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A survey of image semantics-based
visual simultaneous localization
and mapping: Application-oriented
solutions to autonomous navigation
of mobile robots

Linlin Xia1 , Jiashuo Cui1, Ran Shen1, Xun Xu2, Yiping Gao1

and Xinying Li1

Abstract
As one of the typical application-oriented solutions to robot autonomous navigation, visual simultaneous localization and
mapping is essentially restricted to simplex environmental understanding based on geometric features of images. By
contrast, the semantic simultaneous localization and mapping that is characterized by high-level environmental perception
has apparently opened the door to apply image semantics to efficiently estimate poses, detect loop closures, build 3D
maps, and so on. This article presents a detailed review of recent advances in semantic simultaneous localization and
mapping, which mainly covers the treatments in terms of perception, robustness, and accuracy. Specifically, the concept of
“semantic extractor” and the framework of “modern visual simultaneous localization and mapping” are initially presented.
As the challenges associated with perception, robustness, and accuracy are being stated, we further discuss some open
problems from a macroscopic view and attempt to find answers. We argue that multiscaled map representation, object
simultaneous localization and mapping system, and deep neural network-based simultaneous localization and mapping
pipeline design could be effective solutions to image semantics-fused visual simultaneous localization and mapping.
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Introduction

Autonomous robots are capable of performing specific

tasks independently without any human interventions. As

one of the principal attributes of autonomous robots, auton-

omous motion depends largely upon accurate ego-motion

estimation and high-level surrounding environment percep-

tion. However, in cases where the artificial landmarks are

unknown or the robots themselves are in GPS-denied envir-

onments, estimating ego-motion or perceiving scenes

encounter great difficulties.
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The term “SLAM” stands for simultaneous localization

and mapping (proposed by Smith and Cheeseman1 in

1986), being recognized as an eminent tool for mobile

robot ego-localization at an unknown location within an

unknown environment.2 Technically, the mobile robot

incrementally builds a globally consistent map of con-

cerned environment while simultaneously determines its

location within this map. From the point view of mathe-

matics, SLAM process can be abstracted as a concurrency

estimation problem, which mainly covers the robot pose

estimation and location estimation of available landmarks.

The diagrammatic representation of SLAM problem is

shown in Figure 1. For a long time, SLAM problem is

basically solved via a series of range sensors,3 like light

detection and ranging, infrared radiation, or sound naviga-

tion and ranging within small-scale static environments

(forms of range sensors conform to their individual physi-

cal principles). However, range sensor-based SLAM may

have to face major challenges in dynamic, complex, and

large-scale environments.

The SLAM that is implemented by means of external

cameras (as the only external sensors) is termed as visual

SLAM (V-SLAM). The significant advantage of V-SLAM

over other typical SLAM frameworks (like range sensor-

based SLAM) is its adaptability to the practical applica-

tions owing to richer image textures and simpler sensor

configurations. Moreover, the development and matura-

tion of computer vision (CV) allow V-SLAM to have

access to graphical and visual supports. It is important

to appreciate that solutions by CV have addressed some

major difficulties in V-SLAM areas, such as detection,

description and matching of image features, loop closure

detection and 3D map reconstruction, and so on. Cur-

rently, with many open-source algorithms, the architec-

ture of a V-SLAM system has been well-established.

However, we must admit V-SLAM is vulnerable when

either the motion of the robot or the environment is too

challenging (e.g. fast robot dynamics, highly variable

environments, severe illumination variations, highly lim-

ited visibility, or complex texture-less scenes).

Cadena et al.4 firstly divided the timeline of SLAM into

three periods and further summarized the individual

achievements, as shown in Figure 2. Technically, they state

that we are now entering the third stage of SLAM, videli-

cet, a stage of robust perception: the realization of robust

performance, high-level understanding, resource aware-

ness, and task-driven perception represent the themes in

this age. The researchers of SLAM have worked on meth-

ods for solving high-level perception and understanding.

Their efforts have been directed at semantics owing to their

superiorities in aspects including improved robustness,

intuitive visualization, and efficient human–robot–environ-

ment interaction. The studies that are associated with either

semantic-based robustness/accuracy enhancements or

semantically mapping are termed semantic SLAM. As

V-SLAM could perform localization and mapping within

a joint formulation, naturally, the above two processes of

semantic SLAM could also be simultaneously evaluated by

one estimator.

Table 1 lists the main surveys on SLAM from 2006 to

present. As indicated, there have been few review articles

that cover semantic SLAM (only Cadena et al.4 mention the

semantic concept-based mapping). Along the principal line

of SLAM evolution, we attempt to conduct a broad review

on current semantic SLAM area and to further illustrate

some open problems and our insights into future research.

The outline of the remainder of this survey is as follows.

The second section primarily presents a detailed descrip-

tion of semantic extractors, fundamental architecture of a

modern V-SLAM system, and mainstream open-source

algorithms. Special attention is then paid to the distin-

guished natures of a semantic SLAM. The perception,

robustness, and accuracy problems that are, respectively,

related to human–robot–environment interaction, environ-

ment adaptation, and reliable navigation are elaborated in

paralleled third, fourth, and fifth sections. The sixth section

focuses on the challenge discussions about semantic

SLAM, seeking answers to these essential concerns. The

seventh section draws conclusions.

The components of a semantic SLAM
system

A semantic SLAM system is constructed of two essential

components: a semantic extractor and a modern V-SLAM

framework. Specifically, the semantic information is

mainly extracted and derived from two processes. They are

object detection and semantic segmentation.

