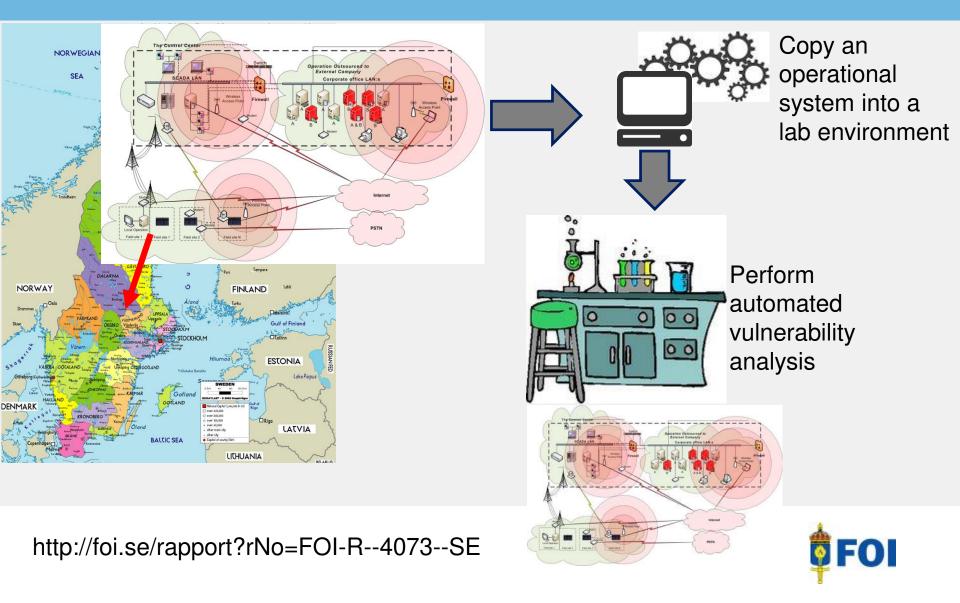
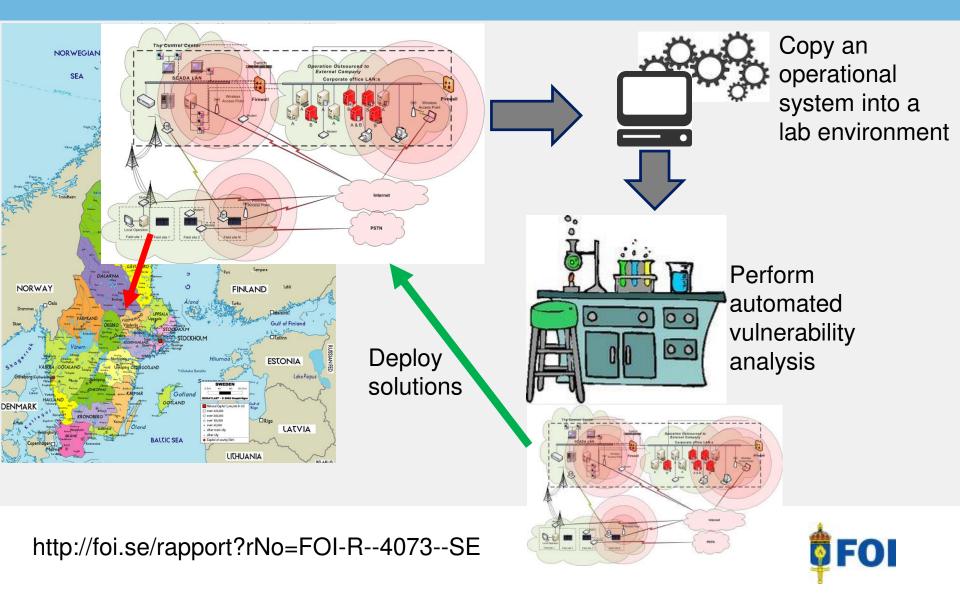
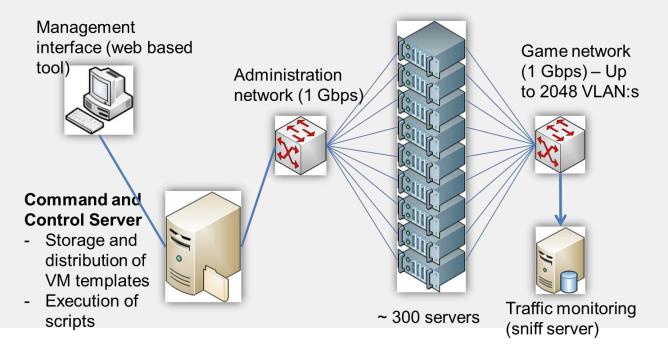

A Survey of Industrial Control System Testbeds

Hannes Holm hannes.holm@foi.se

- VICS, Virtual Industrial Control System testbed
- The Swedish part of a collaboration project involving
 - Funding: Swedish Civil Contingencies Agency (MSB) and Department of Homeland Security (DHS)
 - Execution: Swedish Defence Research Agency (FOI) and Idaho National Laboratory (INL)
- Pilot study can downloaded from (in English):
 - http://foi.se/rapport?rNo=FOI-R--4073--SE

