pression of video-surveillance frames collected by WSN.
They use an algorithm to build a map of active regions
within one frame, and, then, they encode these regions. In
particular, each input frame is divided into blocks of 8 ×
8 pixels. In order to decrease the complexity, only a subset
of blocks in the frame are considered, and only a subset
of the pixels in each block are classified in the order of
their importance. These pixels are then examined for changes
in comparison to the corresponding pixels in the refer-
ence frame. Only the difference is encoded using JPEG-like
scheme. In particular, a fast integer DCT and Golomb-Rice
codes are used, since they exhibit low complexity and less
power dissipation.

The authors in [8] suggest an energy-optimized approach
ensuring that the JPEG computations utilize the minimum
precision needed to obtain optimized DCT and quantization.
To accomplish this, they develop a method that determines
the optimum integer and fractional bit widths in the com-
pression process which guarantees the required precision.
Moreover, to be fast in computations, the authors use the
LLM algorithm developed in [19]. We mention that the
authors in [8] implement the JPEG computations in fixed-
point arithmetic instead of floating-point representation
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for energy considerations. Several experimentations are
performed using various processors to measure the energy
savings resulting from the precision optimization process.
These processors are Atmel ATmega128, TI MSP430, TI
TMS320C64x, and Analog Devices Blackfin ADSPBF533.
The suggested method outperforms JPEG in terms of speed
and energy. The authors observe that the Atmel ATmega128
consumes the highest energy compared to the processors
under evaluation.

The work in [14] investigates the trade-off between image
quality and power consumption in wireless video-surveil-
lance networks. To reduce computation energy dissipation,
they use JPEG with integer DCT kernel instead of the com-
monly used floating-point DCT. Moreover, they discuss
lightly the impact of compression on image delay using ARQ
scheme implemented at the link layer [14]. In [20], the
same authors in [14] investigate the interactions between
energy consumption, quality, and delay and analyze the sys-
tem performance when ARQ and FEC-based error-control
techniques are applied. As in [14], they use JPEG with inte-
ger DCT to reduce computation energy dissipation. Precisely,
they investigate ARQ and FEC as error-recovery techniques
and propose an adaptive scheme, which selects the most
appropriate error-control technique depending on the chan-
nel propagation conditions.

An image sensor network platform was developed in [17]
to show the feasibility of transmitting the compressed images
over multi-hop sensor networks supporting ZigBee technol-
ogy. The compression was performed using the standards
JPEG and JPEG2000. The comparison between the two stan-
dards was performed only in terms of tolerance to bit errors
and packet losses. The authors observed that JPEG2000 is
more error-resilient than JPEG, while having the highest
PSNR for the same compression ratio. Hence, they conclude
that JPEG2000 is a more suitable standard for image com-
pression in VSN in terms of packet losses. We highlight that
the predominant design factor in VSN, that is, energy, was
not considered, and their evaluation seems to be not practical
for all VSN applications, especially outdoor applications.

The authors in [21] study the trade-off between energy
consumption and image quality when different routing paths
are used. Particularly, they study the effect of the proximity
of the sink on the energy overhead. For compression pur-
pose, the authors use the standard JPEG. To control the
compression rate, the quality level parameter is used. The
higher the quality level, the better the image quality, but with
a larger file size. To reduce the image quality the number of
quantization levels is reduced.

Contrary to [21], where the authors study the trade-off

between energy consumption and image quality, in [22] they
deal with the trade-off between energy consumption and
the covered viewing directions in VSN. A selective transmis-
sion protocol is developed to select and transmit images to
the mobile sink in an energy efficient way. To do that, simi-
larity score between images is computed and compared. To
perform similarity between images, nodes perform feature
extraction procedure on the captured images. To save trans-
mission energy, only the image having the most number of
feature points among the similar images will be transmitted.

For compression purpose, the authors in [22] use the stand-
ard JPEG. As in [21], the authors study the effect of the pro-
ximity of the sink on the energy overhead. The simulation
results show that the protocol can achieve a significant reduc-
tion in energy consumption while preserving most of the
views. Despite the saving in energy transmission, feature
extraction and comparison seems to be energy consuming.
Moreover, the authors do not compare the transmission with
and without feature extraction.

The aim of [23] is the reduction of the transmission
energy through the selection of appropriate paths and appro-
priate compression of images. They use the standard JPEG
in the compression stage. First, they demonstrate that the
amounts of energy required in different forwarding paths are
different. Then, they develop an algorithm to select a path
that requires the least energy.

The authors in [24] present an analysis of both power
requirement and execution time of the basic tasks that com-
pose a typical duty cycle of a camera node within a real VSN.
For that reason, a Crossbow Stargate platform is used along
with Logitech QuickCam Pro 4000 webcam. Among tasks
considered in [24], we cite acquisition and compression. The
authors use JPEG as a compression standard to compress
images or subimages. Each considered task has an associated
power dissipation cost and execution time. Numerous inter-
esting results are observed. For instance, the time needed to
acquire and compress an image is 2.5 times larger than that of
the transmission of the compressed image. The authors also
show that the transmission and reception consume about the
same amount of energy. Moreover, the power cost of ana-
lyzing an image, and compressing a subimage, is about the
same as compressing the whole image.

Another interesting work is presented in [25], where the
authors address the problem of reducing energy consump-
tion. The authors’ aim is to find the most efficient compres-
sion algorithm achieving the best compromise between the
quality of the reconstructed image and the energy consump-
tion. Their analysis is conducted from the measurements
results of the current consumption for each state: standby,
sensing, processing, connection, and communication. For
that reason, several compression methods are considered,
namely, JPEG, JPEG2000, SPIHT, and subsampling. They
realize that the most appropriate compression methods are
SPIHT, which gives the highest compression rate, and sub-
sampling, which requires the smallest execution time.

In the following section, we present the alternative solu-
tion to DCT, that is, DWT, which represents a promising
technique for image compression.

4. Transform-Based DWT Methods

We start this section by a short introduction on wavelets.
Basically, the wavelet was developed to overcome the weak-
ness of the short time Fourier transform and to enhance DCT
features, such as localization in time and frequency. We con-
sider in this paper the 2D DWT representation, as we work
with images. Since, in general, the 2D wavelets used in image
compression are separable functions, their implementation
can be obtained by first applying the 1D-DWT row wise to



6 ISRN Sensor Networks

L H

Row-wise
DWT

Column

DWT

LL1

LH1

HL1

HH1

-wise

(a) First level of decomposition

LL2

LH1

HL1

HL2

HL2

HH1

HH2

(b) Second level of decomposition

LH1

HL1

HH1

HL2

HL2

HH2

(c) Third level of decomposition

Figure 4: Three levels of decomposition of 2D-DWT.

produce L and H subbands, and then column wise to produce
four subbands LL, LH, HL, and HH. Then, in a second level,
each of these four subbands is itself decomposed into four
subbands, and so on we can decompose into 3, 4,. . . levels.
Figure 4 illustrates the decomposition of the LL subband.

The DWT is widely considered to yield the best perfor-
mance for image compression for the following reasons. It is
a non-block-based transform, and, thus, it allows avoiding
the annoying blocking artifacts introduced by the DCT
transform within the reconstructed image. Moreover, it has
a good localization in both time (space) and frequency
domains [26].