Semantic extractor

Object detection is characterized by lightweight applicabil-

ity, which not only can be applied to classify objects on the

so-called object-level but also can be used to determine 2D

1d
2d 3d

2d ʹ
3d ʹ1d ʹ

New robot
pose

Δx

Landmark 2
Landmark 3

Landmark 1

Robot pose

Figure 1. Diagrammatic representation of SLAM problem. SLAM:
simultaneous localization and mapping.
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positions of concerned objects. By contrast, semantic seg-

mentation leads to pixel-level classification acquisition,

that is, all pixels in an individual image have their own

unique categories. Apparently, the latter exhibits more

favorable precision owing to accurate boundaries. A

section-by-section description follows.

Object detection. Object detection is recognized as an impor-

tant branch of CV, whose development can be roughly

divided into handcraft feature-based machine learning

stage (2001–2013) and learning feature-based deep learn-

ing stage (2013 to present). The former is extremely depen-

dent on handcraft features of images.20–24 In fact, during

that period, researchers were devoted to strength the repre-

sentations of handcraft features by means of more diversi-

fied descriptor design. Moreover, due to the limited

computational resources, they had to explore more efficient

and practical calculation approaches. In spite of their strug-

gle to balance the handcraft feature representations and

calculation efficiency, object detection experiences unex-

pectedly complex design with poor robustness.

In recent years, due to the introduction of deep learning

and graphics processing unit, object detection with high

accuracy has made great progress in either theory or prac-

tice. Especially, deep neural network (DNN)-fused object

detection has arrived at a preferred robustness and accu-

racy, whose pipeline can be approximately designed fol-

lowing the two stages below:

� Stage 1: To obtain 2D positions of objects.

� Stage 2: To classify objects.

Region convolutional neural network (R-CNN) series

belong to typical two-stage networks, including R-CNN,25

fast R-CNN,26 faster R-CNN,27 and the newest mask

R-CNN.28 R-CNN is not only the pioneering work of

R-CNN series network, but also the earliest method

adopted in CNN-based object detection tasks. In principle,

2004-2015
The algorithmic-analysis age

2015-Present
The robust-perception age

Probabilistic formulations:
• Extended Kalman Filters (EKF)
• Rao–Blackwellized Particle Filter (RBPF)
• Maximum Likelihood Estimation (MLE)
Challenges
• efficiency
• robust data association

Fundamental properties of SLAM
• observability
• convergence
• consistency
Sparsity toward efficient SLAM solvers
Open-source SLAM libraries

New requirements:
• robust performance
• high-level understanding
• resource awareness
• task-driven perception

1986-2004
The classical age

Figure 2. The development of SLAM. SLAM: simultaneous localization and mapping.

Table 1. Summary of SLAM-related review articles.

Year Topic Reference

2006 Probabilistic approaches and data association Durrant-Whyte and Bailey5,6

2008 Filter-based SLAM Aulinas et al.7

2008 Visual SLAM Neira et al.8

2010 Graph-based SLAM Grisetti et al.9

2011 Examining and evaluating SLAM Dissanayake et al.10

2011 Visual odometry Scaramuzza et al.11

2012 BA Strasdat et al.12

2015 Visual place recognition Lowry and Sünderhauf13

2016 Multiple robot SLAM Saeedi et al.14

2016 Fundamental properties Huang and Dissanayake15

2016 Robust perception SLAM Cadena et al.4

2017 Feature based, direct, and RGB-D SLAM Taketomi et al.16

2017 Keyframe-based SLAM Younes et al.17

2018 Dynamic SLAM Saputra et al.18

2019 Event-based SLAM Gallego et al.19

BA: bundle adjustment; SLAM: simultaneous localization and mapping.
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R-CNN generates the region proposals via a selective

search,29 and the feature extraction and classification are,

respectively, achieved via AlexNet30 and support vector

machines (SVMs).31 Differing from which, fast R-CNN

changes the order of generating region proposals and

extracting image features and replaces SVMs with softmax.

Faster R-CNN benefits from the generated object proposals

for detection speed promoting via region proposal network,

supplementary anchor, and sharing features. Quite clear,

faster R-CNN would be faster, but it is still not fast enough

for real-time SLAM tasks. By contrast, mask R-CNN sacri-

fices partial detection speed for more precise semantic seg-

mentation purposes. As a consequence of which, it arrives

at an instance-level result, that is, all pixels in each detected

object have their own unique categories.

It is noteworthy that the latest type of object detection

algorithms fulfills positioning and classification of objects

simultaneously rather than deduce 2D positions of objects

first. The representative Yolo series32–34 (known as the most

fast semantic extractor) employs S � S grids to replace

region proposals, and the classification of these grids is

consequently an ideal candidate for the final detection. Gen-

erally speaking, speed of Yolo series can be accepted by a

real-time semantic SLAM system, but for higher accuracy,

latest Centernet35 provides a novel keypoint-based method.

To clearly describe the development of object detection net-

works, a chronological overview is illustrated in Figure 3.

Semantic segmentation. In cases where the scenes with fan-

tastic complexity are concerned, some care should be

needed, and for guaranteed robust localization and map-

ping, the fine scene inference, videlicet, the deep associa-

tion mining between numerous objects should be further

considered. In comparison, object detection is suitable for

coarse scene inferences,36 and semantic segmentation is

more general in that it applies to fine scene treatments.

Analogously, the evolution of semantic segmentation has

experienced “machine learning-based” to “deep learning-

based” transform. Nowadays, the introduction of CNN has

greatly upgraded the level of accuracy and efficiency for

segmentation; thus, for cases where semantic SLAM sys-

tems are constructed, CNN-based solutions are generally to

be preferred to the others.

Considering the practical applications of semantic seg-

mentation in semantic SLAM systems, two things associ-

ated with networks (for semantic segmentation purposes)

should be investigated. One is technical index (including

accuracy and efficiency), one is applying condition (repre-

senting whether a network is valid for video segmentation

or 3D image segmentation). The section is devoted to a

description of deep learning-based semantic segmentation

networks, mostly following the above lines of thought. The

comparative performances of typical CNNs for semantic

segmentation are listed in Table 2.

