
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 1

A Survey of Indexing Techniques for
Scalable Record Linkage and Deduplication

Peter Christen

Abstract —Record linkage is the process of matching records from several databases that refer to the same entities. When applied
on a single database, this process is known as deduplication. Increasingly, matched data are becoming important in many application
areas, because they can contain information that is not available otherwise, or that is too costly to acquire. Removing duplicate records
in a single database is a crucial step in the data cleaning process, because duplicates can severely influence the outcomes of any
subsequent data processing or data mining. With the increasing size of today’s databases, the complexity of the matching process
becomes one of the major challenges for record linkage and deduplication. In recent years, various indexing techniques have been
developed for record linkage and deduplication. They are aimed at reducing the number of record pairs to be compared in the matching
process by removing obvious non-matching pairs, while at the same time maintaining high matching quality. This paper presents a
survey of twelve variations of six indexing techniques. Their complexity is analysed, and their performance and scalability is evaluated
within an experimental framework using both synthetic and real data sets. No such detailed survey has so far been published.

Index Terms —Data matching, data linkage, entity resolution, index techniques, blocking, experimental evaluation, scalability.

✦

1 INTRODUCTION

A S many businesses, government agencies and re-
search projects collect increasingly large amounts

of data, techniques that allow efficient processing,
analysing and mining of such massive databases have
in recent years attracted interest from both academia
and industry. One task that has been recognised to be
of increasing importance in many application domains
is the matching of records that relate to the same entities
from several databases. Often, information from multiple
sources needs to be integrated and combined in order
to improve data quality, or to enrich data to facilitate
more detailed data analysis. The records to be matched
frequently correspond to entities that refer to people,
such as clients or customers, patients, employees, tax
payers, students, or travellers.
The task of record linkage is now commonly used for

improving data quality and integrity, to allow re-use of
existing data sources for new studies, and to reduce costs
and efforts in data acquisition [1]. In the health sector,
for example, matched data can contain information that
is required to improve health policies, information that
traditionally has been collected with time consuming
and expensive survey methods [2], [3]. Linked data can
also help in health surveillance systems to enrich data
that is used for the detection of suspicious patterns, such
as outbreaks of contagious diseases.
Statistical agencies have employed record linkage for

several decades on a routinely basis to link census data
for further analysis [4]. Many businesses use dedupli-

• Peter Christen is with the Research School of Computer Science, College of
Engineering and Computer Science, The Australian National University,
Canberra ACT 0200, Australia. E-mail: peter.christen@anu.edu.au

cation and record linkage techniques with the aim to
deduplicate their databases to improve data quality or
compile mailing lists, or to match their data across
organisations, for example for collaborative marketing
or e-Commerce projects. Many government organisa-
tions are now increasingly employing record linkage,
for example within and between taxation offices and
departments of social security to identify people who
register for assistance multiple times, or who work and
collect unemployment benefits.
Other domains where record linkage is of high inter-

est are fraud and crime detection, as well as national
security [5]. Security agencies and crime investigators
increasingly rely on the ability to quickly access files
for a particular individual under investigation, or cross-
check records from disparate databases, which may help
to prevent crimes and terror by early intervention.
The problem of finding records that relate to the

same entities not only applies to databases that con-
tain information about people. Other types of entities
that sometimes need to be matched include records
about businesses, consumer products, publications and
bibliographic citations, Web pages, Web search results,
or genome sequences. In bioinformatics, for example,
record linkage techniques can help find genome se-
quences in large data collections that are similar to a
new, unknown sequence. In the field or information
retrieval, it is important to remove duplicate documents
(such as Web pages and bibliographic citations) in the
results returned by search engines, in digital libraries
or in automatic text indexing systems [6], [7]. Another
application of growing interest is finding and comparing
consumer products from different online stores. Because
product descriptions are often slightly varying, matching
them becomes challenging [8].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 2

Cleaning and
standardisation

Cleaning and
standardisation

Database A

Database B

Non−
matches matchesMatches

Evaluation

ClericalPossible
review

Record pair
comparison

Indexing

classification
Similarity vector

Fig. 1. Outline of the general record linkage process.
The indexing step (the topic of this survey) generates
candidate record pairs, while the output of the comparison
step are vectors containing numerical similarity values.

In situations where unique entity identifiers (or keys)
are available across all the databases to be linked, the
problem of matching records at the entity level becomes
trivial: a simple database join is all that is required.
However, in most cases no such unique identifiers are
shared by all databases, and more sophisticated linkage
techniques are required. These techniques can be broadly
classified into deterministic, probabilistic, and learning
based approaches [4], [9], [10].
While statisticians and health researchers commonly

name the task of matching records as data or record
linkage [11] (the term used in this paper), the computer
science and database communities refer to the same
process as data or field matching [12], data integra-
tion [13], data scrubbing or cleaning [14], [15], data
cleansing [16], duplicate detection [17], [18], information
integration [19], entity resolution [20], [21], [22], refer-
ence reconciliation [23], or as the merge/purge prob-
lem [24]. In commercial processing of business mailing
lists and customer databases, record linkage is usually
seen as a component of ETL (extraction, transformation
and loading) tools. Two recent surveys have provided
overviews of record linkage and deduplication tech-
niques and challenges [4], [18].

1.1 The Record Linkage Process

Figure 1 outlines the general steps involved in the
linking of two databases. Because most real-world data
are dirty and contain noisy, incomplete and incorrectly
formatted information, a crucial first step in any record
linkage or deduplication project is data cleaning and
standardisation [25]. It has been recognised that a lack
of good quality data can be one of the biggest obstacles
to successful record linkage [2]. The main task of data
cleaning and standardisation is the conversion of the raw
input data into well defined, consistent forms, as well as
the resolution of inconsistencies in the way information
is represented and encoded [15], [25].

The second step (‘Indexing’) is the topic of this survey,
and will be discussed in more detail in Section 2. The
indexing step generates pairs of candidate records that
are compared in detail in the comparison step using a
variety of comparison functions appropriate to the con-
tent of the record fields (attributes). Approximate string
comparisons, which take (typographical) variations into
account, are commonly used on fields that for example
contain name and address details [12], while comparison
functions specific for date, age, and numerical values are
used for fields that contain such data [26]. Several fields
are normally compared for each record pair, resulting
in a vector that contains the numerical similarity values
calculated for that pair.
Using these similarity values, the next step in the

record linkage process is to classify the compared can-
didate record pairs into matches, non-matches, and
possible matches, depending upon the decision model
used [9], [27]. Record pairs that were removed in the
indexing step are classified as non-matches without be-
ing compared explicitly. The majority of recent research
into record linkage has concentrated on improving the
classification step, and various classification techniques
have been developed. Many of them are based on ma-
chine learning approaches [10], [20], [28], [29], [30], [31].
If record pairs are classified into possible matches, a
clerical review process is required where these pairs are
manually assessed and classified into matches or non-
matches. This is usually a time-consuming, cumbersome
and error-prone process, especially when large databases
are being linked or deduplicated. Measuring and eval-
uating the quality and complexity of a record linkage
project is a final step in the record linkage process [9].

1.2 Contributions

While various indexing techniques for record linkage
and deduplication have been developed in recent years,
so far no thorough theoretical or experimental survey
of such techniques has been published. Earlier sur-
veys have compared four or less indexing techniques
only [32], [33]. It is therefore currently not clear which
indexing technique is suitable for what type of data and
what kind of record linkage or deduplication application.
The aim of this survey is to fill this gap, and provide both
researchers and practitioners with information about
the characteristics of a variety of indexing techniques,
including their scalability to large data sets, and their
performance for data with different characteristics.
The contributions of this paper are a detailed discus-

sion of six indexing techniques (with a total of twelve
variations of them), a theoretical analysis of their com-
plexity, and an empirical evaluation of these techniques
within a common framework on a variety of both real
and synthetic data sets.
The reminder of this paper is structured as follows.

In the following Section 2 the indexing step of the
record linkage process is discussed in more detail. The

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 3

TABLE 1
Example records and blocking keys. How the blocking key values (BKVs) are generated is detailed in Section 2. The

two highlighted bold pairs of BKVs illustrate that these records would be inserted into the same blocks.

Record fields Blocking keys and BKVs
Identifiers Givennames Surnames Postcodes Suburb names Sndx(GiN)+PC Fi2D(PC)+DMe(SurN) Sndx(SubN)+La2D(PC)

R1 Peter Christen 2010 North Sydney P360-2010 20-KRST N632-10
R2 Pedro Kristen 2000 Sydeny P360-2000 20-KRST S530-00
R3 Paul Smith 2600 Canberra P400-2600 26-SM0 C516-00

R4 Pablo Smyth 2700 Canberra Sth P140-2700 27-SM0 C516-00

six indexing techniques are then presented in Section 3,
followed by their experimental evaluation in Section 4.
The results of these experiments are discussed in Sec-
tion 5. An overview of related work is then provided in
Section 6, and the paper is concluded in Section 7 with
an outlook to future work and challenges in this area.

2 INDEXING FOR RECORD L INKAGE AND
DEDUPLICATION

When two databases, A and B, are to be matched, po-
tentially each record from A needs to be compared with
every record from B, resulting in a maximum number
of |A| × |B| comparisons between two records (with | · |
denoting the number of records in a database). Similarly,
when deduplicating a singe database A, the maximum
number of possible comparisons is |A| × (|A| − 1)/2, be-
cause each record in A potentially needs to be compared
with all other records.
The performance bottleneck in a record linkage or

deduplication system is usually the expensive de-
tailed comparison of field (attribute) values between
records [9], [32], making the naı̈ve approach of compar-
ing all pairs of records not feasible when the databases
are large. For example, the matching of two databases
with one million records each would result in 1012 (one
trillion) possible record pair comparisons.
At the same time, assuming there are no duplicate

records in the databases to be matched (i.e. one record
in A can only be a true match to one record in B and
vice versa), then the maximum possible number of true
matches will correspond to min(|A|, |B|). Similarly, for
a deduplication the number of unique entities (and thus
true matches) in a database is always smaller than or
equal to the number of records in it. Therefore, while
the computational efforts of comparing records increase
quadratically as databases are getting larger, the number
of potential true matches only increases linearly in the
size of the databases.
Given this discussion, it is clear that the vast majority

of comparisons will be between records that are not
matches. The aim of the indexing step is to reduce this
large number of potential comparisons by removing as
many record pairs as possible that correspond to non-
matches. The traditional record linkage approach [4],
[11] has employed an indexing technique commonly
called blocking [32], which splits the databases into non-
overlapping blocks, such that only records within each

block are compared with each other. A blocking criterion,
commonly called a blocking key (the term used in this
paper), is either based on a single record field (attribute),
or the concatenation of values from several fields.

Because real-world data are often dirty and contain
variations and errors [34], an important criteria for a
good blocking key is that it can group similar values into
the same block. What constitutes a ‘similar’ value de-
pends upon the characteristics of the data to be matched.
Similarity can refer to similar sounding or similar look-
ing values based on phonetic or character shape char-
acteristics. For strings that contain personal names, for
example, phonetic similarity can be obtained by using
phonetic encoding functions such as Soundex, NYSIIS
or Double-Metaphone [35]. These functions, which are
often language or domain specific, are applied when the
blocking key values (BKVs) are generated.