A variety of wavelet-based image compression schemes
have been developed due to their usefulness for signal energy
compaction. In this paper, we discuss some well-known
algorithms such as EZW, SPIHT, EBCOT, and SPECK and
their advantages and shortcomings, as well as their applica-
tions in VSN.

4.1. EZW-Based Image Compression

4.1.1. EZW Background. In this section, we roughly present
the main idea of EZW, more details can be found in [27].
EZW algorithm starts by performing the wavelet decompo-
sition on the input image, which allows its decomposition
into a series of wavelets coefficients. The EZW algorithm
assumes that if a coefficient magnitude at a certain level
of decomposition is less than a threshold T , then all the
coefficients of the same orientation in the same spatial
location at lower scales of decomposition are not significant
compared to T . A wavelet coefficient is said to be significant
with respect to T if its absolute value is higher than or equal
to T .

The EZW algorithm is a multiple-pass procedure, where
each pass involves two steps: the dominant pass (or sig-
nificance map encoding) and the subordinate pass (or
refinement pass). In the dominant pass, the initial value
of the threshold is chosen, against which all the wavelet
magnitudes are compared. The coefficients are then encoded
according to their values with respect to the fixed threshold.
A wavelet coefficient (or its descendant) is encoded if its
magnitude is greater than or equal to the threshold T ,
otherwise, it is processed as in [27]. Once a determination
of significance is achieved, the subordinate pass is started. In
this pass, the significant coefficients found in the dominant
pass are quantized using successive approximation quantiza-
tion approach. When all the wavelet coefficients have been
scanned, the threshold is halved and the scanning process
is repeated again, to add more detail to the already encoded
image, until some rate is met.

The EZW method is a simple efficient compression
algorithm. This is achieved through a combination of a
hierarchical multiresolution wavelet transform and pro-
gressive zerotree encoding of wavelet coefficients, along
with successive approximation quantization. The intrinsic
progressive processing behavior lets the encoding process end
at any point in time, which may help, in case of VSN, savings
in power processing and communication. However, EZW
presents some disadvantages. In fact, the number of passes
required to compress an input image affects considerably the
image quality and the VS power supporting EZW. That is,
if the number of passes increases, the precision of the coef-
ficients increases the full reconstructed image quality at the
base station. Another shortcoming of EZW is related to the
memory required to store the significant wavelet coefficients
found at each pass. One solution to remove the need for this
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memory is to decrease the number of passes. Moreover, EZW
is susceptible to transmission errors and packet losses, which
require the introduction of an error correction models [28].
Another major drawback of EZW is that it does not present
multiresolution scalability. It is well known that, in subband
coders, the coefficients are transmitted progressively from
low to high frequency, while with EZW, wavelet coefficients
prioritization is performed according to their magnitudes
[27].

4.1.2. EZW-Based Scheme for VSN. The unique research
work adopting EZW as a compression tool for VSN is that
one suggested in [29]. The authors in [29] suggest a multi-
modal sensor network architecture using acoustic, electro-
magnetic, and visual sensors, along with a satellite commu-
nication backbone. Based on the collaborative effort of this
architecture, the target position is recognized, and its fine
details are acquired using visual sensors. For this purpose,
EZW coding algorithm is adapted to VSN requirements.
This is performed by introducing spatial information about
target activity. The adapted EZW provides high-resolution
data for the regions where one or more intrusions have been
detected and low-resolution data for the remaining regions.
This scheme allows saving in bandwidth, power, and storage
resources.

The adoption of the EZW as a compression tool in VSN
can be beneficial in terms of power consumption. This is
due to the relatively simple complexity of its encoder and its
progressive paradigm. An open research work should be the
adaptation of the EZW algorithm to the power-constrained
VSN. This is can be performed by minimizing the number
of passes to minimize the memory required to store the
significant wavelet coefficients found at each pass.

4.2. SPIHT-Based Image Compression

4.2.1. SPIHT Background. SPIHT introduced in [30] is an
improvement of EZW algorithm. By adopting set partition-
ing algorithm and exploring self-similarity across different
scales in an image wavelet transform, SPIHT algorithm
reaches high compression performance. Unlike EZW, SPIHT
maintains three linked lists and four sets of wavelet coordi-
nates, which are deeply explained in [30]. With SPIHT, the
image is first wavelet decomposed into a series of wavelet
coefficients. Those coefficients are then grouped into sets
known as spatial orientation trees. After that, the coefficients
in each spatial orientation tree are encoded progressively
from the most significant bit planes to the least significant
bit planes, starting with the coefficients with the highest mag-
nitude. As with EZW, the SPIHT algorithm involves two cod-
ing passes: the sorting pass and the refinement pass. The
sorting pass looks for zerotrees and sorts significant and
insignificant coefficients with respect to a given threshold.
And the refinement pass sends the precision bits of the signi-
ficant coefficients. After one sorting pass and one refinement
pass, which can be considered as one scan pass, the threshold
T is halved, and the coding process is repeated until the
expected bit rate is achieved.

SPIHT achieves very compact output bitstream and low
bit rate than that of its predecessor’s EZW without adding
an entropy encoder, which allows its efficiency in terms of
computational complexity [30]. Moreover, it uses a subset
partitioning scheme in the sorting pass to reduce the num-
ber of magnitude comparisons, which also decrease the com-
putational complexity of the algorithm. Finally, the pro-
gressive mode of SPIHT allows the interruption of cod-
ing/decoding process at any stage of the compression [30].
Despite these advantages, SPIHT presents the following
shortcomings, particularly in power-constrained applica-
tions. It requires important memory storage and sorting/list
procedures, which increases the complexity and the com-
putational complexity. Precisely, SPIHT uses three lists to
store coding information which needs large memory storage.
In general, those lists grow up with the encoding process,
which requires additional memory. Furthermore, the wavelet
filter used in SPIHT is Mallat algorithm based, which incurs
large convolution computations compared to lifting scheme
version of wavelet transforms. As with EZW, over unreliable
networks, SPIHT suffers from the network state and, thus, is
vulnerable against packets loss, which requires the use of an
appropriate error correction scheme.

Many attempts to enhance SPIHT features and reduce its
limitations have been suggested in the literature, for instance
[31–33]. In [31], the authors apply the concept of network-
conscious image compression to the SPIHT algorithm to
improve its performance under lossy conditions. Hence,
SPIHT-NC (a network-conscious version of SPIHT) is sug-
gested to enhance its performance over unreliable networks.
A real-time implementation of SPIHT is presented in [32].
The authors try to speed up the SPIHT process and reduce
the internal memory usage by optimizing the program struc-
ture and presenting two concept numbers of error bits and
absolute zerotree. An improved zerotree structure and a new
coding procedure are adopted in [32] to improve the quality
of the reconstructed image by SPIHT. To further reduce the
internal memory usage, the authors suggest a listless version
of SPIHT, where lists are replaced successfully by flag maps.
Moreover, a wavelet lifting scheme is adopted to speed up
the coding process. A modified SPIHT algorithm for real-
time image compression, which requires less execution time
and less memory usage than SPIHT, is presented in [33].
Instead of three lists, the authors use merely one list to store
the coordinates of wavelet coefficients, and they merge the
sorting pass and the refinement pass together as one scan
pass.