In general, almost all the deep learning-based networks

for semantic segmentation inherit the model from fully

convolutional network (FCN) (being recognized as land-

mark work by Long et al.37). As its name suggests, the

authors modified all the most popular networks for classi-

fication (AlexNet, VGG-16, GoogleNet) to form the

matched FCNs, so as to allow dense segmentation from

arbitrary-sized image inputs. In addition, the encoding of

CNNs enables the generations of different fine-grained

semantic segmentation maps, and as the maps fuse in a

skipping-connection-structure, a desired semantic segmen-

tation result is achieved. However, FCNs themselves are

not actually valid for both technical index and applying

condition that a semantic SLAM requires (see Table 2 for

reasons). The “SegNet” which is more concerned with

decoding process appears available, so that a convolutional

encoder–decoder structure is applied instead.38 The contri-

bution of DeepLab series networks39–42 (including

DeepLab-v1, DeepLab-v2, DeepLab-v3, DeepLab-v3þ)

consists in that they fully integrate the information of an

Two stage networks

One stage networks

Typical deep learning
object detection networks

2016 2016 2017 2018

2014 2015 2017

2019

Fast R-CNN
  (Girshick)

R-CNN
(Girshick et al.)

Mask R-CNN
(He et al.)

Faster R-CNN
(Ren et al.)
2015

FPN
(Lin et al.)
2017

YOLO
(Redmon et al.)

YOLO v2
(Redmon et al.)

Centernet
(Duan et al.)

YOLO v3
(Redmon et al.)

SSD
(Liu et al.)

Figure 3. The development of deep learning object detection networks.
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image on various scales (termed “global context of image”)

and that they efficiently address “ambiguous boundary”

problems likely to be encountered in FCN or SegNet. Spe-

cifically, DeepLab-v1 inserts a probabilistic graphical

model (like conditional random field (CRF)) into a CNN-

based pipeline and further model the segmentation result as

a probabilistic graph. This probabilistic graph surely con-

siders the global context of an image (i.e. the interactions

between all pixels, not adjacent pixels only are considered)

and contributes to finer segmentation results, but it indis-

pensably burdens the load of calculation. DeepLab-v1 pio-

neers the use of “atrous convolution” in CNN models, and

it derives a wider range of receptive fields without any load

of complexity. By contrast, DeepLab-v2’s pioneering work

in contextual information capture on various scales is the

adoption of atrous spatial pyramid pooling. DeepLab-v3

and DeepLab-v3þ further make some small revisions.

We believe that Segnet and DeepLab (with no CRF) meet

the technical index demands of building semantic SLAM

systems. To take some specific examples, let us refer to some

research.46,47 Yu et al.46 successfully constructed a dynamic

scene-oriented SLAM system using SegNet. Li et al.47 effec-

tively solved the online monocular semantic SLAM construc-

tion by means of DeepLab-v2 (with no CRF). If heavy

emphasis is placed upon the fine-grained semantic maps

rather than upon the efficient mapping, DeepLab series net-

works (with CRF) are considered to be ideal tools.48 On the

contrary, if high efficiency mapping is strongly required, cer-

tain networks should be evaluated and be further applied.

Enet43 is reminiscent of specially designed network for the

purposes of real-time semantic segmentation, but whose

accuracy in semantic segmentation is relatively poor.

When it comes to issues of “applying conditions” of

semantic segmentation processes, let us review two candi-

date networks: PointNet44 and Clockwork Convnet.45 The

former is valid for direct segmenting of unstructured 3D

point clouds, and the latter is concerned with time clues of a

video or image sequences (image context established on the

temporal scale). These two represent the leading favorable

tools even though they do not seem to have significant

advantages in either accuracy or efficiency. But we still

hold the opinion that, with the rapid advance of computers,

the relevant studies with respect to PointNet and Clock-

work Convnet would be of practical significance.

Modern V-SLAM system

The architecture of a modern V-SLAM system. A modern

V-SLAM typically includes:

� Sensor data acquisition: Acquiring images or a video

via cameras.

� Visual odometry (VO): Preliminarily estimating the

robot pose and landmark position via adjacent

frames in an image sequence.

� State estimation: Globally estimating the state by

means of the fused results that VO and loop closure

detection provide.

� Relocalization: Relocating when tracking fails or

map is reloaded.

� Loop closure detection: Determining whether the

robot is located at the previous position.

� Mapping: Mapping according to the requirements of

tasks.

Concerning the flow direction of sensor data and task

level, a V-SLAM system generally contains two parts: the

front end and the back end, whose schematic interpretation is

given in Figure 4. As indicated, the VO and loop closure

detection module simultaneously receive the inputs that cer-

tain sensors supply. Here, the function of VO is to provide

preliminary robot pose estimation and the function of loop

closure detection module is to provide scene similarity. The

derived robot poses and scene similarity constitute the

sources from which the robot globally optimizes the poses

and landmarks and further plots the motion trajectories and

environmental maps. Mathematically, the front-end task and

the back-end task can be separately abstracted as “data

association” problem and “state estimation” problem.

� The front end: Data association

The process that the front end tracks the same features

(feature points or representative pixels) on different frames

of one image sequence is referred to as “data association.”

Table 2. The comparative performances of typical CNNs for semantic segmentation.

Name and reference Architecture Accuracy Efficiency Sequences 3D Open source Contribution(s)

FCN37 VGG-16 * * � � P Forerunner
SegNet38 VGG-16 þ decoder *** ** � � P Encoder–decoder
DeepLab series39–42 VGG-16/ResNet-101 **** * � � P CRF, atrous convolution
Enet43 Enet bottleneck ** *** � � P Bottleeneck module
PointNet44 Own MLP-based ** * � P P 3D CNN
Clockwork Convnet45 FCN ** ** P � P Clockwork scheduling

FCN: fully convolutional network; MLP: multi-layer perceptron; CNN: convolutional neural network; CRF: conditional random field.
*, **, ***, **** mean the level of performance, the more * the better performance that the system exhibits.p

and � mean whether the certain function is supported.p
: supported; �: unsupported.