As an example, Table 1 shows three different blocking
keys and the resulting BKVs for four records. The first
one is made of Soundex (Sndx) encoded givenname
(GiN) values concatenated with full postcode (PC) val-
ues, the second consists of the first two digits (Fi2D) of
postcode values concatenated with Double-Metaphone
(DMe) encoded surname (SurN) values, and the third is
made of Soundex encoded suburb name (SubN) values
concatenated with the last two digits (La2D) of postcode
values. To illustrate the two components of each blocking
key in Table 1, their values are separated by a hyphen
(‘-’), however in real-world applications they would be
concatenated directly.

Several important issues need to be considered when
record fields are selected to be used as blocking keys. The
first issue is that the quality of the values in these fields
will influence the quality of the generated candidate
record pairs. Ideally, fields containing the fewest errors,
variations or missing values should be chosen. Any error
in a field value used to generate a BKV will potentially
result in records being inserted into the wrong block,
thus leading to missing true matches [9]. One approach
used to overcome errors and variations is to generate
several blocking keys based on different record fields,
as is illustrated in Table 1. The hope is that records that
refer to true matches have at least one BKV in common,
and will therefore be inserted into the same block.

A second issue that needs to be considered when
defining blocking keys is that the frequency distribution
of the values in the fields used for blocking keys will

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 4

effect the size of the generated blocks. Often this will
be the case even after phonetic or other encodings have
been applied. For example, a field containing surnames
in a database from the UK, US or Australia will likely
contain a large portion of records with the value ‘Smith’,
which will results in a similarly large portion of records
with the corresponding Soundex encoding ‘S530’. If m
records in database A and n records in database B have
the same BKV, then m × n candidate record pairs will
be generated from the corresponding block. The largest
blocks generated in the indexing step will dominate
execution time of the comparison step, because they
will contribute a large portion of the total number of
candidate record pairs. Therefore, it is of advantage
to use fields that contain uniformly distributed values
because they will result in blocks of equal sizes.
When blocking keys are defined, there is also a trade-

off that needs to be considered. On one hand, having
a large number of smaller blocks will result in fewer
candidate record pairs that will be generated. This will
likely increase the number of true matches that are
missed. On the other hand, blocking keys that result
in larger blocks will generate an increased number of
candidate record pairs that likely will cover more true
matches, at the cost of having to compare more candidate
pairs [32]. As will be discussed in the following section,
some indexing techniques do allow explicit control of
the size of the blocks that will be generated, while for
others the block sizes depend upon the characteristics of
the record fields used in blocking keys.
All indexing techniques discussed in the following

section do require some form of blocking key to be
defined. The question of how to optimally choose record
fields for blocking keys, such that as many true matching
pairs as possible are included in the set of candidate
record pairs, is orthogonal to the selection of an actual
indexing technique. Traditionally, blocking keys have
been manually selected by domain experts according to
their understanding of the databases to be matched, or
based on initial data exploration steps conducted.
In order to achieve an indexing that generates candi-

date record pairs of good quality, many recently devel-
oped indexing techniques require various parameters to
be set. The optimal values of these parameters depend
both upon the data to be matched (such as distribution
of values and error characteristics), as well as the choice
of blocking key(s) used. This makes it often difficult
in practise to achieve a good indexing, because time
consuming manual parameter tuning, followed by test
linkages and careful evaluation is required.
In many real-world record linkage or deduplication

applications no data are available that contain the known
true match status of record pairs that can be used
to assess linkage quality [9]. Therefore, it is often not
known how many true matches are included in the set of
candidate record pairs. Measures suitable for assessing
record linkage quality and complexity will be discussed
in Section 4.2. Ideally, an indexing technique for record

linkage and deduplication should be robust with regard
to the selected parameter values or not require parame-
ters at all, which would allow automated indexing [36].

3 INDEXING TECHNIQUES

In this section, the traditional blocking approach and
five more recently developed indexing techniques and
variations of them are discussed in more detail. Their
complexity is analysed as the estimated number of can-
didate record pairs that will be generated. Knowing this
number, together with a measured average time per
record pair comparison (shown in Table 4), will allow an
estimate of the run-time of the comparison step. Given
this step is often the most time consuming step in a
record linkage or deduplication project, such estimates
will help users to predict how long a certain linkage or
deduplication project will take.
The estimated number of candidate record pairs will

be calculated for two different frequency distributions of
BKVs. The first assumes a uniform distribution of values,
resulting in each block containing the same number of
records. The second assumes that the frequencies of the
BKVs follow Zipf’s law [37], a frequency distribution
that is commonly found in data sets that contain values
such as personal names [38]. Zipf’s law states that in
a list of words ranked according to their frequencies,
the word at rank r has a relative frequency that corre-
sponds to 1/r. For attributes such as postcode or suburb
name, the frequency distribution of their values is likely
somewhere between a uniform and a Zipf-like frequency
distribution. The uniform and Zipf distributions should
therefore provide lower and upper bounds for the num-
ber of candidate record pairs that can be expected when
linking or deduplicating real-world databases.
Conceptually, the indexing step of the record linkage

process can be split into the following two phases:

1) Build: All records in the database (or databases)
are read, their BKVs are generated, and records are
inserted into appropriate index data structures. For
most indexing techniques, an inverted index [37]
can be used. The BKVs will become the keys of
the inverted index, and the record identifiers of all
records that have the same BKV will be inserted
into the same inverted index list. Figure 2 illustrates
this for a small example data set.
When linking two databases, either a separate in-
dex data structure is built for each database, or a
single data structure with common key values is
generated. For the second case, each record iden-
tifier needs to include a flag that indicates from
which database the record originates.
The field values required in the comparison step
need to be inserted into another data structure that
allows efficient random access to single records
when they are required for field comparisons. This
can be achieved using an appropriately indexed
database or hash table.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 5

Identifiers Surnames BKVs (Soundex encoding)

R1 Smith S530
R2 Miller M460
R3 Peters P362
R4 Myler M460
R5 Smyth S530
R6 Millar M460
R7 Smyth S530
R8 Miller M460

R3R2

R4

R6

R8

R1

R5

R7

M460 P362 S530

Fig. 2. Example records with surname values and their Soundex encodings used as BKVs, and the corresponding
inverted index data structure as used for traditional blocking.

2) Retrieve: For each block, its list of record iden-
tifiers is retrieved from the inverted index, and
candidate record pairs are generated from this list.
For a record linkage, all records in a block from one
database will be paired with all records from the
block with the same BKV from the other database,
while for a deduplication each record in a block
will be paired with all other records in the same
block. For example, from the block with key ‘S530’
from Figure 2 the pairs (R1,R5), (R1,R7) and (R5,R7)
will be generated.
The candidate record pairs are then compared in
detail in the comparison step, and the resulting
vectors containing numerical similarity values are
given to a classifier in the classification step.

This survey mainly considers the Build phase, namely
how different indexing techniques, using the same block-
ing key definition, are able to index records from data
sets with different characteristics, and how this, in com-
bination with various parameter settings, affects the
number and quality of the candidate record pairs gen-
erated. The specific questions of interest are how many
candidate pairs are generated, and how many of them
are true matches and how many true non-matches.
The following notation will be used when discussing

the complexity of indexing techniques: nA = |A| and
nB = |B| are the number of records in the databases
A and B, respectively. For simplicity, it is assumed that
only one blocking key definition is used, and that the
BKVs generated for both databases are the same, i.e. if
KA and KB are the sets of BKVs generated from A and
B, then KA ≡ KB . While this is a rare scenario in most
real world applications, it provides an upper bound on
the number of candidate record pairs, because any BKV
that is only generated by one of the two databases will
not result in any candidate record pairs. The number of
different BKVs is denoted as b, with b = |KA| = |KB|
(and | · | denoting the number of elements in a set).

3.1 Traditional Blocking

This technique has been used in record linkage since
the 1960s [11]. All records that have the same BKV are
inserted into the same block, and only records within
the same block are then compared with each other.
Each record is inserted into one block only (assuming a
single blocking key definition). As illustrated in Figure 2,

traditional blocking can be implemented efficiently using
a standard inverted index [37], as described in the Build

phase above. In the Retrieve phase, the identifiers of
all records in the same block are retrieved and the
corresponding candidate record pairs are generated.

While traditional blocking does not have any explicit
parameters, the way blocking keys are defined will
influence the quality and number of candidate record
pairs that are generated. As discussed in Section 2, a
major drawback of traditional blocking is that errors
and variations in the record fields used to generate
BKVs will lead to records being inserted into the wrong
block. This drawback can be overcome by using several
blocking key definitions based on different record fields,
or different encodings applied on the same record fields.
A second drawback of traditional blocking is that the
sizes of the blocks generated depend upon the frequency
distribution of the BKVs, and thus it is difficult in
practice to predict the total number of candidate record
pairs that will be generated.

If a uniform distribution of field values is assumed
that leads to uniformly distributed BKVs, then all blocks
will be of uniform size and contain nA/b or nB/b records,
respectively, with b being the number of different BKVs.
In this situation, the number of candidate record pairs
generated for a record linkage equals

uTBRL = b×
(nA

b
×

nB

b

)

=
nAnB

b
, (1)

while for a deduplication the number of candidate
record pairs generated equals

uTBD = b×
(nA

b
×
(nA

b
− 1
)

/2
)

=
nA

2

(nA

b
− 1
)

. (2)

For both situations, this corresponds to a b-fold reduction
in the number of candidate pairs compared to the naı̈ve
approach of comparing all records with each other.

If a Zipf frequency distribution of record field values
is assumed that leads to Zipf-like distribution of BKVs,
then the size of the generated blocks will also follow
a Zipf-like frequency distribution. With b blocks, the
number of candidate record pairs generated for a record
linkage in this situation equals

zTBRL =

b
∑

i=1

(

1/i

Hb

× nA

)

×

(

1/i

Hb

× nB

)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 6

=
nAnB

H2
b

×

b
∑

i=1

1

i2
, (3)

with Hb being the harmonic number of the partial har-

monic sum, Hb =
∑b

i=1 1/i. For a deduplication, the
number of candidate record pairs generated equals

zTBD =

b
∑

i=1

(

1/i

Hb

× nA

)

×

(

1/i

Hb

× nA − 1

)

/2

=
1

2
×

(

n2
A

H2
b

b
∑

i=1

1

i2
−

nA

Hb

b
∑

i=1

1

i

)

. (4)

For a given number of blocks and a database (or
databases) of a given size, having blocks of uniform
size will lead to the smallest number of candidate
records pairs generated compared to any non-uniform
distribution. For example, for two equal sized blocks
each containing x records, the number of candidate
record pairs generated will equal 2 × x2. Changing the
distribution to blocks containing (x + 1) and (x − 1)
records, respectively, will result in (x + 1)2 + (x − 1)2 =
(x2+2x+1)+(x2−2x+1) = 2×x2+2. Therefore, every re-
distribution away from uniform block sizes will increase
the number of candidate record pairs generated. From
this follows that uTBRL < zTBRL and uTBD < zTBD

for the same number of blocks and the same number of
records in the database(s) to be linked or deduplicated.

3.2 Sorted Neighbourhood Indexing

This technique was first proposed in the mid 1990s [24].
Its basic idea is to sort the database(s) according to
the BKVs, and to sequentially move a window of a
fixed number of records w (w > 1) over the sorted
values. Candidate record pairs are then generated only
from records within a current window. As illustrated in
Figures 3 and 4, there are two different approaches of
how this technique can be implemented.