4.2.2. SPIHT-Based Schemes for VSN. We start by the com-
pression method proposed in [34], where the basic design
idea is drawn from the following observation. It is more
efficient to send a very long bitstream in small decomposed
fragments or bursts than their transmission as one entire
block. That is, the suggested scheme in [34] uses wavelet-
based decomposition strategy to create multiple bitstream
image encodings which are sent in small bursts. The wavelet
coefficients are grouped into multiple trees and encoded sep-
arately using SPIHT algorithm. The unequal error protection
method is also adopted in order to combat time-varying
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Figure 5: Block diagram of proposed strip-based image compres-
sion [35].

channel errors. Experimental results show that the proposed
scheme has a good energy efficiency in transmission.

Another work incorporating SPIHT as a compression
tool is presented in [35]. The authors use a strip-based pro-
cessing technique where an image is divided into strips which
are encoded separately. Figure 5 shows the block diagram
of this suggested method. First, a few lines of image data
are wavelet decomposed by DWT module. The lifting-based
5/3 DWT is used for this purpose. After that, the wavelet
coefficients are computed and then buffered in a strip buffer.
Finally, the bitstream generated is transmitted. The proposed
SPIHT coding eliminates the use of lists in its set-partitioning
approach.

The idea behind the framework developed in [36] is the
use of image stitching in conjunction with SPIHT coding
to remove the overlap and spatial redundancy. Image stitch-
ing can be defined as the process of combining multiple
images with overlapping fields of view to create a segmented
panorama or high-resolution image. Thus, the images taken
by neighboring sensors are stitched together by certain inter-
mediate nodes with an image stitching technique to remove
the overlap redundancy. For compression purpose, a mod-
ified version of the SPIHT compression tool is used, which
leads to the reduction in the amount of the transmitted data
[36].

Implementing SPHIT on power-constrained devices,
such as visual sensors, is an excellent idea. Its advantages
over JPEG and EZW in terms of high compression ratio, less
computational complexity, and low powerconsumption, as
well as less complex implementation make it possible to play
an interesting role in image compression for power-limited
applications. An open research work should be the adapta-
tion of the SPIHT algorithm to the power-constrained VSN.
This can be performed by exploiting some ideas, like the
substitution of lists by flags [32] to reduce the memory usage.
An alternative idea is the use of wavelet lifting scheme instead
of the convolutional based wavelet used by the original
SPIHT [35].

4.3. EBCOT-Based Image Compression

4.3.1. EBCOT Background. EBCOT is a block-based encod-
ing algorithm, where each subband (or block) is divided
into nonoverlapping blocks of DWT coefficients called code
blocks. Every code block is coded independently, which
allows to generate a separate highly scalable embedded bit-
stream, rather than producing a single bitstream representing
the whole image. As reported in [37], EBCOT, which

Tier-1 Tier-2

EBCOT

Figure 6: Illustration of EBCOT.

Table 1: Run time (%) profile for JPEG-2000 (gray scale image
1792× 1200), 5 level wavelet decomposition, 1 layer, profile at PIII-
7333 128 M RAM. (N.A.: not attributed.)

Operation Lossless compression Lossy compression

DWT 10.81 26.38

Quantization N.A 6.42

EBCOT Tier-1 71.63 52.26

EBCOT Tier-2 17.56 14.95

represents the core functioning of the standard JPEG2000, is
divided into two processes called Tier-1 and Tier-2, as shown
in Figure 6. The data inputs of the Tier-1 process are code
blocks while the outputs are bitstreams. Tier-1 is responsible
for context formation and arithmetic encoding of the bit-
plane data and generates embedded block bitstreams. Con-
text formation scans all code block pixels in a specific way
as explained in [37]. The context formation requires three
passes: significance propagation pass, magnitude refine-
ment pass, and clean-up pass. Arithmetic encoding module
encodes the code block data according to their contexts gen-
erated during context formation. Tier-2 operates on the bit-
streams generated from Tier-1 to arrange their contributions
in different quality layers. This is performed according to
rate-distortion optimized property and features specified by
the user. At the end of the second tier, a compressed bitstream
is generated for transmission purpose.

EBCOT is a scalable and efficient compression algorithm,
robust against error transmission, and has a flexible organi-
zation and arrangement of bitstreams [37]. Nevertheless, the
EBCOT algorithm requires additional memory requirement,
which increases the power dissipation and the computational
complexity. Precisely, EBCOT uses two tiers (Tier-1 and Tier-
2) to code information, which needs long time processing
and high power consumption. In particular, context forma-
tion phase which includes three passes takes a long time to
encode samples for a code block [38]. It is observed in [39]
that Tier-1 is the most computational intensive part, due to
the fact that it requires significant bit-level processing and
three separate passes through the code blocks. It is reported
in [40] that Tier-1 accounts for more than 70% of encoding
time, due to the extensive bit-level processing, followed by
the DWT transformation stage (see Table 1 for an example of
both lossless and lossy compressions).

Recently, efficient techniques have been suggested to
improve the coding speed and to minimize the memory
usage of EBCOT, for example, [38, 41, 42]. Almost all of
them focus on the enhancement of the context formation
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phase by different ways. As our goal is not to survey all the
techniques suggested in the general domain of digital imag-
ing, we provide some research works that can be used to
minimize the EBCOT power consumption in VSN. For
instance, two speed-up methods called sample skipping and
group-of-column skipping were proposed to accelerate the
encoding process of EBCOT [41]. Another interesting archi-
tecture is proposed in [42], where the authors merge the
three coding passes into a single pass in order to improve
the overall system performance as well as to reduce memory
requirement. Further details on this subject can be found in
[38, 41, 42].

4.3.2. EBCOT-Based Schemes for VSN. In this section, we
review the main schemes adopting EBCOT (or JPEG2000)
for compression purpose in VSN. We start by the architecture
suggested in [43] which releases the visual sensors from
the burden compression process, to prolong the network
lifetime. Except the camera sensor, all data sensors are
organized into clusters. The visual sensor does not join the
cluster directly. Rather, it forms its own cluster and sends the
target image to the cluster members. These members in the
VS cluster, which belong to the data sensor clusters, share the
task of image compression and transmission to the cluster
head. Both computational and communication energy con-
sumptions are considered in this architecture. For compres-
sion purposes, the authors in [43] use the standard
JPEG2000, which increases rapidly the energy dissipation. By
simulation, the authors show that this architecture can pro-
long the lifetime of the network.

The authors in [44] propose an energy efficient
JPEG2000 scheme for image processing and transmission,
given the expected end-to-end distortion constraint. In the
suggested scheme, called joint source channel coding and
power control (JSCCPC), the input image is firstly encoded
as a scalable bitstream in an optimal number of layers. Based
on the three following factors: the estimated channel con-
dition, the characteristics of the image content, and the end-
to-end distortion constraint, the suggested scheme deter-
mines adaptively the number of transmitted layers. More-
over, the JSCCPC unit adjusts the source coding rate, the
source level error resilience scheme, the channel coding
rate, and the transmitter power level for each layer. This
approach extensively explores the multiresolution nature of
bitstreams; however, the unequal importance between struc-
ture information and magnitude information is not fully
identified. The authors show by simulations that up to 45%
less energy consumption could be achieved under relatively
severe channel conditions.