Xia et al. 5



Generally, early V-SLAM systems deal with “data

association” via feature matching. Obviously, the insuffi-

cient description of local image features causes faulty data

association with a high probability, which then leads to

incorrect pose and landmark estimation. Some research that

focus on eliminating the errors in data association (e.g.

random sample consensus RANSAC) are proposed, but the

not-yet essentially solved problems make it still unsatis-

fied. Later researchers begin to evaluate “data association”

in probability ideas (i.e. making a soft decision to assign

new features into tracking sequence). Probabilistic data

association fully takes into account the uncertainty in fea-

ture assignments and minimizes erroneous associations.

This is illustrated by the features in Figure 5.

Concerning the expression of data association in

SLAM problems, Bowman et al.49 were the advocates of

expression D¼D Z lk ; xkð Þf gK
k¼1, which indicates that obser-

vation Zk (subscript k means kth) is dependent on xk (cam-

era pose) and lk (landmark position). The maximum

likelihood estimation (MLE) method is sequentially

invited to solve for D.

� The back end: State estimation

Lu et al.50 and Gutmann et al.51 define SLAM as a max-

imum a posteriori estimation problem, which aims to estimate

variable X (including robot poses and landmark positions)

from a set of observations (Z ¼ z1; :::; zkf g have noises).

X � ¼ arg max
X

PðX jZÞ ¼ arg max PðZjX ÞPðX Þ ð1Þ

Equation (1) conforms to the Bayesian theorem. Let

PðZjX Þ denote the likelihood of the state Z (given the vari-

able X) and let PðX Þ denote the prior probability of variable

X, so that the posterior probability can be expressed as

PðZjX ÞPðX Þ. The problem generalizes to determine an

assignment variable X � that maximizes PðX jZÞ and further

determine variable X.

One of the most significant SLAM results is proposed by

Davison et al.,52 who pioneered the updating of the states of

the camera and the landmark points by an extended Kalman

filter (EKF). Differing from which, the representative bun-

dle adjustment (BA)-based nonlinear optimization

addressed the maximum posterior probability estimate

problem by having the fused global constraints of the state

variables be optimal rather than the pure iterations of EKF.

By contrast, EKF-based SLAM has superior efficiency than

optimization-based SLAM when dealing with small-scaled

scene applications, but for the large-scale scene SLAM

purposes, filter-based solutions appear insufficient super-

iorities due to the huge covariance matrix.

Honestly, the present V-SLAM frameworks involve a

large quantity of image features, which restricts the con-

ventional EKF-based solutions in SLAM tasks; special

attention is therefore placed upon BA-based nonlinear opti-

mization approaches. The BA ideas can be traced back to

their use in the early 21st century. It is about solving struc-

ture from motion problem related to 3D reconstruction.

Inspired by which, early SLAM researchers realized that

BA would be probably helpful to high-precision state esti-

mation, but they immediately found V-SLAM was actually

an incremental process; the accumulated computing load

made it not feasible to directly apply BA to a V-SLAM that

emphasizes real-time requirements. The applicability

demands of BA-based solutions were the original inspira-

tion for the exploration of attributes of a V-SLAM; one of

the major advances lies in that researchers exploited the

sparsity of normal equations. They proved that the depen-

dencies between state variables can be naturally repre-

sented in terms of a factor graph. This allows BA to have

access to use a faster linear solver or an incremental solver,

guaranteeing its adoption to a real-time required V-SLAM

feature detection

data association

global optimazation

relocalization

'

camera's data
trajectory

environment model

loop closure detection

(VO)

Figure 4. The architecture of a modern V-SLAM system. V-SLAM: visual simultaneous localization and mapping.

P(A)

P(B)

Figure 5. The diagrammatic interpretation of probabilistic data
association.
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system. The current optimization libraries (e.g. g2o, Ceres)

make it easy to build solvers and process thousands of

variables in one single second, which, therefore, makes

BA-based graph optimization method to be the mainstream

tool for the back-end state estimation.

Open-source V-SLAM system. We would like to review some

open-source algorithms of V-SLAM, since this is so essen-

tial. Generally, V-SLAM systems can be classified accord-

ing to the camera types, including but not limited to

monocular, stereo, and RGB-D cameras. For a detailed

demonstration, Table 3 further summarizes their character-

istics containing the descriptions of front end, back end,

relocalization, loop closure detection, and so on. We insist

that key factors for a V-SLAM assessment would always be

whether it enables dense mapping and loop closure detec-

tion, whether it supports a number of sensors, and whether

it possesses real-time performances. It is important to

appreciate that, for simplifying the present semantic SLAM

designs, lots of studies directly refer to the well-established

V-SLAM frameworks.47,48

Human–robot–environment interaction:
Perception

We argue that the perception defined in area of semantic

SLAM should consist of two aspects: understanding of

environment and understanding of human. This perception

is referred to as human–robot–environment interaction.

Undoubtedly, an environment model (defined as semantic

map) will play roles in these two understanding processes.

Technically, the more information rich the semantic map is,

the higher the so-called semantic level is. Since semantic

map increasingly reveals its superiority in complex and

autonomous robot tasks (e.g., avoid muddy road while

driving), semantically mapping has become a significant

and ongoing subject in present semantic SLAM studies.

We would like to summarize the present research work and

further state our vision for semantic maps within such

semantic SLAM frameworks. Table 4 summarizes some

semantic mapping studies.

