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ABSTRACT The traditional neural network Intelligent chip has the problem of high power consumption
due to classical computing architecture, limiting the development of neural network Intelligent chips.
Stochastic computing (SC) encodes binary numbers into stochastic pulse sequences in operation, taking
advantage of low power consumption and high performance. The application of SC in spiking neural
networks (SNNs) Intelligent chips is beneficial to solving the high power consumption of traditional neural
network chips. This article first summarizes the basic elements of SNNs and the basic principles of SC. Then,
we review the development trends of the stochastic computation-based neural network chips and existing
SNN chips under research at home and abroad, respectively, and analyze the current problems. Finally, a
review of SNN chips based on SC is highlighted. This paper aims to provide new research directions and to
learn ideas for the field of SNN chips through systematic summaries.

INDEX TERMS Spiking Neural Network; Spiking Neuron Model; Neural Computing; Stochastic Com-
puting; Brain-like Chip

I. INTRODUCTION

THE rapid development of computer hardware has pro-
moted the development of deep learning, which has

been developed to date and has made great achievements in
autonomous driving [1], pattern recognition [2], data classi-
fication [3], etc. However, the current stage of deep learning
has hindered the further development of artificial intelligence
due to its high power consumption, long training time, and
low brightness [4]. Unlike the traditional artificial neural
networks (ANNs), biological neural networks communicate
through discrete pulses rather than numerical values to form
SNNs. In SNNs, neurons are activated only when input
pulses are received. Thus inactive neurons without input
pulses can be placed in low-power mode, thereby reducing
power consumption and simplifying computation. As a re-
sult, SNNs can potentially achieve extremely low power con-
sumption compared to ANNs, especially when implement-
ing analog/mixed-signal (AMS) circuits. In addition, spiking
neural network-based brain-like computing is a better way
to overcome the shortcomings of the current deep learning
stage and solve artificial intelligence problems because the

working mechanism is closer to that of the biological brain
[5-7].

The implementation methods of SNNs can be divided into
software and hardware implementation. Software simulation
can quickly realize neuron modelling and real-time data
analysis of network communication systems; it plays a vital
role in numerical processing and optimization. Hardware
implementation focuses more on the design and implemen-
tation of neuromorphic hardware architectures. Studies have
shown that although the software implementation has the
characteristics of solid flexibility and high precision [8], it
cannot fully use the high parallelism of neural networks, the
processing speed is slow, and power consumption is high.
Hardware implementation can improve the deficiencies of
software implementation, fully reflecting the characteristics
of high parallelism of the neural network [9].

According to different hardware implementations, neural
network chips can be divided into analog, digital, and digital-
analog hybrids [10]. Analog circuits have higher computa-
tional accuracy, but due to the complexity of their design,
the scale of neural networks is usually small. The factors
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also cannot guarantee the consistency of neural network
behavior between chips, so pure simulation methods are
rarely used to build large-scale brain-like systems. Most
large brain computers that have emerged are digital or
mixed digital-analog. However, the current general-purpose
general-purpose CPU,GPU, and TPU chips have fatal prob-
lems: first, the convolutional computation of too much data
causes a surge in power consumption of traditional AI chips,
which is not conducive to edge-side deployment of AI, i.e.,
the "power wall" problem; second, the deep network contains
a large number of neural networks. Second, because the
deep network includes many weight parameters, it creates
higher requirements for bandwidth and latency, resulting in
a computational bottleneck in the whole system, i.e., the
"memory wall" problem [11].

As an unconventional computing paradigm, stochastic
computing is one of the important implementations of neural
networks. Its low-cost and low-loss circuitry can perform the
functions of complex circuits, with lower hardware overhead
and better fault tolerance, etc., has attracted attention. The
stochastic computing uses discrete pulse sequences instead of
sequential binary numbers, occupying lower computational
resources. At the same time, it also pays the price of higher
computational latency and lower computational accuracy.
Some researchers have already made some preliminary at-
tempts to address the above issues. Brown, Card et al. used
finite state machine (FSM) processes to implement nonlinear
functions and thus improve the computational accuracy [12].

Based on this idea, Smithson et al. proposed using FSM
processes to implement the pulse issuing process of leaky
integrate and fire (LIF) neurons and its hardware architecture
[13]; the deterministic bit stream proposed by Faraji can
significantly reduce energy consumption. Without changing
the network performance [14], Sim et al. proposed an im-
proved probabilistic coding method to optimize computa-
tional latency and computational accuracy [15]. Kim et al.
proposed using SC in deep neural networks for dynamic
energy-accuracy trade-offs to improve computational hard-
ware efficiency [16]. Liu et al. proposed an energy-efficient
Deep Belief Network (DBN) based on the online learning
ability of SC and improved its computational efficiency by
improving random numbers [17]. Riedel et al. proposed a SC
method for deterministic bitstreams, which can achieve better
computational accuracy [18]. In 2020, Huang’s team investi-
gated the reliability of stochastic logic circuits based on Fin
Field-Effect Transistor (FinFET) technology, which provides
a good prospect for the application of new nanodevices [19].

However, building neural network computing architectures
using SC methods is still challenging. SC is used in the
design of SNNs chips to construct more efficient parallel
computational processing units based on the characteristics
of SC and to improve computational efficiency to enhance the
performance of SNNs gas pedals. The coding method of SC
is enhanced so that the stochastic computation-based spiking
neural network chip has the advantages of both low power
consumption and high efficiency.

In this paper, from the characteristics of SNNs, such as
good bionic properties, high efficiency and low power con-
sumption, we review the neuron model, network topology,
and learning algorithm for SNN-like brain neural chips in
order. In section 2, the basic elements and biological back-
ground of SNN and the basic principles of SC are described.
Section 3 presents the software optimization of SNNs and
the communication protocol of the SNN accelerator. Section
4 introduces the research progress of three traditional SNN
chips, and summarizes the existing SNN chips. Section 5
focuses on the application of SC in traditional neural network
chips and SNN chips. Section 6 provides an outlook on the
future development of SNN chips. Section 7 summarize the
work of this paper.