Another energy-aware scheme for efficient image com-
pression for VSN is that one suggested in [45], where the
authors formulate this challenging task as an optimization
problem. They use JPEG2000 standard on a StrongArm
SA-1000 processor. For a given image quality requirement
and network conditions, the authors investigate a heuristic
algorithm to select the optimal parameters of a wavelet-based
coder, while minimizing the total energy dissipation. Results
indicate that large fractions of the total energy are spent on
computation due to the high complexity of JPEG2000. From

X I

S

Figure 7: Partitioning of the image X into sets S and I .

[45], we can conclude that maximal compression before
transmission may not always entail minimal energy con-
sumption. However, their approaches mainly focus on power
efficient techniques for individual components and cannot
provide a favorable energy performance trade-off in the case
of WSN.

Carrying out EBCOT or JPEG2000 in camera sensors
may not always be the smart choice, since its implementation
complexity induces high power consumption, where it is
implemented (e.g., in VS), and possibly shrinks the network
connectivity. Moreover, when combined with DWT stage (as
with JPEG2000), more power will be dissipated due to the
fact that DWT phase power consumption is significant and
represents the second source consumption of an EBCOT-
DWT compression scheme after Tier-1’s EBCOT. An even-
tual open research work should be the adaptation of EBCOT
to VSN constraints, taking advantage of some potential solu-
tions to alleviate the workload and the complexity of the
EBCOT algorithm.

4.4. SPECK-Based Image Compression

4.4.1. SPECK Background. SPECK is introduced in [46],
where the authors suggest a compression algorithm that
makes use of sets of pixels in the form of block when span-
ning wavelet subbands, instead of using trees as with EZW
or SPIHT. SPECK algorithm starts by performing an appro-
priate subband transformation (usually, the DWT) on the
input image, which allows its decomposition into a series of
coefficients. After that, two phases are repeated recursively
until the expected bit rate is achieved: sorting pass and refine-
ment pass phase. Recall that SPECK necessitates three phases:
initialization, sorting pass, and refinement pass phase. Unlike
EZW, SPECK maintains two linked lists: list of insignificant
sets (LISs) and list of significant pixels (LSPs).

During the initialization phase, a starting threshold T is
chosen and the input image X is partitioned into two types
of sets: S and I ; see Figure 7. The set S, which represents the
root of the pyramid, is added to LIS. The set I represents the
rest of the image, that is, I = X−S. In the second phase called
sorting pass, a significance test against the current threshold
is performed to sort each block of type S in LIS. If an S block
is significant, it is divided by a quadtree partitioning process
into four subsets as shown in Figure 8. In turn, each of these
four subsets is treated in the same way as a set of type S

and processed recursively until the pixel level is reached. The
insignificant sets are moved to LIS for further processing.
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Figure 8: Partitioning scheme of set S.
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Figure 9: Partitioning scheme of set I .

Once the processing of sets S is achieved, a significance
test against the same threshold is performed for I blocks.
Thus, if an I block is significant, it is divided by the octave
band partitioning scheme into four sets, one set having the
same type I and three sets of type S; see Figure 9. This new
set I formed by this partitioning process is reduced in size.

At the last phase, the refinement pass is started for LSP
pixels, where the nth most significant bit (MSB) of pixels
is output, at the exception of pixels which have been added
during the last sorting pass. Finally, the threshold is halved,
and the coding process (sorting and refinement passes) is
repeated until the expected bit rate is achieved, or the set I
will be empty.

Many advantages of SPECK are observed. It has efficient
performance compared to the other low complexity algo-
rithms available today. In fact, it gives higher compression
ratio, has relatively low dynamic memory requirements;
employs progressive transmission, and has low computa-
tional complexity and fast encoding/decoding process, due
to the inherent characteristics of the quadtree partitioning
scheme.

However, SPECK presents some minor disadvantages
related mainly to the use of lists LIS and LSP, which require
efficient memory management plan. In general, those lists
grow up with the encoding process, which requires addi-
tional memory. This may be unattractive in hardware imple-
mentations. As with EZW and SPIHT, SPECK suffers from
the unreliable network state and, thus, is vulnerable against
packets loss which requires the use of an appropriate error
correction scheme. Another shortcoming of SPECK is that it
does not support resolution scalability [47].

In the last few years, some attempts to overcome SPECK
shortcomings have been suggested in the literature, for
instance [47–49]. In what follows, we list only some works
whose applications seem useful in case of VSN. More com-
plex SPECK-based algorithms such as Vector SPECK [49] are
not reported. A listless variant of SPECK image compression

called LSK is suggested in [48]. LSK uses the block-partition-
ing policies of SPECK and does an explicit breadth first
search, without the need for lists as in [46] or [50]. State
information is kept in an array of fixed size that corresponds
to the array of coefficient values, with two bits per coefficient
to enable fast scanning of the bit planes. The authors in [47]
suggest another variant of SPECK called Scalable SPECK (S-
SPECK), which extends the original SPECK to a highly scal-
able low complexity scheme.

Adopting SPECK as a compression tool in power-con-
strained devices, such as visual sensors, might be a promising
technique, due to its high compression ratio and low com-
putational complexity. Its advantages over JPEG and EZW
in terms of high compression ratio are less computational
complexity and low power consumption, as well as less com-
plex implementation which make it possible to play an inter-
esting task in image compression for power-limited applica-
tions. Low-power image compression SPECK encoders are
highly encouraged in VSN application. To the best of our
knowledge, the integration of SPECK within a compres-
sion chain of a VSN has not yet been investigated. An open
research work may be the implementation of SPECK-based
coders dedicated to the power-constrained VSN. A listless
version of SPECK, as in [48], could be an efficient scheme
to be implemented in visual sensors.

4.5. Other Wavelet-Based Compression Schemes for VSN.
Herein, we consider another category of compression
schemes, where authors do not use or modify an existing
scheme, but rather they develop their own DWT-based
method which fits their circumstances. Several research
works have dealt with low-memory DWT schemes. Our goal
is not to survey all DWT implementations suggested in the
literature, but rather we review algorithms applicable to VSN.
The line-based version of the image wavelet transform pro-
posed in [51, 52] employs a buffer system where we store
only a subset of the wavelets coefficients. That is, a consider-
able reduction in memory is observed, compared to the tra-
ditional transform approach.

The authors in [53] introduce the fractional wavelet filter
as a computation scheme to calculate fractional values of
each wavelet subband. This allows the image wavelet trans-
form to be implemented with very low RAM requirements.
More precisely, the authors show that their schemes permit
to a camera sensor having less than 2 kByte RAM to perform
a multilevel 9/7 image wavelet transform. The picture dimen-
sion can be 256 × 256 using fixed-point arithmetic and
128 × 128 using floating-point arithmetic. Compared to
[51, 52], the line-based method cannot run on a sensor
with very small memory. The fractional wavelet filter method
reduces the memory requirements compared to the line-
based approach. The authors do not show the impact of their
scheme on energy consumption.