Semantic map

Semantic maps can be categorized into object level and

pixel level in a broad sense. Previous studies75–78 estab-

lished an embryonic concept of object-level semantic map

by inserting some preestablished 3D models of known

objects into meaningless sparse point cloud maps. Quite

different, research79–84 attempted to construct superior

pixel-level semantic maps via applying some traditional

tools, like SVM (even though SVM is commonly used in

addressing industrial problems of prediction,85–87 classifi-

cation,88 or fault diagnosis89), CRF, and so on, since these

tools are considered to be useful for object identification

and scene segmentation. However, the limited means, in

most cases, tend to an unsatisfactory classifying precision.

Inspired by the advances in deep learning, there has been

more research in the area of CNN-based object identifica-

tion, detection, and segmentation.90–92 The sufficient

achievements subsequently provide a guarantee for con-

structing more accurate semantic maps with pixel level.93

Li and Belaroussi47 present a blend of most advanced

semantic segmentation strategy (DeepLab-v2) and

V-SLAM framework (large-scale direct monocular, LSD-

SLAM). It distinguishes itself by successfully constructing

a semi-dense 3D semantic map via a multiple-view mono-

cular camera (rather than acquire a dense 3D semantic map

with an RGB-D camera, as the study of McCormac et al.48

indicates). It should be stressed that the highlight of such a

Table 3. Open-source V-SLAM systems.

Name and reference Year Camera Front end Back end Mapping Relocalization Loop closure detection

Mono-SLAM52 2007 Monocular Feature based Filter based Sparse � �
PTAM53 2007 Monocular Feature based Optimization Sparse P �
KinectFusion54 2011 RGB-D ICP Optimization Dense � �
Kintinuous55 2012 RGB-D ICP and direct Optimization Dense P P
RGBD-SLAM v256 2013 RGB-D Feature based Optimization Dense P P
LSD-SLAM57 2014 Monocular Direct Optimization Semi dense P P
SVO58 2014 Monocular Direct — — � �
RTAB-MAP59,60 2014 RGB-D Feature based Optimization Dense P P
ElasticFusion61 2016 RGB-D ICP Optimization Dense P P
ORB-SLAM62,63 2015 All types Feature based Optimization Sparse P P
DSO64 2017 Monocular Direct Optimization Semi dense � �
BundleFusion65 2017 RGB-D Feature based Optimization Dense � �
ProSLAM66 2018 Stereo Feature based Optimization Sparse P P
OpenVSLAM67 2019 All types Feature based Optimization Sparse P P

V-SLAM: visual simultaneous localization and mapping; PTAM: parallel tracking and mapping; SVO: semi-direct monocular visual odometry; ORB-SLAM:
oriented FAST and rotated BRIEF SLAM; RTAB-MAP: real-time appearance-based mapping; ICP: iterative closest point; DSO: direct sparse odometry.p

and � mean whether the certain function is supported,
p

: supported; �: unsupported.
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blend also consists in its inversion back to enhance the

performances of a large wider range of 2D single-view

semantic segmentation approaches. Apparently, SLAM

essentially elevates the accuracy of semantic segmentation.

Open problems

Time-varying semantic map. The semantic map lays the

groundwork to the high-level semantic understanding, while

its applicability to long-term robust positioning is still unsa-

tisfactory. An ideal solution is to build a time-varying

semantic map; if it were not for this fact, a model about

spatiotemporal relations between objects in concerned

scenes would not be established, and the following spatial

changes (viz. the motion) of objects would not be predicted.

Thus, we believe the introduction of time-varying semantic

maps helps for both long-term and dynamic localization. We

also believe that, fundamental to the development of such

maps are certain artificial intelligence (AI) ideas about spa-

tial and temporal reasoning. As far as we know, the present

semantic SLAM rarely covers such studies.

Panoptic semantic map. As already discussed, the CNN-

based semantic segmentation leads to superior fine-

grained results. Even though they seem to be subtle enough,

for some certain purposes, the segmented regions are not

quite tiny (e.g. different styles of cars cannot be distin-

guished), which somehow limits their understanding level

for scene perception. One of the important contributions of

instance segmentation network in SLAM area just consists

in its idea of further subdividing objects within the same

category; nevertheless, it appears to be not available for

irregular backgrounds.

Panoptic segmentation fully integrates the advantages of

these two-segmenting means; as a new direction in CV

community, it is expected to generate fine-grained results

with globally consistent labelings in an elegant manner.

The panoptic semantics mapping, therefore, is recognized

as powerful and eminent tool for fostering the intelligence

of autonomous robot as well as the contextual knowledge

of augmented reality. Panopticfusion was a pioneering

study in panoptic semantics-based 3D reconstruction,74

which, however, unfavorably neglected the useful explora-

tion of semantics-based positioning ideas. Due to the fact

that semantic positioning is frequently overlooked in prac-

tical applications, we are firmly convinced that the seman-

tic SLAM framework which simultaneously focuses on

mapping and localization is still being explored.

Environmental adaptation: Robustness

As previously mentioned, V-SLAM is now at a robust-

perception age. In a sense, a primary concern of semantic

SLAM would be the “robustness” enhancements. We will

concentrate on this central issue in terms of feature selec-

tion mechanism and optimized data association. Before a

detailed review, we firstly summarize the relevant

researches in robustness enhancements, as summarized in

Table 5. More about object SLAM will be presented in

Discussions section.

Feature selection mechanism

The acquisition of prior semantics of feature points leads to

enhanced robustness of VO. Since we have initially

assessed whether these feature points are suitable for a

specific task, thus the selected robust features will contrib-

ute to better robot ego-motion tracking. Much more inter-

esting, feature selection strategy could be flexibly

Table 4. Summary of semantic mapping studies.

