
 Open access Journal Article DOI:10.1145/2480741.2480748

A survey of intelligent assistants for data analysis — Source link

Floarea Serban, Joaquin Vanschoren, Jörg-Uwe Kietz, Abraham Bernstein

Institutions: University of Zurich, Katholieke Universiteit Leuven

Published on: 03 Jul 2013 - ACM Computing Surveys (ACM)

Topics: Leverage (statistics)

Related papers:

 Metalearning: Applications to Data Mining

 Meta-Learning by Landmarking Various Learning Algorithms

 Toward intelligent assistance for a data mining process: an ontology-based approach for cost-sensitive classification

 The WEKA data mining software: an update

 The Algorithm Selection Problem

Share this paper:

View more about this paper here: https://typeset.io/papers/a-survey-of-intelligent-assistants-for-data-analysis-
4a71y8cm7q

https://typeset.io/
https://www.doi.org/10.1145/2480741.2480748
https://typeset.io/papers/a-survey-of-intelligent-assistants-for-data-analysis-4a71y8cm7q
https://typeset.io/authors/floarea-serban-4e7cljr94q
https://typeset.io/authors/joaquin-vanschoren-4iax9ac49y
https://typeset.io/authors/jorg-uwe-kietz-kps5kvee5i
https://typeset.io/authors/abraham-bernstein-9zl5cv8qd8
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/journals/acm-computing-surveys-32i2aemk
https://typeset.io/topics/leverage-statistics-26ywd5yu
https://typeset.io/papers/metalearning-applications-to-data-mining-2eu7a106jh
https://typeset.io/papers/meta-learning-by-landmarking-various-learning-algorithms-1oivhn2xfi
https://typeset.io/papers/toward-intelligent-assistance-for-a-data-mining-process-an-1zuaci77ri
https://typeset.io/papers/the-weka-data-mining-software-an-update-3zs9onav7o
https://typeset.io/papers/the-algorithm-selection-problem-1gg90ybvjv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-survey-of-intelligent-assistants-for-data-analysis-4a71y8cm7q
https://twitter.com/intent/tweet?text=A%20survey%20of%20intelligent%20assistants%20for%20data%20analysis&url=https://typeset.io/papers/a-survey-of-intelligent-assistants-for-data-analysis-4a71y8cm7q
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-survey-of-intelligent-assistants-for-data-analysis-4a71y8cm7q
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-survey-of-intelligent-assistants-for-data-analysis-4a71y8cm7q
https://typeset.io/papers/a-survey-of-intelligent-assistants-for-data-analysis-4a71y8cm7q

A

A Survey of Intelligent Assistants for Data Analysis

FLOAREA SERBAN, University of Zurich

JOAQUIN VANSCHOREN, Katholieke Universiteit Leuven

JÖRG-UWE KIETZ and ABRAHAM BERNSTEIN, University of Zurich

Research and industry increasingly make use of large amounts of data to guide decision-making. To do this,
however, data needs to be analyzed in typically non-trivial refinement processes, which require technical
expertise about methods and algorithms, experience with how a precise analysis should proceed, and knowl-
edge about an exploding number of analytic approaches. To alleviate these problems, a plethora of different
systems have been proposed that “intelligently” help users to analyze their data.

This article provides a first survey to almost 30 years of research on Intelligent Discovery Assistants
(IDAs). It explicates the types of help IDAs can provide to users and the kinds of (background) knowledge
they leverage to provide this help. Furthermore, it provides an overview of the systems developed over
the past years, identifies their most important features, and sketches an “ideal” future IDA as well as the
challenges on the road ahead.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; H.5.2 [Infor-

mation interfaces and presentation]: User Interfaces; I.2 [Artificial Intelligence]: Applications and
expert systems, Learning; I.5 [Pattern Recognition]: General, Design methodology, Applications

General Terms: Data mining, user support

Additional Key Words and Phrases: Intelligent assistants, automatic workflow generation

1. INTRODUCTION

Living in the ‘Information Age’, we are facing a deluge of digital data being generated
at ever higher speeds. However, to make this data useful for decision makers, one first
needs to make sense of it.

Several data analysis systems exist that simplify the analysis and management of
data, such as IBM SPSS Modeler1, RapidMiner2, SAS Enterprise Miner3, and Weka4.
Each of them provides a large number of analysis techniques and facilitates the gath-
ering, application, inspection, and evaluation of data analysis operators and their re-

1http://www-01.ibm.com/software/analytics/spss/products/modeler/
2http://rapid-i.com/content/view/181/190/lang,en/
3http://www.sas.com/technologies/analytics/datamining/miner/
4http://www.cs.waikato.ac.nz/ml/weka/

This work was supported by the European Community 7th framework ICT-2007.4.4 (No 231519) “e-Lico:
An e-Laboratory for Interdisciplinary Collaborative Research in Data Mining and Data-Intensive Science”,
and is part of the programme of BiG Grid, the Dutch e-Science Grid, which is financially supported by the
Netherlands Organisation for Scientific Research, NWO.
Author’s addresses: F. Serban, J.-U. Kietz and A. Bernstein, University of Zurich, Department of Informatics,
Dynamic and Distributed Information Systems Group, Binzmühlestrasse 14, CH-8050 Zurich, Switzerland;
E-mail: {kietz—serban—bernstein}@ifi.uzh.ch; J. Vanschoren, Universiteit Leiden, Leiden Institute of Ad-
vanced Computer Science (LIACS), Niels Bohrweg 1, 2333CA Leiden, The Netherlands, and KU Leuven,
Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven, Belgium. E-mail: joaquin@liacs.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0360-0300/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

sults. Most of these systems, however, lack any kind of guidance as to which techniques
can or should be used in which contexts. Consequently, novice analysts are typically
completely overwhelmed. They have no idea which methods can be confidently used,
and often resort to trial and error. Given that the formulation of precise guidelines
is often difficult or even impossible [Schaffer 1994; Wolpert 2001], specialists rely on
years of accumulated tacit experience, which is hard to express explicitly [Nonaka and
Takeuchi 1995]. Aggravating the problem is the ever-increasing number of operators
[Hand 1997] that few experts can keep up with. Analysis of the entries from the KDD-
cup (a data analysis competition) showed that the majority of experts use no more
than two methods: a decision tree learner and their own induction method [Kohavi
et al. 2000]. Obviously, there is a dire need to support both experts and novices in their
data analysis tasks.

Traditionally, this kind of support is provided by experts/consultants. These are,
however, often not available and also mired by the growth of methods. To address this
issue, a number of researchers have proposed the use of automated advising systems
(e.g., [Engels 1996; Bernstein et al. 2005; Charest et al. 2008; Žáková et al. 2010; Kietz
et al. 2010]). The general idea is to build a system that advises users in all stages of a
data analysis process [Fayyad et al. 1996] – essentially the provision of an automated
Intelligent Discovery Assistant (IDA) [Bernstein et al. 2005].

Several attempts at developing IDAs have been made (e.g., [Amant and Cohen
1998b; Bernstein et al. 2005; Engels 1996; Gale 1986]). The main problem with re-
search in the field of IDAs is that it is distributed over many disciplines (such as
statistics, exploratory data analysis, planning, and Data Mining (DM)), and addresses
different kinds of support situations (such as support for the whole KDD-process, au-
tomatic workflow generation, workflow design support, etc.). Furthermore, the IDA’s
developed up to now rely on many types of different background knowledge (such as
operator applicability, operator performance, meta-data, etc.).

The first goal of this survey is to identify which types of support these various IDAs
offer to the data analyst (Section 2). Second, it surveys the kinds of (background)
knowledge that these IDAs rely on in order to provide this support (Section 3). Having
defined these two central dimensions for categorizing IDAs, this survey then continues
to list the types of IDAs found in an exhaustive literature search (Section 4) which, in
turn, sets the stage for a thorough comparison of IDAs in light of the defined dimen-
sions and the identification of limitations and missing features in Section 5. On the
basis of these findings, the survey outlines a vision for an ideal future IDA in Section
6, and finally presents some summarizing conclusions in Section 7.

The main difference between the current survey and the previously published sur-
veys on meta-learning [Vilalta and Drissi 2002b; Smith-Miles 2008] is, firstly, that we
chose a more general approach by focusing on data analysis and not merely on meta-
learning. Secondly, we identify and discuss the types of available/missing user support
and link it to the background knowledge available to these systems. Likewise, we dif-
fer from surveys on DM tools [Goebel and Gruenwald 1999; Mikut and Reischl 2011]
by focusing on a specific type of tools, namely, those that provide intelligent support for
improving the users’ experience with the data analysis process.

Consequently, the main contributions of this paper are (1) the structuring of the
problem of user support for data analysis along two dimensions substantiated in the
literature, (2) a thorough survey and comparison of this cross-disciplinary and some-
times difficult to access research field, and (3) the identification of fruitful avenues for
the development of intelligent, user-centered IDAs.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

Fig. 1: Overview of phases in the KDD-process. Adapted from [Fayyad et al. 1996].

2. TYPE OF SUPPORT NEEDED

Fayyad et al. [1996] define the KDD-process—the Knowledge Discovery in Databases
analysis process—which can serve as a general template for any data exploration. It
structures the data exploration process along a set of transformations from the raw
data to the actionable knowledge. As Figure 1 shows, this process is composed of the
following steps:

Data selection. In this first step the relevant collections of raw data are identified.
Data preprocessing. Here the raw data is collected and cleaned, and the missing
values and errors as well as noise are handled.
Data transformation. The preprocessed data is now transformed into a format suit-
able for DM. This ranges from converting complex data (e.g. images) into a set of
useful features to dimensionality reduction techniques, feature selection as well as
data sampling.
Data mining. In this step the DM or statistical modeling techniques are applied to
find models or patterns.
Evaluation. Finally, the generated models are interpreted and/or evaluated.

Support for users analyzing the data could be incorporated in each of these phases, in a
combination thereof, or even in its entirety. It can help the users with the construction
of an analysis, with its execution, or with its understanding. In this section, we explore
all these types of support developed by scientists over the past in order to gather the
set of requirements for an IDA.

2.1. Support for a single step of the KDD-process

Some systems help the users to model a single step of the KDD-process by guiding
them through the process of applying a specific operator. They provide hints and ad-
vice on selecting the right type of input data (e.g., nominal, scalar, ordinal) for a specific
operator including parameter selection and tuning.
Each step of the KDD-process can be performed by several algorithms. The challenge,
however, is to find the right one for the given data and analysis task at hand. Novices
are usually overwhelmed by the plethora of approaches and tend to revert to only a few
known techniques. But even experts are often unaware of suitable, less-known meth-
ods as shown in [Kohavi et al. 2000; Bernstein et al. 2005].
Moreover, each algorithm owns several parameters; therefore, it acts differently if di-
verse parameter values are chosen. Thus, one needs to find the appropriate values for
the parameters to get the optimal output on a certain data set, since the data set in-
fluences the process of choosing the best matching parameters.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

Lastly, some techniques have specific requirements on the form of data, as for exam-
ple the ID3 tree induction algorithm uses only nominal attributes. Therefore, stepping
back to the data preparation phase is often needed. Hence, support in choosing the
adequate algorithm and parameters for a given analysis need is clearly desired.

2.2. Support for multiple steps of the KDD-process

A less common feature in IDA systems is the support for the overall KDD-process.
Here the system provides useful help regarding the sequence of operators in the KDD-
process as well as their parameters. Hence, it provides help in addressing the overall
data analysis process from raw data to the actionable knowledge.
In order to be able to support the whole process, the system must have knowledge
about the usage of each step in correlation to the other ones. More precisely, it has
to know what operators can be applied in which situations as well as how to set the
parameters of those operators. This knowledge is extracted from DM cook-books, such
as the CRISP-DM [Chapman et al. 1999] or from experienced users.
Note that effective support for the overall process should go beyond the mere construc-
tion of correct processes. It may need to consider domain- and task-specific knowledge
as well – a capability that has eluded AI-based approaches and required human cre-
ativity in analyzing data so far. The support for combining multiple steps (e.g., auto
wiring, correction proposals, next operator recommendation) does not imply that they
are planned fully automated.

2.3. Graphical design of KDD workflows

Graphical editing refers to enabling the user to interactively build the process man-
ually: choosing the operators, and setting the right inputs/outputs and parameters.
Some of these GUIs integrate intelligent techniques, such as auto-wiring, meta-data
propagation, correctness checking before execution, and operator recommendation.
Even if not, they can be viewed as a baseline for DM as it is used today and which
has to be improved with intelligent assistance. They are often seen as being more
user-friendly than textual representations of the KDD-process. Graphical editing sys-
tems allow the users to drag and drop operators and connect them via inputs/outputs
(called ports). Such systems use either implicit data objects (no representation) or ex-
plicit ones. Often, several tabs are used for displaying information to the users as well
as pop-ups, graphs, etc. In addition, different layouts and colors are employed for dis-
playing the data as well as meta-data and its propagation.

2.4. Automatic KDD workflow generation

A special case of user support for multiple steps of the KDD-process is the automatic
generation of workflows. Here the system provides the users with one or more KDD-
processes that they need to execute in order to solve the DM task. The system auto-
matically sets all inputs/outputs and parameters for each operator. This is especially
useful for users who do not have a lot of experience with DM operators. Based on the
data and a description of their task, the users receive a set of possible scenarios for
solving a problem.
Automatic generation is a much more challenging problem than the previous ones
since it requires knowledge about the order of the steps in the KDD-process. Usually
the knowledge is extracted from DM cook-books and from expert data miners. In gen-
eral, automatic generation involves a number of issues that need to be addressed:

— How compatible is the generated workflow with user-modifications?
It would be useful if the user were able to make modifications to the generated work-
flows and execute them. The user feedback should be maintained.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

— How good are the generated KDD workflows?
The quality of a workflow is defined both by its correctness in execution and its per-
formance with respect to evaluation criteria such as accuracy and speed. In addition,
the systems can either “just” list the best performing workflow or rank all of the
constructed ones according to various evaluation criteria.

— How many workflows are generated?
Some systems generate only one solution (as in classical planning); others try to
generate all possible solutions.

— Which ones are generated and why?
Does workflow generation follow certain rules or heuristics? How are these chosen?

Many practitioners and experts believe that the KDD-process cannot be fully auto-
mated since it is a creative process and the user has to constantly check the status of
the workflow. At some stages of the workflow, only a human user can decide what is
correct or not. Today’s systems, for example, encounter major difficulties in identify-
ing the correct data-type for some attributes (e.g., a number should be interpreted as
either nominal or ordinal or scalar?).