Based on the fact that an image is generally constituted by
a set of components (or regions) with unequal importance,
the authors in [54] explore this idea to build a semireliable
scheme for VSN called image component transmission
(ICT). ICT scheme can be performed in two phases. In the
first phase, the identification of the important components
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within the target image is performed after DWT process.
After that, in the second phase, unequally important levels
of transmissions are applied to different components in the
compressed image. Important parts within an image, such as
the information for the positions of significant wavelet coef-
ficients, are transmitted reliably. While relatively less impor-
tant components (such as the information for the values of
pixels) are transmitted with lower importance, leading to
energy efficiency. In fact, the suggested methodology trans-
mission is generic and independent of specific wavelet image
compression algorithms.

In [55], the authors propose an adaptive energy-aware
protocol for image transmission over VSN. It is based on
wavelet image decomposition using the Le Gall 5-tap/3-tap
wavelet filter and semireliable transmission using priority-
based mechanism. The compression is achieved through the
combination of the Le Gall 5-tap/3-tap wavelet filter with
Lempel-Ziv-Welch (LZW) technique [9]. The target image is
firstly decomposed using wavelet filter, which provides mul-
tiple levels of resolution of the input image having different
priorities. After that, the semireliable policies are applied to
the wavelet coefficients by intermediate nodes. Based on their
remaining energies, intermediate nodes decide whether they
drop or forward packets. As explained in [55], packet priority
is defined either based on the wavelet resolution level of the
image or based on the wavelet coefficients magnitude. This
transmission scheme offers a trade-off in consumed energy
versus reconstructed image quality, and it shows the advan-
tage of the magnitude-based prioritization method over the
resolution level method. However, this mechanism sacri-
fices a certain amount of image quality to prolong the VSN’s
lifetime.

The authors in [56] consider the slow activity scenario in
clustered VSN. For that reason they suggest an adaptive and
distributed wavelet compression algorithm. The key features
of the proposed scheme are described as follows. This algo-
rithm exploits the spatial inherent correlations between sen-
sor readings using a position estimation and compensation
method. For that purpose, a compression method based on
5/3 wavelet filter is used (the authors also mention the possi-
bility to use EZW or SPIHT as a compression tool). They also
propose a change detection algorithm to mark active blocks
within a target image, and they only encode these blocks,
which permits to reduce computation complexity without
sacrificing the quality of the image reconstruction.

After the survey of the main transform-based schemes,
we review in Section 5 another category of compression
schemes, which is non-transform-based such as vector quan-
tization and fractals.

5. Non-Transform-Based Algorithms

5.1. Vector Quantization Compression. Vector quantization
(VQ) is a conventional method for performing data com-
pression [57, 58]. VQ can be viewed as a mapping of a large
set of vectors into a small subset of code vectors called the
codebook. Formally, a vector quantizer Q is a mapping from
a k-dimensional Euclidean space Rk into a finite subset C of
Rk, called codebook. Thus, Q : Rk → C. We highlight that
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Figure 10: Vector quantization: Encoder and Decoder.

the most important step is the codebook construction. The
well-known algorithm used to design the codebook is LBG
[59].

The encoder assigns to each input vector x from Rk an
index which corresponds to a vector in C, that in turn is
mapped to a codeword c in the set C by a decoder. If a dis-
tortion measure d(x, c) which represents the cost associated
with reproducing vectors x by c is defined, then the best
mapping Q is the one which minimizes d(x, c).

In image compression, basic vector quantization consists
in dividing the input image into blocks of size l × m pixels,
where each block is considered as a k-dimensional vector
represented by a data vector x in the set Rk. Each vector is,
then, compared with the entries of an appropriate codebook
C, and the index i of the codebook entry ci (most similar to
the source data vector) is sent to a destination. At the desti-
nation, the index accesses to the corresponding entry from
an identical codebook and permits to reconstruct appro-
ximately the original image (Figure 10). For more detail, the
reader is referred to [9, 57, 60].

In this kind of compression (and in fractal compression
presented in Section 5.2), one should note the absence of
transformation block, such as DCT or DWT, and entropy
encoding block, which may reduce the computation com-
plexity. The remaining task is to compare between the gain,
in terms of power dissipation, of VQ (without transfor-
mation block), and a usual framework encoding scheme
incorporating transformation block (such as DCT or DWT)
and entropy encoding block.

The advantage of image VQ over other types of quan-
tizers is the simplicity of its decoder, since it only consists
of table lookups. However, the basic disadvantage of VQ is
its complexity, which increases with the increase of vector
dimensionality. This complexity may decrease the coding
speed and increase the power dissipation of the decoder
especially in power-constrained applications such as VSN.
Another disadvantage of image VQ is related to the design
of a universal codebook for a large database of images, which
requires an important memory and huge number of memory
accesses.

Several image coding schemes with vector quantization
have been proposed in the imaging literature. However, no
VQ scheme has been proposed in VSN context. We find
appealing to supply this section by some attractive works
which may help for the conception and design of a new
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VQ-based compression method dedicated to VSN. Particu-
larly, we roughly present works which provide a VQ-based
scheme exceeding the state of the art compression standards
such as JPEG and JPEG2000 in terms of energy efficiency.
The authors in [61] have considered a method for the reduc-
tion of the power consumption of vector quantization
image processing, by truncating the least significant bits
of the image pixels and the codeword elements during the
nearest neighbor computation. In the same way, in [62],
an algorithm for low-power image coding and decoding is
presented. The suggested algorithm reduces the memory
requirements of vector quantization; that is, the size of mem-
ory required for the codebook and the number of memory
accesses by using small codebooks, which reduces the power
consumption. The authors in [63] suggest a low-power pyr-
amid vector quantization, which on average outperforms
JPEG sometimes in excess of 2 dB. Another work showing
that the possibility of designing an efficient image VQ
encoder that exceeds the performance of JPEG is that one
suggested in [64]. The authors in [64] use the pyramidal VQ,
a variant of VQ, combined with some indexing techniques
which require roughly the same encoding and decoding
hardware complexity. This scheme outperforms JPEG imple-
mentations. The paper [65] evaluates and compares
JPEG2000 with a new variant of VQ called successive appro-
ximation multistage vector quantization (SAMVQ) compres-
sion algorithms for hyperspectral imagery. It is observed in
[65] that the SAMVQ outperforms JPEG2000 by 17 dB of
PSNR at the same compression ratios. Unfortunately, since
SAMVQ was patented by CSA, its main idea and its degree
of complexity are not clearly presented. The work in [66]
combines two kinds of VQ, predictive VQ (PVQ) and dis-
crete cosine transform domain VQ (DCTVQ), to yield an
efficient hybrid image compression scheme. Moreover, this
scheme uses a simple classifier which employs only three
DCT coefficients within each block of 8 × 8 pixels. For each
image block, the classifier switches to the DCTVQ coder if
the block is not complex, and to the PVQ coder if the block
is relatively complex. The suggested algorithm can achieve
higher PSNR values than VQ, PVQ, JPEG, and JPEG2000 at
the same bit rate. This scheme may be a good candidate for
power-aware applications such as VSN.