Year Reference Camera type 3D reconstruction Semantic labeling Map expression Data set

2013 Valentin et al.68 RGB-D Surface
reconstruction

CRF Triangulated
mesh

Indoor: NYU
Outdoor:

KITTI
2013 Sengupta et al.69 Stereo Surface

reconstruction
CRF Mesh KITTI

2015 Vineet et al.70 Stereo VO Random Forest Voxel KITTI
2016 Zhao and Chen71 RGB-D VO SVM Voxel NYU v2
2016 Li and Belaroussi47 RGB-D LSD-SLAM Deeplab v2 Voxel Indoor:

NYU v2
Outdoor:

KITTI
2017 McCormac et al.48 RGB-D RGB-D SLAM CNN with CRF Surfel NYU v2
2017 Yang et al.72 Stereo ORB-SLAM CNN with CRF Grid KITTI
2018 Runz et al.73 RGB-D RGB-D SLAM Mask R-CNN and geometric

segmentation
Surfel TUM

2019 Narita et al.74 RGB-D RGB-D SLAM PSPNET with CRF mask R-CNN
with CRF

Voxel ScanNet v2

CRF: conditional random field; R-CNN: region convolutional neural network; CNN: convolutional neural network; VO: visual odometry;
SLAM: simultaneous localization and mapping; PSPNET: pyramid scene parsing network.
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changeable for purposes of various tasks. We will review

the recent studies from the following aspects.

Interested region feature selection. Liang et al.98 proposed a

VO framework for feature selection on basis of a visual

saliency map (defined by visual saliency to each pixel of

a single image, the closer to the red color, the higher the

degree of visual saliency) filtered by semantics segmenta-

tion results. In fact, it is this blend map (integrates visual

saliency map and semantics segmentation map) that conse-

quently drives the feature selection process. The robustness

of VO is tested to be superior with such robust feature

points (selected by this blend map). Please see the research

of Liang et al.98 for more details.

In research,95 the feature points derived from the park-

ing cars are no longer used for mapping due to the fact that

temporary objects should not be maintained in environmen-

tal maps. Also, such maps with no temporary objects lead

to better robustness in lifelong localization tasks.

Informative region feature selection. The accuracy of pose

estimation cannot be highly improved via feature points

in regions with low information entropy.104 Tracking with

such features will consequently increase the risks of faulty

data associations. Ganti and Waslander97 propose an

information-theoretic feature selection method by inviting

the uncertainty concept of semantic segmentation for the

calculation of information entropy. This immediately

reduces the numbers of features, thus significantly

improves the system performances of real time and robust-

ness without any appreciably compromising in accuracy.

Dynamic feature selection. The extracted feature points

(from images) probably belong to moving objects

(so-called dynamic feature points), which greatly

decrease the robustness of V-SLAM systems. Fortunately,

high-level semantics can efficiently perform the division

of stationary and dynamic feature points (so-called motion

segmentation), so that certain positive mechanism works

in dynamic scenes within which V-SLAM systems pos-

sess enhanced robustness.

Reddy et al.94 employed a multilayer dense CRF tool to

segment images. The distinguishable stationary feature

exhibits stillness, making it feasible to separately track

the stationary feature points. Consequently, a robust VO

adapts to a dynamic scene. SLAM toward dynamic envir-

onments46 seeks to joint semantic segmentation and mov-

ing consistency check to eliminate ORB feature points

that initially exist in a dynamic object, which not only

outperforms ORB-SLAM263 regarding accuracy and

robustness in a dynamic environment but also builds a

dense semantic octo-tree map for further 3D representa-

tion. Moreover, a lightweight 3D box inference tool is put

forward by Li and Qin;96 in their studies, the conventional

semantic segmentation is even no more necessary for real-

time semantic reasoning.

Optimized data association

In V-SLAM frameworks, in terms of the update frequency,

the data association could be divided into two categories:

short-term association (e.g. feature matching) and long-

term association (e.g. loop closure detection). This

mechanism ensures a maximum of data association relia-

bility. However, in cases where the loop closure detection

fails (e.g. unmanned vehicles are driving on long straight

roads), VO will irreversibly drift and this consequently

leads to the divergence of navigation systems. A study of

semantic SLAM proposes image semantics based on

medium-term association mechanism.99 From an experi-

mental point of view, this mechanism largely reduces the

VO translational drift in unmanned driving scenes. There

are several problems that confront the advocate of such

image semantics-based mechanism. Bowman et al.49 found

a defect of such semantics associations in application, that

is, invalid data association of objects’ semantics greatly

affects the results of localization and mapping. They there-

fore proposed a so-called probabilistic data association

Table 5. Summary of semantic SLAM research in robustness enhancements.

Method Reference Year Main contribution

Feature selection Reddy et al.94 2015 Tracking stationary features
Murali et al.95 2017 Lifelong localization
Li et al.96 2018 A lightweight system
Yu et al.46 2018 Adapting to dynamic environment
Ganti et al.97 2018 An information-theoretic method
Liang et al.98 2019 Visual saliency map

Optimized data association Bowman et al.49 2017 Probabilistic data association
Lianos et al.99 2018 Medium-term association

CNN-based image features Yi et al.100 2014 Learned invariant features
DeTone et al.101 2018 Self-supervised interest features

Object SLAM Salas-Moreno et al.78 2013 A pioneer study
Nicholson et al.103 2018 Objects described by ellipsoid
Yang and Scherer102 2019 Objects described by cube

CNN: convolutional neural network; SLAM: simultaneous localization and mapping.
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mechanism to fully consider the uncertainty during the

process of data association.

Open problems

Mainstream semantic SLAM methods improve the robust-

ness of a VO via selecting features or optimizing data

associations. However, with the full-scaled improvements

of algorithms, the efforts for VO robustness enhancements

by purely feature selecting or data association optimizing

appear unsatisfactory. Recently, the CNN-based feature

extractors appeared to be noticeable in the field of

CV,100 and they led to much more robust visual features

that handcraft solutions never derive. Inspired by which,

researchers in SLAM area are now making their attempts

to reconstruct VO by so learned features,101 so as to sub-

stantially improve VO robustness. Following this line of

thought, we believe that the pursuit of enhanced feature

stabilization and generalization ability for enhanced VO

robustness would continue.