2.5. Workflow checking/repair

Automatic workflow checking is not only an important feature of data analysis sys-
tems but also a recommended feature for IDAs. It checks a user-designed workflow for
correctness and displays potential problems. For example, the system checks whether
the port type is correct, whether the input data has the right type, etc. Additionally,
another useful feature is the system’s ability to repair a workflow or suggest fixes for
generating correct workflows. The system can automatically connect the right ports,
suggest what is wrong and what the user should do in order to solve the problems.

2.6. Task decomposition

As shown in knowledge acquisition, task decomposition structures simplify large
processes [Chandrasekaran et al. 1992]. Some IDAs, hence, allow modeling KDD-
processes using task decomposition primitives [Engels 1996]. Task descriptions can
be reused, thus decreasing the development time and simplifying the process of de-
composing a KDD task.

2.7. User design support

Additionally to providing a graphical editor, IDAs can display information about opera-
tors and their usage akin to tool-tips in modern Integrated Development Environments
such as Eclipse. They allow users to easily obtain information about operators for solv-
ing problems or errors. Furthermore, some information can pertain to multiple steps:
CRISP-DM [Chapman et al. 1999], for example, provides guidelines for structuring a
KDD-process by reminding of what to do when and how.

2.8. Explanations regarding a decision or a result

Whilst IDAs may offer assistance in the KDD-process, it is important that they provide
the rationale for the assistance. The rationale is the basic building block for aiding the
users in sense-making [Russell et al. 1993] and allowing them to reason about the aid
provided by reflecting on whether they wish to accept the help or proceed differently.
Additionally, some IDAs also support the interpretation of results by automatically
providing graphs thereof or choosing other appropriate representations.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

2.9. Execution of operators/workflows

Some IDAs allow the users to execute workflows they created or which are generated
automatically by the system. Not all IDAs implement their own operators; some only
make use of existing statistical or ML libraries. Other IDAs inform the user about the
usage of resources and provide estimations about the time needed to execute operators
on data sets as well as the space used (i.e., the main storage for the processing and the
disk-storage for the results).

For the systems that support automated generation of workflows, execution also
includes experimentation in the design process for finding which workflows perform
better for which data sets. The experimentation results are further used to provide
workflow rankings by different criteria (i.e., accuracy, execution time, etc.).

2.10. DM experience level

Another attribute of IDAs that has been considered by Hand is the user’s prior experi-
ence [Hand 1985]: Who is actually using the IDA? The users can be either DM experts
or naı̈ve users (experts in other fields like biology, genetics, etc) but have less knowl-
edge about DM. Depending on the type of user considered, the system needs to provide
different kinds of support.

Naı̈ve users typically encounter two kinds of problems: First, since their understand-
ing of DM concepts is limited, it is difficult to decide which DM operators to choose
when analyzing their data. Second, it is difficult to determine which sequence of oper-
ators to apply as well as how to interpret the results obtained. Hence, users need to be
led through the sequence of steps they have to apply, subsequently they need to be ex-
plained how the decisions were made and why a certain operator was selected. Above
all, the system should protect the users from misuse, mistakes and misunderstanding
of the DM terms.

Experts, on the other hand, have different needs and requirements. They already
know how to use the main DM operators, how to modify their parameters, and how
to gain a better performance. They rather need help in discovering new and more ap-
propriate operators and in overcoming inertia at choosing the adequate approaches. In
addition, the combination of operators with their parameters sometimes results in too
many possible solutions, and therefore, it is impossible for a human to find the appro-
priate sequence. Hence, an IDA could help by suggesting workflows that were ranked
according to different criteria. The experts can then compare their own solutions and
validate their own decisions. Usually, experts do not want to be slowed down by being
asked too many elementary questions or be led inflexibly through steps. They prefer to
be able to skip support at any time or even modify a certain step. The ideal IDA should
leave the expert to direct the decisions and provide explanations only on demand.

3. TYPES OF KNOWLEDGE

These various types of user support can only be offered by a system that has access to
prior (background) knowledge on the involved data analysis techniques. This expertise
should be stored in a machine-interpretable format so it can be automatically extracted
and applied on new problems. A crucial aspect of designing an IDA thus lies in deciding
which prior knowledge to save and how to store it. In this section, we categorize these
types of expertise.

3.1. Available operators

First, a system must know about the different existing techniques that can be applied
in the data analysis process. These techniques are most often represented as operators,
which can be assembled in more complex data analysis workflows. Each IDA has a

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

certain ‘registry’ of operators : some handle operators across the whole KDD process,
while other focus on only one of the KDD phases as shown in Figure 1. The operators,
however, are usually not implemented in the IDA itself: they are most often part of
an existing DM platform, and accessed through an application programming interface
(API) or through web services.

3.2. Meta-data on the input dataset

To know which techniques can be applied, the system also needs information about
the input data it receives. This information can range from simple properties, like
the amount of attributes in tabular data or the amount of missing values, to complex
information-theoretic properties, like the entropy of value distributions or the signal-
to-noise ratio. Early IDAs used to inquire the (expert) user for such information, but
most modern IDAs calculate all required characteristics automatically.

3.3. Meta-data on operators

Typically, the input data properties are linked to the operator properties in order
to provide advice. We distinguish between two types of operator meta-data: external
(black-box) properties, i.e. the operator’s inputs, outputs, preconditions and effects (ab-
breviated as IOPE), and internal properties linked to operator’s structure (e.g. param-
eters or model type) or performance (e.g. speed, accuracy, model complexity).

IOPE information is essential for knowing when to apply an operator. For instance,
some modeling techniques take tabular data (input) and generate a predictive model
(output). Moreover, certain techniques can only handle continuous values (precondi-
tion) or may be slow, resulting in longer execution times (effect). IOPE can also be
used for checking the validity of a workflow, for visualizing workflow connections in
a graphical interface, and even for supporting automatic workflow generation via AI
planning. The IOPE information is most often stored in hardcoded form (through an
API), as formal planning domain descriptions (e.g. STRIPS or PDDL [Fox and Long
2003]), in ontologies [Chandrasekaran and Josephson 1999], or in the Semantic Web
Rule Language (SWRL) [Horrocks et al. 2004].

In addition to IOPE, many IDAs also store the meta-data related to the operator’s
performance, e.g. speed or model accuracy. Some IDAs even store detailed meta-data
information of prior operator executions in a database. This meta-data can then be
used to estimate the operator’s performance based on similar cases, or to continuously
update predictive models applied by the system (see below).

3.4. Predictive models

Some IDAs store and utilize models (e.g. rules) that suggest when to apply certain
operators. For instance, if the data contains missing values, such models may advise
the user to first impute those missing values in a preprocessing step, or suggest a
modeling technique that is less sensitive to them. These models can come in the form
of expert rules crafted by human experts or they can be more complex models that
were automatically extracted from meta-data on previous data processing workflows
(see Section 4.2). They can be expressed in human-readable form, e.g. in SWRL rules,
as formal model descriptions (e.g. in PMML), or in custom formats that need to be
loaded into a certain operator before being able to make predictions.

3.5. Case base

It is often useful to maintain a set of successful prior data analysis workflows so they
can be adapted and reused in similar situations or simply serve as an inspiration to the
data analyst. A knowledge base of such successful workflows is called a case base and
it is typically maintained by experts who populate the case base with useful workflows.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

Expert System

Expert rules

List or ranking of useful techniques

Experts

Q&A

Fig. 2: The general architecture of expert systems

Furthermore, there exist collaborative platforms for sharing scientific workflows, like
myExperiment [Goble et al. 2010], which allow users to share their workflows with
other scientists, and collaborate on improving them.

Case bases represent a more implicit type of background knowledge: they form a
collective ‘memory’ of successful solutions that may speed up the generation of new
workflows and avoid pitfalls. The most similar, most successful prior cases are often
retrieved using Case Based Reasoning (CBR), or by a simple keyword search.

4. TYPES OF SYSTEMS

This section provides an overview of the various IDAs developed to date. We focus on
the systems that provide the user with intelligent guidance for designing workflows
and will skip systems that merely offer tools but no specific guidance. We categorize
these IDAs into five categories based on the core technique used to generate useful
advice:

— Expert systems apply rules defined by human experts to suggest useful techniques
— Meta-learning systems automatically learn such rules from prior data analysis runs
— Case-based reasoning systems find and adapt workflows that were successful in sim-

ilar cases
— Planning systems use AI planners to generate and rank valid data analysis workflows
— Workflow composition environments facilitate manual workflow creation and testing

4.1. Expert systems

The earliest systems designed for assisting users in data analysis were Expert Systems
(ES); a high-level overview of which is shown in Figure 2. They were centered around
a knowledge base of expert rules, which were hand-crafted by experts. These rules
dictate which techniques should be used under which circumstances. For assessing
which rules to apply, the system asks the user questions about the given problem.
After that, it typically returns a list or ranking of recommended techniques.

4.1.1. Forerunners: Statistical Expert Systems. The earliest systems that provided advice
on data analysis were statistical expert systems, which were based on rules defin-
ing when certain statistical techniques were useful or valid. REX [Gale 1986] covered
linear regression, SPRINGEX [Raes 1992] handled bivariate, multivariate and non-
parametric statistics and Statistical Navigator [Raes 1992] covered techniques such
as multivariate causal analysis and classification. These systems asked the user mul-
tiple choice questions in order to trigger the expert rules. For instance, in REX the user
was asked to choose between a fast result or a more accurate result based on a larger
set of tests. Some other systems allowed the user to explore the rules directly to learn
more about the techniques, e.g. using a textual search function (KENS [Hand 1987;
1990]) or a help function with hyperlinks (NONPAREIL [Hand 1990] and LMG [Hand
1990]). In all these systems, advice was limited to the hardcoded expert knowledge
and a reduced set of problems. They did not provide direct guidance, but informed the
users what possible (correct) decisions could be made at the next step of the analysis.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

Datasets

Algorithms

Data characterizations

Evaluations

New dataset

MLS

< , , >

training

prediction

Meta-learner

 preferences Advise/ranking

Meta-database Model

meta-data

Fig. 3: The general architecture of meta-learning systems

Regarding their performance, we are not aware of any study which measures how good
these systems were.

4.1.2. MLT Consultant. The first IDA for machine learning algorithms was Consultant-
2 [Craw et al. 1992; Sleeman et al. 1995], which was linked to the Machine Learn-
ing Toolbox (MLT) [Graner et al. 1993; Kodratoff et al. 1992]. Its knowledge base
stored about 250 heuristic expert rules. It interacted with the user through question-
answering sessions, in which the user was asked to provide information about the data
(e.g. the number of classes or whether it could be expected to be noisy) and the desired
output (e.g. rules or a decision tree). Then the system utilized the stored rules to com-
pute a score for each algorithm. After the user had selected an algorithm, the system
ran this algorithm and afterwards engaged the user in a new question-answering ses-
sion in order to assess whether the user was satisfied with the results. If not, the
system would generate a list with possible parameter recommendations, which were
again scored according to the stored heuristic rules.

The rules were based on user preferences and on important meta-features of the data
(e.g. size, noisiness), the algorithms (e.g. relative memory usage, cpu time), and the
produced models (e.g. the number of decision tree nodes or the average center distance
of clusters). Further, these rules triggered actions such as adjusting algorithm scores
and proposing parameter settings or data transformations [Sleeman et al. 1995].

4.2. Meta-learning systems

The previous systems were built with a fixed set of techniques in mind. However, as
even more machine learning algorithms started to appear, it became increasingly im-
portant to find out which techniques were suitable for which kinds of data. This algo-
rithm selection problem was formulated by Rice [Rice 1976] as the challenge of discov-
ering the relationship between measurable features of the problem (the dataset) and
the performance of different algorithms.

This can be seen as a standard learning problem: the relationship between the meta-
data about the datasets and the algorithm performance could be learned (or modeled)
and used to predict the best suitable algorithm for a given dataset. This led to the
development of meta-learning systems (MLS), as shown in Figure 3.

Meta-learning systems consist of a training and a prediction phase. In the train-
ing phase, datasets are first characterized by a set of measurable characteristics.
Many different characteristics have been defined including simple, statistical and/or

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

information-theoretical measures [Michie et al. 1994], concept-based properties [Vi-
lalta and Drissi 2002a], model-based characteristics [Peng et al. 2002], landmarkers
[Pfahringer et al. 2000] (evaluations of simplified algorithms), and subsampling land-
markers [Leite and Brazdil 2007] (evaluations of algorithms on several subsamples of
the data). Subsequently, the algorithms are run on the dataset and their performance
evaluations (e.g. error rate and speed) are linked to the characteristics of the involved
dataset. In the training phase, a learning algorithm (called the meta-learner) is trained
on all the collected meta-data, which will yield a model (e.g. a set of rules or a deci-
sion tree) of the algorithm performance on different types of data. Finally, the resulted
model is used to make a prediction based on the characteristics of a new dataset. Most
systems will return a ranking of the algorithms based on the predicted performance of
each algorithm. Many also allow the user to define preferences, e.g. whether they care
more about speed or accuracy.

4.2.1. StatLog. While some small meta-learning systems were proposed earlier, e.g.,
VBMS [Rendell et al. 1987], the StatLog project [Michie et al. 1994] was the first large-
scale meta-learning study using 19 data properties and 10 algorithms. During the
training phase, the system marked algorithms as applicable or non applicable, based
on how close they were to the best algorithm on a given dataset. Then, a decision tree
model was built for each algorithm predicting whether or not it is applicable on a new
dataset. The end result was a set of learned rules that had to be checked manually.

4.2.2. The Data Mining Advisor (DMA). The Data Mining Advisor (DMA) [Giraud-Carrier
2005] further automated the idea from StatLog. It stored the actual performance mea-
sures for all algorithms and trained a k-Nearest Neighbor algorithm (k-NN) to predict
how well the algorithms perform on a new dataset. It produced a ranking of all al-
gorithms according to user-specified objectives. New datasets could be uploaded via a
web-interface; its meta-features were automatically computed, and the ranking was
returned subsequently. DMA used a set of 7 numerical data characteristics, 10 classi-
fication algorithms, and was initialized with 67 datasets, which originate mostly from
the UCI repository5. The choice of a k-NN algorithm (with k=3) had the benefit that
the meta-data from new algorithms or datasets could be added without retraining any
models. All performance predictions were based on the three most similar datasets.