Data compression using VQ could be an acceptable com-
pression technique for VSN, due to their reasonably com-
pression ratio and relatively simple structure. Since VQ-
based compression scheme could be implemented without
any transformation (i.e., DCT or DWT), which dissipates the
highest percentage of energy within a compression scheme,
it is interesting to think about the design of VQ schemes
dedicated to VSN. The encoder within such scheme has to
be light compared to DCT-based encoder or DWT-based
encoder. Low-power image VQ encoders are encouraged in
VSN application. To the best of our knowledge, the appli-
cation of VQ compression method in VSN has not yet been
investigated.

5.2. Fractal Compression. Fractal image compression is a
lossy compression technique based on fractal theory, which
basically states that an image can be described by a set of
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Figure 11: A photocopying machine which makes three reduced
copies of the input image [67].

fractals. Therefore, a compressed image using fractals con-
tains a set of parameters allowing the decoder side to yield
approximately a mathematical representation of the input
image. Like VQ, fractal image compression is significantly
different from conventional compression techniques such as
JPEG, as it is not based on frequency transformations such as
DCT or DWT.

To the best understanding of the reader, let us introduce
quickly fractal concept. Fractals are an iterative reproduction
of a basic pattern, or geometric form, according to some
mathematical transformations, including rotation, scaling,
and translation. As explained in [67], let us imagine a copy-
ing machine which makes three reduced copies of the input
image; see Figure 11. Imagine now that we fed the output
of this machine back as input, the result will be an iteration
of the input image. If we repeat this process many times on
several input images, we will obtain Figure 12, where the
process converges to the same final image Figure 12(c).

With fractal image compression, we exploit the self-
similarity property between objects within natural images,
which is expressed as similar repeating patterns, to reduce the
image’s file size. The well-known image coding scheme based
on fractals is summarized in three steps as follows [68].

(1) Range block partition: partitioning the original
image into nonoverlapped blocks Ri of size s × s,
called ranges.

(2) Domain block selection: for each Ri, search in the
image to find a block Di of size 2s × 2s (double size
of range block) that is very similar to Ri.

(3) Mapping: select the mapping functions, which map
the domain to the range by an affine transformation
Fi(Di) = Ri for each i. Usually, an affine transforma-
tion is applied when a domain block is mapped to a
range block. Such affine transformation includes iso-
metries (e.g., rotation and reflection), gray level scal-
ing, and shift operation. In general, an affine trans-
formation is given by: Di → α · Di + ∆, where α is
the scale factor and ∆ is the luminance shift factor.
The best estimate can be obtained by minimizing the
distance between Ri and Di (usually the distance is
represented by the Euclidean norm). The mapping
relationships, which are called fractal codes, are
recorded as compressed data.
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Figure 12: The first three copies generated by the photocopying
machine of Figure 11 [67].

Fractal encoding is used to convert an input image to
fractal codes, while fractal decoding is just the reverse, where
a set of fractal codes are converted to reconstruct the input
image.

The main noticeable advantages of fractal image com-
pression can be summarized as follows: high achievable com-
pression ratio; good quality of the reconstructed image;
simple decoding process which is viewed as a simple interpre-
tation of the fractal codes and their translation into bitmap
image; fractal images are stored or sent as mathematical for-
mulas instead of bitmaps, which minimize the sorting/send-
ing cost; and the possibility of image scaling without distor-
tion compared to JPEG. Nevertheless, fractal image com-
pression presents a main drawback related to the encoding
process which is extremely computationally intensive and
time consuming. This is due to the hard tasks of finding all
fractals during the partition step and the search for the best
match of fractals.

After the first fractal-based image coder introduced by
Jaquin in 1990, several variations of fractal coders have been
proposed. Most of them focus on the improvement of the
encoding process, especially on two main parts, partition
[69, 70] and mapping [71]. Furthermore, some attempts to
improve fractal compression encoding have tried to join frac-
tal with some transforms, such as DCT and DWT. In [72],
there is some early works trying to combine fractal with DCT
and wavelets. In [73], the authors suggest a fast encoding
algorithm for fractal image compression using the DCT
inner product. One of the papers [74] is trying to join

wavelet transform with fractal encoding. The main goal
behind joining fractal with certain transforms is to take
advantage of identifying more self-similarities within the
frequency domain, in order to eliminate more redundant
data and speed up the encoding process, which might reduce
the computational complexity. Unfortunately, despite these
improvements, the encoding process is still yet complex, and
its application to VSN shortens the lifetime of the network.

To the best of our knowledge, no work has been sug-
gested for the use of fractals within the compression chain
of VSN. The main justification could be the high computa-
tional complexity of the encoding process. This complexity
limits the usefulness of fractally compressed data to power-
constrained applications such VSN.

An open research issue might be the adaptation and the
integration of fractal compression within VSN codecs handl-
ing only natural images. This is due to the fact that fractal
image compression has proven its efficiency especially on this
kind of images and provides very high compression ratios
[74]. Joining fractal with certain transform including DCT
or DWT is another key issue permitting the reduction of the
encoding process complexity. Another open research issue
concerns the introduction of parallelism while using frac-
tals in VSN. This technique allows circumventing the com-
putational load of the encoding fractal compression within a
VS node. Various parallel implementations of a fractal image
compression are proposed in the literature [75–77]. A reader
interested by this subject is invited to consult [78, 79].

6. ISC Summary

A brief summary is introduced in this section to show the
best compression algorithms that possibly fit VSN require-
ments. Of the aforementioned discussed standards and algo-
rithms, few of them could be a good candidate for VSN.
The selection criterion is based mainly on the low power
dissipated by a VS running one of compression algorithms
in question, while having an adequate quality of the recon-
structed image at the sink. The second criterion may be the
low memory usage. It is difficult to say that one algorithm
is less in power dissipation than another one without an
evaluation on real testbed.

Let us start this discussion by the non-transform-based
algorithms such as fractals and VQ. The main drawback of
fractal image compression is related to the encoding process
which is extremely computationally intensive and time
consuming. This is due to the hard tasks of finding all fractals
during the partition step and the search for the best match
of fractals. The authors in [7] compare fractals with other
schemes and their impact on fingerprint and face recogni-
tion. They found poorer PSNR results with fractals compared
to other methods such as JPEG, JPEG2000, SPIHT, and VQ,
specially with low bit rate. More details can be found in [7].

The basic disadvantage of VQ is its complexity, which
increases with the increasing of vector dimension. This com-
lexity may decrease the coding speed and increase the power
dissipation of the decoder especially in power-constrained
applications such as VSN. Another disadvantage of VQ is
related to the design of a universal codebook for a large
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database of images, which requires an important memory
and huge number of memory accesses.