II. BASIC ELEMENTS OF SNN AND STOCHASTIC
COMPUTING
A. SPIKING NEURAL NETWORK
The ANN is an abstraction and simulation of the structure
and function of the biological nervous system and plays an
important role in information processing and pattern recogni-
tion. SNNs are special ANNs, also known as third-generation
ANNs, in which neuron units communicate using discrete
spike trains, as shown in Figure 1. Similar to biological
neurons, the input of a spiking neuron is a discrete spike,
and only when the input exceeds a certain threshold will a
pulse be released to the next neuron. SNNs also incorporate
temporal dynamics, which makes them suitable for real-time
operation with the event- and data-driven updates.
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FIGURE 1. Schematic representation of ANN and SNN.

Figure 1(a) depicts a typical ANN with artificial neurons
as the computing unit. A continuous function is used as the
neuron’s activation function to realize real value’s input and
output processing. The calculation process can be described
by the formula 1 as follows:

y=ϕ(b+
∑

j xjωj) (1)

Where x, y, ω, and b represent the input function, output
function, salience weight, and bias, j is the input neuron
index, and ϕ(.)means the activation function. Neurons in
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an ANN communicate using high-precision, and continuous-
value encoded and propagate information layer by layer only
in the spatial domain [20].

Figure 1(b) depicts the SNN with spiking neurons as the
computing unit. Compared to ANN neurons, which have
a similar structure but behave differently, spiking neurons
communicate information through binary time-coded spike
trains. Dendrites integrate input spikes, unlike continuous
activation in ANNs. A spiking neuron can be described as
follows [21]: {

dX
dt = f(x)

X← gi(X)
(2)

Where X represents the vector consisting of the state vari-
ables of the neuron, f(.) represents the differential equation
for the evolution of the state variables, and gi(.) repre-
sents the change of the state variables caused by the spike
events of synapse i. Neural information in spiking neurons
is transmitted and processed by precisely timed spike trains.
Compared with the ANN model, SNN can describe the real
biological nervous system more accurately, thus realizing
efficient information processing.

1) NEURON MODEL
The pulse neuron is the basic unit that constitutes the SNN,
and its main function is to integrate and transmit the coded
information of the pulse sequence. Whether a pulse neuron
releases a pulse or not is closely related to the neuron’s
membrane potential and activation threshold. In the process
of a single spiking neuron firing a pulse in a spiking neural
network, a spiking neuron receives input pulses from several
dendrites and outputs axons from it. Many neurons form a
network and learn systematically [22], as shown in figure 2.

FIGURE 2. A spiking neuron receives spikes from multiple inputs, and
processes and generates.

Five common spiking neuron models are the Hodgkin-
Huxley (H-H) model [23 25], the leaky integrate and fire
(LIF) model [26 28], and the Izhikevich model. [29][30],
the integral and fire (IF) model [31] and the spike response
(SRM) model [32], as shown in Figure 3.

The H-H model is a biologically interpretable physiologi-
cal model. It describes the change process of the membrane
potential of neurons through the dynamic characteristics of
Na ion and K ion channels. The H-H model is very com-
plex and is the most widely used model at present, and
is a simplification of the H-H model. It achieves a good
balance between complexity and computational accuracy.
The higher the frequency of external stimulation of the LIF
neuron model, the larger its activation probability [33]. The

LIF neuron unifies the expressions of action potentials. It
reduces the complexity of operations, but it cannot explain
the fundamental pulse generation mechanism and does not
include rich behavioural properties, so the LIF neuron model
can only simulate a small number of neuronal behaviours
[34][35][36]. The IZH neuron model has high computational
efficiency and physiological characteristics similar to the H-
H model. Different neuron firing patterns can be simulated
through the selection of parameters [37][38]. Therefore, the
IZH neuron model is implemented in some digital-analog
hybrid neuromorphic systems through analog circuits, but
it is not widely used because the equations are still com-
plex. The IF model can only passively accept the external
current input. After the circuit has experienced a long time,
the charge of the capacitor will be released. Moreover, the
IF model does not have any reset method. The IF model
already possesses some of the physiological characteristics
of neurons and has also been widely used in neurocomputing
science. However, through many simulation experiments, it
will be found that the IF neurons cannot meet the real neuron
charging and discharging requirements, so the model is not
perfect. The SRM model is a generalization of the IF model,
so its simulated biological properties are improved. Due to
the extensive selection of kernel functions, the SRM model
has a certain generality compared with the LIF model. How-
ever, the SRM model is too simple to simulate many neu-
ron charging and discharging characteristics and has certain
limitations. A summary of the five common spiking neuron
models is shown in table 1.

2) ENCODING METHOD
In addition to the difference in neurons, the most significant
difference between SNNs and traditional neural networks is
information encoding and processing. In the SNN, the input
and output of data are in the form of pulse sequences, so it is
necessary to convert the analog quantity into a pulse sequence
with time information. The most widely used coding methods
are time coding and frequency coding.

Temporal encoding focuses on differences in temporal
structure, the time from receiving a stimulus to sending the
first pulse, and the temporal logic between pulses containing
important information. VanRullen et al. proposed the Time-
to-First-spike method [39], which uses the time when a neu-
ron first fires a spike to represent information, emphasizing
the time of the first spike and ignoring other spike times. Or
reduce the weight. Chien et al. proposed to use Inter spike
Interval (ISI) to encode activation strength [40].

The frequency coding is mainly based on the frequency
of pulse firing, the average number of pulses fired by the
neuron over its corresponding recording time. Because the
frequency of neuron firing pulses is positively correlated
with the intensity of external stimulation, the intensity of
stimulation can be expressed by the frequency of neuron
firing pulses. Strong stimulation will lead to high-frequency
pulse trains, and weak stimulation will lead to low-frequency
pulses sequence. Frequency coding only pays attention to

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3200454

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Neuron Hodgkin-Huxley model leaky integrate and fire 
model

Integrate and fire 
model

Izhikevich model Spike response model

Equivalent 
circuit 

N/A N/A

Equivalent 
equations
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dt
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V −
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dm

dt
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dh

dt
= αh V 1 − h − βh V h

dn

dt
= αn V 1 − n − βn V n
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dU

dt
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𝑑𝑡
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dt
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dt
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𝑓
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𝑡
𝑖
𝑓
∈𝐹𝑖

𝜔𝑖𝑗𝜀𝑖𝑗ሺ𝑡 − 𝑡𝑖
𝑓
ሻ

Brief 
description

Where I represents input current; Cmre
fers to capacitance; V represents mem
brane voltage; RNa、RK and RL repres
ent the resistance on the ion channel;
ENa、EK and EL represent the reverse
potential constant; m and n controls N
a channel, Variable hcontrols channel
K; α and β represent empirical functio
n of membrane potential.