4.2.3. NOEMON. NOEMON [Kalousis and Hilario 2001; Kalousis and Theoharis
1999] follows the approach of Aha [Aha 1992] for comparing pairs of algorithms. Start-
ing from a meta-database similar to the one used in DMA, the performance results on
every combination of two algorithms are extracted. Then, the number of data meta-
features is reduced using automatic feature selection. Here after, the performance val-
ues are replaced with statistical significance tests indicating in which situation one
algorithm significantly outperforms the other. The results are then fed to a decision
tree learner in order to build a model that predicts when one algorithm will be su-
perior or when they will tie on a new dataset. Finally, all those pairwise models are
stored in a knowledge base. At prediction time, the system collects all models relating
to a certain algorithm and counts the number of predicted wins/ties/losses against all
other algorithms to produce the final score for each algorithm. In the end, the final
scores obtained in this manner serve for the rankings of the algorithms.

4.2.4. Other meta-learning systems. There are many more meta-learning algorithms de-
scribed in the literature. Unfortunately, these fall outside the scope of this paper be-
cause they were never developed into IDAs. It is worth noting however, that many
of them improve considerably upon the meta-learning systems described above. For

5http://archive.ics.uci.edu/ml/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Case-based
reasoner

Workflow

ExpertsCase base

create cases
verify cases

Workflow
editor

meta-data
& choices

advice

Operators

User

Fig. 4: The general architecture of case-based reasoning systems

instance, they introduce novel data characteristics such (subsampling) landmarkers,
or employ different algorithms for building meta-models, such as boosted decision
trees [Kalousis 2002], predictive clustering trees [Todorovski et al. 2002], regression
algorithms [Bensusan and Kalousis 2001] and neural networks [Castiello and Fanelli
2005]. Some introduce new implementation frameworks, such as METALA [Botia et al.
2001; Hernansaez et al. 2004] and [Grabczewski and Jankowski 2007]. A very complete
overview of these systems can be found in [Vanschoren 2010].

4.3. Case-based reasoning systems

Case-based reasoning (CBR) systems are related to meta-learning systems. Instead of
learning a model during a separate training phase, they store all successful workflows,
called cases, in a case base, which is maintained by (human) experts. Given a new
problem, CBR systems provide advice based on these cases (see Figure 4).

The users input the new problem and their preferences into the system, which will
return k previous workflows from the case base according to their similarity to the
new problem and prior ‘successfulness’. The latter is often defined by experts and/or
feedback from previous users. In the next step, the user can select one of these cases
and load it into a workflow editor, so that the case can be adapted to the new problem.
The workflow editor allows to add or replace operators and will sometimes also pro-
vide additional guidance. After having finished this process, the new workflows can be
uploaded as a new case to the case base. Usually, a group of experts is responsible for
seeding the case base with useful cases as well as verifying new submissions.

Note that meta-learning systems that use a lazy learning algorithm as its meta-
learner (e.g. k-NN) can rightly be conceived as CBRs, though, they store both success-
ful and unsuccessful examples without expert involvement.

4.3.1. CITRUS. CITRUS [Engels 1996; Wirth et al. 1997] is built as an advisory com-
ponent for Clementine [Grimmer 1996] – a well-known KDD suite, now part of IBM
SPSS Modeler 6. It contains a case-base of available ‘processes’ (KD operators) and
‘streams’ (sequences of processes), which were entered by experts and described with
pre- and postconditions. In the beginning, the user has to provide an abstract task
description, which is appended with simple data statistics. CITRUS will then perform
CBR to load the most similar case in Clementine’s main workflow editor, where it can
be edited by the user. Additionally, CITRUS can check the validity of the user-edited
workflows (using the stored pre- and postconditions), and facilitate the selection of op-
erators by removing those operators that violate any constraints. Finally, it also uses
an hierarchical planner to build partial plans, and decompose a task into subtasks for
which smaller workflows can be defined.

6https://www-01.ibm.com/software/analytics/spss/products/modeler/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

4.3.2. AST. AST [Lindner and Studer 1999] is a case-based reasoning variation of the
Data Mining Advisor (DMA) approach, which also returns a single algorithm rather
than a complete workflow. AST extends the numerical data characteristics with several
simple, symbolic algorithm characteristics, such as whether the produced model is
interpretable (true/false) and the relative training and testing time (fast/slow). The
user is able to assign these preferences (e.g., ‘the algorithm should be fast and produce
interpretable models’), which are appended to the data characteristics calculated from
the new dataset, thus forming a new case. Subsequently, AST selects an algorithm
based on the three most similar cases and asks the user to adapt the workflow to the
new problem. On the whole, the case base consists of 21 algorithms on 80 datasets
with 16 StatLog data characteristics and 4 algorithm characteristics.

4.3.3. MiningMart. Likewise, the MiningMart project [Morik and Scholz 2004] aims at
reusing successful workflows but primarily focusses on the data selection and data
preprocessing phase (see Fig. 1). It is unique in that it has an elaborate workflow
editor that allows the users to map a case directly to the SQL databases where the
business data is stored, rather than expecting the user to first select and export the
data in a format that the CBR system understands. MiningMart’s online case base7

stores workflows described in a specific XML-based language, which is named M4.
The M4 language describes all details of the entire mapping process, as well as pre-
and postconditions and characteristics of all operators, for being able to verify the
validity of edited workflows. Instead of using a conventional CBR reasoner, Mining
Mart describes all cases in an ontology with informal annotations, such as the goals
and constraints of each problem. The user can then search the ontology and select
a case. For mapping the case to the data stored in a database, it offers a three-tier
graphical editor. First, in the case editor, the workflow can be adapted by adding or
removing operators. All data in the workflow is described using abstract concepts and
relations, such as ‘customer’, ‘product’, and the relation ‘buys’, which can each have a
range of properties, such as ‘name’ and ‘address’. Second, in the concept editor, these
concepts can be edited to match the new problem (e.g., the property ‘age’ can be added
to the customer). Also at this level, concept operators are defined, such as selecting or
adding a property. Third, in the relation editor, these concepts, relations and properties
have to be mapped to tables, columns, or sets of columns in the database. To run the
workflow, MiningMart translates all steps into SQL queries and operator calls, and
stores the preprocessed data in the database itself. At any point, the user can access
these three editors for a further refinement of the workflow.

4.3.4. The Hybrid Data Mining Assistant (HDMA). The Hybrid Data Mining Assistant8

(HDMA) [Charest et al. 2008] is a CBR system that offers additional guidance for
the workflow editor based on expert rules (expressed in SWRL [Horrocks et al. 2004]),
which are stored in an ontology. As such, it combines CBR with the expert rules of ex-
pert systems. In the case base, each case is described by 66 attributes: 30 attributes de-
scribing the problem (StatLog-like meta-features plus qualitative meta-features such
as the type of business area, e.g. finance, or whether the data can be expected to con-
tain outliers), 31 attributes describing the workflow (e.g. how outliers were handled
or which model was used) and 5 ‘user satisfaction’ ratings provided by previous users.
All operators are likewise expressed in the ontology. The user first provides a dataset
and the qualitative meta-features described above. The CBR system then returns two
scores for each case: one based on similarity, the other based on user satisfaction. After
a case has been selected, the system guides the user through this case in five distinct

7MiningMart’s online case-base: http://mmart.cs.uni-dortmund.de/caseBase/index.html
8This is not the official name, we only use it here to facilitate our discussion.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Planner Ranker

meta-data on
operators

metadatadesiderata

Dataset

Plans

Experts

Ranking of
KDD plansObjectives

Fig. 5: The general architecture of Planning-based Data Analysis Systems

phases, corresponding to the KDD-process (see Fig. 1). In each phase, the user is given
the solution of the selected case, as well as all operators for that phase. A rule reasoner
further displays recommendations, which may encourage or advise against an opera-
tor based on the expert rules, e.g. “use an aggregation technique if the example count
is greater than 30000 and the data is of a transactional nature”, or “if you select the
Naive Bayes technique, then a nominal target is required”.

A similar approach to HDMA is the OLA assistant [Choinski and Chudziak 2009]
which employs ontologies combined with CBR focusing mainly on the collaboration
between domain and technology experts. For this purpose both domain and DM on-
tologies are used, the later even aligned along the CRISP-DM model. Opposed to other
CBR approaches OLA is not limited to the KDD process but it follows the CRISP-
DM phases. It also uses the rules stored in ontologies and IOPE to dynamically com-
pose, rank and present to the user valid processes. Unfortunately there are many
missing details about this approach. There is no public knowledge if it was imple-
mented/finished, therefore we did not add it in our comparison section.

4.4. Planning-based Data Analysis Systems

The previously discussed systems share a common weakness: if the given problem is
different from the ones seen before, the IDA cannot provide other support than re-
turning general expert advice. In these cases, it becomes crucial that the IDA is able
to construct and evaluate workflows autonomously, so that it can offer good candidate
solutions to the user. One way to do this is to view the workflow construction prob-
lem as a planning problem, in which a plan must be built consisting of operators that
transform the initial data into accurate models or predictions.

The general architecture of these Planning-based Data Analysis Systems (PDAS) is
shown in Figure 5. First, additional meta-data about the involved operators needs to
be stored. This includes not only the inputs, outputs, preconditions and effects (IOPE)
of each operator but can also comprise other meta-information that we have encoun-
tered before, e.g. the operator’s relative speed, to evaluate the resulting plans. First, a
planning domain description needs to be built (e.g. in PDDL [McDermott et al. 1998])
based on the dataset characteristics and additional information from the user. Next,
the planning component will generate valid KD workflows (plans). Finally, these work-
flows are ranked according to the user’s objectives.

4.4.1. AIDE. AIDE [Amant and Cohen 1998a] is a mixed-initiative planning system
designed to help users during exploratory data analysis. In mixed-initiative systems,
the system starts a dialogue with the user: it gives recommendations about which
operators to use next and in turn allows the user to review and override these recom-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

mendations. For planning, it uses an approach similar to Hierarchical Task Network
(HTN) planning [Erol 1996], in which the dependencies between actions can be given
in the form of networks. This allows to plan on a higher, more abstract level, and to
decompose a planning problem into smaller sub-problems with subgoals. The system
thus builds high-level plans consisting of sub-problems as well as low-level plans in
which each subproblem is solved by workflows of primitive operators. Moreover, AIDE
also resembles CBR systems: it has a plan library (a case base) which is used to ex-
tract plans for similar cases. These plans can also consist of subproblems rather than
primitive operators. Its planner is script-based and offers 3 primitive operations: re-
duction, transformation, and decomposition, which are used for data manipulation in
the exploratory process.

4.4.2. The Intelligent Discovery Electronic Assistant (IDEA). A first PDA system for DM is
the Intelligent Discovery Electronic Assistant (IDEA) [Bernstein et al. 2005]. It re-
gards preprocessing, modeling, and post-processing techniques as operators and re-
turns all valid plans for the given problem. The IOPE information is encoded in an
ontology, which also contains manually defined heuristics (e.g., the relative speed of an
algorithm). Before the planning process, the user is asked to give weights to a num-
ber of heuristic functions, such as model comprehensibility, accuracy, and speed. After
planning, the workflows are passed on to a heuristic ranker, which uses the heuristics
enlisted in the ontology to compute a score congruent with the user’s objectives (e.g.,
building a decision tree as fast as possible). Finally, based on this ranking the user may
select a number of processes to be executed on the provided data. After the execution
of a plan, the user is allowed to review the results and alter the weights to obtain alter-
native rankings. For instance, the user might sacrifice some speed in order to obtain
a more accurate model. Finally, if useful partial workflows have been discovered, the
system also allows to extend the ontology by adding them as new operators.

4.4.3. NExT. NExT, the Next generation Experiment Toolbox [Bernstein and Daen-
zer 2007], is a CBR-extension of the IDEA approach. It contains a case base of past
workflows and uses CBR to retrieve the most useful ones. Often, only parts of these
workflows will be useful, leaving gaps that need to be filled with other operators. For
instance, a workflow may start with a preprocessor that cannot be applied on the given
data. This is where the planning component comes in: using the preconditions and ef-
fects of all operators it will try to find new sequences of operators to fill in those gaps.
NExT includes an ontology of possible problems related to workflow execution and
matching resolution strategies. Calling a planner is one such strategy, other strategies
may entail removing operators, or even alerting the user to fix the problem manu-
ally. During operation, NExT records a complete log of experimentation, which can
be shared with other researchers interested in reproducing the workflow. Although
evaluations of the NExT system remain scarce, its reuse of prior workflows and semi-
automatic adaption of these workflows to new problems seems promising.

4.4.4. KDDVM. The Knowledge Discovery in Databases Virtual Mart (KDDVM) sys-
tem [Diamantini et al. 2009b] is based on the KDDONTO ontology, which likewise
describes the algorithms with their inputs and outputs as well as their properties and
relationships. Akin to RDM, KDDVM interacts with the ontology by using the Pellet
reasoner and SPARQL-DL queries. Instead of applying a standard planning algorithm
though, it utilizes a custom algorithm that starts at the goal state and iteratively adds
operators, thus forming a directed graph until the first operator is compatible with
the given dataset. Operators are added using an algorithm matching procedure, which
checks the compatibility of inputs and outputs. However, the operator interfaces do
not need to be perfectly equivalent: their similarity is computed through their dis-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Workflow composition
environment

Operators (+ IOPE)
Canvas/editor

Data
Workflow

Validate
Execute

Fig. 6: The architecture of workflow composition environments

tance in the ontology graph. Finally, the produced workflows are ranked based on the
similarity scores as well as other operator properties stored in the ontology (e.g. soft
preconditions or computational complexity estimates).

4.4.5. RDM. The RDM system [Žáková et al. 2010] uses an OWL-DL-based [Patel-
Schneider et al. 2004] ontology for knowledge discovery. It is organized around the
concepts of knowledge (datasets, constraints, background knowledge, rules, etc.), al-
gorithms (inductive algorithms and data transformations), and the knowledge discov-
ery task. This ontology is queried using the Pellet reasoner [Sirin et al. 2007] and
SPARQL-DL queries [Sirin and Parsia 2007], for retrieving the operator inputs and
outputs, which are then fed into the planner. Two planners are implemented. The first
one is a standard PDDL planner, thus the inputs and outputs are first translated into
PDDL before the actual planning phase. The second is a modification of the heuristic
Fast-Forward (FF) planning system [Hoffmann and Nebel 2001]. Here, the ontology is
queried directly during the planning process. Additionally, it uses a heuristic to guide
the planning: given the current partial plan, the final length of the plan is estimated
using a secondary planner (GRAPHPLAN [Blum and Furst 1997]).