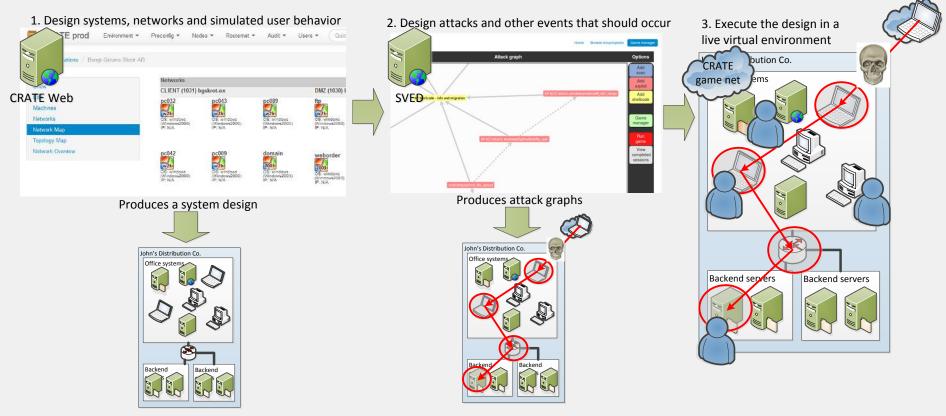





http://foi.se/rapport?rNo=FOI-R--4073--SE

Test environment at FOI

- Swedish national center for security in industrial information and control systems (NCS3)
- Cyber Range And Training Environment (CRATE)



www.foi.se/crate

Test environment at FOI

• Cyber Range And Training Environment (CRATE)

www.foi.se/crate

Surely, someone else must have done this before?

- RQ1: Which ICS testbeds have been proposed for scientific research?
- RQ2: Which research objectives do current ICS testbeds support?
- RQ3: How are ICS components implemented in current ICS testbeds?
- RQ4: How do existing ICS testbeds manage requirements?

Systematic literature review

 Articles published in Scopus between January 2010 and the December 2014

	ID University/Organization	Country	References	
RQ1	 American University of Sharjah Queensland University of Technology RMIT University Research Institute of Information Technology 	Abu Dhabi Australia Australia China	[11] [30] [2],[40] [58]	
	 and Communication Technical Assessment Research Lab Tsinghua University of Beijing University of Zagreb Queen's University Belfast University College Dublin 	China China Croatia Ireland Ireland	[17] [9] [28] [61] [51]	
	 10 European Commission Joint Research Centre 11 European Commission Joint Research Centre 12 Ricerca sul Sistema Energetico 13 American University of Beirut 14 University Kuala Lumpur 15 TNO 	Italy Italy Lebanon Malaysia	[20],[50] [16] [14] [44] [47],[48] [8]	
	 16 ITER Korea 17 Case Western Reserve University 18 Iowa State University 19 ITESM Campus Monterrey 20 Lewis Research Center 	South Korea USA USA USA USA	L III	
	 20 Lewis Research Center 21 Mississippi State University 22 Ohio State University 23 Pacific Northwest National Laboratory 24 Sandia National Laboratories 25 Tennessee Technological University 	USA USA USA USA USA	[4] [35],[36],[41], [42],[57] [21] [15] [56] [52]	
	 26 The University of Tulsa 27 UC Berkeley 28 University of Arizona 29 University of Illinois at Urbana-Champaign 30 University of Louisville 	USA USA USA USA USA	[24] [18] [33] [6],[7],[12] [26]	FOI

RQ2: Testbed objectives

Objective	Testbeds
Vulnerability analysis	16
Education	9
Tests of defense mechanisms	9
Power system control tests	4
Performance analysis	1
Creation of standards	1
Honeynet	1
Impact analysis	1
Test robustness	1
Tests in general	1
Threat analysis	1

RQ3: Testbed implementation choices

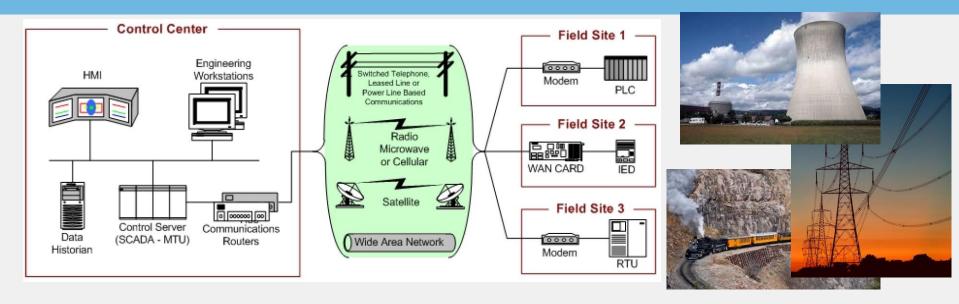


Table 3: Number of articles assessing different areas and methods of implementation (virtualization, emulation, simulation and hardware).

Area	Covered	Virtualization	n Simulation	Emulation	Hardware
Control center	20	4	9	1	11
Communication architecture	22	6	10	3	11
Fields devices	23	0	14	0	14
Physical process	12	0	12	0	0

RQ4: Testbed requirements (fidelity)

Table 4: Testbed fidelity.				
Fidelity	Testbeds			
Not covered	19			
Study of real systems	7			
Based on standards	4			

- Few metrics presented
 - Modbus traffic (e.g., byte throughput, error count and packet size)
 - Execution time of testbed to the required execution time of physical processes
- Data collection only discussed by a single paper

Future work (for academia)

- Clearly state the objectives of the testbed and relate these objectives to the configuration of the testbed
- Employ virtualization or emulation in front of simulation and hardware approaches
- Provide empirical results describing how the testbed fulfills its stated requirements

Future work (for us)

- Involve ICS developers and opererators
- Identify testbed requirements
- Design metrics for measuring fulfillment of requirements
- Develop and adapt tools and methods for capturing the configurations of operational ICS systems
- Develop and adapt tools and methods for simulating, virtualizing and emulating ICS components and configurations
- Develop and adapt tools and methods for vulnerability discovery in ICS systems