Where τ𝑚 = RC represents 
the membrane time consta
nt of neurons; I represent t
he sum of current; U repres
ents the voltage at both en
ds of the capacitor; Urest re
presentsthe resting voltage.

I represents the curren
t flowing through resist
ance R, V represents th
e voltage at both ends
of capacitor C.

V represents the
membrane voltag
e, U represents th
e auxiliary variabl
e, a、b、c and da
re model paramet
ers, When V ≥
30mV, then V ← c,
U ← U + 𝑑.

Γ𝑖 represents the presyn
aptic set connected to n
euron i; ϑ Indicates thre
shold voltage, Time set r
epresented by 𝐹𝑖 ; 𝜂𝑖 indi
cates reset voltage; 𝜀𝑖𝑗 i
ndicates the response of
the pulse, 𝜏 is a time co
nstant.
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FIGURE 3. Comparison of five commonly used spiking neurons in terms of neuron equivalent circuits and equivalent equations.

TABLE 1. Summary of five commonly used spiking neuron models

Neuron
model

Circuit form Mathematical
expressions

Advantages Disadvantages Usage Scenarios

H-H Capacitor-
resistor
circuit

Differential Close to biological neurons,
high accuracy

Complex terms and cumbersome arith-
metic

For the simulation of single neurons or
small-scale neural networks, not for the
construction of large-scale SNNs

LIF Capacitor-
resistor
circuit

Differential Simulates resting state, sim-
ple arithmetic

Does not explain the real pulse gener-
ation mechanism and does not include
rich behavioural properties

Only a small amount of neuronal be-
havior can be simulated

IZH Differential Simulation of multiple dis-
charge modes

Complex calculations and low comput-
ing efficiency

Bionic brain-computer interface and
large-scale biological neuron simula-
tion

IF Capacitance Differential Simple operation A simple model with memory effect
and less than perfect model

Difficult to meet the filing requirements
of real neurons

SRM N/A Points Simulation of the dynamic
changes of the non-period

The model is simple and can only simu-
late the charging and discharging char-
acteristics of some neurons

N/A

the number of pulses in the time window while ignoring
ISI. It cannot full use the temporal and spatial information
contained in the pulse sequence, so the efficiency is not high
[41]. Still, the non-uniqueness of the pulse sequence makes
the frequency coding highly effective. Noise immunity. Time
coding and frequency coding are compared, as shown in
figure 4.

3) NETWORK TOPOLOGY

The topology of the SNN directly reflects the connection
between neurons and synapses. The existing structure of a
SNN can be divided into static and dynamic structures ac-
cording to whether the network changes. The static structure

means that the number of neurons and layers of the SNN
remains unchanged, and only parameters such as weights
are changed during the training process. Common struc-
tures include multi-layer feedforward and recurrent network
structures [42]. Dynamic structure refers to the dynamic
adjustment of the number and connection of neurons during
the training process, typically represented by evolutionary
spiking neural networks. The construction idea of the evolu-
tionary SNN comes from the connected evolutionary system
of biology, which can dynamically change the structure and
function of the system in an adaptive, self-organizing, and
online continuous manner. The input samples are encoded,
converted into spike sequences and passed into the network.
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FIGURE 4. Temporal diagram of the number of emitted spikes as a function of
the type of coding employed.

Then, according to the samples’ characteristics, the spike
network’s evolutionary structure can dynamically generate
new neurons and add them to the corresponding neuron
reserve category. Therefore, the order rule is used in the
evolutionary SNN to learn and represent the output category.
The earliest activated neuron represents the corresponding
category [43].

4) SNN LEARNING ALGORITHM
As the core model of brain-like computing, the learning
algorithm of SNNs has always been the research focus.
Studying SNN learning algorithms is beneficial for realizing
higher-level artificial intelligence. With the continuous de-
velopment of the field of neuromorphic chips, in addition to
the performance indicators of traditional learning algorithms,
indicators such as algorithm storage resource usage and
weight update logic complexity are also used to measure
the performance of SNN learning algorithms implemented
in hardware. Because neuromorphic chips have limited com-
puting and storage resources, there are many constraints on
the algorithm to complete low-power dedicated computing
modes. At present, SNN algorithms can be divided into
unsupervised learning, supervised learning, online learning,
network conversion, and network compression algorithms.

Unsupervised learning algorithms usually only need lo-
cal information to adjust the synaptic quality during the
learning process and are usually implemented in hardware.
Supervised SNN learning algorithms are usually based on
gradient descent algorithms to directly learn input patterns’
labels. Due to the discontinuity and non-differentiability of
spike trains, it is difficult for such algorithms to be extended
to deep layers and effectively applied to complex datasets.
Zhang et al. proposed the SpiKL-IP algorithm based on strict
information theory to minimize the value of KL divergence
between the actual and expected pulse firing frequency to
learn the input pulse pattern in real-time. The algorithm
achieved the highest recognition coefficients in the CityScape
image dataset and TI46 speech corpus, reaching 97.78% and
98.46%, respectively [44]. Building on this work, Kasabov
proposed a dynamic eSNN to learn information from more

complex spatiotemporal input patterns consisting of multiple
spikes. They added learning rules for synaptic plasticity
to update the weights and used the EGG dataset. 83.33%
recognition accuracy was achieved on [45]. Wysoski et
al. proposed an evolutionary spiking neural network eSNN
based on hierarchical sorting learning. It uses a single-pulse
hierarchical time coding algorithm to encode data. It can
continuously change its structure in the real-time learning
process and better respond to different input modes. The
recognition performance on the visual and audio datasets
reaches 60% and 40%, respectively [46].

Online learning algorithms mainly refer to algorithms that
can learn the information flow of external input in real-time;
the online learning algorithm of SNNs with the dynamic
adaptive structure proposed by Wang et al. The classification
accuracy of the dataset reached 91.8% [47]. Courbariaux
introduces a novel weight binarization scheme in forwarding
and backward propagation. It can reduce the multipliers by
2/3 and is three times faster when training; this method is
very effective for neural networks. The hardware implemen-
tation greatly impacts the classification accuracy of 91.35%
on the CIFAR-10 network [48].