4.4.6. eIDA. The eLico-IDA (eIDA) is a product of the eLico project9. It deploys the
Data Mining Workflow Ontology (DMWF) [Kietz et al. 2009], which stores not only
operator inputs and outputs but also preconditions and effects in the form of SWRL
rules (stored as annotations in the ontology). eIDA uses a hierarchical task network
(HTN) planner implemented in Flora2 [Yang et al. 2002]. The ontology is queried and
all inputs, outputs, preconditions and effects are translated to Flora2 for planning. The
resulting plans are then ranked using a second ontology, DMOP [Hilario et al. 2009],
which stores detailed properties of the operators. The system also offers a modeling
tool, eProPlan, for defining the planning domain and user preferences (e.g. the DM
task). Moreover, it provides an API interface to DM suites and can be used as a plugin
for RapidMiner 5 [Mierswa et al. 2006] and Taverna [Oinn et al. 2004].

4.5. Workflow Composition Environments

The final category of systems do not automatically propose operators or workflows, but
rather support the user during manual workflow composition by offering a graphical
environment, where the data flow can be drawn on a canvas, or a high-level scripting
language for quick workflow design and execution (see Figure 6).

WCEs are the baseline of this survey since they are the only ones actively used,
mainly because they focus on ease-of-use and actually executing the workflow. They
are not only a collection of algorithms, but they also offer some guidance (e.g., auto-
wiring, meta-data propagation, correctness checking before execution, operator recom-
mendations, etc.) and therefore can be considered ‘pseudo-IDAs’.

9http://www.e-lico.eu/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

4.5.1. Canvas-based tools. IBM SPSS Modeler10 is a commercial DM tool that allows
the user to easily design DM workflows via an intuitive graphical interface. It contains
many DM operators and provides support for all KDD steps. It also incorporates the
statistics capabilities of SPSS-like data transformation, hypothesis testing, and report-
ing capabilities. In addition, makes use of advanced analytical functions, automated
data preparation, and rich, interactive visualization capabilities.

SAS Enterprise Miner [Cerrito 2007] uses the SAS methodology, SEMMA 11, de-
signed to handle large data sets in preparation for subsequent data analysis. It pro-
vides extensive support for statistics, numerous types of charts and plots, and data
exploration via hierarchical market baskets and multivariate graphical data explo-
ration. A new feature is the SAS Rapid Predictive Modeler which offers the user an
automatic guidance through the data preparation and all other DM tasks.

Weka [Hall et al. 2009] is the first open-source suite of machine learning algorithms
for DM tasks. It provides support for several KDD steps like preprocessing, feature
selection, DM step, evaluation, and visualization of results. Moreover, people have de-
veloped a various packages for additional tasks (e.g., tree visualization). Recently, the
suite has even been integrated in the newer DM tools, like RapidMiner, KNIME, etc.

RapidMiner [Mierswa et al. 2006] is the most popular open-source system for DM.12

It has both a GUI mode and a command-line server mode. It can be easily extended
and offers many available extensions. It encompasses more than 500 operators for data
integration and transformation, DM, evaluation, and visualization tasks. Moreover, it
provides powerful high-dimensional plotting facilities.

KNIME [Berthold et al. 2009] is a younger system that enables the user to easily de-
sign, execute, and investigate DM workflows as well as integrate new DM algorithms.
It incorporates over 100 operators for reading and exporting data (input/output), pre-
processing and cleaning, modeling, analysis and DM as well as several interactive data
visualizations. KNIME is compatible with Weka and the R framework via plugins.

4.5.2. Scripting-based tools. Another important category are the script-based mathe-
matical tools which originally did not focus on DM but rather on mathematical and
visualization functions that also allow to implement DM algorithms.

MATLAB [MathWorks 2004] is a high-level language and framework that enables
users to quickly develop algorithms, analyze data, and visualize it. Its language can
also be used to define workflows as small programs. This tool is mainly used for all
sorts of basic data analysis, like basic statistics, matrix processing and curve fitting.
Additionally it contains many extensions to more advanced analysis techniques, such
as computer vision. It further supports a couple of graphical interfaces, which simplify
the interaction with the toolbox. For example, Gait-CAD 13 is designed for the visual-
ization and analysis of time series and features with a special focus on DM problems
including classification, regression, and clustering.

R [Ihaka and Gentleman 1996] is a framework for data analysis based on the high
level language R and used to provide statistical functionality. As such, it resembles
MATLAB, but instead focuses on data analysis: it has various statistical and graphical
techniques (e.g., linear and nonlinear modeling, classical statistical tests,etc.). Many
scientists prefer it because it is very extensible: new algorithms and techniques can
be easily added. Further, various GUIs have been developed for it from which the

10http://www-01.ibm.com/software/analytics/spss/products/modeler/
11http://www.sas.com/offices/europe/uk/technologies/analytics/datamining/miner/semma.html
12http://www.kdnuggets.com/polls/2011/tools-analytics-data-mining.html
13http://www.iai.fzk.de/www-extern/index.php?id=656&L=1

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

most known is Rattle 14. Rattle features several windows/tabs for visualizing data and
results. Another GUI for R that supports interactive graphics is RStudio 15.

5. COMPARISON

This section presents a comparison of various IDAs from a new perspective by con-
sidering both the background knowledge they use and the support they provide. The
purpose of this comparison is to organize the existing IDAs along a set of dimensions,
to identify trends as well as their assets and drawbacks.

5.1. Background knowledge

First, we compare all IDAs based on their prior knowledge of data analysis techniques
(see Section 3), or lack thereof. This will give each system certain advantages or dis-
advantages compared to other IDAs. The results are summarized in Table I. The first
column states the IDA category, as established in the previous section: expert systems
(ES), meta-learning systems (MLS), case-based reasoning systems (CBR), planning-
based data analysis systems (PDAS) and workflow composition environments (WCE).
The next column depicts which of the five phases of the KDD-process (see Figure 1) are
covered by the system: data selection, preprocessing, transformation, modeling/mining
and evaluation, in that order. The remaining columns cover, from left to right, which
meta-data the IDAs extract from the input data, which meta-data they hold about the
operators, whether they use models (e.g. rules) predicting which operators to use, and
whether they use a case base of prior, successful cases. Finally, the last column briefly
states the type of advice each system offers to the user. In the remainder of this section,
we will explain how each IDA uses these types of knowledge in order to offer specific
types of support to the user, and perhaps more importantly, which types of knowledge
are missing in IDAs that in turn could be used to improve them.

5.1.1. Range of operators. The ideal IDA should know about all available data analysis
operators. Usually, however, this is a limiting factor for many of the discussed IDAs.
ES and MLS systems, for instance, control only data mining operators, and thus can
only provide advice on which data mining technique to select. As such, they are only
useful in cases where the data is already preprocessed considerably by the user, and
the only remaining steps are modeling the data and evaluating the resulting models.
Several systems, such as DMA, and the ES systems can automatically evaluate their
own suggestions and update their advice based on the outcome.

CBR, PDAS and WCE, also control preprocessing operators (e.g., missing value im-
putation) as well as transformation operators (e.g., feature selection). As such, they can
provide multi-step support starting from an input dataset: given some pre-selected,
partially cleaned data, they can provide advice on which series of techniques are best
used. However, few cover the initial data selection step. The only exceptions are Min-
ingMart, which offers a mapping interface to map workflows directly to the raw data
stored in relational databases, and WCE systems, which do not help the user with
deciding which data to select, but do offer operators for extracting the data from
databases. In short, these systems are much more useful when starting with raw data.

There is also a difference in depth: most IDAs only support a (few) dozen techniques
in each KDD phase, and are not always easily extensible (e.g. new expert rules or cases
are needed). This may limit their usefulness in practical scenarios. For instance, if no
operators are included for image processing, they won’t be able to provide useful advice
for image data. WCE typically control hundreds of operators, covering a wide range of

14http://rattle.togaware.com/
15http://rstudio.org/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Cate-
gory

System
Range of
operators

Meta-data on
input dataset

Meta-data on operators Predictive
models

Case base Type of advice
External (IOPE) Internal

ES

Statistical ex-
pert systems

simple data
properties

− − hardcoded
expert rules

− advice on techniques
via Q&A sessions

MLT
Consultant

simple data
properties

− speed, model
complexity, . . .

250 heuristic
expert rules

− scores ML methods +
parameter settings

MLS

StatLog 19 measurable
data properties

− operator
evaluations

decision tree per
ML algorithm

− returns all “useful”
algorithms (defaults)

DMA 7 measurable data
properties

− operator
evaluations

k-Nearest
Neighbor

− returns ranking of 10
algorithms (defaults)

NOEMON 35 measurable
data properties

− operator
evaluations

decision tree per
algorithm pair

− returns ranking of 3
algorithms (defaults)

CBR

CITRUS simple data props
+ info from user

pre- & postcondi-
tions (hardcoded)

− − partial
workflows

finds similar flows +
checks validity

AST 16 measurable
data properties

− speed, model
interpretability

− 21 single
operators

selects best from 21
algorithms (defaults)

MiningMart info from user pre- & postcondi-
tions (M4 format)

− − workflows +
mappings

remapping of flows +
checks validity

HDMA 30 data properties
+ info from user

pre- &
postconditions

− expert rules in
SWRL

workflows,
36 properties

ranks cases + helps
user adapt them

PDAS

AIDE info from user operator
(sub)goals

− − (abstract)
workflows

mixed initiative:
proposes useful steps

IDEA simple data props
provided by user

IOPE’s (STRIPS,
in ontology)

heuristics (e.g.
relative speed)

− − returns ranking of all
valid workflows

NeXT simple data props
provided by user

IOPE’s (STRIPS,
in ontology)

− − prior
workflows

finds similar cases +
fixes workflows

KDDVM general task input
description (user)

IOPE’s (in
ontology)

algo properties
in ontology

− − builds approximate
and exact workflows

eIDA task description
(user+computed)

IOPE’s (SWRL,
in ontology)

algo properties
in ontology

− − generates and ranks
workflows

RDM general task input
description (GUI)

IOPE’s (in
ontology)

algo properties
in ontology

− − generates abstract &
specific workflows

WCE

Script-based at operator level inputs & outputs
(hardcoded)

− − − powerful high-level
scripting language

Canvas-based at operator level inputs & outputs
(hardcoded)

− − − visualize inputs,
outputs,connections

Table I: Overview of IDAs by their background knowledge

data analysis tasks, but unfortunately provide only limited advice. PDAs are generally
more easily extensible, and are sometimes built on top of WCEs (e.g. eIDA uses Rapid-
Miner), which makes them the most widely applicable IDAs. Extending them typically
means adding the operators and their IOPE information in their ontologies.

5.1.2. Meta-data on input dataset. Ideally, IDAs should be able to automatically extract
all useful information from the given input data, so that it can give targeted advice on
which techniques are most useful in each specific situation. Unfortunately, each IDA
uses only a specific subset of that information, which has a profound effect on the ad-
vice it is able to offer. ES systems use rather simple measures, such as the number
of data points or the number of attributes, which are indeed useful but not indicative
for subtle differences between operators. MLS systems, on the other hand, use a vast
array of measurable data features that affect the operator performance. These include
statistical (e.g. skewness) and information-theoretic (e.g. entropy) measures [Michie
et al. 1994; Castiello et al. 2005], which are applied in StatLog, DMA and NOEMON.
Meta-learning systems use this meta-data to select useful operators, while CBR sys-
tems use similar measures for calculating the similarity between a new case and prior
ones from the case base.

Interestingly, more successes were recorded for model-based measures [Peng et al.
2002], e.g. make use of the complexity of a decision tree trained on the data to char-
acterize this data, and landmarking [Pfahringer et al. 2000], i.e. use the performance
of fast simplified algorithms (e.g. a decision stump learner) to characterize the data.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

However, these model-based measures were never included in an IDA. Moreover, most
meta-learning research has focused on tabular data. For many other types of data
(e.g., graphs or text) there exist only limited work on identifying which data properties
would be good indicators of operator suitability. None of the presented IDAs are able
to provide targeted advice in such situations, especially not the ES, MLS and CBR sys-
tems, which are very dependent on good input meta-data to find similar cases or build
accurate predictive models. As such, an important direction for future work will be to
include more detailed input data properties on a larger variety of tasks.

PDAS systems often depend on interaction with the user to obtain information on
the given task. For instance, if an operator only works on nominal data, then the PDAS
will either measure this property in the input data (as in eIDA), or, more often, ask
the user to manually fill in such properties as part of the planning task description. In
addition, the user is supposed to indicate the desired end state of the planning process,
which is typically defined as a task. For instance, in ‘predictive modeling’ tasks, the
user expects a predictive model at the end of the workflow. In eIDA, which employs an
HTN planner, the user is even able to define subtasks, such as attribute selection or
discretization, which need to be fulfilled along the way. As such, they are more widely
applicable, but also require more user expertise in defining the problem. Finally, note
that while a PDAS will be able to build workflows as long as the necessary IOPE
information is available, the workflows may be of lesser quality if there is less guidance
(e.g., in the form of heuristics) on which operators to select for which types of data. We
will discuss this in the next section.

5.1.3. Meta-data on operators: IOPE. Next, IDAs should be able to link information on
the input data to the properties of all operators (or entire workflows), in order to gen-
erate only the most useful workflows.

Table I shows that all IDAs use at least some meta-data on both the input data and
operators. As said before, we distinguish between external (black-box) properties, i.e.
the operator’s inputs, outputs, preprocessors, and effects (IOPE), and internal proper-
ties, which are linked to the operator’s structure (e.g. model type) or performance (e.g.
speed, accuracy and model complexity).

IOPE information allows CBR, PDAS and WCE systems to verify the validity of
workflows (e.g., no preconditions are violated). More importantly though, IOPE can be
used to describe a planning domain and leverage AI planning to automatically gen-
erate valid workflows. This information is either hardcoded (CITRUS and WCE sys-
tems), encoded in standard formats (e.g., IDEA and NEXT use the STRIPS format), a
custom format (MiningMart) or stored in ontologies. eIDA expresses IOPE information
in SWRL rules, which are stored in an ontology as annotations, and AIDE stores IOPE
information as operator (sub)goals to drive its HTN planning.

5.1.4. Meta-data on operators: internal properties. Nevertheless, generating all valid work-
flows is not very helpful if there exist hundreds of them. Additional information is
needed for being able to rank the workflows according to user preferences or the prop-
erties of the input data.