3.2.1 Sorted Array Based Approach

In this first approach, as originally proposed [24], the
BKVs are inserted into an array that is sorted alpha-
betically, as shown in the left-hand side of Figure 3.
The window is then moved over this sorted array and
candidate record pairs are generated from all records in
the current window, as illustrated in the right-hand side
of Figure 3. In case of a record linkage, the BKVs from
both databases will be inserted into one combined array
and then sorted alphabetically, but candidate record
pairs are generated in such a way that for each pair one
record is selected from each of the two databases.
For a record linkage, assuming the length of the sorted

array is (nA + nB) (the total number of records in
both databases), then the number of window positions
equals (nA + nB − w + 1), while for a deduplication
the number of windows is (nA − w + 1). As can be
seen in the right-hand side of Figure 3, most candidate

record pairs are generated in several windows, however
each unique pair will only be compared once in the
comparison step. Because the window size is fixed in
this approach, the number of candidate record pairs
generated is independent of the frequency distribution
of the BKVs, and only depends upon the window size
w and the size(s) of the database(s). If α = nA/(nA+nB)
denotes the ratio of the number of records in database
A over the number of records in both databases, and
β = nB/(nA + nB) = (1 − α) the corresponding ratio
for database B, then for a record linkage the number of
unique candidate record pairs generated equals

uSNRLSA
= (αw)(βw) + (nA + nB − w) ×

(α((w − 1)β) + β((w − 1)α))

= αβw2 + 2αβ(nA + nB − w)(w − 1)

= αβ(w2 + 2(nA + nB − w)(w − 1))

=
nAnB

(nA + nB)2
×

(w2 + 2(nA + nB − w)(w − 1)). (5)

The first term in the first line of Equation 5 equals to
the number of candidate record pairs that are generated
in the first window position, while the remainder of the
equation equals to the number of unique pairs generated
in the remaining (nA + nB − w) window positions.
Assuming evenly mixed BKVs from A and B, in the first
window position there will be αw records from database
A that have to be compared to βw records from database
B. For all following window positions, with a likelihood
of α the newest record added to the window originates
from databaseA, and it has to be compared with (w−1)β
records in the current window that are from database B.
A similar calculation, the term β((w−1)α), can be made
when the newest record in a window originates from
database B. The total number of candidate record pairs
generated depends quadratically upon the window size
w, and on the harmonic mean of the sizes of the two
databases that are linked.
For a deduplication, the number of unique candidate

pairs generated (duplicate pairs not counted) equals

uSNDSA
= w(w − 1)/2 + (nA − w)(w − 1)

= (w − 1)
(

nA −
w

2

)

. (6)

For both a record linkage and a deduplication the num-
ber of candidate record pairs generated is independent
of the frequency distribution of the BKVs, and therefore
no analysis of Zipf-distributed values is required.
A major drawback of this approach is that if a small

window size is chosen, it might not be large enough to
cover all records that have the same BKV. For example,
there might be several thousand records with a surname
value ‘Smith’ in a large database, but with a window
size of, for example, w = 10 not all of these records will
be in the same current window, and thus not all of them
will be compared with each other. One solution to this

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 7

Window positions BKVs (Surname) Identifiers

1 Millar R6
2 Miller R2
3 Miller R8
4 Myler R4
5 Peters R3
6 Smith R1
7 Smyth R5
8 Smyth R7

Window range Candidate record pairs

1 – 3 (R6,R2), (R6,R8), (R2,R8)
2 – 4 (R2,R8), (R2,R4), (R8,R4)
3 – 5 (R8,R4), (R8,R3), (R4,R3)
4 – 6 (R4,R3), (R4,R1), (R3,R1)
5 – 7 (R3,R1), (R3,R5), (R1,R5)
6 – 8 (R1,R5), (R1,R7), (R5,R7)

Fig. 3. Example sorted neighbourhood technique based on a sorted array, with BKVs being the surname values from
Figure 2 (and the corresponding record identifiers), and a window size w = 3.

Window positions BKVs (Surname) Identifiers

1 Millar R6
2 Miller R2, R8
3 Myler R4
4 Peters R3
5 Smith R1
6 Smyth R5, R7

Window range Candidate record pairs

1 – 3 (R6,R2), (R6,R8), (R6,R4), (R2,R8), (R2,R4), (R8,R4)
2 – 4 (R2,R8), (R2,R4), (R2,R3), (R8,R4), (R8,R3), (R4,R3)
3 – 5 (R4,R3), (R4,R1), (R3,R1)
4 – 6 (R3,R1), (R3,R5), (R3,R7), (R1,R5), (R1,R7), (R5,R7)

Fig. 4. Example sorted neighbourhood technique based on an inverted index and with the same BKVs and window
size as in Figure 3.

problem is to select blocking keys that are made of the
concatenation of several record fields (like surname and
given name), so that they have a large number of dif-
ferent values, rather than employing encoding functions
that group many similar field values together.
Another problem with this approach is that the sorting

of the BKVs is sensitive towards errors and variations in
the first few positions of values. For example, if given
names are used as BKVs, then ‘Christina’ and ‘Kristina’
will very likely be too far away in the sorted array to
be inserted into the same window, even though they are
very similar names and might refer to the same person.
This drawback can be overcome by employing several
blocking key definitions based on different record fields,
or by defining blocking keys based on reversed field
values (for example ‘anitsirhc’ and ‘anitsirk’).
The Build phase for this indexing approach also re-

quires the sorting of the array, which has a complexity
of O(n log n), with n = (nA + nB) for a record linkage,
and n = nA for a deduplication.

3.2.2 Inverted Index Based Approach

An alternative approach [39] for the sorted neighbour-
hood technique is illustrated in Figure 4. Rather than
inserting BKVs into a sorted array, this approach utilises
an inverted index similar to traditional blocking. The
index keys contain the alphabetically sorted BKVs, as
is shown in the left-hand side of Figure 4. The window
is moved over these sorted BKVs, and candidate record
pairs are formed from all records in the correspond-
ing index lists, as illustrated in the right-hand side of
Figure 4. Similar to the sorted array based approach,
most candidate record pairs are generated in several
windows, but each unique candidate pair will again only
be compared once in the comparison step. The number
of generated candidate record pairs with this approach
depends upon the number of record identifiers that are
stored in the inverted index lists.

For a window size w = 1, this inverted index based
approach reduces to traditional blocking as described in
Section 3.1. For all window sizes w > 1, the generated
candidate record pairs will therefore be a super-set of the
pairs generated by traditional blocking. In general, for
two window sizes wi and wj , with wi < wj , all candidate
record pairs generated with window size wi will also be
in the set of pairs generated with wj . However, the larger
the window size is, the larger the number of generated
candidate record pairs becomes.
The number of window positions with this approach

for both a record linkage and a deduplication is (b −
w + 1), with b being the number of different BKVs. For
a record linkage, record identifiers from both databases
will be inserted into a common inverted index data
structure, together with a flag stating if a record orig-
inates from database A or B. Assuming a uniform dis-
tribution of BKVs, each inverted index list will contain
nA/b + nB/b record identifiers. The number of unique
candidate record pairs generated for a record linkage is

uSNRLII
= w

nA

b
× w

nB

b
+ (b− w) ×

(nA

b
× w

nB

b
+

nB

b
× (w − 1)

nA

b

)

= w2nAnB

b2
+ (b− w) × (2w − 1)

nAnB

b2

=
nAnB

b2
(

w2 + (b− w)(2w − 1)
)

. (7)

The first term in Equation 7 corresponds to the number
of candidate record pairs generated in the first window
position, while the second term corresponds to the (b−w)
following window positions. The first part of this second
term refers to the candidate pairs that are generated
between the record identifiers in the most recently added
inverted index list in the current window that come from
database A and the identifiers in the previous lists from
database B, while the second part refers to the pairs that
are generated between the newest list from the index

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 8

of database B and the previous lists from the index of
database A. If the window size is set to w = 1, the above
formula reduces to Equation 1, generating the same
number of candidate record pairs as with traditional
blocking, because the term (w2 + (b − w)(2w − 1)) =
(12 + (b− 1)(2− 1)) = 1 + (b− 1) = b.
For a deduplication, the number of unique candidate

pairs generated equals

uSNDII
= w

nA

b
× (w

nA

b
− 1)/2 + (b− w) ×

(nA

b
× (w − 1)

nA

b
+

nA

b
(
nA

b
− 1)/2

)

= w
nA

2b
× (w

nA

b
− 1) + (b− w) ×

(

n2
A

b2
(w − 1) +

nA

2b

(nA

b
− 1
)

)

(8)

As can easily be verified, with w = 1 the above formula
reduces to Equation 2.
For BKVs that have a Zipf-like frequency distribu-

tion, calculating the number of candidate record pairs
is difficult, because this number will depend upon the
ordering of the inverted index lists. In the worst case
scenario, the size of the inverted index lists (in num-
ber of record identifiers they contain) corresponds to
the alphabetically sorted BKVs, such that the longest
list is the alphabetically first, the second longest the
alphabetically second, and so on. As a result, the first
window would contain the largest number of record
identifiers. Following Equations 3 and 7, the number of
unique candidate record pairs generated in this worst
case scenario for a record linkage equals

zSNRLII
=

(

nA

Hb

w
∑

i=1

1

i

)

×

(

nB

Hb

w
∑

i=1

1

i

)

+

b−w+1
∑

j=2





nA

Hb(j + w − 1)





j+w−1
∑

i=j

nB

Hbi



 +

nB

Hb(j + w − 1)





j+w−2
∑

i=j

nA

Hbi







 . (9)

Using Equations 4 and 8, for a deduplication the
number of candidate record pairs can be calculated as

zSNDII
=

1

2

(

nA

Hb

w
∑

i=1

1

i

)

×

(

nA

Hb

w
∑

i=1

1

i
− 1

)

+

b−w+1
∑

j=2





nA

Hb(j + w − 1)





j+w−2
∑

i=j

nA

Hbi



+

nA

2Hb(j + w − 1)
×

(

nA

Hb(j + w − 1)
− 1

))

.

The inverted index based sorted neighbourhood ap-
proach has two main disadvantages. First, similarly to
traditional blocking, the largest blocks will dominate the
number of candidate record pairs that are generated,
and therefore also dominate the time requirements of

the comparison step. The second disadvantage is that
the sorting of the BKVs assumes that their beginning is
error free. Otherwise, similar values will not be close
enough in the sorted keys of the inverted index and
might therefore not be covered in the same window.
As is recommended with the sorted array based ap-

proach, it is therefore good practice to define several
blocking keys, ideally based on different record fields,
and run this indexing approach using each of these
blocking keys. Similar to traditional blocking, for this
sorted neighbourhood approach it will also be of advan-
tage to use pre-processing, like phonetic encodings [35],
to group similar record values into the same blocks, i.e.
convert them into the same BKVs.
Assuming that the number of BKVs is much smaller

than the number of records in the database(s) to be
matched or deduplicated (i.e. b ≪ (nA + nB) or b ≪ nA,
respectively), the sorting of the BKVs will be much faster
than for the sorted array based approach because the
sorting step has a complexity of O(b log b).