The network conversion algorithm learns from the ANN,
whose training algorithm is already very mature, and quickly
obtains an SNN with good performance. Cao et al. de-
scribe a method for converting a convolutional neural net-
works (CNN) architecture to an SNN architecture that can
be directly mapped to certain spiking-based neuromorphic
hardware with a little performance penalty. In software, the
classification accuracy rate of this architecture on the CIFAR-
10 image dataset reached 77.43% [49]. The network com-
pression algorithm mainly reduces the network size through
structure pruning and weight quantization operations to fa-
cilitate hardware implementation. Rueckauer et al. address
some important shortcomings of the existing ANN-to-SNN
conversion, deduce a theoretical analysis of the error intro-
duced in the previous conversion process and based on this
theory, realize the conversion of the VGG-16 architecture to
SNN on the ImageNet dataset. The accuracy rate of 84.86%
is achieved [50]. A comprehensive analysis and comparison
of several common algorithms are carried out, and the results
are shown in table 2.

B. BASIS OF SC
SC was first proposed in the 1960s to simplify complex
binary computing units [51-53]. And SC has attracted much
attention due to its fault tolerance and low-cost arithmetic
functional units [54], [55], [56]. Because of this character-
istic, SC can realize complex operations such as addition,
subtraction, and multiplication through simple logic gates
[57]. Compared with traditional binary operations, SC can
greatly save hardware resource overhead [58].

1) STOCHASTIC MULTIPLIER
The multiplier is the basic calculation unit of SC. Usually,
the random sequence is represented by the multiplication
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TABLE 2. Performance of SNN algorithm on different datasets

Author/Algorithm Network Structure Pulse form Processing Dataset Accuracy(%)
Zhang/SpiKL-IP[44] CNN-SNN Real-time learning of input

pulse patterns
Online CityScape Dataset / TI Voice

Library
97.78/98.46

Wysoski[46] 4-layer eSNN Single pulse level time code Online Visual Dataset / Sound Dataset 60/40
Dhoble[45] 4-layer dynamic evolutionary

SNN
Multi-pulse level time encod-
ing

Online EGG dataset 83.33

Wang[47] Multi-layer feed-forward
SNN

Population-based sparse cod-
ing

Online Pima diabetes 91.8

Courbariaux[48] CNN-SNN Pulse Sequence Offline CIFAR-10 91.35
Cao[49] DNN-SNN Pulse Sequence Offline CIFAR-10 77.43
Rueckauer[50] VGG-16-SNN Pulse Sequence Offline ImageNet 84.86

operation realized by the AND gate to represent the unipolar
type. The multiplication operation realized by the XOR gate
is used to represent the bipolar type. x and y respectively
represent two mutually independent random sequences, then
a single AND gate can be calculated with high accuracy [59].
As shown in figure 5(a), in the unipolar representation of SC,
the real number X is interpreted as the probability of a single
bit being "1" in a random binary bit stream, i.e., x = p(X).
For example, the binary number x = 0.375 is interpreted
as p(x) = 3/8 and can be represented by the bitstream
X = 01001010.The number of 1s in the bitstream and the
bitstream length are 3 and 8 [60]. Note that the unipolar
representation is in the range [0, 1], whereas in the bipolar
representation of SC, as shown in figure 5(b), the real number
x is in the range [−1, 1] and is interpreted as x = 2P (X)−1.

FIGURE 5. SC (a) Unipolar multiplier (b) Bipolar multiplier.

2) STOCHASTIC ADDER
There are many implementations of adders based on SC.
Common implementations include three basic structures:
OR gate, multiplexer (MUX), and parallel counter (PC). As
shown in Figure 6(a), the overhead of the OR gate is the
smallest, but when there are multiple SC sequences super-
imposed, the error will gradually accumulate, reducing the
accuracy; as shown in Figure 6(b), the circuit of the MUX
structure is a scaled adder. Compared with the OR gate, the
accuracy has been improved to a certain extent. However,
as the number of inputs increases and the scaling factor
increases, the cause is compressed into a small value, causing

errors; as shown in Figure 6(c), the PC is a probabilistic adder
with high precision, but the hardware overhead and delay are
also large. The structure of the approximate unit and parallel
addition tree based on alternating APC and OR gate proposed
by KIM et al. has certain limitations. The accuracy is high
only when the random sequence length is large [61].

FIGURE 6. Stochastic adder (a) Or-gate based stochastic adder (b) MUX
based stochastic b adder (c) Parallel counter.

III. TIME ARCHITECTURE AND COMMUNICATION
PROTOCOL
Neural networks are algorithms with inherent parallelism
[62]. In addition to the parallel operation of the data when
the neural network performs multiplication and addition ac-
cumulation (MAC), the training set consists of many samples
that can be fed into the network in batches. Use the parallel
computing paradigm to exploit the inherent parallelism of
layers to improve the performance of hardware implemen-
tations of neural networks. In parallel computing solutions,
the time and space architectures are different [63]. Both
architectures contain processing elements (PEs) that perform
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parallel operations on the same or other data. In the time
architecture, PEs can only access data from central storage,
and centralized control, and there is no connection between
PEs. Conversely, in a spatial architecture, each PE can also
have its control logic and one or more local storage locations.
Most importantly, in a spatial architecture, PEs are connected
to exchange data with each other, creating a processing array.
Figure 7 shows the difference between temporal and spatial
architectures.

Register 
File

Memory Hierarchy

Control

(a) Temporal Architecture

Memory Hierarchy

ALU

Control

(b) Spatial Architecture

FIGURE 7. Basic models of temporal (a) and spatial (b) architectures.

A. TIME FRAME AND SOFTWARE OPTIMIZATION
Common platforms for time architecture are CPU and GPU.
The CPU is a vector processor that can process multiple
data elements simultaneously. A vector processor consists
of multiple arithmetic logic units (ALUs) that work syn-
chronously and execute instructions on a data vector. Vector
processors, on the other hand, use Single Instruction Multiple
Data (SIMD) technology.