The simplest solution is to rank workflows according to their complexity (e.g. num-
ber of operators), as in the RDM system. MLT Consultant, AST and IDEA, on the other
hand, make use of relative performance metrics, such as the relative speed, memory
usage, and model complexity. For instance, if a user prefers a fast solution, then the
speed of a workflow is estimated based on the speed of the constituent operators and
scored accordingly. RDM, KDDVM and eIDA store similar properties in their ontolo-
gies (e.g., computational complexity indices), in addition to task-oriented properties,
such as whether a classification model is probabilistic or not. This is very useful when
the user has specific requirements for the workflows.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

A problem with such operator performance properties is the fact that they are ob-
tained via averaging the operator’s performance over different applications, and hence
may not be accurate for the given input data. MLS systems, therefore, store all oper-
ator evaluations in a separate database and link them to the properties of the input
data. This is done by training a predictive model on the meta-data of the input data
and the operator’s performance evaluations. As such, these models can predict the op-
erator performance much more accurately given precise properties of the input data.

5.1.5. Predictive models. An ideal IDA should also be able to learn from previous tasks,
and use that experience to perform future tasks better. ES systems only use hard-
coded rules handcrafted by human experts. In MLT Consultant, these rules are used
to update the scores for each DM technique, or generate scores for specific parame-
ter settings. Support for parameter optimization is a quite unique feature. WCEs only
support exhaustive or manual parameter optimization, and most other systems do not
consider parameters at all.16

The problem with expert rules is that for every new operator, new rules have to be
defined that differentiate the new operator from all the existing operators. Given that
new techniques are introduced at a constant rate, this quickly becomes infeasible. MLS
systems solve this issue by automatically training predictive models on meta-data. As
such, their models are automatically updated to cover new operators, and predictions
generally improve as more examples of data analysis problems are encountered.

However, all predictive models used so far only predict a single operator – almost
always a DM operator, but never entire workflows. This is problematic because choos-
ing the right data preprocessing and transformation techniques typically has a much
greater effect than selecting the best DM technique. HDMA, on the other hand, takes
a middle course by first selecting a prior workflow and then using expert rules to adapt
that workflow to the new data. Unfortunately, the rules are merely used to inform the
user, rather than automating the workflow composition process.

Predictive models are never used in PDAS or WCE systems,17 which is unfortunate.
It seems very useful to use predictive models to predict the effects of each operator
given the input data it receives. As such, predictive models could be used to predict
which operators are most likely to perform well at a certain point in the workflow. In
heuristic planners, these predictions can be part of the heuristic. Furthermore, after
executing an automatically generated workflow, it seems perfectly sensible to calcu-
late the actual data characteristics for each point in the workflow and use predictive
models to predict which operators might be even better based on prior observations.
This seems to be a promising avenue for future work.

5.1.6. Case base. Case bases form an important alternative to predictive models: in-
stead of predicting how well an operator or workflow will perform, they only store
successful workflows, assuming those will always perform well if the input data is
similar. The latter is estimated based on measurable properties of the input data: if
a prior case was related to data with similar properties, then the associated workflow
will likely perform well. As such, all systems that use a case base must also calculate
a range of meta-data on the input dataset. Especially HDMA uses a quite large array
of data properties, which improves the similarity calculations.

16Some meta-learning studies were performed that treated different parameter settings as different algo-
rithms [Soares et al. 2004], but no meta-learning system has been developed that provides accurate advice
on both algorithms and parameter settings.
17eIDA has SWRL rules, but they are not predictive: they only check the validity of an operator in a workflow.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

Like systems that use predictive models, CBR systems also automatically improve
as more people use it, since this will enrich the case base. The best-practice cases
developed by experienced users are stored for later re-use, which saves time and costs.

However, CBR systems still rely heavily on experts to seed and maintain the case
base: it needs to be densely populated and unsuccessful workflows should be avoided.
Indeed, if no sufficiently similar workflow exists in the workflow, they will not be able
to offer much assistance. Moreover, after a similar prior case has been found, the re-
maining problem adapts the associated workflow, so that it will work on the new data.
On this aspect, the different systems vary greatly.

CITRUS and AIDE return only partial or abstract workflows, leaving it to the user
to complete the workflow. MiningMart offers much greater support: it uses various
graphical editors to (manually) map the prior workflow to the new data: additional
operators can be added, data attributes (concepts) can be added or removed, and data
attributes can be mapped to (sets of) columns in a relational database. As such, it will
be especially useful for situations in which data is stored in relational databases. More-
over, MiningMart includes cases with self-adapting operators by using multi-strategy
learning [Kietz et al. 2000], which may greatly help novice users. It also provides a
nice user interface with facilities for storing and retrieving cases.

HDMA uses a different approach entirely: it applies expert rules to advise the user
about useful changes. For instance, if the prior case did not have missing values but
the current one does, then the system will advise the user to add an operator that im-
putes missing values, because it has an expert rule that says so. This interesting mix
of expert rules and CBR provides more targeted guidance for novice users. However, it
also entails that, for every new operator, new rules have to be entered by the experts.
As such, it will only perform well if both the case base and expert rule base are contin-
uously maintained by experts. A more important problem, however, is that the utility
of a case may diminish in later phases of the KDD-process: if the user chooses a dif-
ferent preprocessing step, then the subsequent stages of this case (e.g. data modeling
steps) may lose their applicability, thus reducing the quality of the final workflow.

NeXT offers perhaps the most complete solution for novice users: it first retrieves
the most similar workflow from a case base, and if the workflow fails on the new data,
the system tries to automatically fix the workflow by using planning to complete the
‘gaps’ in the workflow or by removing unnecessary operators. This is an interesting
combination of case bases and IOPE meta-data, although evaluations of the system
remain scarce.

DMA is related to CBR systems: it uses a Nearest Neighbor classifier which stores
evaluations of induction algorithms and measures dataset similarity to predict the best
algorithm for a new dataset [Hilario and Kalousis 2001]. However, it does not support
multi-operator workflows. Finally, AIDE stores previous abstract workflows which it
can match with new workflows to reuse previous results and decisions, though it is not
actually a CBR system.

5.1.7. Final remarks. From this overview, it is clear that no system fully exploits all
available types of background knowledge. ES and MLS do not use IOPE information
and therefore are not able to construct entire workflows. Conversely, PDAS generate
and rank workflows based on user preferences but in essence they start from scratch
every time. They do not capitalize on experience gained from previous data analyses. If
they stored performance evaluations of the operators in the generated workflows, they
could make use of that information during planning in order to get better estimates
of the usefulness of the operators and generate more appropriate workflows. The vast
array of input data properties used in MLS and CBR systems could also be used to
improve the planning process. For instance, if a data mining operator is known to

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

perform badly on skewed data distributions, it makes sense to store this property in
the ontology as an operator property and measure the data skewness in the input data.

Regarding how the different IDAs influenced each other, it is clear that early sta-
tistical expert systems influenced MLT Consultant. Further, StatLog influenced DMA,
NOEMON and AST, and IDEA influenced RDM, KDDVM, eIDA and NeXT. However,
there is almost no cross-fertilization between different categories of IDAs. The only
exceptions are HDMA, which combines CBR with expert rules, and NeXT, which com-
bines CBR with planning. Indeed, there seems to be a lot of unexploited potential in
trying to combine these different approaches.

Finally, with the exception of RDM, KDDVM and eIDA, all IDAs use their own cus-
tom sets of operators. This generally means that they offer a lot of guidance on a very
restricted set of operators. WCEs, on the other hand, offer very limited guidance on
huge sets of operators. It seems to be clear that future IDAs are best developed on top
of such WCEs – a trend that is especially clear in the newest IDAs: RDM, KDDVM and
eIDA. Challenges remain however, as some approaches do not scale well to hundreds
of operators: MLS systems require much larger repositories of operator evaluations
for training models on them and CBR systems require much larger case bases. For
planning-based systems, it quickly becomes infeasible to generate all valid plans, thus
generating a necessity for finding solutions to generate only the best plans.

5.2. Type of support

Second, we compare the IDAs based on the support they provide for facilitating the
data analysis process, as described in Section 2. Table II summarizes the findings on
the kind of support the systems offer, their status, and availability as well as relevant
references for each of them in the last columns. The user support can be divided into
two main categories: first, the workflow-based support, like the first six entries of the
table; second, the user-based support. In our discussion we group the types of support
which have contradictory/opposite purpose (e.g., single step vs. multi-step, automatic
generation vs. manual, etc) in order to better emphasize their contributions.

5.2.1. Modeling a single-step vs. multi-step from the KDD-process. A first distinction of IDAs
is based on the complexity of the DM advice offered. Here we distinguish between sys-
tems which offer advice on one step of the KDD-process and the ones which recommend
all of them. An ideal IDA should include both types: the first helps to decide when to
use a certain operator and the second what operators should be used in a sequence.

For instance, ES provide support for a single step of the KDD-process. The advice
is based on the information provided by the user combined with the expert rules from
the knowledge base. Most often the advice is guided by questions addressed to the user
and concerns both the modeling and the evaluation steps. Consultant-2 is the most
advanced ES system. It suggests new methods in case the one applied has produced
unsatisfactory results. Thus, a step from the KDD-process is not seen as a single-step
but as a cyclic process, where the user can reapply other algorithms in case the current
results are not satisfactory. MLS systems have a similar focus: they recommend the
most appropriate algorithm for a certain data set – actually, they focus primarily on
the modeling step (classification and regression).

Nevertheless, optimizing a single step is not an easy task. If we observe the modeling
step, for instance, it becomes apparent that each algorithm has several parameters. For
a naive user with little understanding of the DM domain, it is not trivial to set their
values. Probably most of these users prefer to apply just the default values.

The shift from single-step to multi-step was initiated by the CRISP-DM standard
and the CITRUS system. Both approaches guide the user through all phases of the
KDD-process. WCE, on the other hand, are neutral, since they allow the users to ex-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

C
a
te

g
or

y

S
y
st

em
n

a
m

e

K
D

D
si

n
g
le

st
ep

su
p

p
or

t

K
D

D
m

u
lt

i-
st

ep
su

p
p

or
t

G
ra

p
h

ic
a
l
w

or
k

fl
ow

ed
it

in
g

A
u

to
m

a
ti

c
w

or
k

-
fl

ow
g
en

er
a
ti

on

W
or

k
fl

ow
ch

ec
k

-
in

g
/r

ep
a
ir

R
e-

u
se

p
a
st

ex
p

er
i-

en
ce

s

T
a
sk

d
ec

om
p

os
it

io
n

D
es

ig
n

su
p

p
or

t

E
x
p

la
n

a
ti

on
s

E
x
p

er
im

en
ta

l

A
n

a
ly

ti
ca

l

D
M

ex
p

er
ie

n
ce

le
v
el

S
ta

tu
s/

A
v
a
il

a
b
il

it
y

R
ef

er
en

ce
s

ES
SES ++ − −− −− −− −− −− −− ++ − ++ naive

(REX),
experienced

NA/O [Gale 1986], [Raes
1992], [Hand 1987;
1990]

MLT
Consultant

++ − −− −− −− −− −− −− ++ ++ ++ all NA/O [Sleeman et al. 1995]

MLS

StatLog ++ − − − −− − − − − − ++ unspecified -/O [Michie et al. 1994]

DMA ++ − − − −− − − − − + ++ experienced A/O [Giraud-Carrier 2005]

NOEMON + − −− −− −− −− −− − − + + unspecified NA/O [Kalousis and Hilario
2001]

CBR

CITRUS − ++ − + −− ++ ++ − ++ + − all NA/O [Engels et al. 1997]

AST + − − −− −− ++ −− − − + − unspecified NA/- [Lindner and Studer
1999]

MiningMart 0 0 + − −− ++ − − − ++ − experienced A/O [Morik and Scholz
2004]

HDMA 0 0 − − −− ++ − − + + − all NA/U [Charest et al. 2008]

PDAS

IDEA − ++ − ++ −− − − − − + − intermediary NA/O [Bernstein et al. 2005]

RDM − ++ − ++ −− − − − − + − intermediary NA/U [Žáková et al. 2010]

KDDVM − ++ − + −− − − − − + − intermediary A/U [Diamantini et al.
2009b]

eIDA + ++ + ++ ++ + ++ + − + − intermediary A/U [Kietz et al. 2010]

NeXT 0 + + + −− + − + − + − intermediary NA/O [Bernstein and
Daenzer 2007]

AIDE + + − + −− + + − + + − intermediary NA/O [Amant and Cohen
1998b]

WCE

IBM SPSS
Statistics

0 0 − − −− − − − + ++ − experienced A/U [Levesque 2005]

R 0 0 − − − −− − − − ++ − experienced A/U [Ihaka and Gentleman
1996]

MATLAB 0 0 − − −− − − − − ++ − experienced A/U [MathWorks 2004]

IBM SPSS
Modeler

0 0 ++ − ++ − − ++ ++ ++ − experienced A/U Link to project site1

SAS
Enterprise
Miner

0 0 ++ − −− − − ++ ++ ++ − experienced A/U [Cerrito 2007]

Weka 0 0 ++ − −− − − + + ++ − experienced A/U [Hall et al. 2009]

RapidMiner
5.0

0 0 ++ − ++ − − ++ + ++ − experienced A/U [Mierswa et al. 2006]

KNIME 0 0 ++ − −− − − ++ + ++ − experienced A/U [Berthold et al. 2009]
1 http://www-01.ibm.com/software/analytics/spss/products/modeler/

++ = well supported (a main feature of the system) A = publicly available

+ = supported NA = not publicly available

0
= neutral, the system can do it but there is no
assistance U = up-to-date

− = not present but integrable O = outdated

−− = not possible

Table II: Overview of IDAs by offered support

ecute single operators for which, however most often, they have to set the parame-
ters themselves. They further enable the user to design and execute multi-step KDD-
processes, but this becomes hard if the processes have a large number of operators.

Above all, PDAS and partially CBRs support multi-step recommendation. They rec-
ommend correct workflows by taking the operators’ preconditions and effects into ac-
count. Also some of the parameters are set (e.g., size of bins, number of bins). IDEA
[Bernstein et al. 2005] provides its users with systematic enumerations of valid KDD-
processes and rankings by different criteria. However, the system does not support
the user through the steps of the KDD-process since it merely enumerates all steps.
The workflow composition involves choosing tinduction algorithm(s) and appropriate
pre- and post-processing modules. Though, it is limited to only a few operators for

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

each step. Opposed to IDEA, AIDE [Amant and Cohen 1998b] does not provide sup-
port for the overall KDD-process. For example, if you load a data set, the steps that
are applied are: collecting information about each variable, the generation of statis-
tical summaries, testing of the data types, testing of the continuous or discrete data,
generation of hierarchical clusters for numerical data. Then a set of indications are
generated, like indication of skew or indication of clustering tests for outliers. Further
on, the user can make decisions and influence the execution of the plan generator.

In conclusion, we observe that most of the user support concerns the modeling steps
or the automatic generation of all steps. However, preprocessing and feature selection
steps are rarely addressed.