3.2.3 Adaptive Sorted Neighbourhood Approach
Recent research has looked at how the sorted neigh-
bourhood indexing technique based on a sorted array
can be improved [40], [41]. The issue of having a fixed
block size w which can result in missed true matches
(because not all same BKVs fit into one window, as
discussed in Section 3.2.1) has been addressed through
an adaptive approach to dynamically set the window
size [40]. Depending upon the characteristics of the BKVs
used in the sorted array, the idea is to find values
adjacent to each other that are significantly different
from each other using an appropriate string similarity
measure [35]. These so called boundary pairs of BKVs are
then used to form blocks, i.e. they mark the positions
in the sorted array where one window ends and a
new one starts. This approach can therefore be seen
as a combination of traditional blocking and the sorted
neighbourhood approach. Due to the adaptive nature
of the approach, where block sizes are determined by
the similarities between BKVs, a theoretical analysis of
the number of generated candidate record pairs would
depend upon the actual BKVs and therefore not be of
general use. This adaptive approach will however be
evaluated experimentally in Section 4.
Another recently developed approach generalises

traditional blocking and the sorted neighbourhood
technique, and combines them into a sorted blocks
method [41]. The authors of this approach show that
traditional blocking and sorted neighbourhood indexing
are two ends of a general approach. Blocking corre-
sponds to sorted neighbourhood indexing where the
window is moved forward w positions rather than only
1, resulting in non-overlapping blocks. The proposed
combined approach allows specification of the desired
overlap, and experimental results presented show that
the sorted neighbourhood approach performs better than
traditional blocking, especially for small blocks [41].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 9

Identifiers BKVs (Surname) Bigram sub-lists Index key values

R1 Smith [sm,mi,it,th], [mi,it,th], smmiitth, miitth,
[sm,it,th], [sm,mi,th], smitth, smmith,
[sm,mi,it] smmiit

R2 Smithy [sm,mi,it,th,hy], [mi,it,th,hy], smmiitthhy, miitthhy,
[sm,it,th,hy], [sm,mi,th,hy], smitthhy, smmithhy,
[sm,mi,it,hy], [sm,mi,it,th] smmiithy, smmiitth

R3 Smithe [sm,mi,it,th,he], [mi,it,th,he], smmiitthhe, miitthhe,
[sm,it,th,he], [sm,mi,th,he], smitthhe, smmithhe,
[sm,mi,it,he], [sm,mi,it,th] smmiithe, smmiitth

... ...smmiitth

R1

R2

R3

smmiitthhe

R3

smmiithy

R2

Fig. 5. Q-gram based indexing with surnames used as BKVs, index key values based on bigrams (q = 2), and
calculated using a threshold set to t = 0.8. The right-hand side shows three of the resulting inverted index lists
(blocks), with the common BKV highlighted in bold in the index key value column.

3.3 Q-gram Based Indexing

The aim of this technique is to index the database(s)
such that records that have a similar, not just the same,
BKV will be inserted into the same block. Assuming the
BKVs are strings, the basic idea is to create variations for
each BKV using q-grams (sub-strings of lengths q), and
to insert record identifiers into more than one block.

Each BKV is converted into a list of q-grams, and sub-
list combinations of these q-gram lists are then generated
down to a certain minimum length, which is determined
by a user-selected threshold t (t ≤ 1). For a BKV
that contains k q-grams, all sub-list combinations down
to a minimum length of l = max(1, ⌊k × t⌋) will be
created (⌊. . .⌋ denotes rounding to the next lower integer
number). These sub-lists are then converted back into
strings and used as the actual key values into an inverted
index, as is illustrated in Figure 5.

Different from the inverted index used in traditional
blocking is that each record identifier is generally in-
serted into several index lists, according to the number of
q-gram sub-lists generated for its BKV. With a threshold
t = 1.0 however, each record identifier will be inserted
into one inverted index list only, and in this case q-gram
based indexing will generate the same candidate record
pairs as traditional blocking.

Figure 5 illustrates q-gram based indexing for three
example records, q = 2 (bigrams), and a threshold
t = 0.8. The BKV ‘Smith’ in the first record (R1), for
example, contains four (k = 4) bigrams: ‘sm’, ‘mi’, ‘it’,
‘th’ (assuming all letters have been converted into lower
case beforehand). The length l of the shortest sub-lists
for this value can be calculated as l = ⌊4 × 0.8⌋ = 3.
Therefore, four sub-lists each containing three bigrams
will be generated for this BKV: [mi,it,th], [sm,it,th],
[sm,mi,th], and [sm,mi,it]. Each of these is generated by
removing one of the four original bigrams. These sub-
lists will then be converted back into strings to form
the actual key values used in the inverted index, as
is shown in Figure 5. The identifier of the record R1
will be inserted into the five inverted index lists with
key values ‘smmiitth’, ‘miitth’, ‘smitth’, ‘smmith’, and
‘smmiit’. With an even lower threshold (t < 0.75), sub-
lists of length two would be generated recursively from
the sub-lists of length three.

TABLE 2
Number of bigram (q = 2) sub-lists (s) generated

according to Equation 10 for different threshold values t
and different number of q-grams k in the BKVs.

Number of bigrams Threshold value t

in BKVs, k 0.9 0.8 0.7 0.6

3 4 4 4 7
4 5 5 11 11
6 7 22 22 42
8 9 37 93 163
10 11 56 176 386
12 79 299 794 1586
15 121 576 4944 9949
20 211 6196 60,460 263,950

The number of sub-lists generated for a BKV depends
both upon the number of q-grams it consists of, as well as
the value of the threshold t. Lower values of twill lead to
an increased number of shorter sub-lists, and therefore a
larger number of different index key values. The longer a
BKV is, the more sub-lists will be generated. For a BKV
of length c characters, there will be k = (c − q + 1) q-
grams, and with l = max(1, ⌊k × t⌋) the length of the
shortest sub-lists, a total of

s =

k
∑

i=l

(

k

i

)

(10)

sub-lists will be generated from this BKV. From Table 2 it
can be seen that the value of s grows exponentially with
longer BKVs, and as the threshold t is set to lower values.
The time required to generate the q-gram sub-lists will
therefore be dominated by the recursive generation of
sub-lists for longer BKVs.
Figure 6 shows the length frequency distributions of

values from three record fields that are common in many
databases that contain information about people. As
can be seen, these distributions roughly follow Poisson
distributions with parameter 5 ≤ λ ≤ 10. Therefore,
assuming BKV lengths that follow a Poisson distribution,
it is possible to estimate the overhead of q-gram based
indexing compared to traditional blocking.
Let v denote the average number of times each record

identifier is inserted into an inverted index list (block),
compared to being inserted into just one index list as
is done with traditional blocking (i.e. v = 1). Assuming

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

N
or

m
al

is
ed

 fr
eq

ue
nc

ie
s

Field value length in characters

Field value length frequency distribution

Surnames
Given names

Suburb names
Poisson distribution

Fig. 6. Normalised length frequency distributions of
record field values from an Australian telephone directory
containing around seven million records. For comparison,
a Poisson distribution (with λ = 6.5) is also shown.

that the average length of BKVs in q-grams is λ, their
maximum length is lmax, and the minimum sub-list
length threshold is t, then v can be calculated as

v =

lmax
∑

l=1





λle−λ

l!

l
∑

i=max(1,⌊l×t⌋)

(

l

i

)



 . (11)

This summation covers BKVs of lengths 1 to lmax, and
for each of them the number of sub-lists generated for
this specific length is calculated by combining a Poisson
distribution with Equation 10.
Assuming there are b different BKVs, the question

now is how many index key values (denoted with b′)
are generated by the q-gram sub-list generation process.
This number depends upon the characteristics of the
data, specifically the distribution of unique q-grams in
the BKVs. One extreme situation would be that every
BKV generates a set of unique index key values that are
not shared with any other BKV, and thus b′ = v× b. The
other extreme situation would be where every index key
value is equal to an existing BKV, and thus b′ = b.
Assuming uniform frequency distribution of the

BKVs, Equation 1 can be used to estimate the num-
ber of candidate record pairs that will be generated
for a record linkage. With the two extreme situations
described above, this number will be

vb×
(nAv

vb
×

nBv

vb

)

≤ uQGRL ≤ b×
(nAv

b
×

nBv

b

)

,

which can be simplified to

nAnBv

b
≤ uQGRL ≤

nAnBv
2

b
. (12)

Similar, for a deduplication, Equation 2 can be used to
estimate the number of candidate record pairs as

nAv

2

(nA

b
− 1
)

≤ uQGD ≤
nAv

2

(nAv

b
− 1
)

. (13)

For BKVs that follow a Zipf frequency distribution,
Equations 3 and 4 can be extended similarly to calculate
the estimated number of candidate record pairs.
As was shown in an earlier study [32], q-gram based

indexing can lead to candidate record pairs that cover
more true matches than both traditional blocking and the
sorted neighbourhood indexing techniques. The draw-
back, however, is that a much larger number of candi-
date record pairs will be generated, leading to a more
time consuming comparison step. This will be confirmed
in the experiments in Sections 4 and 5.
A similar q-grams based approach to indexing has

been proposed within a database framework [42], using
q-gram based similarity joins and filtering techniques to
improve performance. This approach was implemented
completely within a relational database and using SQL
statements by generating auxiliary database tables that
contain the q-grams and their record identifiers.

3.4 Suffix Array Based Indexing

This technique has recently been proposed as an efficient
domain independent approach to multi-source informa-
tion integration [19]. The basic idea is to insert the BKVs
and their suffixes into a suffix array based inverted
index. A suffix array contains strings or sequences and
their suffixes in an alphabetically sorted order. Indexing
based on suffix arrays has successfully been used on both
English and Japanese bibliographic databases [19].
In this indexing technique, only suffixes down to a

minimum length, lm, are inserted into the suffix array.
For example, for a BKV ‘christen’ and lm = 5, the values
‘christen’, ‘hristen’, ‘risten’ and ‘isten’ will be generated,
and the identifiers of all records that have this BKV
will be inserted into the corresponding four inverted
index lists. Figure 7 shows several other examples of
this approach. A BKV of length c characters will result
in (c− lm+1) suffixes to be generated. Similar to q-gram
based indexing, the identifier of a record will likely be
inserted into several inverted index lists.
To limit the maximum size of blocks (and thus the

number of candidate records pairs to be generated), a
second parameter, bM , allows the maximum number of
record identifiers in a block to be set. Blocks that contain
more that bM record identifiers will be removed from the
suffix array. For example, in Figure 7, with bM = 3 the
block with suffix value ‘rina’ will be removed because it
contains four record identifiers.
To calculate the number of candidate record pairs

that will be generated with suffix array based indexing,
similar to q-gram based indexing the lengths of the BKVs
needs to be estimated. Assuming a Poisson distribution
of the length of BKVs and following Equation 11, the
average number of suffixes generated from a BKV can
be calculated as

v =

lM
∑

l=lm

(

λle−λ

l!
(l − lm + 1)

)

, (14)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 11

Identifiers BKVs (Givenname) Suffixes

R1 Catherine catherine, atherine, therine,
herine, erine, rine

R2 Katherina katherina, atherina, therina,
herina, erina, rina

R3 Catherina catherina, atherina, therina,
herina, erina, rina

R4 Catrina catrina, atrina, trina, rina
R5 Katrina katrina, atrina, trina, rina

Suffix Identifiers Suffix Identifiers
atherina R2,R3 herine R1
atherine R1 katherina R2
atrina R4,R5 katrina R5

catherina R3 rina R2,R3,R4,R5
catherine R1 rine R1
catrina R4 therina R2,R3
erina R2,R3 therine R1
erine R1 trina R4,R5
herina R2,R3

Fig. 7. Suffix-array based indexing with givennames used as BKVs, a minimum suffix length lm = 4, and a maximum
block size bM = 3. The two tables on the right-hand side show the resulting sorted suffix-array. The block with suffix
value ‘rina’ will be removed because it contains more than bM record identifiers.

with lM being the maximum and λ the average length
(both in characters) of all BKVs in the database(s) to be
matched or deduplicated.
Assuming there are b unique BKVs, the minimum

number of suffix values generated would be b in the
extreme situation where all BKVs are of length lm
characters, and thus no shorter suffixes are generated.
The other extreme situation would occur when each
BKV generates suffixes that are unique. In this situation,
assuming each BKV in average generates v suffixes, a
total of v×b unique suffix values will be generated. With
the maximum size of each block being bM , the number
of candidate record pairs generated can be estimated as

b× b2M ≤ uSARL ≤ bv × b2M (15)

for a record linkage, and for a deduplication as

b×
bM (bM − 1)

2
≤ uSAD ≤ b×

vbM (bM − 1)

2
. (16)

These estimates assume each block contains exactly bM
record identifiers. In practice it is very unlikely this will
occur, and thus less record pairs will be generated.
As can be seen in Figure 7, one problem with suffix

array based indexing is that errors and variations at
the end of BKVs will result in records being inserted
into different blocks, potentially missing true matches.
To overcome this drawback, a modification of the suffix
generation process is to not only generate the true suf-
fixes of BKVs, but all sub-strings down to the minimum
lengths of lm in a sliding window fashion. For example,
for the BKV ‘christen’ and lm = 5, this approach would
generate the sub-strings: ‘christen’, ‘christe’, ‘hristen’,
‘christ’, ‘hriste’, ‘risten’, ‘chris’, ‘hrist’, ‘riste’, and ‘isten’.
This approach is similar to q-gram based indexing as
described in Section 3.3. It can better overcome errors
and variations at different positions in the BKVs, at
the costs of creating more blocks and inserting record
identifiers into a larger number of blocks compared
to the original suffix array technique. This proposed
variation will be evaluated experimentally in Section 4.