Among the available hardware platforms, CPUs are often
used for SNN inference or training because they offer lower
FLOPS and FLOPS/WATT performance. GPUs are archi-
tectures with up to thousands of cores designed for parallel
computing (e.g., 5120 cores in Nvidia V100 GPU [64]).
Similar to vector CPUs, GPUs employ the single instruction
multithreading (SIMT) execution model first introduced by
Nvidia. The SIMT model executes a single instruction on
multiple cores simultaneously. Each core receives different
data belonging to multiple threads running in parallel. GPUs
are the real workhorse of SNN training and, in some cases
inference.

Nvidia GPUs are often used for hardware and software
optimization of neural networks. Most neural network frame-
works support execution on Nvidia GPUs, such as Pytorch
[65], Tensorflow [66], or Caffe [67]. A big advantage of
Nvidia GPUs is cuDNN [68], a highly optimized library
of DNN primitives. In the latest high-end GPUs, Nvidia
combines traditional CUDA cores with tensor cores [64],
optimized for large matrix operations. Tensor cores can also
support mixed-precision operations. In the new Nvidia A100,
the tensor core supports a new format, the tensor format

(TF32), which provides a 10 times performance improvement
over the performance of the FP32 format on the V100 ar-
chitecture [69]. In addition, the Nvidia A100’s tensor cores
can also take advantage of the sparsity of tensors common in
DNNs to achieve up to 2 times performance gains.

And a single GPU is composed of multiple stream proces-
sors, and each stream processor can process data in parallel.
Due to the high parallelism of GPU, the current deep learning
widely uses GPU for accelerated training. In essence, the
neural network used in deep learning is also inspired by the
neural network inside the biological brain. To some extent,
the two also have certain similarities, so there are also SNNs
developed on the GPU. Schemmel et al. proposed a simula-
tion platform for SNN simulation using GPU [70]. Compared
with the CPU, the performance has been greatly improved.
At the same time, their proposed simulation platform is also
scalable and can simulate large-scale SNNs. Although GPU
has unique advantages in parallel computing, there has not
been a good solution to its power consumption problem in
the face of event-driven spiking neural networks.

B. COMMUNICATION PROTOCOL OF SNN CHIP
When evaluating ANNs, the main performance constraints
in terms of throughput and power consumption come from
memory bottlenecks [71]-[73]. Inspired by the computing
paradigm of the brain, neuromorphic processors aim to
allocate memory across an architecture close to the PE .
This leads to the parallelization of storage and computation
in different layers of the SNN while reducing the power
consumption of the entire operation. The computing core is
divided into several small neural cores: memory and PE. The
layers of the network are distributed among nuclei, each of
which stores some of the synaptic weights.

The multi-core parallelism of SNN accelerators relies on
a specific network-on-chip (NoC) communication protocol
to transmit events among a large number of neural cores
with minimal power and latency. In input/output, the core
receives/transmits spikes via communication schemes such
as address event representation (AER) protocol via (NoC),
which encodes event times and organizes connections with
low communication costs [74],[75]. As shown in figure 8,
such a communication method can greatly reduce the com-
munication bandwidth between chips. This involves sending
a packet containing the address of the spiking neuron on a
digital bus with asynchronous logic. Once the neuron fires,
the address is sent to the NoC, and the firing time is encoded
in real-time on the asynchronous bus [76]. This type of
architecture can scale as long as routers and control circuits
can manage AER requests. Nonetheless, the definition of the
number of neurons and synapses per core and the number of
cores per chip will limit the class of topologies implemented
on a chip. But this limitation can be overcome by implement-
ing a scalable multi-chip architecture [77].

Compared with the frame-driven approach of ANN, the
AER protocol has many benefits for large-scale SNN com-
putation [74]. Boahen et al. pointed out that it can reduce
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FIGURE 8. Example of AER address time representation.

the size of the network bus while retaining a large connection
capacity [75]. Therefore, the AER NoC area requirements are
low, enabling large-scale designs. In addition to reducing the
transmitted packets to a single address, it also ensures small
latency and power overhead. Furthermore, the neuron activity
sparsity of the SNN prunes the NoC activity, reducing the
number of packets sent on the network.

The NoC communication protocol is easily scalable, and
any number of units can be connected as long as the router
can manage the requests. Therefore, suitable for multi-chip
implementation. However, the power consumption of such
a system increases with the number of connected neurons,
the average firing frequency of each neuron, and the overall
chip size [78], [79]. To address this problem, two differ-
ent schemes are adopted: one reduces AER’s power and
latency overhead by exploiting the locality and clustering
of neural network algorithms [74], [80]. The other adopts
a hierarchical router level, which helps reduce the power
impact of large-scale systems [80],[81]. Furthermore, rate
and time encoding have significantly different effects on
such overhead. Rate encoding usually employs a sequence of
Poisson spikes, so a single spike timing error has little effect
on the accuracy of the network. Mostafa et al. pointed out
that time encoding sends many pulses through the network
[82], which can drastically increase the power consumption
of the whole system. In temporal coding, timing errors or
loss of information can occur when the algorithmic time
step duration does not allow the neural core to complete its
operation. In this case, pulses may be lost or removed from
the network. Hence there is only a trade-off between accuracy
and throughput or power [83].

Since the AER protocol is compatible with various NoC
routing architectures and broadcast schemes, such as 2D
meshes [84]-[86], multicast trees [87], or shrinking rings
[88]-[90], therefore, the adopted routing scheme can be ad-
justed to meet the requirements of the accelerator.

IV. TRADITIONAL SNN CHIP
The neuromorphic computing system imitates the neuromor-
phic device of biological neurons as the basic unit. The main

body is an SNN similar to the neural network approximation
in the human brain. Unlike the traditional way of working
by following computer instructions, neuromorphic comput-
ing systems follow parallel work and distributed processing
mechanisms to complete cognitive tasks such as learning,
memory, and reasoning [91]. There have been many studies
at home and abroad on developing of neural network chips
[92]-[94]. At present, the research of neuromorphic chips is
mainly divided into three directions: (1) digital-analog hybrid
neuromorphic chips designed by analog CMOS circuits for
neural computing units, synaptic circuits, and digital CMOS
circuits for routers; (2) by all-digital CMOS circuits Design
a pure digital neuromorphic chip; (3) design a new type of
neuromorphic chip with a new type of resistive memory to
design the synapse circuit and part of the computing unit, and
a CMOS circuit to design the routing circuit. Three different
chips will be described below.