5.2.2. Graphical editing vs. automatic generation. Here we compare systems which are able
to automatically generate workflows, i.e., PDAS, to systems which force the user to
design the workflows manually. Ideally, these aspects should be both integrated into
IDAs, automatic generation should be on demand and the graphical editing as default.

IDEA uses straightforward search for automatically outputting the valid processes.
Here the user can select the plan by choosing a ranking method (accuracy, speed, etc.).
The approach in AIDE differs from IDEA in the manner in which the user and the
machine interact: AIDE offers a step by step guidance based on the script planner
and the user’s decisions. This is suitable for exploratory statistics but is not suitable
for domains where algorithms run for an extensive period of time. Similarly, CITRUS
combines planning with user guidance in order to help the user construct the best plan
using a limited number of operations. IDEA only enumerates workflows, but it does not
allow the user to modify neither nodes nor parameters. However, AIDE is user-centric
and can support modifications at any decision point. The user is even able to go back
several steps and modify decisions taken by the system. Beyond that, the workflows
generated by IDEA are valid since the operators are modeled in an ontology with IOPE
which need to be satisfied in order to be able to apply the operator. Moreover, IDEA
provides an auto-experimentation module, which can execute the generated plans and
rank them by accuracy.

Similar approaches are RDM and KDDVM, which generate abstract workflows us-
ing an ontology combined with planning and reasoning. RDM is able to generate sev-
eral plans, however, there is no statement about what the maximum number could be.
Žáková et al. [2010] exemplify one workflow for each of the application domains. In the
evaluation section, the planner performance results are presented and four workflows
are considered for each of the domains. Beyond that, RDM uses a repository for stor-
ing all the constructed workflows. When the user solves a DM task, the repository is
searched in order to retrieve a solution, however only one. If no solution is found, the
planner is called and several workflows are produced. The evaluation of the planner
has been conducted on two application domains, namely CAD and gene data using two
ontologies (KD-RDM and KD-Orange), but only the time for generating a workflow is
measured. Hence, the generated workflows are not evaluated in terms of accuracy.

Most of WCEs allow the users to manually design workflows. They provide several
tabs with various functions (e.g.,selecting and configuring operators). The data objects
are implicitly represented as inputs or outputs of operators and can be set in the oper-
ator configuration views. Additionally, there are different operators for reading/writing
different data formats. The data flows into/out of the operators through ports, which
are visible. Then the users can manually drag an output from an operator to become
an input for the next operator. However, they do not use abstract nodes for grouping
the operators (except for some degree RapidMiner and IBM SPSS Modeler). Further-
more, the workflows are plain, rather than a hierarchy of tasks. IBM SPSS Modeler

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

has the concept of super nodes and sub-nodes. RapidMiner, on the other hand, uses a
‘Subprocess’, which contains an operator chain.

5.2.3. Workflow checking/repair. Both checking and repairing of workflows are impor-
tant aspects of IDAs. Checking allows to discover errors at an early stage (before ex-
ecuting the workflow) and repairing fixes the problems discovered after the workflow
execution. Therefore both save time when analyzing data.

Unfortunately, only a few of the existing IDAs can check the workflows for correct-
ness and suggest possible solutions to fix the erroneous ones. This is one of the features
encountered in some of the WCEs or in PDAS. For example, both RapidMiner and IBM
SPSS Modeler offer meta-data propagation – the characteristics of the input data are
available at any step, which helps to detect problems. RapidMiner 5.0 also supports
the notion of “quick-fix”, i.e. it suggests possible fixes for errors in the workflow de-
sign. In case the input data has missing values and the operator is not able to handle
missing values, it will complain and suggest to use a ‘replace missing values’ operator.

PDAS use IOPEs for operators to ensure that they are used/applied in the right sit-
uations. However, they are not able to repair workflows. For example, if one workflow
crashes during execution due to an error, no corrections are suggested.

Most of the existing IDAs are missing both features mainly as they were never tested
by real users or as they do not offer support for an overall workflow (like ES, MLS),
but also checking and repairing require more complexity.

5.2.4. Task decomposition vs. plain plan. Structuring the domain data into tasks and sub-
tasks simplifies and improves the automatic generation of KDD workflows and there-
fore constitutes a desirable feature of IDAs. However only a few IDAs use this model.
Task-oriented user guidance is implemented in CITRUS. Its user guidance module of-
fers assistance in the selection and application of available techniques as well as the
interpretation and evaluation of results. AIDE also uses hierarchical problem decom-
position techniques: goals can be decomposed into several subgoals. Moreover, problem
decomposition and abstraction constitute helpful features for the exploration in AIDE.

CRISP-DM [Chapman et al. 1999] follows a hierarchical process model having a set
of tasks at four levels of abstraction: phase, generic task, specialized task, and pro-
cess instance. The KDD-process consists of 6 phases, each of them comprising several
generic tasks that cover all the possible data mining situations. The specialized tasks
describe how the actions from the generic tasks should be accomplished in certain sit-
uations. The last level, namely process instance, represents a record of actions and
results of a specific data mining operation. Tasks represent abstractions over several
operators, for example the prediction to fill missing values and the prediction to pre-
dict the target have the same task. A similar approach is the one from eIDA which
uses tasks and methods to guide the generation of workflows. This in turn reduces
significantly the plan space and speeds up the plan generation.

5.2.5. Design support vs. explanations for result/output. IDAs, in general, provide either
support for design or support for explanations. For an ideal IDA, both should be con-
sidered since they complement each other, designing an workflow is easier when useful
explanations are present.

WCE enable users to manually design their workflows. Canvas-based tools include
different types of design support. Besides the meta-data propagation and the quick-
fixes, RapidMiner also employs descriptions of operators stored in a wiki. This wiki
contains information about the algorithms, how they work, and descriptions of their
important parameters. SAS Enterprise Miner has integrated debugging and runtime
statistics. On the other hand, scripting-based tools provide help facilities with explana-
tions about the functions. R and Matlab by themselves do not include design support,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

however, their respective GUIs partially support it. HDMA offers some explanations
based on the stored expert rules. IBM SPSS Statistics offers more support for explana-
tions than other IDAs: the help menu provides extensive information about methods
and algorithms even with examples illustrating the explained feature. Additionally,
it features coaches that take you step-by-step through the process of interpreting the
results or deciding which statistical analyses to choose via providing helpful examples.
Hence, learning by example is a valuable feature of an IDA.

Opposed to WCEs, SES offer more support for explanations and interpretation of re-
sults. REX [Gale 1986] helps the user in interpreting intermediate and final results and
gives useful instructions about statistical concepts. Springex has a primitive “why” ex-
planation facility, which consists of a list of rules that have succeeded together with the
conditions that have been asserted. However, the knowledge is unclear since it does not
provide an explanation of technical terms, is superficial and incomplete. On the con-
trary Statistical Navigator uses an expert system with help and explanation facilities.
Additionally, it has extensive reporting capabilities, including a short description of
each technique and references to the literature and statistical packages that imple-
ment the technique. KENS and LMG provide explanations for concepts, but they do
not handle the interpretation of results or explanations of the reasoning behind.

5.2.6. Experimental vs. analytical approach. Here we compare IDAs that can execute
KDD-processes with the ones that only provide advice. Ideally an IDA should combine
both execution and advice. The advantage of executing workflows is that the real per-
formance comes from executing the process and all design support loses if the results
of support cannot be directly used. However, only enumerating and executing many
processes it is not feasible when a large number of processes/operators are present.

WCEs allow to execute workflows, as opposed to most ES which use underlying sta-
tistical packages for execution (e.g., REX is based on the S statistical system [Gale
1986]). Most of the PDAS rely on other data analysis tools or on web services for ex-
ecuting the generated workflows (eIDA, RDM, etc.). Relying on other WCEs or statis-
tical packages can cause problems of scalability: the underlying package may change,
evolve and therefore the assistance may need to be adjusted accordingly.

5.2.7. DM experience level. An ideal IDA should cover support for all types of users,
however this is not a trivial feature and requires a more complex user support model.
We defined four different categories of users: novice users – with only a little knowl-
edge about ML algorithms, intermediary users – with a certain level of knowledge,
expert users – with an extensive knowledge about the DM tasks, all – tools which ad-
dress all types of users and unspecified – there is no evidence about the type of users.
Most of the IDAs are meant to be used by expert or intermediary users. Only a few
take novices into account and REX is one of these systems. However, KENS focuses
on users with a certain level of knowledge. Inexperienced users can easily feel lost
in SPRINGEX and Statistical Navigator since both systems offer a large amount of
knowledge. MLT Consultant and CITRUS can be used by any domain expert. Current
WCE systems have features that support naive users like explanations and help fa-
cilities. However, building workflows requires more effort and knowledge because of
the large amount of operators. Some WCEs try to improve this process by providing
on-the-fly error recognition, quick fixes, workflow templates, re-usable building blocks
(e.g., RapidMiner, IBM SPSS Modeler).

5.2.8. Status and availability. IDAs are useful tools for data analysis, therefore they
should be publicly available and maintained over the course of time. For the status
we have Up-to-date (U) or Outdated (O) systems. WCEs are the most used since they
offer a broad range of algorithms and are employed for analyzing real data. Most of

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

the other IDAs exist only as a proof of concept and were not designed to be kept up
to date or applied to real-world tasks. However, these outdated systems have a great
historical value because they were based on good ideas that are either reused in later
systems (ES, MLS, CBR) or worth revisiting. For the availability metric, we use either
(publicly) Available (A) or Not Available (NA). WCEs are all available and frequently
used. Some older systems, such as DMA, MiningMart are also still available, even if
they are no longer maintained, while some of the (younger) CBR and PDAS systems
are not (yet) released for the public (e.g., HDMA and RDM). Even if these systems are
currently not publicly available they are definitely worth exploring since they lead to
better systems or emphasized an important characteristic of IDAs.

5.2.9. Final remarks. To conclude our comparison, we identify and explain the support
limitations due to gaps in the systems’ background knowledge. Considering Table I
and Table II, we observe that many missing features in the support can be justified by
the missing features in the background knowledge.

SES systems are completely lacking the concept of workflow, which can be easily
explained by the fact that they only consider the DM and evaluation steps. They are
missing the first steps of the KDD-process. This further explains missing features, like
graphical editing of workflows, automatic execution, etc. Having a set of hardcoded
rules at hand and focusing only on one single task, makes it easy to provide result
interpretations and explanations for users.

Similarly, MLS systems, focus primarily on the DM step, i.e., mostly on classifica-
tion and regression problems. The single step support is correlated with the presence
of a predictive model, or in the case of ES, with the presence of rules. MLS employ the
models to recommend the best suited method for a certain data set and task; on the
other hand, ES use rules. If the system, however, does not produce predictive models,
the support for single step is missing altogether. Featuring multiple steps does not
necessarily mean that the system also provides support for multi-step KDD. For ex-
ample, WCE allow to build workflows, but they do not provide sufficient guidance on
the order of the operators. Table II suggests that if the IOPE are described, then the
system is able to automatically generate workflows. Knowing when the operator can
be applied and what it produces is essential for automated generation of workflows.
This explains the workflow-related features of the PDAS. It is further a justification
for the same missing features from the statistical and DM tools. Most of the WCEs
allow multiple steps, but they have no description of operators’ conditions and effects,
therefore, they cannot decide when to apply an operator. However, current WCEs are
improving and try to integrate such information.

Looking at the systems’ status and availability we can argue that even if systems
may analytically be ideal to solve a certain problem, they still need to be integrated
into an useful, up-to-date environment to be of any use for the end user. Therefore,
they should be integrated into an execution framework (e.g., as a WCE extension).

6. FUTURE DIRECTIONS

Looking back over the many IDAs discussed before, it becomes clear that each sys-
tem uses its own limited amount of background knowledge to provide its own lim-
ited amount of assistance. Indeed, while the systems within each of the identified
categories have continuously improved over earlier systems, there is very little cross-
pollination between categories. For instance, looking at Table I, it is clear that no sys-
tem uses both IOPE (for multi-step support) and predictive models (for single-step
support). As a result, none offer a high level of support in both categories (see Ta-
ble II). Also, while MLS and CBR systems use very detailed meta-data on the input
data, PDAS and WCEs only use the bare minimum needed for workflow validation or

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

planning. This suggests that workflow generation can still be improved significantly
by using more detailed meta-data to enrich the planning domain, or to find and adapt
useful prior workflows.

In this section, we propose a framework for future IDAs that integrate the various
forms of background knowledge to offer better and more complete support to end users.

6.1. IDA specification

This future IDA should combine the best aspects of all discussed systems:
Extensibility. Every IDA that covers a fixed number of techniques will at some point

become obsolete. It is therefore important that new KD techniques can be added easily,
without expert intervention, as in most MLS and WCE systems.

Self-maintenance. The IDA should be able to enrich its own background knowledge
based on experience with new problems. For instance, the evaluations of all newly
proposed workflows should be collected to further expand its background knowledge.
In this way, it will automatically adapt to new types of data or new operators, as in
most MLS and CBR systems.

Workflow execution. Ideally, the IDA should be able to execute proposed workflows,
instead of just offering an abstract description. It therefore seems logical that the IDA
is interoperable with, or integrated in WCE systems.

Ontologies. As in most modern IDAs in our survey, it seems useful to store prior
knowledge about data analysis techniques in ontologies, since they allow information
to be centralized, extended by many people, and automatically queried. Ideally, such an
ontology would serve as a common vocabulary to describe workflows unambiguously.

Querying. We cannot foresee all questions a user may have. Therefore, it is best to
structure the IDAs’ background knowledge (e.g., in a database or ontology) so that it
can be queried.

Planning. Workflow construction naturally translates to a planning problem, as
many operators only work on certain types of data. Especially when a workflow needs
to be generated from scratch, planning is an indispensable component of an ideal IDA.

Learning. Last but not least, the IDA should get better as it gains more experience.
This can be done by collecting meta-data and modeling it, as in MLS, or use it to
compute heuristics (e.g., operator speed) for use in heuristic planners that will improve
over time.

6.2. IDA Architecture

These aspects are combined in the IDA architecture shown in Figure 7:
Input. The user first feeds the input data into the IDA and defines requirements for

the DM workflow. The IDA then interprets the data and extract all properties that are
needed for subsequent support, e.g., measuring statistical properties.

Background knowledge. The IDA stores its background knowledge in a public, online
collaborative knowledge base (the cloud on the left of Figure 7) to which many users
can contribute information. It is structured in an ontology or database so that the IDA
can query it for specific information. Users should also be able to query it, and upload
new workflows directly from WCE systems. We will discuss this in more detail below.