From the pravious discussion and some experiments [7],
DCT- and DWT-based methods seem to be a relatively less
energy dissipation than VQ and fractals. Depending on the
compression ratio and the image quality, one shall select
between DCT or DWT methods. DCT exhibits an annoying
blocking artifacts in low bit rate. For DWT-based methods,
SPECK has proven its efficiency in terms of both simplicity
and image quality measure, followed by SPIHT and EZW
[30]. However, the EBCOT algorithm requires additional
memory requirement, which increases the dissipated energy
and the computational complexity. Precisely, EBCOT uses
two tiers: Tier-1 and Tier-2 to code information, which needs
long time processing and high power consumption [39].
More precisely, it is reported in [40] that Tier-1 accounts
for more than 70% of encoding time due to extensive bit-
level processing, followed by the DWT transformation stage.
From the viewpoint of hardware implementation, SPIHT is
preferred over EBCOT coding [35].

After the examination of the main ISC compression
schemes suggested in the literature, we present in the follow-
ing section a small review on the distributed source coding
(DSC) paradigm.

7. Distributed Source Coding Paradigm

To be self contained, we supply our paper by a short intro-
duction on DSC paradigm and some related works. For
more information on the subject, readers are advised to read
[80] or [3]. DSC for VSN, refers to the compression of
multiple statistically dependent sensor outputs that do not
communicate with each other. Each sensor sends, independ-
ently, its compressed output to a base station for joint decod-
ing. The well-known conventional one-to-many coding
framework used in most codec’s, such as MPEG, is reversed
under DSC paradigm. In fact, within the one-to-many
framework, the encoder usually behaves complex, compared
to the relatively simple decoder complexity. On the other
hand, the many-to-one coding paradigm, which is the intrin-
sic characteristic of DSC, moves the encoder complexity at
the decoder side. Therefore, encoders can be designed simple,
compared to the more complex decoders implemented at the
sink. Under DSC paradigm applied in VSN, the complexity
of the coder side is then shifted to the decoder at the
sink, where enough power is available. Despite the inherent
encoder simplicity characteristic of the DSC, their theoretical
restrictions have not yet been closely achieved by practical
applications. The theoretical aspects behind DSC schemes
are outside the scope of this paper. We refer our reader to
[81] for more details.

The lossless Slepian-Wolf and lossy Wyner-Ziv coding
schemes are an encouraging conceptual basis for DSC. In
practice, lossy DSC is usually implemented using a quantizer
followed by lossless DSC, while the decoder consists of the
joint entropy decoder followed by a joint dequantizer [80].
A brief description of Wyner-Ziv theorem is supplied, since
it represents a promising solution for VSN and achieves a
comparable performance to that of MPEG. The Wyner-Ziv
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Figure 13: Practical Wyner-Ziv encoder obtained by cascading a
quantizer and a Slepian-Wolf encoder [80].

theorem extends the Slepian-Wolf work for lossy coding with
a distortion measure. Theoretically, a Wyner-Ziv encoder can
be seen as a coarse quantizer of the original signal, followed
by a Slepian-Wolf encoder stage, which performs lossless
encoding of source data assuming that the decoder has access
to some side information which is not known to the encoder
[82]. To reconstruct the received signal at the decoder with
minimum distortion, joint source-channel coding is per-
formed using side information (complete sensed data sent
by one of the sources). Figure 13 shows a schematic diagram
of the Wyner-Ziv encoder/decoder. For more information
about this subject, the reader is referred to [80].

Recall that our interest in this section is to review the
interesting DSC schemes of still images in VSN context,
including distributed JPEG2000 and distributed coding of
overlapped images taken by different cameras.

We start by the work presented in [83], where the authors
use JPEG as a compression method to reduce the size of
images without any special considerations to energy factor
during compression stage. Rather, they consider a scenario
where sensors, sharing the same field of view, can process
and combine overlapping regions to reduce the energy spent
on image transmission. For that reason, a distributed pro-
tocol was proposed and evaluated. The simulations show that
the distributed protocol, when compared to sending images
individually, can achieve some reductions in energy con-
sumption.

The authors in [84] present a method for distributed
coding technique of images in VSN by exploring correlation
between overlapped sensor field of views. To do that, over-
lapped images are first registered via a method involving the
extraction of image feature points and feature points analysis.
After that, the region of overlap is identified, and each sen-
sor sends a low-resolution version of the overlapped area
toward the receiver. At the reception, the base station uses
the superresolution methods allowing the high-resolution
version of the overlapped region.

The work in [85] is inspired by the concept of parallel
distributed computing theory. A distributed lapped biortho-
gonal transform- (LBT-) based image compression scheme
is proposed for VSN. It uses LBT transform, which is
very suitable for distributed implementation in the sensor
network, compared to DCT or DWT. Moreover, to further
reduce the computational complexity, Golomb and multiple
quantization coders are used in image compression instead
of Huffman or arithmetic coding. For routing purposes,
the proposed scheme is designed based on the well-known
LEACH protocol, which is designed for clusters sensor net-
works [86]. This scheme prolongs the lifetime of the network
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under a specific image quality requirement. Compared to
DCT, LBT improves coding efficiency by solving the problem
of blocking artifacts and taking into consideration interblock
spatial correlation. Weighted against DWT, LBT may lower
considerably the complexity of computation and reduce the
required memory.

In resource-constrained VSNs, the authors in [87] firstly
notice the high energy consumption of JPEG2000. To make
it light, they distribute the work load of wavelet transform
to several groups of nodes along the path between the
source and the destination using the concept of parallel dis-
tributed computing theory. That is, they propose two data
exchange schemes with respect to image quality and energy
consumption. In the first scheme, the target image is parti-
tioned into a set of blocks along the rows to perform 1D
wavelet. Similarly, the target image is divided into a set
of blocks to perform 1D wavelet on columns. This data
exchange scheme does not result in any image quality loss.
In the next scheme, the image is partitioned into tiles, and
each tile is sent to a node to do 2D wavelet transform inde-
pendently. The authors in [87] show, by simulation, that the
distributed scheme improves significantly the network life-
time compared to a centralized approach.

8. Other Scheme: Compressive Sensing

Compressed Sensing (CS), also called compressive sampling,
is a new paradigm that combines both signal acquisition
and compression. Originally, CS is based on the work of
Candès et al. [88] and Donoho [89]. This section is by no
means an exhaustive overview of the literature on the CS or
an in depth mathematical description of the CS theory, but
rather it presents basic definition related to CS and some
works related to the integration of CS within a VSN. Issues,
such as formulating the problem of sparse event detection
in sensor networks as a CS problem [90], or the look for a
suitable transformation that makes the signal sparse, are not
considered. We refer our reader to [88, 89] for the theoretical
concepts behind CS paradigm.