A. DIGITAL-ANALOG HYBRID NEUROMORPHIC CHIP
Neuromorphic engineering based on analog circuits proposed
by Mead et al. [95]. Using large-scale digital-analog hybrid
circuits to simulate the electrophysiological behavior of real
neurons and synapses is more efficient and energy-efficient
than using semiconductor devices than traditional CPUs
[96]. The most famous is the neuromorphic supercomputer
Neurogrid system developed by Stanford University in the
United States, which flexibly utilizes the similarities between
the dynamic characteristics of neuron ion channels and the
electrical characteristics of transistor subthreshold regions
to design neuron circuits and synaptic circuits. This is a
neuromorphic chip based on an AMS circuit. The chip con-
sists of software, driver, and hardware system. The hardware
system consists of a PCB of 16 Neurogrid chips, and the
chips are linked through a tree structure [97]-[99]. Each chip
contains a square matrix of 256× 256 neurons. The resulting
single board can simulate large-scale intracerebral neurons
and synaptic connections, which can be applied to brain-
computer interfaces [100].

The ROLLS chip of the University of Zurich in Switzer-
land [101], which has only 256 neurons and 128k synapses,
is used to simulate the physical activities of the biological
nervous system, study computational neuroscience models,
and build brain-like computing systems. Unlike traditional
Von Neumann processors, the ROLLS neuromorphic proces-
sor uses memory and computation co-located. The architec-
ture includes a configurable array of synaptic circuits where
spiking neurons produce biologically realistic response prop-
erties that express a wide range of real behaviors [102].
The ROLLS chip features online learning algorithms, such
as spike-driven synaptic plasticity rules (STDP), that can
validate multiple neuromorphic computing modalities. The
HICANN chip of Heidelberg University uses a special in-
terconnection technology to interconnect 352 chips in the
entire wafer to realize a wafer-level neuromorphic system
[103], [104], which is 10,000 times faster than real-time and
is used for large-scale parallelism. The HICANN chip is
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designed to provide scientists with supercomputers to speed
up large-scale SNN simulations. The cxQuad chip is a novel
multicore device that includes analog neuron and synaptic
circuits and an asynchronous digital routing fabric optimized
to minimize memory requirements, and maximize scalability
and reconfigurability [105].

Hybrid implementations are powerful tools for real-time
simulation of large-scale neural networks. Calculations can
be performed using analog circuits while maintaining the
flexibility of digital programmable devices. The hybrid im-
plementation combines space-saving, power-saving analog
circuitry with a scalable binary-digital system, and clock-
less communication through sparse pulse coding improves
computational efficiency. The generated precise time-to-time
correspondence improves the time-sensitive performance of
neural network scale operations. In hybrid-implemented neu-
romorphic systems, digital systems implement network con-
nections, while analog electrical circuits are dedicated to
reproducing neuronal dynamics. Because the on-chip topol-
ogy of an analog circuit is usually embedded and fixed after
manufacturing, the entire system needs to be prototyped and
optimized in an FPGA before manufacturing the analog cir-
cuit. Hybrid digital-analog technology represents an advance
in neuromorphic systems, integrating large-scale, biorealistic
configurable neural networks on a single chip.

B. PURE DIGITAL NEUROMORPHIC CHIP
The advantage of simulating neuromorphic systems is to
study the interaction problem with the system and the envi-
ronment in real-time. Analog neuron circuits only provide a
precise deterministic computation of digital analog neurons,
which is not ideal for detailed quantitative studies. At the
beginning of this century, many purely digital neuromorphic
systems appeared. Based on the stability and reliability of
digital circuits, these systems can realize large-scale neu-
romorphic systems with ultra-low power consumption and
accurately reproduce algorithms. Many chips can already, to
a certain extent, solve real-life problems.

In 2014, IBM Corporation of the United States launched
the famous TrueNorth chip [106], which adopted a fully
customized ASIC solution. Implementing a specific network
model, LIF neuron model, and connection methods that
support limited programming and using Samsung’s 28-nm
technology, the chip consists of 5.4 billion transistors and oc-
cupies only 4.3cm3 area. Through the asynchronous circuit
design, it has extremely low operating power consumption
and can achieve a computing scale of 1 million neurons and
256 million synapses. TrueNorth has good scalability, does
not rely on the global clock to coordinate work, and does not
affect the overall work due to a chip failure. The chip supports
deep feedback algorithms so that it can be practically applied
in fields such as image recognition and speech processing.
The vision application system 161, composed of 3 million
neurons implemented by the TrueNorth chip, consumes about
200 mW [107]. The DARPA SyNAPSE system consists of 48
TrueNorth chips interconnected in an array [108], which can

realize a neural network with a scale of 50 million neurons.
The peak performance of fixed-point computing can reach
266 GB/s. Although IBM uses SRAM, SRAM is a special
8T structure, and it is only possible to achieve the expected
scale and power consumption requirements under specific
circumstances.

Although the TrueNorth chip, as a breakthrough devel-
opment in the field of brain-like computing, has greatly
promoted the development of artificial intelligence, the
TrueNorth chip only supports the reasoning of the SNN.
It does not support neuromorphic plasticity, and parameter
updates can only be learned on software but not on a chip, so
there is still a lot of room for the development of brain-like
computing.

SpiNNaker network architecture was developed at the
University of Manchester, UK. The exponential function of
SpiNNaker is implemented through a lookup table. However,
as more complex neural models are developed, the memory
requirements grow. To save the limited memory resources
in the SpiNNaker chip, a single hardware accelerator for
exponential and natural logarithms is specially built and de-
signed through a fixed-point method, which improves energy
efficiency with a certain loss of precision. This fixed-point
approach enables custom configurations for other systems
with different power, area, accuracy, and delay constraints
[109],[110]. Part of the brain function model is implemented
based on an ARM chip, which can imitate the function of
brain regions, and its communication mechanism is suitable
for real-time modelling [111].