Reliable navigation: Accuracy

The accuracy of localization and mapping could suggest a

reliability assessment of autonomous navigation systems.

Generally speaking, if it were desired to elevate the accu-

racy enhancements, semantics could be included in nearly

all the sessions of classic SLAM algorithm frameworks,

such as initialization, back-end optimization, relocaliza-

tion, loop closure detection, and so on. Before delivering

a detailed discussion followed in this section, we would

like to firstly summarize the relevant semantic SLAM

research that devote to accuracy enhancements, as summar-

ized in Table 6.

Monocular scale initialization

As a consequence of no absolute baseline length between

images, the scales of monocular V-SLAM systems indis-

pensably appear to be both ambiguous and drifting over

time. Thus, a key problem in the development of monocular

V-SLAM initialization would be how to rectify the scale

ambiguity and drift. The highlight of both studies105,106

consists in that they identically invite the concept of image

semantics. As one form of image semantics, the size of

object has been fully considered and the monocular scale

initialization process is recognized to be more efficient

with excellent concision. The experimental results based

on public data sets also validate their effectiveness over a

wide range of applications, that is, as small as small-object

indoor scenes or as large as long-range outdoor scenes.

Semantic and geometric joint optimization

One of the most significant tightly coupled semantic and

geometric joint optimization framework is proposed by

Bowman et al.,49 who pioneered the ideas of probabilistic

data association models. If both continuous and discrete

data are already involved in data association tasks, a solu-

tion by MLE method, directly, is not possible. For this, the

authors skillfully broke their main problem down into sub-

problems, that is, they divided the so-called mixed associ-

ation into two processes: discrete semantic association and

continuous pose estimation. This two-step iterative compu-

tation problem could be easily solved by typical expecta-

tion maximization algorithm. Moreover, the principal

importance of semantics that extracted by object detection

is that they play roles in back-end optimization.

One of the ideas of incorporating the semantics

(extracted by semantic segmentation) in SLAM back end

is put forward by Linaos et al.99 Given the fact that 2D

object boundaries cannot precisely express boundaries of

matched 3D objects, Linaos’s theories are considered to

be more valid in practical applications. The latest study96

employs 2D object detection results to infer the bounding

box of 3D objects. From an engineering perspective, this

strategy can even be accepted by real-time semantic

SLAM systems where the demands of accuracy could be

moderately loose.

Relocalization and loop closure detection

Relocalization and loop closure detection usually employ

identical techniques; they, however, tackle different

Table 6. Summary of semantic SLAM research in accuracy enhancements.

Method Reference Year Main contribution

Monocular scale initialization Frost et al.105 2016 Reduces scale drift over long-range outdoor
Sucar and Hayet106 2017 Reduces scale drift over small-scale indoor

Semantic and geometric joint optimization Bowman et al.49 2017 First semantic and geometric joint optimization
Lianos et al.99 2018 Medium-term data association
Li et al.96 2018 A lightweight semantic inference method

Relocalization and loop closure detection Stenborg et al.107 2018 Meeting seasonal change challenge
Gawel et al.108 2018 Graph-based semantic relocalization method

End-to-end SLAM Ummenhofer et al.109 2017 Inferring from a pair of images
Wang et al.110 2018 Inferring from a video

SLAM: simultaneous localization and mapping.
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problems. The purpose of relocalization is to restore the

camera pose, while the function of loop closure detection

is to derive geometrically consistent map. Regardless of

how differently the individual techniques function, we are

generally concerned with the identical theories. Therefore,

this subsection is devoted to a description of semantics-

based relocation algorithms, mostly following the

application-oriented lines of thought.

The principal limitation of geometric localization lies in

its long-term applicability to locating in changeable scenes

(over time) within pre-built maps. However, the semantics-

based solutions are the answers to this challenging issue.

The evidence can be seen from a recent study,107 where a

semantics based cross-season localization algorithm is pro-

posed. In principle, the geometric localization methods are

dependent on similarities between image appearances,

and this has apparently confronted the researchers that,

even though the images are collected under identical posi-

tions, seasonal changes seem to be enough to make the

concerned images unidentified, so that the matching rela-

tionship becomes unreliable. In this case, the semantics

are certainly reminiscent, and one of the important con-

tributions of research in cross-season localization has

been the fact that topologies of semantic objects in a sin-

gle image would be consistent over time. This cross-

season localization method appears to be sufficiently

reliable when applied to unmanned vehicles. A novel

graph-based semantic relocalization idea was proposed

by Gawel et al.,108 in such a system, the keyframes with

semantics are transformed into a large set of 3D graphs,

and these 3D graphs are used to further match with the

surrounding’s map that is globally pre-built.

Apart from the seasonal changes, the introduction of

semantics also helps to deal with the variation of larger

viewpoint or illuminatio, or even partial structure changes

of scenes caused by time. This relocalization and loop clo-

sure detection scheme produces a verification of accuracy

enhancement of V-SLAM systems as an added benefit.

Open problems

Parts of semantic SLAM researchers pay their attention to

the pipeline design of deep learning-based solutions, so as

to build a trainable end-to-end SLAM system. Attempts

have been made to estimate depth from a single image by

means of CNNs in recent years.111–113 Even if the feasibil-

ity has been testified, the difficulties caused by confining

generalization ability of CNNs still remain as an inherently

ill-posed problem. The efforts of researchers have been

directed at exploiting some end-to-end pipelines to jointly

estimate depth and camera motion from a pair of images.109

In addition, Wang and Clark110 provide an alternative solu-

tion and can be reference to further study, which directly

infers poses and uncertainties from a video.

From their experiments, it has been learned that the

hierarchical network design, together with careful

parameter configuration and sufficient training, could

result in the state-of-the-art accuracy on the given data

sets. Meanwhile, opponents are still standing in the way

of arguing the poor performance of pipeline-formed

SLAM in practical applications; they emphasize the

“interpretability” and “generalization capability” issues.