Any real-valued, finite length, and compressible signal
x ∈ R

N can be represented in terms of basis matrix ψi
N
i=1,

which is assumed to be orthogonal,

x =
N∑

i=1

siψi or x = ψs, (1)

where s is the N × 1 column vector of weighting coefficients
si = 〈x,ψi〉 = ψ tx. The signal x is called K-sparse if K
coefficients of si coefficients of (1) are nonzero, and (N −K)
are zero. The case of interest is when K ≪ N . In many appli-
cations, signals have only a few large coefficients. One of the
most applications of sparse representation is in image com-
pression, where a an image with dense (nonzero) pixel values
can be encoded and compressed using a small fraction of the
coefficients after a transformation, such as DCT or DWT. In
fact, CS has been motivated by a striking observation: if the
source signal s is K-sparse, s can be recovered from a small
set of observations y ∈ RM under a linear projection on x,

y = φx = φψs = Θs, (2)

where Θ = φψ, and the measurements matrix φ ∈ RM×N is
typically full rank with M < N . There exist infinitely many
solutions of s that give rise to y in (2). The CS theory states
that, for most full rank matrices φ that are incoherent to
ψ, if s is K-sparse, it is the unique solution of a regularized
ℓ0-minimization (ℓ0-min) program [88]

min‖s‖0 subject to y = φψs. (3)

Unfortunately, solving (3) is both numerically unstable
and NP-complete, requiring an exhaustive enumeration of
all (N K) possible locations of the nonzero coefficients. Sur-
prisingly, optimization based on the ℓ1 norm,

min‖s‖1 subject to y = φψs, (4)

can exactly recover K-sparse signals and closely approximate
compressible signals with high probability using only M ≥

cK log(N/K) iid Gaussian measurements [91].
The CS paradigm combines acquisition and compression

in one step, which is totally different than conventional com-
pression paradigms mentioned in this paper. This allows the
reduction in power computation, which is very required in
limited power applications such as VSN. The theory of CS
seeks to recover a sparse signal from a small set of linear and
nonadaptive measurements. The tremendous advantage of
CS is to exhibit recovery methods that are computationally
feasible, numerically stable, and robust against noise and
packet loss over communication channels. Despite the afore-
mentioned CS benefits, there still exists a huge gap between
theory and imaging applications. In particular, it is unknown
how to construct an efficient sensing operator and reduce the
number of random measurements needed at the acquisition
stage, particularly when the measurement is performed in
spatial domain.

The authors in [92] study the performance of CS for VSN
images in terms of complexity and quality of reconstruction.
In order to assess the performance of CS, the authors imple-
ment the block diagram shown in Figure 14, where x is
the input image of N × N pixels, and M is the number of
measurements. The projection is performed onto a measure-
ment matrix whose elements are generated by gathering 256
samples of the Fourier coefficients of the input image X along
each of r radial lines in the frequency plane as explained in
[92]. The authors show that it is possible to operate at very
low data rates with reduced complexity and still achieving
good image quality at the reception.

Based on CS, an image representation scheme for VSN
is proposed in [93]. The target image is firstly divided into
two components through a wavelet transform: dense and
sparse components. The former is encoded using JPEG or
JPEG2000, while the latter is encoded using CS. In order to
improve the rate distortion performance, the authors sug-
gest leveraging the strong correlation between dense and
sparse components using a piecewise autoregressive model.
Given the measurements and the prediction of the sparse
component as initial guess, they use projection onto convex
set algorithm to reconstruct the sparse component. In
general, the proposed work reduces the number of ran-
dom measurements needed for CS reconstruction and the
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Figure 14: Simulated system block diagram [92].

decoding computational complexity, compared to some CS
methods.

In [91], the authors suggest algorithms and hardware
implementation to support CS. In fact, they use a camera
architecture, called single-pixel camera (which is detailed in
[94]), which employs a digital micromirror device to carry
out optical calculations of linear projections of an image onto
pseudorandom binary patterns. Its main characteristic is the
ability to acquire an image with a single detection element.
This can significantly reduce the computation and the power
required for video acquisition and compression. In [95], the
authors propose a sparse and fast sampling operator based
on the block Hadamard transform. Despite its simplicity,
the proposed measurement operator requires a near optimal
number of samples for perfect reconstruction. From the
practical standpoint, the block Hadamard transform is easily
implemented in the optical domain (e.g., using the single-
pixel camera [94]) and offers fast computation as well as
small memory requirement. The suggested algorithm seems
very efficient to be applied in power-constrained applications
such as VSN. The unique work adopting CS paradigm in the
context of VSN is that one developed in [96], where both
CS and JPEG are used for compression purpose. No details
about the CS scheme are furnished in [96].

9. Guidelines for Designing a Compression
Scheme for VSN

In general, the design of a power efficient compression algo-
rithm depends on all compression stages of the compression
chain (Recall that the transformed-based algorithms are pre-
ferred over the non-transform-based algorithm (Section 6).)
In other words, it depends on the selected transform, such as
DCT, LT, or DWT; the selection of an appropriate quantiza-
tion matrix; the entropy encoder, such Huffman or Golomb-
Rice encoder; and the interconnection between those stages.
Moreover, depending on the application domain, either lossy
or lossless schemes have to be selected, knowing the fact
that lossy scheme is generally preferred over lossless one, in
terms of energy efficiency. We have to mention also that it
is mandatory to deal with the acquisition phase before com-
pression. In fact, at the exception of CS (Section 8), all com-
pression methods do not consider image acquisition while
its encoding. Joining acquisition phase while compressing
the input image helps to reduce drastically the overall
energy of a visual sensor. Another related point is to know
whether or not intermediate nodes within the established
path between the source and the destination are required
to encode and decode images. Decoding and encoding
images by intermediate nodes requires extra energy related to
decoding process, compared to nodes relaying packets with-
out further decoding stage. In such a case (encoding and

decoding tasks), the decoding process has to be light in terms
of energy computation.

In general, a dedicated compression algorithm for VSN
has to exhibit the following properties.

(i) Acceptable compression rate.

(ii) Low-power consumption.

(iii) Low computational complexity.

(iv) Low dynamic memory usage.

(v) Embedded encoding.

10. Conclusion

In this survey paper, we provided an overview about the
current state of the art in VSN compression algorithms and
pointed out new classification of the currently proposed
compression schemes along with their advantages, short-
comings, and open research issues. Two main coding para-
digms for VSN are discussed: individual source coding (ISC),
also known as one-to-many coding such as JPEG, and dis-
tributed source coding (DSC), which is related to the com-
pression of multiple statistically dependent sensor outputs.

For ISC paradigm, we have considered two types of
compression algorithms, transform-based (DCT and DWT)
and non-transform-based algorithms (fractals and VQ).
Throughout the literature review, we have observed that
transform-based algorithms are generally preferred over
non-transform-based ones. This is due the fact that the
encoder is less complex, which justifies its usefulness for
power-constrained applications. Moreover, for transform-
based algorithms, we found that SPECK followed by EZW
and SPIHT are excellent candidates for image compression
for VSN. Light versions of these algorithms are requested to
compress efficiently images over VSN.

Of the considered paradigms, DSC fits well the nature
of the distributed VSN. Hence, distributed schemes are pre-
ferred over ISC algorithms, which may reduce in the con-
sumed energy. Even the existence of a considerable number
of distributed algorithms for VSN, most of them are theo-
retical (such as Wyner-Ziv), simulation based, or considered
only for a small-scale VSN. That is, new DSC solutions are
highly encouraged for VSN.

The compressive sensing is the last theory considered in
this paper. It represents the unique paradigm that combines
acquisition and compression, which allows a considerable
reduction in energy consumption. That is, CS-based schemes
for VSN are highly requested.
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