Planning. The IDA queries this knowledge base for detailed information about avail-
able operators, or any prior workflows that seem useful for the given problem. With
this information, it will define planning problems, either to build workflows from
scratch or ‘fix’ prior workflows (as in NeXT). Then, it will use an AI planner to build
the most useful plans, and rank them according to the user’s preferences.

Adaptation and execution. The user can then inspect, alter and execute the proposed
workflows. WCEs already offer extensive support for this (e.g. , graphical workflow
editing), so the IDA can interface with such systems to delegate these tasks. Using an

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

Data mining
ontology

Workflow Composition
Environment (WCE)

Database of
workflow runs

AI Planner
IDA

uploa
d n

ew

work
flows, re

sult
s

Workflow support
(generate,rank,validate)

query
meta-data

Shared knowledge (expertise)
of data mining processes

workflows
results

Fig. 7: A proposed platform for intelligent KD support.

interface allows the IDA to support multiple WCEs, although it can also be seamlessly
integrated into one particular WCE. Workflow execution can also be initiated by the
IDA itself, for instance as part of the ranking procedure when the user imposes hard
constraints on the speed or outcome of the workflow. At any time, the user should be
able to remove or add requirements to (parts of) the workflow and reinitiate workflow
generation.

6.2.1. A collaborative platform. As more and more KDD techniques are introduced, it be-
comes infeasible for experts to keep everything up-to-date. It seems therefore crucial to
take a collaborative approach, in which all users can upload and share their workflows,
evaluation results, ontological descriptions, and other forms of background knowledge
with IDAs and the community at large.

In its simplest form, this knowledge base is an open ontology which users can update
with descriptions of new operators. Ideally, however, it also acts as a workflow repos-
itory, containing both abstract descriptions of workflows (i.e., workflow templates), as
concrete workflow runs on specific datasets, including meta-data of those datasets, and
meta-data on the workflow’s execution (e.g., runtimes and other evaluation metrics).
This will create an integrated source of background knowledge to drive the various
types of support put forward in this survey.

This repository can be implemented as a database, e.g. an RDF triple store or a
relational database. RDF triple stores seem the most obvious choice since they can
directly store ontological descriptions of operators and even entire workflows, exchange
information in the RDF format, and allow advanced querying with SPARQL queries.
Relational databases, on the other hand, are more familiar to many people, and most
WCEs offer direct support for them. In this case, a common DM ontology should still be
used to define a controlled vocabulary, so that workflow descriptions can be expressed
in an unambiguous way.

Such collaborative knowledge bases are common practice in many other sciences.
In bioinformatics, for instance, microarray databases [Stoeckert et al. 2002] collect
gene expression data described according to the MicroArray Gene Expression ontology
(MAGE-MO) [Stoeckert et al. 2002] and the Gene Ontology [Ashburner et al. 2000].
Astronomical observations from telescopes all over the world are collected in so-called
Virtual Observatories [Szalay and Gray 2001], also using informal ontologies [Derriere
et al. 2006], and in physics, low-energy nuclear reaction data is collected in ENDF

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

libraries18, and high-energy particle physics data on the HEPDATA19 website. Given
that DM is performed entirely in-silico, it should even be easier to develop similar
repositories for DM workflows.

A requirement for such a collaborative system is that workflows can be shared in a
standardized format that includes all details needed to reuse, or even rerun the work-
flows. This ensures interoperability with many different WCEs, which currently each
use their own formats to describe workflows and operators. Using a standardized for-
mat, WCEs could easily export/share all constructed workflows and their evaluations,
and import/reuse workflows that were created by different users. As in the other sci-
ences mentioned above, an ontology of DM concepts and techniques will be very useful
to share and organize workflows uniformly, and even map imported workflows to lo-
cal implementations or web services. The latter are also ensure greater extensibility
[Podpečan et al. 2011].

6.3. Implementation

While such an IDA may still be some way off, recently, a great deal of work has been
done that brings us a lot closer to realizing it.

6.3.1. Taverna and myExperiment. Taverna [Roure et al. 2009] is a platform designed to
help scientists compose executable workflows in which the components are web ser-
vices, especially for biological experiments. Similarly, Triana [Taylor et al. 2007] sup-
ports workflow execution in peer-to-peer networks and the Grid. myExperiment [Goble
et al. 2010] is a collaborative environment where scientists can publish their workflows
and experiment plans, share them with groups and find those of others. It is a more
open platform, where workflows can be uploaded in a variety of formats, mostly XML-
based. Also, flat files can be attached that contain, for instance, the workflow’s output.

While mostly aimed at bio-informatics, these platforms could be used to share more
general data mining workflows as well. On the other hand, they do not organize all
data in a way that supports the detailed queries needed by an IDA.

6.3.2. Experiment Databases. Experiment databases (ExpDBs) [Blockeel and Van-
schoren 2007; Vanschoren et al. 2012] are databases specifically designed to collect
huge numbers of detailed DM algorithm evaluations, and to automatically organize
all results so they can be thoroughly queried. They allow users to upload (share)
workflows together with the actual results of those workflows, so that they can be
reused by other users. An ExpDB for supervised classification is available online at
http://expdb.cs.kuleuven.be. An ontology for DM experimentation, called Exposé, is
used to define a formal language for sharing these workflows, as well as to structure
the database. Moreover, based on this ontology, an XML-based, extensible workflow
description format is provided (ExpML) that can be used to export workflows from any
WCE and store them in the database.

The system also offers online query interfaces that allow researchers to quickly filter
through over 650,000 experiments, ask very specific questions about learning perfor-
mance, and visualize the returned results. By carefully storing and organizing experi-
ments, their results can be browsed and analyzed from different viewpoints and reused
in many ways. For instance, they can be used to estimate an operator’s sensitivity to
noise, or build predictive models that propose DM techniques based on dataset prop-
erties. It also calculates and stores a wide range of data properties for all submitted
datasets.

18http://www.nndc.bnl.gov/exfor/endf00.jsp
19http://durpdg.dur.ac.uk/hepdata/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

6.3.3. Ontologies. While there is no universally established DM ontology yet, there are
several DM ontologies currently under development, such as Exposé [Vanschoren et al.
2012], OntoDM [Panov et al. 2009], DMOP [Hilario et al. 2009], DMWF [Kietz et al.
2009], KDDONTO [Diamantini et al. 2009a] and KD ontology [Žáková et al. 2010].
Some of these are complementary, some overlap. To coordinate efforts, an open devel-
opment forum20 (similar to the OBO foundry21) has been created, where everyone can
browse the latest DM ontologies and propose changes and extensions. Alternatively,
semantic wikis [Boulos 2009] could be set up to collaboratively edit DM ontologies.

6.3.4. Planning. Concerning planning, several systems already translate the ontolog-
ical descriptions of KDD operators to planning domain descriptions. Some query the
ontologies before starting the actual planning process [Klusch et al. 2005; Liu et al.
2007; Sirin et al. 2004], others integrate a reasoning engine in the planner, so that it
can directly query the ontology when needed [Kietz et al. 2009; Žáková et al. 2010].

Klusch et al. [Klusch et al. 2005] and Liu et al. [Liu et al. 2007] use a classical
STRIPS planner to produce the planning, Sirin et al. [Sirin et al. 2004] and Kietz
et al. [Kietz et al. 2009] propose an Hierarchical Task Network (HTN) planning ap-
proach [Sacerdoti 1974], and Žáková et al. [Žáková et al. 2010] use an adaptation of
the heuristic Fast-Forward (FF) planning system [Hoffmann and Nebel 2001].

Finally, Kalousis et al. [Kalousis et al. 2008] propose a system that combines plan-
ning and meta-learning. It contains a probabilistic meta-learner which dynamically
adjusts transition probabilities between DM operators, conditioned on the current ap-
plication task and data, user-specified performance criteria, quality scores of work-
flows applied in the past to similar tasks and data, and the users profile. Thus, as
more workflows are stored as meta-knowledge, and more is known about the users
building those workflows, it will learn to build workflows that better fit to the user.

7. CONCLUSIONS

KDD has transformed into a mature field and the data analysis approaches provided
by it have ubiquitously been included into many everyday applications such as SPAM
filtering or credit card fraud analysis. The process of actually performing data analysis
is oftentimes more of an art than a science – beginners are startled by the plethora of
operators and specialists limit their activity to few known approaches. Hence, data
analysts need to be thoroughly supported in their work.

The present survey analyzes the intelligent support provided by data analysis—
systems which are called intelligent discovery assistants (IDAs)—tools from their be-
ginning (usually as some form of expert systems) until today (as WCE). These are sys-
tems which incorporate different types of support and advice to facilitate the data anal-
ysis process. We structure the analysis of IDA approaches from the last three decades
based on the kinds of background knowledge they use and the types of support they
provide. Based on criteria along these two perspectives on analysis, we provide a thor-
ough comparison of the selected systems identifying their advantages and drawbacks.
This leads the way to the identification of possible future directions and provides first
examples of these novel approaches.

In summary, as the exploration of data becomes increasingly important in today’s
scientific and industrial settings the need for automated support for data analysis is
likely to increase. This summarized overview of the systems provided in this survey
helps readers to quickly learn about the strengths and weaknesses in this field. As
such, it provides a major building block for creating future studies.

20The Data Mining Ontology Foundry: http://www.dmo-foundry.org
21The Open Biological and Biomedical Ontologies: http://www.obofoundry.org

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

REFERENCES

AHA, D. W. 1992. Generalizing from case studies: a case study. In Proceedings of the ninth international
workshop on Machine learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1–10.

AMANT, R. AND COHEN, P. 1998a. Interaction with a mixed-initiative system for exploratory data analysis.
Knowledge-Based Systems 10, 5, 265–273.

AMANT, R. S. AND COHEN, P. 1998b. Intelligent support for exploratory data analysis. Journal of Compu-
tational and Graphical Statistics 7, 4, 545–558.

ASHBURNER, M., BALL, C., BLAKE, J., BOTSTEIN, D., BUTLER, H., CHERRY, J., DAVIS, A., DOLINSKI, K.,
DWIGHT, S., EPPIG, J., HARRIS, M., HILL, D., ISSEL-TARVER, L., KASARSKIS, A., LEWIS, S., MATESE,
J., RICHARDSON, J., RINGWALD, M., RUBIN, G., AND SHERLOCK, G. 2000. Gene ontology: tool for the
unification of biology. Nature Genetics 25, 25–29.

BENSUSAN, H. AND KALOUSIS, A. 2001. Estimating the predictive accuracy of a classifier. Lecture Notes in
Computer Science 2167, 25–36.

BERNSTEIN, A. AND DAENZER, M. 2007. The NExT system: Towards true dynamic adaptations of semantic
web service compositions. Lecture Notes in Computer Science 4519, 739–748.

BERNSTEIN, A., PROVOST, F., AND HILL, S. 2005. Toward intelligent assistance for a data mining process:
an ontology-based approach for cost-sensitive classification. IEEE Transactions on Knowledge and Data
Engineering 17, 4, 503–518.

BERTHOLD, M. R., CEBRON, N., DILL, F., GABRIEL, T. R., KÖTTER, T., MEINL, T., OHL, P., THIEL, K.,
AND WISWEDEL, B. 2009. Knime - the konstanz information miner: version 2.0 and beyond. SIGKDD
Explor. Newsl. 11, 26–31.

BLOCKEEL, H. AND VANSCHOREN, J. 2007. Experiment databases: Towards an improved experimental
methodology in machine learning. Lecture Notes in Computer Science 4702, 6–17.

BLUM, A. AND FURST, M. 1997. Fast planning through planning graph analysis* 1. Artificial intelli-
gence 90, 1-2, 281–300.

BOTIA, J., GOMEZ-SKARMETA, A., VALDES, M., AND PADILLA, A. 2001. METALA: A meta-learning archi-
tecture. Lecture Notes in Computer Science 2206, 688–698.

BOULOS, M. N. K. 2009. Semantic Wikis: A Comprehensible Introduction with Examples from the Health
Sciences. Journal of Emerging Technologies in Web Intelligence.

CASTIELLO, C., CASTELLANO, G., AND FANELLI, A. 2005. Meta-data: Characterization of input features
for meta-learning. Modeling Decisions for Artificial Intelligence 3558, 457–468.

CASTIELLO, C. AND FANELLI, A. 2005. Meta-learning experiences with the mindful system. Lecture Notes
in Artificial Intelligence 3801, 321–328.

CERRITO, P. 2007. Introduction to Data Mining Using SAS Enterprise Miner. SAS Publishing, NC, USA.

CHANDRASEKARAN, B., JOHNSON, T., AND SMITH, J. 1992. Task-structure analysis for knowledge model-
ing. Communications of the ACM 35, 9, 124–137.

CHANDRASEKARAN, B. AND JOSEPHSON, J. 1999. What are ontologies, and why do we need them? IEEE
Intelligent Systems 14, 1, 20–26.

CHAPMAN, P., CLINTON, J., KHABAZA, T., REINARTZ, T., AND WIRTH, R. 1999. The crisp-dm process model.
The CRIP–DM Consortium 310.

CHAREST, M., DELISLE, S., CERVANTES, O., AND SHEN, Y. 2008. Bridging the gap between data mining
and decision support: A case-based reasoning and ontology approach. Intelligent Data Analysis 12, 1–26.

CHOINSKI, M. AND CHUDZIAK, J. 2009. Ontological learning assistant for knowledge discovery and data
mining. In Computer Science and Information Technology. IEEE, 147–155.

CRAW, S., SLEEMAN, D., GRANER, N., AND RISSAKIS, M. 1992. Consultant: Providing advice for the ma-
chine learning toolbox. In Proceedings of the Annual Technical Conference on Expert Systems (ES). 5–23.

DERRIERE, S., PREITE-MARTINEZ, A., AND RICHARD, A. 2006. UCDs and ontologies. ASP Conference Se-
ries 351, 449.

DIAMANTINI, C., POTENA, D., AND STORTI, E. 2009a. KDDONTO: An ontology for discovery and composi-
tion of KDD algorithms. In Proceedings of the ECML-PKDD’09 Workshop on Service-oriented Knowledge
Discovery. 13–24.

DIAMANTINI, C., POTENA, D., AND STORTI, E. 2009b. Ontology-driven KDD process composition. Lecture
Notes in Computer Science 5772, 285–296.

ENGELS, R. 1996. Planning tasks for knowledge discovery in databases: Performing task-oriented user-
guidance. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
mining (KDD), 170–175.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

ENGELS, R., LINDNER, G., AND STUDER, R. 1997. A guided tour through the data mining jungle. In Pro-
ceedings of the 3nd International Conference on Knowledge Discovery in Databases. AAAI Press, Menlo
Park, CA, USA, 163–166.