For this, researchers are now working on deep learning

modeled methods for better interpretability and multidi-

mensional visualization.

Discussions

In the former sections, the issues associated with percep-

tion, robustness, and accuracy of semantic SLAM are

currently referred to. Furthermore, among technical tools

for SLAM performance enhancements, the matched open

problems are posted. One of the major concerns of this

survey is to present the feasible solutions to above open

problems from a macroperspective. Therefore, this entire

section is devoted to a macroscopic discussions. It is

mainly related to multiscaled map expression, object

SLAM, and weakly supervised and unsupervised learn-

ing SLAM.

Multiscaled map expression

We believe that the time-scaled maps contribute to the

long-term autonomous location of robots. For a few years,

the advocates of V-SLAM have ignored the existent prob-

lems in their research. For example, the spatiotemporal

context (STC) in image sequences has been not taken into

account in the process of mapping expression, which con-

sequently makes it impossible to reconstruct the expected

time-varying semantic maps. Lately, the research on

recursive neural network (RNN) has helped to develop

the ideas of STC in image sequences;114 from our point

of view, RNN could be identically invited for the mapping

tasks of a V-SLAM that requires long-term locating with

strong autonomy.

Together with time-varying map (contains the entire

environmental information over a certain period of time),

panoptic semantic map constitutes the main forms that may

be taken in multiscaled expression. If it were desired to

construct a panoptic semantic map within a V-SLAM

framework, the keyframes need to be semantically segmen-

ted in a global perspective. As one source of the difficulty

in CV community, several methods have been developed

for segmenting foreground objects on pixel level; however,

the problems of unifying labelings of foreground and back-

ground still remain. The rising panoptic segmentation net-

work represents a solution to this class of problems.93 It

produces globally constraint labelings by fusing results

derived from semantic segmentation and instance segmen-

tation; a better understanding of the things being perceived,

therefore, is achieved as expected.
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According to the analysis above, in semantic SLAM

field, we are convinced of the promising advance of multi-

scaled maps, which have same general characteristics in

high-level human–robot–environment interaction and

long-term autonomous location.

Object SLAM

From our point of view, DNNs are novel but unpractical

ways in improving the robustness of a VO. In most cases,

due to the overemphasized robustness of feature points, the

overtrained DNN pipelines not only produce unexpected

consumption of time but also exhibits unavailability in cer-

tain SLAM tasks under totally new scenes. A reliable

object SLAM framework is illustrated in Figure 6, where

the independent tracking for individual objects in a 3D

scene is established. It enables the efficient feature selec-

tion and data association to be implemented in terms of 2D

to 3D and single thread to multithread, so that practically

improves the robustness and accuracy of a VO.

SLAMþþ78 represents the earliest research in area of

object SLAM. Due to the fact that the object data sets

should be built beforehand, SLAMþþ is still invalid for

online tasks. Lately, the research on SLAMþþ can be

developed alternatively along two directions: one is repre-

sented by CubeSLAM102 with an object description by

cube, the other one is represented by QuadricSLAM103

with an object description by ellipsoid.

We believe that object SLAM has broad prospects, and

the point of the whole process is to directly track dynamic

targets under 3D scenes. With the rapid advance of 3D

object tracking (includes a 3D semantic estimator) in area

of CV, there are reasons to believe that it simultaneously

helps to construct an object SLAM system with more

efficiency.

Weakly supervised and unsupervised learning SLAM

With the existing data sets, the end-to-end semantic SLAM

pipeline generally leads to optimal localization accuracy,

but the interpretability and generalization ability restricts

its applicability to a wider range of applications. Take DNN

as a specific example, the reduced generalization ability is

often accompanied by overfitting due to over meticulous

parameter configuration and training. The weakly super-

vised and unsupervised learning-based pipelines have been

employed in the development of improved generalization

ability of DNNs. However, the study is still in the prelim-

inary stage. In fact, in end-to-end SLAM filed, unsuper-

vised learning-based monocular depth estimation has been

recognized as a main research direction;115–117 meanwhile,

interests of experts in machine learning are now focused

upon the interpretability of DNNs. These clues make us

believe that the advanced learning strategies would be pow-

erful and practical tools for the semantic SLAM pipelines.

It is important to appreciate that semantic SLAM pipelines

can be easily integrated into deep reinforcement learning

paradigm to construct a robot system with general

intelligence.

Conclusions

For autonomous robot navigation tasks, a semantic SLAM

that aims at better understanding and perceiving a message

from the robot work volume has drawn an increasing atten-

tion. In this survey, we review the development of semantic

SLAM concerning its perception, robustness, and accuracy

and then discuss the open problems associated with the

recent progress and challenges. Specifically, we attempt

to seek possible solutions to these open problems from a

macroscopic view and further state the suggestions in a

constructive manner. We believe that SLAM frameworks

Semantic & geometric
informantion fusion

semantic extractor

Front-end of semantic SLAM Back-end of semantic SLAMSemantic extraction

loop closure detection

relocalization

global optimization

Semantic map

localization

navigation

obstacle avoidance

reconstruction

interaction

feature detection

data association

semantic inference

local camera BA

local object BA

stationary features

dynamic features

color image

semantic
segmentation

Figure 6. The architecture of a semantic SLAM system. SLAM: simultaneous localization and mapping.
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are well-established and proven by practice, and semantic

SLAM will distinguish itself by the eminent fusion of

image semantics. The evolution of deep learning-based

methods has apparently exploited the opportunity for

researchers to use their powerful image processing capa-

cities to estimate poses, detect loop closures, build 3D

maps, and so on. From our point of view, deep learning

and semantic SLAM are now inseparably related, and a

blend of them must be experiencing a booming in the

future studies.
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