The neuromorphic chip Loihi released by Intel Corpora-
tion combines the STDP model through the pulse transmis-
sion data between neurons. The difference from other chips
is that the chip has an autonomous learning function [112].
Loihi chips can not only support neuromorphic computing
with extremely low power consumption [113], but also sup-
port a variety of neuromorphic plasticity, integrating vari-
ous achievable learning rules, complex neuron models, and
various information encoding protocols. Together, multiple
algorithms can be simulated. Loihi’s chip uses Intel’s 14-nm
FinFET process and contains 2.07B transistors, which was
Intel’s fifth-largest chip at the time. With 128 cores integrated
into a single Loihi chip and 1024 neural pulse units integrated
into each core, SNNs can be run and trained with extremely
low power consumption using the Loihi chip. Loihi is the first
system that can simultaneously support mechanisms such
as sparse network compression, inter-kernel multicasting,
variable synaptic formats, and Population-based hierarchical
interconnection [114]. Intel also released Pohoiki Springs, a
neuromorphic system that can support 100 million neuron
computing. The system is built through a data center rack
composed of 768 Loihi brain-like computing chips. The over-
all neural capacity is comparable to that of small mammals.
It is the largest brain-like computing system implemented by
Intel [115]-[117].

The current neuromorphic chips mainly follow the princi-
ples of neurodynamics to build brain-like neural networks,
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but they are not compatible with mature models such as
ANN. In this regard, Tsinghua University has developed an
artificial intelligence computing chip called "Tianji", with
a size of 3.8*3.8mm2 and a 28nm process. Although the
operating frequency is only 300MHz, its performance can
reach 1278 GOPs/W. The chip consists of more than 150
computing units, which can satisfy the calculation of about
40,000 neurons and 10 million synapses. The biggest feature
of "Tianji" is integrating two different artificial intelligence
research directions based on computing science and neuro-
science into one platform. This chip can support both ex-
isting machine learning algorithms and brain-like computing
algorithms. [118]. "Tianji" combines the two technical routes
of neuroscience and computer science and adopts a non-von
Neumann paradigm. With hybrid compatibility, multi-core
architecture, localized memory, and streamlined data flow, it
can support cross-paradigm modeling, maximize parallelism,
improve power efficiency, and communicate seamlessly be-
tween models [119].

Zhejiang University and Zhijiang Laboratory used 792
Darwin 2nd-generation chips to jointly develop Darwin-
Mouse, a brain-like computer whose computing scale is
equivalent to that of a small mammalian brain [120]. The
computer was the largest brain-like computing system in the
world at that time and could achieve a computing scale of
120 million neurons and nearly 100 billion synapses. The
chip adopts standard 180nm CMOS technology and helps
realize applications such as collaborative robot work and
EEG signal potential decoding. The overall computing power
consumption is between 350-500W. The computer consists of
nearly 800 "Darwin 2" chips, each containing 576 computing
cores, each of which can realize the computation of about 256
neurons and 10 million synapses [121]. BrainScales is the
realization of several interconnected chips, each composed
of several HICNN neural cores, to accelerate the time simu-
lation of brain-like neural networks with accurate biological
neural behavior [122].

A purely digital implementation consumes more silicon
area and power per function but has significantly reduced
development time and is not affected by a power supply, ther-
mal noise, or device mismatch. In addition, high-precision
digital computing can realize network communication sys-
tems with high dynamic range, higher stability, reliability,
and repeatability.

C. MEMRISTOR-BASED NEUROMORPHIC CHIPS
Besides being based on conventional CMOS, memristors
with desirable properties have become one of the main de-
vice choices for neuromorphic computing [123]. The brain’s
neurons are connected in three dimensions, allowing very
dense and highly parallel networks to be implemented on a
minimal scale. Neural networks on silicon, on the other hand,
are mainly two-dimensional, so they cannot be integrated to
achieve similar densities. Many researchers have proposed
the latest parallel implementation: crossbar switch arrays
[124]-[128]. This design aims to combine the memory and

neuron update parts of the neural core in a single unit, result-
ing in a speed increase and a reduction in energy consump-
tion, and true non-von Neumann computation [129], [124].
It consists of two metal wires intersecting orthogonally, as
shown in Figure 9. The nanoelectronic device mimics the
behavior of synapses set at each intersection. One direction
represents the output of the presynaptic neuron. The other di-
rection represents the connected postsynaptic neuron. Thus,
the operation of an analog crossbar array consists of applying
voltages on input lines and reading currents on corresponding
output lines. The conductance of each device represents the
synaptic weight of the connection, the resulting currents are
summed according to Kirchhoff’s law, and a dot product
operation is implemented [126].

…

…

… …

Memristive
Device

Access 
Device

(a) (b)

FIGURE 9. Representation of crossbar array implementation. (a) Description
of the memristive device implementation. (b) Top view of a typical crossbar
design, with the input along the vertical line and the output along the horizontal
line.

To achieve high-density crossbar switches without loss of
accuracy, the device must be three things: (1) small, (2) low
power consumption for reading and write operations, and (3)
stable [126]. Pulse code modulationPCM [130], [131] and
metal oxide resistive devices [132]-[134] are good candidates
for (1) and (2) because their power dissipation decreases with
their size. However, on a small scale, they cannot yet meet the
third requirement, which greatly limits the use of crossbar
switch arrays as accelerators for neural network algorithms.
The realization of crossbar switch arrays is still under in-
vestigation due to this limitation. Ankit et al. achieved the
simulation of SNNs at the placement level of fully neuro-
morphic architectures [124], achieving huge gains in energy
and speed when using crossbar switch arrays compared to
traditional neuromorphic architectures. While hundreds of
gains are achieved when simulating FC networks and a few
tenths when evaluating CNNs, confirming that the crossbar
gain is highly dependent on the network topology. Recently,
Ambrogio et al. showed that relative to ideal simulation
[129], equivalent accuracy was achieved on ANN evaluation
using a PCM crossbar switch array controlled externally by
a computer through the detector. And the potential power
efficiency is one to two orders of magnitude better than a
standard CPU or GPU.