3.4.1 Robust Suffix Array Based Indexing

An improvement upon the original suffix array based
indexing technique has recently been proposed [43].
Similar to adaptive blocking [40], the inverted index lists

of suffix values that are similar to each other in the
sorted suffix array are merged. An approximate string
similarity measure [35] is calculated for all pairs of
neighbouring suffix values, and if the similarity of a pair
is above a selected threshold t, then their lists are merged
to form a new larger block.
For example, using the givenname suffix values

from Figure 7, the normalised edit-distance string mea-
sure [35], and a minimum similarity of t = 0.85, then
the following suffix string pairs and their corresponding
record identifier lists will be merged into one block each:
‘atherina’ and ‘atherine’ (with similarity 0.875 and re-
sulting in list R1,R2,R3), ‘catherina’ and ‘catherine’ (with
similarity 0.889 and resulting in list R1,R3), and ‘therina’
and ‘therine’ (with similarity 0.857 and resulting in
list R1,R2,R3). As will be shown in the experimental
evaluation in Section 4, this indexing technique can lead
to improved matching or deduplication results at the
cost of larger blocks, and thus more candidate record
pairs that need to be compared. A detailed analysis of
the efficiency and time complexity of this approach has
been presented elsewhere [43].

3.5 Canopy Clustering

This indexing technique is based on the idea of using
a computationally cheap clustering approach to cre-
ate high-dimensional overlapping clusters, from which
blocks of candidate record pairs can then be gener-
ated [29], [44]. Clusters are created by calculating the
similarities between BKVs using measures such as Jac-
card or TF-IDF/cosine [37]. Both of these measures are
based on tokens [29], [35], which can be characters, q-
grams or words. They can be implemented efficiently
using an inverted index which has tokens, rather than
the actual BKVs, as index keys.
This inverted index data structure is built by convert-

ing BKVs into lists of tokens (usually q-grams), with
each unique token becoming a key in the inverted index.
All records that contain this token in their BKV will be
added to the corresponding inverted index list. If the TF-
IDF/cosine similarity is used, additional information has
to be calculated and stored in the index. First, for each
unique token, the number of records that contain this
token is required. This corresponds to the term frequency
(TF) of the token, and equals the number of record

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 12

Identifiers BKVs (Surname) Sorted bigram lists

R1 Hanlan [(an,2), (ha,1), (la,1), (nl,1)]
R2 Gansan [(an,2), (ga,1), (ns,1), (sa,1)]
R3 Gargan [(an,1), (ar,1), (ga,2), (rg,1),]

...an:3 ar:1 ga:2 ha:1

R2:2

R3:1

R1:2 R3:1 R2:1

R3:2

R1:1

Fig. 8. Canopy clustering example with BKVs based on surnames, and their sorted bigram (q = 2) lists including DF
counts. The TF and DF counts in the inverted index data structure are used to calculate TF-IDF weights.

identifiers stored in a token’s inverted index list. Second,
within the inverted index lists themselves, the document
frequency (DF) of a token (i.e. how often it appears in a
BKV) needs to be stored. Figure 8 shows an example of
such an inverted index data structure with DF and TF
counts as required for the TF-IDF/cosine similarity.
When all records in the database(s) have been inserted

into the inverted index, the TF and DF counts can be
normalised and the inverse document frequencies (IDF)
be calculated [37]. If Jaccard similarity is used neither
frequency information nor normalisation is required.
Once the inverted index data structure is built, over-

lapping clusters, called canopies, can be generated [29].
For this, initially all records are inserted into a pool
of candidate records. A canopy cluster is created by
randomly selecting a record rc from this pool. This
record will become the centroid of a new cluster. All
records in the pool that are similar to rc (according to the
selected similarity measure) are added into the current
cluster. The Jaccard similarity between rc and any other
record rx in the pool is calculated as

sJ =
|token(rc) ∩ token(rx)|

|token(rc) ∪ token(rx)|
, (17)

with the function token(r) returning the tokens of the
BKV of a record r, and 0 ≤ sJ ≤ 1. When the TF-
IDF/cosine similarity measure is used, the normalised
TF and IDF weight values, as stored in the inverted
index, are included into the similarity calculations [37],
which makes this measure computationally more ex-
pensive. Once the similarities between rc and all other
records in the pool are calculated, an overlapping cluster
can be created in two different ways: based on thresholds
or nearest-neighbours.

3.5.1 Threshold Based Approach

In this originally proposed approach [29], [44], two
similarity thresholds are used to create the overlapping
clusters. All records rx that are within a loose similarity,
tl, to rc are inserted into the current cluster (e.g. all
records with tl ≤ sJ). Of these, all records that are within
a tight similarity threshold tt (with tt ≥ tl), will be
removed from the pool of candidate records.
This process of randomly selecting a centroid record

rc, calculating the similarities between this and all other
records in the pool, and inserting records into clusters, is
repeated until no candidate records are left in the pool. If
tl = tt, the clusters will not be overlapping, which means

each record will be inserted into one cluster only. If both
tl = 1 and tt = 1 (i.e. exact similarity only), canopy
clustering will generate the same candidate record pairs
as traditional blocking.
Estimating the number of candidate record pairs that

will be generated with this approach is difficult (similar
to q-gram based indexing), because this number depends
upon the values of the thresholds tl and tt, the sim-
ilarities between BKVs, and the frequency distribution
of their tokens. Together, these factors determine how
many record identifiers will be inserted into each clus-
ter, and how many will be removed from the pool of
candidate records in each step of the algorithm. The
random selection of the records used as cluster centroids
also results in a non-deterministic approach that can
result in different clusters for each run, and thus different
numbers of candidate record pairs generated.
One extreme situation would occur when the simi-

larity values between all BKVs (calculated using their
tokens as discussed above) are larger than the tt thresh-
old, resulting in one single cluster only that contains
all record identifiers. The other extreme situation would
occur when all BKVs are so different from each other
that their similarities are below tl, and thus each record
is inserted only into the block that contains the record
identifiers that have the same BKV. In this second situa-
tion, canopy clustering will generate the same candidate
record pairs as traditional blocking.
Assuming the number of clusters (or blocks) generated

equals b, and that all clusters contain the same number of
record identifiers, then the number of candidate record
pairs generated depends upon into how many clusters
each record will be inserted. The smallest number of
candidate pairs will be generated when each record is
inserted into one cluster only. On the other hand, if
each record is inserted into v clusters, then, based on
Equations 1 and 12, the number of candidate record pairs
generated for a record linkage can be estimated as

nAnB

b
≤ uCCRLT

≤
nAnBv

2

b
, (18)

and for a deduplication (using Equations 2 and 13) the
estimated number of candidate record pairs generated is

nA

2

(nA

b
− 1
)

≤ uCCDT
≤

nAv

2
(
nAv

b
− 1). (19)

As can be seen, for both a record linkage and a
deduplication the upper bound depends quadratically
on the number of times a record identifier is inserted into

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 13

a cluster. Given that in reality the generated clusters will
not be of uniform size, the largest clusters will generate
the largest numbers of candidate record pairs (similar as
with traditional blocking). For BKVs that follow a Zipf-
like distribution, Equations 3 and 4 can be extended with
the overhead v similarly to Equations 18 and 19 above.

3.5.2 Nearest Neighbour Based Approach
An alternative to using two thresholds is to employ a
nearest neighbour based approach to create the overlap-
ping clusters [39]. The idea is to replace the two thresh-
old parameters, tl and tt, with two nearest neighbour
parameters, nl and nt (with nl ≥ nt). The first parameter,
nl, corresponds to the number of record identifiers that
are inserted into each cluster, while nt is the number
of record identifiers that are removed from the pool of
candidate records in each step of the algorithm.
Similar to the threshold based approach, the process

of creating overlapping clusters starts by randomly se-
lecting a record rc from the pool of initially all records.
Similarities are then calculated between the rc and the
records rx that have tokens in common in the inverted
index. The nl records closest to rc are inserted into the
current cluster, and of these the nt records closest to rc
are removed from the pool.
This approach will result in all clusters containing nl

record identifiers, independently of the frequency dis-
tribution of the BKVs. Therefore, blocks of uniform size
will be created, allowing the calculation of the number
of generated record pairs. The number of clusters only
depends upon the number of records in the database(s)
to be matched or deduplicated, and the values of nl

and nt. The number of clusters generated corresponds
to nA/nt and nB/nt, respectively, and each cluster will
contain nl records. For a record linkage, the number of
candidate record pairs generated therefore equals

uCCRLN
= zCCRLN

=

(

nAnl

nt

)

×

(

nBnl

nt

)

=
nAnBn

2
l

n2
t

,

(20)
while for a deduplication the number equals

uCCDN
= zCCDN

=
nAnl

2nt

(

nAnl

nt

− 1

)

. (21)

The drawback of this approach is similar to the draw-
back of the sorted neighbourhood technique based on a
sorted array, as discussed in Section 3.2.1. If there are
BKVs that are frequent (like the surnames ‘Smith’ or
‘Meier’), the generated clusters might not be big enough
to include all records with these BKVs, and therefore true
matches might be missed. The solution is to use BKVs
that are the concatenation of several record fields and
that have a large number of different values.
Compared to other indexing techniques, canopy clus-

tering using both the threshold and the nearest neigh-
bour approach is not sensitive to errors and variations at
the beginning of BKVs, because the similarity measures
used are independent of the order of where tokens
appear in BKVs.

Previous experiments [39] have shown that using the
nearest neighbour based approach can result in an in-
crease in the number of true matches in the candidate
records pairs that are generated compared to the thresh-
old based approach, and also in a higher robustness of
the canopy clustering technique with regard to changes
in parameter settings. The experiments presented in
Sections 4 and 5 will confirm these statements.