EROL, K. 1996. Hierarchical task network planning: formalization, analysis, and implementation. Ph.D.
thesis, University of Maryland at College Park, College Park, MD, USA. UMI Order No. GAX96-22054.

FAYYAD, U., PIATETSKY-SHAPIRO, G., AND SMYTH, P. 1996. From data mining to knowledge discovery in
databases. AI magazine 17, 3, 37–54.

FOX, M. AND LONG, D. 2003. PDDL2. 1: An extension to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research 20, 1, 61–124.

GALE, W. 1986. Rex review. In Artificial intelligence and statistics. Addison-Wesley Longman Publishing
Co., Inc., Boston, Massachusetts, 173–227.

GIRAUD-CARRIER, C. 2005. The data mining advisor: meta-learning at the service of practitioners. In Pro-
ceedings of the International Conference on Machine Learning and Applications (ICMLA). IEEE Com-
puter Society, 113–119.

GOBLE, C., BHAGAT, J., ALEKSEJEVS, S., CRUICKSHANK, D., MICHAELIDES, D., NEWMAN, D., BORKUM,
M., BECHHOFER, S., ROOS, M., LI, P., AND DE ROURE, D. 2010. myExperiment: a repository and social
network for the sharing of bioinformatics workflows. Nucl. Acids Res..

GOEBEL, M. AND GRUENWALD, L. 1999. A survey of data mining and knowledge discovery software tools.
SIGKDD Explor. Newsl. 1, 20–33.

GRABCZEWSKI, K. AND JANKOWSKI, N. 2007. Versatile and efficient meta-learning architecture: Knowl-
edge representation and IEEE Symposium on Computational Intelligence and Data Mining, 51–58.

GRANER, N., SHARMA, S., SLEEMAN, D., RISSAKIS, M., CRAW, S., AND MOORE, C. 1993. The machine
learning toolbox consultant. International Journal on AI Tools 2, 3, 307–328.

GRIMMER, U. 1996. Clementine: Data mining software. Classification and Multivariate Graphics: Models,
Software and Applications, 25–31.

HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P., AND WITTEN, I. 2009. The weka
data mining software: An update. ACM SIGKDD Explorations Newsletter 11, 1, 10–18.

HAND, D. 1985. Statistical expert systems: necessary attributes. Journal of applied Statistics 12, 1, 19–27.

HAND, D. 1987. A statistical knowledge enhancement system. Journal of the Royal Statistical Society. Series
A (General) 150, 4, 334–345.

HAND, D. 1990. Practical experience in developing statistical knowledge enhancement systems. Annals of
Mathematics and Artificial Intelligence 2, 1, 197–208.

HAND, D. 1997. Intelligent data analysis: issues and opportunities. In Advances in Intelligent Data Analysis.
Reasoning about Data: Second International Symposium, IDA-97, London, UK, August 1997. Proceed-
ings. IDA ’97. Springer-Verlag, London, UK, 1–14.

HERNANSAEZ, J., BOTA, J., AND SKARMETA, A. 2004. METALA: a J2EE technology based framework for
web mining. Revista Colombiana de Computación 5, 1.

HILARIO, M. AND KALOUSIS, A. 2001. Fusion of meta-knowledge and meta-data for case-based model se-
lection. In Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge
Discovery. PKDD ’01. Springer-Verlag, London, UK, 180–191.

HILARIO, M., KALOUSIS, A., NGUYEN, P., AND WOZNICA, A. 2009. A data mining ontology for algorithm
selection and meta-mining. In Proceedings of the ECML-PKDD’09 Workshop on Service-oriented Knowl-
edge Discovery. 76–87.

HOFFMANN, J. AND NEBEL, B. 2001. The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research 14, 253–302.

HORROCKS, I., PATEL-SCHNEIDER, P., AND BOLEY, H. 2004. SWRL: A semantic web rule language com-
bining OWL and RuleML.

IHAKA, R. AND GENTLEMAN, R. 1996. R: A language for data analysis and graphics. Journal of computa-
tional and graphical statistics 5, 3, 299–314.

KALOUSIS, A. 2002. Algorithm selection via meta-learning. Ph.D. thesis.

KALOUSIS, A., BERNSTEIN, A., AND HILARIO, M. 2008. Meta-learning with kernels and similarity func-
tions for planning of data mining workflows. In Proceedings of the ICML/UAI/COLT’08 Workshop on
Planning to Learn. 23–28.

KALOUSIS, A. AND HILARIO, M. 2001. Model selection via meta-learning: a comparative study. Interna-
tional Journal on Artificial Intelligence Tools 10, 4, 525–554.

KALOUSIS, A. AND THEOHARIS, T. 1999. Noemon: Design, implementation and performance results of an
intelligent assistant for classifier selection. Intelligent Data Analysis 3, 4, 319–337.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

KIETZ, J., SERBAN, F., AND BERNSTEIN, A. 2010. eProPlan: A Tool to Model Automatic Generation of Data
Mining Workflows. In 3 rd PLANNING TO LEARN WORKSHOP WS9 AT ECAI 2010. 15.

KIETZ, J., SERBAN, F., BERNSTEIN, A., AND FISCHER, S. 2009. Towards cooperative planning of data min-
ing workflows. In Proceedings of the ECML-PKDD’09 Workshop on Service-oriented Knowledge Discov-
ery. 1–12.

KIETZ, J., VADUVA, A., AND ZÜCKER, R. 2000. Mining mart: combining case-based-reasoning and multi-
strategy learning into a framework to reuse kdd-application. In Proceedings of the fifth International
Workshop on Multistrategy Learning (MSL2000). Guimares, Portugal. Vol. 311.

KLUSCH, M., GERBER, A., AND SCHMIDT, M. 2005. Semantic web service composition planning with
OWLS-Xplan. In Proceedings of the AAAI Fall Symposium on Agents and the Semantic Web. AAAI
Press, Menlo Park, California, USA, 55–62.

KODRATOFF, Y., SLEEMAN, D., USZYNSKI, M., CAUSSE, K., AND CRAW, S. 1992. Building a machine learn-
ing toolbox. In: Enhancing the knowledge engineering process: contributions from ESPRIT (eds. L Steels
and B Lepape). Elsevier, 81–108.

KOHAVI, R., BRODLEY, C. E., FRASCA, B., MASON, L., AND ZHENG, Z. 2000. Kdd-cup 2000 organizers’
report: peeling the onion. SIGKDD Explor. Newsl. 2, 86–93.

LEITE, R. AND BRAZDIL, P. 2007. An iterative process for building learning curves and predicting relative
performance of classifiers. Lecture Notes in Computer Science 4874, 87–98.

LEVESQUE, R. 2005. SPSS programming and data management: A guide for SPSS and SAS users. SPSS,
Chicago, USA.

LINDNER, G. AND STUDER, R. 1999. AST: Support for algorithm selection with a CBR approach. Lecture
Notes in Computer Science 1704, 418–423.

LIU, Z., RANGANATHAN, A., AND RIABOV, A. 2007. A planning approach for message-oriented semantic
web service composition. Proceedings of the AAAI National Conference On Artificial Intelligence 5, 2,
1389–1394.

MATHWORKS, I. 2004. Matlab. The MathWorks, Natick, MA.

MCDERMOTT, D., GHALLAB, M., HOWE, A., KNOBLOCK, C., RAM, A., VELOSO, M., WELD, D., AND

WILKINS, D. 1998. PDDL-the planning domain definition language.

MICHIE, D., SPIEGELHALTER, D., AND TAYLOR, C. 1994. Machine learning, neural and statistical classifi-
cation. Ellis Horwood, Upper Saddle River, NJ, USA.

MIERSWA, I., WURST, M., KLINKENBERG, R., SCHOLZ, M., AND EULER, T. 2006. Yale: Rapid prototyp-
ing for complex data mining tasks. In KDD ’06: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, New York, NY, USA, 935–940.

MIKUT, R. AND REISCHL, M. 2011. Data mining tools. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, n/a–n/a.

MORIK, K. AND SCHOLZ, M. 2004. The MiningMart approach to knowledge discovery in databases. In:
Intelligent Technologies for Information Analysis (eds. N. Zhong, J. Liu), Springer, 47–65.

NONAKA, I. AND TAKEUCHI, H. 1995. The knowledge-creating company: How Japanese companies create
the dynamics of innovation. Oxford University Press, New York, USA.

OINN, T., ADDIS, M., FERRIS, J., MARVIN, D., GREENWOOD, M., CARVER, T., POCOCK, M., WIPAT, A.,
AND LI, P. 2004. Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioin-
formatics 20, 17, 3045–3054.

PANOV, P., SOLDATOVA, L., AND DŽEROSKI, S. 2009. Towards an ontology of data mining investigations.
Lecture Notes in Artificial Intelligence 5808, 257–271.

PATEL-SCHNEIDER, P., HAYES, P., HORROCKS, I., ET AL. 2004. OWL web ontology language semantics and
abstract syntax. W3C recommendation 10.

PENG, Y., FLACH, P., BRAZDIL, P., AND SOARES, C. 2002. Decision tree-based data characterization for
meta-learning. In Proceedings of the ECML-PKDD’02 workshop on Integration and Collaboration As-
pects of Data Mining, Decision Support and Meta-Learning. 111–122.

PENG, Y., FLACH, P., SOARES, C., AND BRAZDIL, P. 2002. Improved dataset characterisation for meta-
learning. Lecture Notes in Computer Science 2534, 141–152.

PFAHRINGER, B., BENSUSAN, H., AND GIRAUD-CARRIER, C. 2000. Meta-learning by landmarking
various learning algorithms. Proceedings of the International Conference on Machine Learning
(ICML) 951, 2000, 743–750.

PODPEČAN, V., ZEMENOVA, M., AND LAVRAČ, N. 2011. Orange4ws environment for service-oriented data
mining. The Computer Journal.

RAES, J. 1992. Inside two commercially available statistical expert systems. Statistics and Computing 2, 2,
55–62.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:35

RENDELL, L., SESHU, R., AND TCHENG, D. 1987. Layered concept learning and dynamically-variable bias
management. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 308–314.

RICE, J. 1976. The algorithm selection problem. Advances in Computers 15, 65–118.

ROURE, D. D., GOBLE, C., AND STEVENS, R. 2009. The design and realisation of the myExperiment virtual
research environment for social sharing of workflows. Future Generation Computer Systems 25, 561–
567.

RUSSELL, D. M., STEFIK, M. J., PIROLLI, P., AND CARD, S. K. 1993. The cost structure of sensemaking. In
Proceedings of the INTERACT ’93 and CHI ’93 conference on Human factors in computing systems. CHI
’93. ACM, New York, NY, USA, 269–276.

SACERDOTI, E. 1974. Planning in a hierarchy of abstraction spaces. Artificial Intelligence 5, 2, 115–135.

SCHAFFER, C. 1994. A conservation law for generalization performance. In International Conference on
Machine Learning. Morgan Kaufmann, San Francisco, CA, USA, 259–265.

SIRIN, E. AND PARSIA, B. 2007. SPARQL-DL: SPARQL query for OWL-DL. In Proceedings of the Interna-
tional Workshop on OWL Experiences and Directions (OWLED).

SIRIN, E., PARSIA, B., GRAU, B., KALYANPUR, A., AND KATZ, Y. 2007. Pellet: A practical owl-dl reasoner.
Web Semantics: science, services and agents on the World Wide Web 5, 2, 51–53.

SIRIN, E., PARSIA, B., WU, D., HENDLER, J., AND NAU, D. 2004. HTN planning for web service composition
using SHOP2. Journal of Web Semantics 1, 4, 377–396.

SLEEMAN, D., RISSAKIS, M., CRAW, S., GRANER, N., AND SHARMA, S. 1995. Consultant-2: Pre-and post-
processing of machine learning applications. International Journal of Human Computer Studies 43, 1,
43–63.

SMITH-MILES, K. 2008. Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM
Computing Surveys 41, 1, Article 6.

SOARES, C., BRAZDIL, P., AND KUBA, P. 2004. A meta-learning method to select the kernel width in support
vector regression. Machine Learning 54, 195–209.

STOECKERT, C., CAUSTON, H., AND BALL, C. 2002. Microarray databases: standards and ontologies. Nature
Genetics 32, 469–473.

SZALAY, A. AND GRAY, J. 2001. The world-wide telescope. Science 293, 2037–2040.

TAYLOR, I., SHIELDS, M., WANG, I., AND HARRISON, A. 2007. The Triana workflow environment: Architec-
ture and applications. In In: Workflows for e-Science (eds. I. Taylor, E. Deelman, D. Gannon, m. Shields),
Springer. Springer, London, UK, 320–339.

TODOROVSKI, L., BLOCKEEL, H., AND DŽEROSKI, S. 2002. Ranking with predictive clustering trees. Lec-
ture Notes in Computer Science 2430, 444–455.

VANSCHOREN, J. 2010. Understanding machine learning performance with experiment databases. Ph.D.
thesis, Katholieke Universiteit Leuven.

VANSCHOREN, J., BLOCKEEL, H., PFAHRINGER, B., AND HOLMES, G. 2012. Experiment databases: A new
way to share, organize and learn from experiments. Machine Learning In press, DOI 10.1007/s10994-
011-5277-0.

VILALTA, R. AND DRISSI, Y. 2002a. A characterization of difficult problems in classification. In Proceedings
of the International Conference on Machine Learning and Applications (ICMLA). CSREA Press, Las
Vegas, USA, 133–138.

VILALTA, R. AND DRISSI, Y. 2002b. A perspective view and survey of meta-learning. Artif. Intell. Rev. 18,
77–95.

WIRTH, R., SHEARER, C., GRIMMER, U., REINARTZ, T., SCHLOSSER, J., BREITNER, C., ENGELS, R., AND

LINDNER, G. 1997. Towards process-oriented tool support for knowledge discovery in databases. Lecture
Notes in Computer Science 1263, 243–253.

WOLPERT, D. 2001. The supervised learning no-free-lunch theorems. In Proceedings of the Online World
Conference on Soft Computing in Industrial Applications. 25–42.

YANG, G., KIFER, M., ZHAO, C., AND CHOWDHARY, V. 2002. Flora-2: Users manual. Department of Com-
puter Science, Stony Brook University, Stony Brook, USA.

ŽÁKOVÁ, M., KŘEMEN, P., ŽELEZNÝ, F., AND LAVRAČ, N. 2010. Automatic knowledge discovery workflow
composition through ontology-based planning. IEEE Transactions on Automation Science and Engineer-
ing online 1st, 53–264.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