3.6 String-Map Based Indexing

This indexing technique [45] is based on mapping BKVs
(assumed to be strings) to objects in a multi-dimensional
Euclidean space, such that the distances between pairs of
strings are preserved. Any string similarity measure that
is a distance function (such as edit-distance [35]) can be
used in the mapping process. Groups of similar strings
are then generated by extracting objects in this space
that are similar to each other. The approach is based
on a modification of the FastMap [46] algorithm, called
StringMap, that has a linear complexity in the number of
strings to be mapped [45].
The first step of string-map based indexing iterates

over d dimensions. For each dimension, the algorithm
finds two pivot strings that are used to form orthogonal
directions. Ideally, these two pivots are as far apart from
each other as possible. To find the two pivot strings, an
iterative farthest-first selection process is used. Once the
pivot strings have been selected for a dimension, the co-
ordinates of all other strings are calculated based on the
directions of these pivot strings. Selecting an appropriate
dimensionality d is based on using a heuristic approach
that iterates over a range of dimensions and selects the
one that minimises a cost function. Dimensions between
15 and 25 seem to achieve good results [45].
Once all strings are mapped into a multi-dimensional

space using a suitable index data structure (the original
implementation uses an R-tree [45]), in the second step
of this indexing approach (the Retrieve step) clusters
of similar objects (that refer to similar strings) are re-
trieved. In the implementation of string-map based in-
dexing evaluated in the experiments, the originally im-
plemented R-tree data structure has been replaced with
a grid based index [47]. As reported, the performance of
most tree-based index structures degrade rapidly with
more than 15 to 20 dimensions [47], because nearly all
objects in an index will be accessed when similarity
searches are conducted. The grid based index works by
having a regular grid of dimensionality d implemented
as an inverted index in each dimension. The index keys
are the coordinate value of the objects, and all objects
mapped into the same grid cell in a dimension are
inserted into the same inverted index list.
Similar to canopy clustering based indexing, over-

lapping clusters can be extracted from the multi-
dimensional grid index. An object (referring to a BKV)
is randomly picked from the pool of (initially all) objects
in the grid based index, and the objects in the same, as

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 14

well as in neighbouring grid cells, are retrieved from the
index. Similar to canopy clustering, either two thresh-
olds, tl and tt, or the number of nearest neighbours, nl

and nt, can be used to insert similar objects into clusters,
and remove objects from the pool with a similarity larger
than tt, or that are the nt nearest objects to the centroid
object. Equations 18 to 21 can be used to estimate the
number of record pairs that will be generated with
string-map based indexing and using either a threshold
or a nearest neighbour based approach.
A variation of this mapping based indexing technique

has recently been proposed [48], with the basic idea be-
ing to first map records into a multi-dimensional space,
followed by a mapping into a second lower-dimensional
metric space where edit-distance calculations are per-
formed. Using a KD-tree and a nearest neighbour based
similarity approach allows for efficient matching. Exper-
iment showed a reduction in run-time of 30% to 60%
compared to string-map based indexing, while at the
same time keeping the matching accuracy [48].

4 EXPERIMENTAL EVALUATION

The aim of the experiments conducted was to evaluate
the presented indexing techniques within a common
framework, to answer questions such as: How do param-
eter values and the choice of the blocking key influence
the number and quality of the candidate record pairs
generated? How do indexing techniques perform with
different types of data? Which indexing techniques show
better scalability to larger databases?
All presented indexing techniques were implemented

in Python within the Febrl record linkage system [26]
(available from: https://sourceforge.net/projects/febrl/).
To facilitate repeatability of the presented results,
the evaluation program used for these experiments
(evalIndexing.py) will be published as part of the next
version of Febrl. All experiments were conducted on an
otherwise idle compute server with two 2.33 GHz quad-
core CPUs and 16 Gigabytes of main memory, running
Linux 2.6.32 (Ubuntu 10.04) and using Python 2.6.5.

4.1 Test Data Sets

Two series of experiments were conducted, the first
using four ‘real’ data sets that have previously been
used by the record linkage research community, and
the second using artificial data sets. Table 3 summarises
these data sets. The aim of the first series of experiments
was to investigate how different indexing techniques are
able to handle various types of data, while the second
series was aimed at investigating the scalability of the
different indexing techniques to larger data sets.
The first three ‘real’ data sets were taken from the

SecondString toolkit1. ‘Census’ contains records that were
generated by the US Census Bureau based on real census
data; ‘Cora’ contains bibliographic records of machine

1. Available from: http://secondstring.sourceforge.net

TABLE 3
Data sets used in experiments. Artificial data sets

containing 1,000, 5,000, 10,000, 50,000, and 100,000
records, respectively, were generated.

Data set Task Number of Total number of
name records true matches

Census Linkage 449 + 392 327
Restaurant Deduplication 864 112
Cora Deduplication 1,295 17,184
CDDB Deduplication 9,763 607
Clean Linkage 1,000–100,000 200–20,000
Dirty Linkage 1,000–100,000 400–40,000

learning publications; and ‘Restaurant’ contains records
extracted from the Fodor and Zagat restaurant guides.
The ‘CDDB’ data set contains records of audio CDs, such
as their title, artist, genre and year. This last data set
was recently used in the evaluation of a novel indexing
technique [41]. The true match status of all record pairs
is available in all four data sets.
Artificial data sets were generated using the Febrl

data generator [49]. This generator first creates original
records based on frequency tables that contain real name
and address values, as well as other personal attributes;
followed by the generation of duplicates of these records
based on random modifications such as inserting, delet-
ing or substituting characters, and swapping, removing,
inserting, splitting or merging words. The types and
frequencies of these modifications are also based on real
characteristics. The true match status of all record pairs
is known. The original and duplicate records were then
separated into one file each to facilitate their linkage.
As shown in Table 3, two series of artificial data sets

were created. The ‘Clean’ data contain 80% original and
20% duplicate records, with up to three duplicates for
one original record, a maximum of one modification per
attribute, and a maximum of three modifications per
record. The ‘Dirty’ data contain 60% original and 40%
duplicate records, with up to nine duplicates per original
record, a maximum of three modifications per attribute,
and a maximum of ten modifications per record.

4.2 Quality and Complexity Measures

Four measures are used to assess the complexity of the
indexing step and the quality of the resulting candidate
record pairs [9], [10]. The total number of matched and
non-matched record pairs are denoted with nM and nN ,
respectively, with nM + nM = nA × nB for the linkage
of two databases, and nM + nN = nA(nA − 1)/2 for
the deduplication of one database. The number of true
matched and true non-matched candidate record pairs
generated by an indexing technique is denoted with sM
and sN , respectively, with sM + sN ≤ nM + nN .
The reduction ratio, RR = 1.0− sM+sN

nM+nN
, measures the

reduction of the comparison space, i.e. the fraction of
record pairs that are removed by an indexing technique.
The higher the RR value, the less candidate record pairs

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 15

TABLE 4
The labels used in the result figures, the number of different parameter settings evaluated, and the run-times in

milli-seconds per candidate record pair required to build each of the evaluated indexing techniques.

Indexing technique Label used Number of Time in milli-seconds per candidate record pair
in figures settings Minimum Median Average Maximum

Traditional blocking TBlo 1 0.002 0.591 0.511 0.972
Array based sorted neighbourhood SorAr 5 0.011 0.059 0.081 0.288
Inverted index based sorted neighbourhood SorII 5 0.002 0.033 0.293 3.040
Adaptive sorted neighbourhood AdSor 8 0.002 0.952 1.128 4.702
Q-gram based indexing QGr 4 0.005 4.118 1,170.716 163,484.394
Threshold based canopy clustering CaTh 8 0.003 4.252 18.194 380.214
Nearest neighbour based canopy clustering CaNN 8 0.004 0.151 1.912 39.190
Threshold based string-map indexing STMTh 32 0.004 0.488 21.715 664.862
Nearest neighbour based string-map indexing StMNN 32 0.018 2.045 19.386 695.101
Suffix-array based indexing SuAr 6 0.024 1.119 11.498 168.561
Suffix-array based indexing using all sub-strings SuArSu 6 0.017 3.542 28.082 438.191
Robust suffix-array indexing RoSuA 48 0.010 0.434 0.856 10.421

are being generated. However, reduction ratio does not
take the quality of the generated candidate record pairs
into account (how many are true matches or not).
Pairs completeness, PC = sM

nM
, is the number of

true matched candidate record pairs generated by an
indexing technique divided by the total number of true
matched pairs. It measures how effective an indexing
technique is in not removing true matched pairs. PC
corresponds to recall as used in information retrieval [37].
Finally, pairs quality, PQ = sM

sM+sN
, is the number

of true matched candidate record pairs generated by
an indexing technique divided by the total number of
candidate pairs generated. A high PQ value means an
indexing technique is efficient and generates mostly true
matched candidate pairs. On the other hand, a low
PQ value means a large number of non-matches are
also generated. PQ corresponds to precision as used in
information retrieval. The f-score [9], the harmonic mean
of PC and PQ, f = PC∗PQ

PC+PQ
, will also be reported.

4.3 Experimental Setup

Rather than trying to find optimal parameter settings for
each combination of blocking key definition, indexing
technique, and test data set, a large number of settings
were evaluated to provide a better understanding of
the average performance and scalability of the different
indexing techniques on different data sets. Because in
many real-world applications no training data are avail-
able that would allow optimal parameter tuning, domain
and record linkage experts are commonly tasked with
finding the best settings experimentally.
For each data set, three different blocking keys were

defined using a variety of combinations of record fields.
String fields such as names and addresses were pho-
netically encoded using the Double-Metaphone [35] al-
gorithm. For example, for the ‘Census’ data set, one
blocking key definition consisted of encoded surnames
concatenated with initials and zipcodes, while a second
consisted of encoded given names concatenated with
encoded suburb names. Due to space limitation, not all
blocking key definitions can be described in detail.

A large variety of parameter settings were evaluated.
Four string similarity functions (Jaro-Winkler, bigram,
edit-distance and longest common sub-string) [35] were
employed for the adaptive sorted neighbourhood, the
robust suffix array, and the string-map based indexing
techniques. For the two non-adaptive sorted neighbour-
hood techniques, the window size was set to w={2, 3,
5, 7, 10}. Similarity thresholds were set to t={0.8, 0.9}
and q-grams to q={2, 3} for all indexing techniques that
require these parameters. For suffix array based indexing
the minimum suffix length and the maximum block size
were set to lm={3, 5} and bM={5, 10, 20}. For canopy
clustering, both the Jaccard and TF-IDF/cosine similarities
were used, in combination with global thresholds tt/tl =
{0.9/0.8, 0.8/0.7} or nearest neighbour parameters nt/nl

= {5/10, 10/20}. The same threshold and nearest values
were also used for string-map based indexing. The grid
size for this technique was set to 100 and 1,000, and the
mapping dimension to d={15, 20}.
For each data set, a total of 163 parameter settings

were evaluated. Table 4 summarises the experimental
set-up and shows run-time results. Figures 9 to 13 show
for each indexing technique the average and standard
deviation values over all blocking key definitions and
combinations of parameter settings. The presented re-
sults on these various data sets should therefore provide
some indication of the performance and scalability of
the different indexing techniques. Note that for the scal-
ability experiments not all results are shown, because
either an indexing technique required more than the
available 16 Gigabytes of main memory, or its run time
was prohibitively slow to conduct many experiments.

5 DISCUSSION

Looking at the run-time results shown in the right-
hand side of Table 4, one can clearly see that the q-
gram based indexing technique is the overall slowest
technique by a very large margin (in average 40 times
slower than the second slowest technique). This confirms
earlier experiments [32], and as a result this technique is
not suitable for linking or deduplicating large databases.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 16

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.6

0.7

0.8

0.9

1.0

(a) Reduction Ratio (RR)

Census
Cora
Restaurant
CDDB

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.0

0.2

0.4

0.6

0.8

1.0
(b) Pairs Completeness (PC)

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

(c) Pairs Quality (PQ)

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

(d) F-score (harmonic mean of PC and PQ)

Fig. 9. Experimental results for the four ‘real’ data sets. Average values and standard deviations are shown.

Both string-map based indexing approaches, the suffix
array based approaches, and threshold based canopy
clustering also have fairly slow average and maximum
run-times. On the other hand, the more simpler ap-
proaches, like traditional blocking and the array based
sorted neighbourhood approach, are the overall fastest
techniques. Among the other fast techniques are the
robust suffix array and adaptive sorted neighbourhood
approaches. In the following discussion we will see if
these fast indexing times come at the cost of lower
indexing quality (i.e. lower PC and PQ values).

Figure 9 shows the results for the four ‘real’ data sets.
As can be seen in Figure 9 (a), some indexing techniques
have large variations in the reduction ratio (RR) they
attain, while others have a high RR independently of
the data sets they are applied on. The array based
sorted neighbourhood and the three suffix array based
indexing techniques achieve nearly uniformly high RR
values for all data sets, because the size of the blocks
generated by them is either independent of the data
to be linked or deduplicated, or limited to a maximum
size determined by a parameter. Therefore, because the
number of candidate record pairs generated by these
techniques can easily be calculated, they can be useful
for applications where a linkage or deduplication must
be completed within a certain amount of time.

On the other hand, the large variations of RR values
by other indexing techniques for some data sets are due
to the varying sizes of the blocks generated by them. For
these techniques, block sizes depend upon the frequency
distribution of the BKVs.

The quality of the candidate record pairs generated
by the different indexing techniques, measured using
PC, PQ and the f-score, is mostly influenced by the
characteristics of the data set and the choice of blocking
key definition. This can be seen by the large standard
deviations for some data sets in Figure 9 (b) to (d). All
three measures differ more prominently between data
sets than between indexing techniques. For the ‘Census’
data set, for example, all techniques achieve a PC value
above 0.8 , while for the ‘CDDB’ data set none produces
a PC value larger than 0.4. This highlights the need for
the careful definition of blocking keys, which needs to be
done uniquely to each data set. As the very low PQ and
f-score results for ‘CDDB’ and ‘Restaurant’ show, due
to variations and errors in these data sets, that cannot
be overcome with appropriate blocking key definitions,
it might not be possible at all to achieve good quality
indexing with traditional techniques.

Among the techniques that attain the lowest PC and
f-score values are the suffix array based approaches.
This is because the high RR they achieve comes at a

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 17

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) Reduction Ratio for 'Clean' data sets

1,000
5,000
10,000
50,000
100,000

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b) Reduction Ratio for 'Dirty' data sets

Fig. 10. Reduction ratio results for the artificial data sets. Average values and standard deviations are shown.

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) Pairs Completeness (PC) for 'Clean' data sets

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b) Pairs Completeness (PC) for 'Dirty' data sets

Fig. 11. Pairs completeness results for the artificial data sets. Average values and standard deviations are shown.

cost of low PQ and f-score values. The highest per-
forming technique with regard to PC is the inverted
index based sorted neighbourhood approach, which is
surprising given its sensitivity to errors and variations
at the beginning of BKVs.
The overall efficiency of the different indexing tech-

niques is shown in Figure 9 (d) as the f-score of PC
and PQ. Surprisingly, traditional blocking is the best
performing technique for two of the four data sets,
closely followed by threshold-based canopy clustering,
q-gram based indexing, and the adaptive sorted neigh-
bourhood technique. This figure once more highlights
that the definition of suitable blocking keys is one of the
most crucial components in the indexing step for record
linkage or deduplication, and not the actual indexing
technique employed.
Moving on to the results achieved with the artificial

data sets, shown in Figures 10 to 13, it can be seen
that the RR values for most indexing techniques stay
high—or get even higher—as the data sets get larger.
This indicates a sub-quadratic increase in the number
of candidate record pairs generated as the data sets

get larger. One exception is the threshold based string-
map indexing technique, which not only has the lowest
average RR values in general, but also shows to be very
sensitive towards parameter settings.
As expected, the PC values are higher for the ‘Clean’

data sets compared to the ‘Dirty’ data sets, because the
BKVs for the former contain less errors and variations
and thus more records were inserted into the correct
blocks. As Figures 11 to 12 show, for several indexing
techniques the PC or PQ values drop significantly as the
data sets get larger. As can be seen, having a constant
PC value across data sets size comes at the cost of lower
PQ values, and vice versa.
The reason for the drop in PC values are the fixed

window size for the sorted neighbourhood approaches,
the fixed number of nearest neighbours for the canopy
clustering and string-map based approaches, and the
fixed maximum block size for the suffix array based
techniques. As the data sets get larger, more records will
have the same or similar BKVs, and the fixed block size
limits will result in records that do have the same (or
very similar BKVs) not being included into the same

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 18

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.0

0.2

0.4

0.6

0.8

1.0
(a) Pairs Quality (PQ) for 'Clean' data sets

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.0

0.2

0.4

0.6

0.8

1.0
(b) Pairs Quality (PQ) for 'Dirty' data sets

Fig. 12. Pairs quality results for the artificial data sets. Average values and standard deviations are shown.

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.0

0.2

0.4

0.6

0.8

1.0
(a) F-score (harmonic mean of PC and PQ) for 'Clean' data sets

TBlo SorAr SorII AdSor QGr CaTh CaNN StMTh StMNN SuAr SuArSu RoSuA
0.0

0.2

0.4

0.6

0.8

1.0
(b) F-score (harmonic mean of PC and PQ) for 'Dirty' data sets

Fig. 13. F-score results for the synthetic data sets. Average values and standard deviations are shown.

block, thereby missing increasingly more true matches
with larger data sets. On the other hand, traditional
blocking and the threshold based indexing techniques
do not have maximum block sizes, and thus all records
with the same or similar BKVs are inserted into the same
blocks without limitations.

The costs of being able to keep constant PC values
with larger data sets are lower PQ values. This means
that as data sets get larger, the number of candidate
record pairs that will be generated increases faster for
threshold based techniques than for techniques that
somehow limit the maximum block size. This trade-off
between PC and PQ is similar to the precision-recall
trade-off in information retrieval [37].

One aspect of indexing techniques that is of impor-
tance to their practical use is their robustness with regard
to parameter settings. Ideally, an indexing technique
should achieve a high RR and a high f-score value for a
large variety of parameter settings, because otherwise
a user needs to carefully tune the parameters of an
indexing technique. As Figure 13 shows, the string-
map and suffix array based approaches have the largest
standard deviations in the f-score values they achieve.

For effective parameter tuning, some form of ‘gold
standard’ data, where the true match status of record
pairs is known, must be available. Such data must have
the same characteristics as the data to be linked or
deduplicated. As can be seen from Figure 13, traditional
blocking, the adaptive sorted neighbourhood approach,
and threshold-based canopy clustering achieve high f-
score values for all their parameter settings.

6 RELATED RESEARCH

Research into indexing for record linkage and deduplica-
tion can be classified into two categories. The first cate-
gory is to develop new and improve existing techniques
with the aim of making them more scalable to large data
sets while keeping a high linkage quality [22], [33], [40],
[41], [43], [48], [50], [51]. The techniques presented in this
survey are efforts towards this goal.
The second category of research into indexing is the

development of techniques that can learn optimal block-
ing key definitions. Traditionally, the choice of blocking
keys is made manually by domain and record linkage ex-
perts. Recently, two supervised machine learning based
approaches to optimally select blocking keys have been

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 19

proposed [52], [53]. They either employ predicate-based
formulations of learnable blocking functions [52], or use
the sequential covering algorithm which discovers dis-
junctive sets of rules [53]. Both approaches aim to define
blocking keys such that the number of true matches in
the candidate record pairs is maximised, while keeping
the total number of candidate pairs as small as possible.
Both approaches rely on training examples, i.e. pairs
of true matches and non-matches. Such training data
are often not available in real world applications, or
they have to be prepared manually. In principle, these
learning approaches can be employed with any of the
indexing techniques presented in this survey.
Another approach to reduce the computational efforts

of the record linkage process is to minimise the number
of costly (string) comparisons that need to be made
between records. One recently proposed technique is
based on a matching-tree that allows early match deci-
sions without having to compare all attributes between
two records [54], while another technique sequentially
assesses the attributes and stops the comparison of two
records once a match decision can be made [55].
A large amount of work has also been conducted by

the database community on similarity joins [42], [51],
[56], [57], [58], [59], where the aim is to facilitate efficient
and scalable approximate joins for similarity measures
such as edit or Jaccard distance. Another avenue of
work is to efficiently index uncertain databases [60], as
well as finding similarities between objects in uncertain
databases [61]. Concurrently, the information retrieval
community has developed techniques to detect duplicate
documents returned by (Web) search queries [6], [7]. In
this domain, fast matching and scalability to very large
data collections are of paramount importance.
Real-time entity resolution of databases that contain

personal information has recently also attracted some
interest [21], because many applications increasingly re-
quire the matching of query records to large databases
of known entities in real time rather than in batch mode.

7 CONCLUSIONS AND FUTURE WORK

This paper has presented a survey of six indexing
techniques with a total of twelve variations of them.
The number of candidate record pairs generated by
these techniques has been estimated theoretically, and
their efficiency and scalability has been evaluated using
various data sets. These experiments highlight that one
of the most important factors for efficient and accurate
indexing for record linkage and deduplication is the
proper definition of blocking keys. Because training data
in the form of known true matches and non-matches
is often not available in real world applications, it is
commonly up to domain and linkage experts to decide
how such blocking keys are defined.
The experimental results showed that there are large

differences in the number of true matched candidate
record pairs generated by the different techniques, but

also large differences for several indexing techniques
depending upon the setting of their parameters. The
variety of parameters that have to be set by a user,
and the sensitivity of some of them (especially global
thresholds) with regard to the candidate record pairs
generated, makes it somewhat difficult to successfully
apply these techniques in practice, as parameter settings
depend both upon the quality and characteristics of the
data to be linked or deduplicated.
Due to space limitation it was not possible to include

an empirical evaluation of the theoretical estimates of the
number of candidate record pairs that will be generated,
as was provided in Sections 3.1 to 3.6. Such an evaluation
will be part of future work. Other future work includes
the implementation of further recently developed new
indexing techniques [22], [41], [48] into the Febrl frame-
work, as well as the investigation of learning techniques
for efficient and accurate indexing [52], [53]
The indexing techniques presented in this survey are

heuristic approaches that aim to split the records in
a database (or databases) into (possibly overlapping)
blocks such that matches are inserted into the same block
and non-matches into different blocks. While future
work in the area of indexing for record linkage and
deduplication should include the development of more
efficient and more scalable new indexing techniques, the
ultimate goal of such research will be to develop tech-
niques that generate blocks such that it can be proven
that (a) all comparisons between records within a block
will have a certain minimum similarity with each other,
and (b) the similarity between records in different blocks
is below this minimum similarity.

REFERENCES

[1] W. E. Winkler, “Methods for evaluating and creating data quality,”
Elsevier Information Systems, vol. 29, no. 7, pp. 531–550, 2004.

[2] D. E. Clark, “Practical introduction to record linkage for injury
research,” Injury Prevention, vol. 10, pp. 186–191, 2004.

[3] C. W. Kelman, J. Bass, and D. Holman, “Research use of linked
health data – A best practice protocol,” Aust NZ Journal of Public
Health, vol. 26, pp. 251–255, 2002.

[4] W. E. Winkler, “Overview of record linkage and current research
directions,” US Bureau of the Census, Tech. Rep. RR2006/02, 2006.

[5] J. Jonas and J. Harper, “Effective counterterrorism and the limited
role of predictive data mining,” Policy Analysis, no. 584, 2006.

[6] H. Hajishirzi, W. Yih, and A. Kolcz, “Adaptive near-duplicate
detection via similarity learning,” in ACM SIGIR’10, Geneva,
Switzerland, 2010, pp. 419–426.

[7] W. Su, J. Wang, and F. H. Lochovsky, “Record matching over
query results from multiple web databases,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 4, pp. 578–589, 2009.

[8] M. Bilenko, S. Basu, and M. Sahami, “Adaptive product normal-
ization: Using online learning for record linkage in comparison
shopping,” in IEEE ICDM’05, Houston, 2005, pp. 58–65.

[9] P. Christen and K. Goiser, “Quality and complexity measures
for data linkage and deduplication,” in Quality Measures in Data
Mining, ser. Studies in Computational Intelligence, F. Guillet and
H. Hamilton, Eds., vol. 43. Springer, 2007, pp. 127–151.

[10] M. G. Elfeky, V. S. Verykios, and A. K. Elmagarmid, “TAILOR: A
record linkage toolbox,” in IEEE ICDE’02, San Jose, 2002.

[11] I. P. Fellegi and A. B. Sunter, “A theory for record linkage,” Journal
of the American Statistical Society, vol. 64, no. 328, 1969.

[12] W. W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of
string distance metrics for name-matching tasks,” in Workshop on
Information Integration on the Web, held at IJCAI’03, Acapulco, 2003.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ 2011 20

[13] W. W. Cohen, “Integration of heterogeneous databases without
common domains using queries based on textual similarity,” in
ACM SIGMOD’98, Seattle, 1998, pp. 201–212.

[14] H. Galhardas, D. Florescu, D. Shasha, and E. Simon, “An exten-
sible framework for data cleaning,” in IEEE ICDE’00, 2000.

[15] E. Rahm and H. H. Do, “Data cleaning: Problems and current
approaches,” IEEE Data Engineering Bulletin, vol. 23, no. 4, 2000.

[16] J. I. Maletic and A. Marcus, “Data cleansing: beyond integrity
analysis,” in IQ’00, Boston, 2000, pp. 200–209.

[17] M. Bilenko and R. J. Mooney, “On evaluation and training-
set construction for duplicate detection,” in ACM SIGKDD’03
workshop on Data Cleaning, Record Linkage and Object Consolidation,
Washington DC, 2003, pp. 7–12.

[18] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 19, no. 1, pp. 1–16, 2007.

[19] A. Aizawa and K. Oyama, “A fast linkage detection scheme for
multi-source information integration,” in WIRI’05, Tokyo, 2005.

[20] I. Bhattacharya and L. Getoor, “Collective entity resolution in
relational data,” ACM TKDD, vol. 1, no. 1, 2007.

[21] P. Christen, R. Gayler, and D. Hawking, “Similarity-aware index-
ing for real-time entity resolution,” in ACM CIKM’09, Hong Kong,
2009, pp. 1565–1568.

[22] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina, “Entity resolution with iterative blocking,” in
ACM SIGMOD’09, Providence, Rhode Island, 2009, pp. 219–232.

[23] X. Dong, A. Halevy, and J. Madhavan, “Reference reconciliation
in complex information spaces,” in ACM SIGMOD’05, Baltimore,
2005, pp. 85–96.

[24] M. A. Hernandez and S. J. Stolfo, “The merge/purge problem for
large databases,” in ACM SIGMOD’95, San Jose, 1995.

[25] T. Churches, P. Christen, K. Lim, and J. X. Zhu, “Preparation of
name and address data for record linkage using hidden Markov
models,” BioMed Central Medical Informatics and Decision Making,
vol. 2, no. 9, 2002.

[26] P. Christen, “Febrl: An open source data cleaning, deduplication
and record linkage system with a graphical user interface,” in
ACM SIGKDD’08, Las Vegas, 2008, pp. 1065–1068.

[27] L. Gu and R. Baxter, “Decision models for record linkage,” in
Selected Papers from AusDM, Springer LNCS 3755, 2006.

[28] P. Christen, “Automatic record linkage using seeded nearest
neighbour and support vector machine classification,” in ACM
SIGKDD’08, Las Vegas, 2008, pp. 151–159.

[29] W. W. Cohen and J. Richman, “Learning to match and cluster
large high-dimensional data sets for data integration,” in ACM
SIGKDD’02, Edmonton, 2002, pp. 475–480.

[30] S. Sarawagi and A. Bhamidipaty, “Interactive deduplication using
active learning,” in ACM SIGKDD’02, Edmonton, 2002.

[31] S. Tejada, C. A. Knoblock, and S. Minton, “Learning domain-
independent string transformation weights for high accuracy
object identification,” in ACM SIGKDD’02, Edmonton, 2002.

[32] R. Baxter, P. Christen, and T. Churches, “A comparison of fast
blocking methods for record linkage,” in ACM SIGKDD’03 work-
shop on Data Cleaning, Record Linkage and Object Consolidation,
Washington DC, 2003, pp. 25–27.

[33] J. Nin, V. Muntes-Mulero, N. Martinez-Bazan, and J.-L. Larriba-
Pey, “On the use of semantic blocking techniques for data cleans-
ing and integration,” in IDEAS’07, Banff, Canada, 2007.

[34] M. A. Hernandez and S. J. Stolfo, “Real-world data is dirty:
Data cleansing and the merge/purge problem,” Data Mining and
Knowledge Discovery, vol. 2, no. 1, pp. 9–37, 1998.

[35] P. Christen, “A comparison of personal name matching: Tech-
niques and practical issues,” in Workshop on Mining Complex Data,
held at IEEE ICDM’06, Hong Kong, 2006.

[36] K. Goiser and P. Christen, “Towards automated record linkage,”
in AusDM’06, CRPIT, vol. 61, Sydney, 2006, pp. 23–31.

[37] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes, 2nd ed.
Morgan Kaufmann, 1999.

[38] M. Harada, S. Sato, and K. Kazama, “Finding authoritative peo-
ple from the web,” in ACM/IEEE-CS joint conference on Digital
Libraries, Tucson, 2004, pp. 306–313.

[39] P. Christen, “Towards parameter-free blocking for scalable record
linkage,” Department of Computer Science, The Australian Na-
tional University, Canberra, Tech. Rep. TR-CS-07-03, 2007.

[40] S. Yan, D. Lee, M. Y. Kan, and L. C. Giles, “Adaptive sorted neigh-
borhood methods for efficient record linkage,” in ACM/IEEE-CS
joint conference on Digital Libraries, 2007.

[41] U. Draisbach and F. Naumann, “A comparison and generalization
of blocking and windowing algorithms for duplicate detection,”
in Workshop on Quality in Databases, held at VLDB’09, Lyon, 2009.

[42] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukr-
ishnan, and D. Srivastava, “Approximate string joins in a database
(almost) for free,” in VLDB’01, Roma, 2001, pp. 491–500.

[43] T. de Vries, H. Ke, S. Chawla, and P. Christen, “Robust record
linkage blocking using suffix arrays,” in ACM CIKM’09, Hong
Kong, 2009, pp. 305–314.

[44] A. McCallum, K. Nigam, and L. H. Ungar, “Efficient clustering of
high-dimensional data sets with application to reference match-
ing,” in ACM SIGKDD’00, Boston, 2000, pp. 169–178.

[45] L. Jin, C. Li, and S. Mehrotra, “Efficient record linkage in large
data sets,” in DASFAA’03, Tokyo, 2003, pp. 137–146.

[46] C. Faloutsos and K.-I. Lin, “Fastmap: A fast algorithm for index-
ing, data-mining and visualization of traditional and multimedia
datasets,” in ACM SIGMOD’95, San Jose, 1995, pp. 163–174.

[47] C. C. Aggarwal and P. S. Yu, “The IGrid index: Reversing the
dimensionality curse for similarity indexing in high dimensional
space,” in ACM SIGKDD’00, Boston, 2000, pp. 119–129.

[48] N. Adly, “Efficient record linkage using a double embedding
scheme,” in DMIN’09, Las Vegas, 2009, pp. 274–281.

[49] P. Christen and A. Pudjijono, “Accurate synthetic generation of
realistic personal information,” in PAKDD’09, Springer LNAI, vol.
5476, Bangkok, Thailand, 2009, pp. 507–514.

[50] T. de Vries, H. Ke, S. Chawla, and P. Christen, “Robust record
linkage blocking using suffix arrays and Bloom filters,” ACM
TKDD, vol. 5, no. 2, 2011.

[51] M. Weis, F. Naumann, U. Jehle, J. Lufter, and H. Schuster,
“Industry-scale duplicate detection,” Proceedings of the VLDB En-
dowment, vol. 1, no. 2, pp. 1253–1264, 2008.

[52] M. Bilenko, B. Kamath, and R. J. Mooney, “Adaptive blocking:
Learning to scale up record linkage,” in IEEE ICDM’06, Hong
Kong, 2006, pp. 87–96.

[53] M. Michelson and C. A. Knoblock, “Learning blocking schemes
for record linkage,” in AAAI’06, Boston, 2006.

[54] D. Dey, V. Mookerjee, and D. Liu, “Efficient techniques for online
record linkage,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 23, no. 3, pp. 373–387, 2010.

[55] G. V. Moustakides and V. S. Verykios, “Optimal stopping: A
record-linkage approach,” Journal Data and Information Quality,
vol. 1, pp. 9:1–9:34, 2009.

[56] A. Behm, S. Ji, C. Li, and J. Lu, “Space-constrained gram-based in-
dexing for efficient approximate string search,” in IEEE ICDE’09,
Shanghai, 2009, pp. 604–615.

[57] N. Koudas, A. Marathe, and D. Srivastava, “Flexible string match-
ing against large databases in practice,” in VLDB’04, Toronto,
2004, pp. 1086–1094.

[58] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity
predicates,” in ACM SIGMOD’04, Paris, 2004, pp. 754–765.

[59] C. Xiao, W. Wang, and X. Lin, “Ed-join: an efficient algorithm for
similarity joins with edit distance constraints,” Proceedings of the
VLDB Endowment, vol. 1, no. 1, pp. 933–944, 2008.

[60] Y. Zhang, X. Lin, W. Zhang, J. Wang, and Q. Lin, “Effectively
indexing the uncertain space,” IEEE Transactions on Knowledge and
Data Engineering, vol. 22, no. 9, pp. 1247–1261, 2010.

[61] T. Bernecker, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Zuefle,
“Scalable probabilistic similarity ranking in uncertain databases,”
IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 9,
pp. 1234–1246, 2010.

Peter Christen received his Diploma in Com-
puter Science Engineering from ETH Zürich in
1995 and his PhD in Computer Science from the
University of Basel in 1999 (both in Switzerland).
His research interests are in data mining and
data matching (record linkage). He has pub-
lished over 50 papers in these areas, and he
is the principle developer of the Febrl (Freely
Extensible Biomedical Record Linkage) open
source data cleaning, deduplication and record
linkage system.