One advantage of SNNs over ANNs is that the activations
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are binary. This also simplifies the surrounding circuitry
since the same voltage is applied to each crossbar input. The
update of neurons can be implemented in analog circuits or
digital circuits. Analog implementations can achieve very
high throughput, ideally with a capacitor at the output of
each line [135], especially when the memristive element is
placed directly between the two access lines. However, due
to the lack of control over the intersection design [136],
crossbars are usually implemented using access devices,
which greatly reduces the design density. A digital imple-
mentation of the output circuit would require an analog to
digital (A/D)converter and memory to store neuron states
[137, 138]. Neuron updates can again be time multiplexed to
reduce hardware requirements. In this case, the crossbar array
still has an advantage as the computation happens in memory
and requires transfer costs to and from neurons’ state memory
and A/D convert. However, ANNs with full-precision acti-
vations on such designs require simplified network topology
[139] or improved network circuitry to provide accurate
voltage values to each input line [140] and apply nonlinearity
after MAC operation.

In conclusion, crossbar arrays with NonVolatile Memory
NVM devices are promising in terms of performance and
scalability, especially in the case of a fully analog implemen-
tation, where neuron updates are implemented in parallel.
It has shown good results but still needs improvement to
guarantee reliable, fully on-chip, and long-lasting lifetimes.

At present, memristor-based synapses have mimicked
several synaptic functions of biological synapses. Most of
the currently studied neural networks are mainly based on
CMOS circuits, which require many active components to
realize the function of neurons. But CMOS-based neurons
naturally take up much space and suffer from high power
consumption. Therefore, the memristor-based neural network
is constructed according to the principles of ANN and SNN.
Diffusion memristors can provide a highly desirable kinetic
description of synapses and neural functions in neural net-
works. Synapses are represented in Figure 10(a) by arrays
of synapses, connected by axon terminals to the dendrites
of individual neurons, similar to the biological scenario in
Figure 10(b).

FIGURE 10. (a)synaptic apparatus connected by axon terminals to the
dendrites of individual neurons (b)biological scenario.

There are four main types of memristors: redox reaction

memristors [141], phase transition mechanism memristors,
ferroelectric tunnel junction effect memristors, and magne-
toresistive effect memristors. Due to the small surface area
and ease of integration, memristors are often used in arrays,
such as 3D memristor arrays based on stacking technology
and crossbar-type 2D arrays [142]. In addition to high inte-
gration, memristor arrays have multiplication and computing
capabilities. By applying a voltage to the WL line of the
array and reading the current collection on the SL line, the
power of multiply-add operations, which have always been
the most resource-intensive parts of neuromorphic comput-
ing, can be efficiently calculated. Some small networks have
demonstrated efficient operations based on memristor arrays
[143–145]. In addition to their advantages in computing and
integration, memristors are considered devices with synap-
tic plasticity [146-147]. In addition to synaptic realization,
memristors with threshold switching properties are consid-
ered to enable the realization of high-density neurons [148].
In addition, memristor neurons can be used in perceptual
systems to convert analog perceptual signals into pulsed
signals [149].

Memristor-based neuromorphic computing is still in the
potential of using device principles to explore neural comput-
ing or to verify small networks by constructing small circuit
systems, limited by the integration difficulty of the memris-
tor system itself and the limitations of anti-biotic synaptic
learning rules. Sexual, large-scale memristor spiking neural
networks have remained largely unreported.

D. PROBLEMS WITH TRADITIONAL SNNS
Traditional von Neumann computing architectures suffer
from scalability limitations regarding computational speed
and power consumption. Novel brain-inspired architectures
have emerged as alternative computing platforms, especially
for cognitive tasks requiring massive parallel data processing.
As discussed in Section 3 above, one of the main bottle-
necks in the CMOS implementation of these neuromorphic
parallel architectures is the physical implementation of large-
scale synaptic interconnections between neurons and synap-
tic adaptation. Implementing adaptive synaptic connections
in CMOS technology requires using many circuits for analog
memory or digital memory blocks, which are expensive in
terms of area and energy requirements. In addition, learning
rules that update these synaptic memory devices must be
implemented. Developing compact adaptive devices that con-
form to biological learning rules to achieve synaptic connec-
tions has stimulated research into alternative nanotechnology
to complement CMOS technology. Memristive devices are
novel two-terminal devices capable of changing their con-
ductance depending on the voltage/current applied to their
terminals.

The current mainstream SNN chips usually use pure dig-
ital circuits to simulate the functions of neural synapses
and neurons to build neuromorphic cores. Connect multiple
neuromorphic cores through on-chip routing to form neu-
romorphic chips and use digital-analog hybrid circuits to
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simulate neural synapses. The neuromorphic core is con-
structed with the dynamic changes of neurons, and multiple
neuromorphic cores are connected through on-chip routing
to form a neuromorphic chip. Although these two technical
routes use advanced technology to simulate a neural network
with a scale of hundreds of millions of neurons, due to
CMOS Circuits are limited by two-dimensional connections
and a limited number of interconnected metals and rout-
ing protocols, and there are still enormous difficulties in
realizing biological brain simulations with 3D structures.
One of the major bottlenecks in the CMOS implementation
of these neuromorphic parallel architectures is the physical
implementation of large-scale synaptic interconnections be-
tween neurons and synaptic adaptation. An ideal hardware
deep learning system should be able to have online learning
capabilities and reconfigurability for different applications.
The challenge of designing a highly scalable and parallel
hardware deep learning system and providing online learning
capabilities needs to span hardware, algorithms, and appli-
cations. New computing paradigm. Since the measurement
units of parameters such as Synapses, neuron size, number
of synapses, number of chip cores, and power consumption
are not uniform, there is no way to compare, so only the chip
area as shown in figure 11(a) and manufacturing process as
shown in figure 11(b) of different SNN models are compared.
Summarizes the current mainstream spiking neural network
chips and compares their relevant characteristics in table 3.

(a) Feature size comparison between 
different SNN model 

(b) Chip size comparison between 
different SNN model 

FIGURE 11. compares die area and fabrication process of different SNN
models.

V. THE SNN CHIP BASED ON PROBABILITY
CALCULATION

SC is considered the next frontier of energy-efficient edge
computing [150] because of its energy-efficient operation and
ability to tolerate fault tolerance in areas such as recognition,
vision, data mining, etc. At the same time, many applications
are trying to move challenging workloads from cloud com-
puting to edge devices. Therefore, SC has become a research
hotspot.

A. APPLICATION OF PROBABILISTIC COMPUTING IN
TRADITIONAL NEURAL NETWORK CHIPS
Deep learning has an increasing demand for energy-efficient,
high-computing power, and low-power hardware processing
systems. However, computing systems using classical com-
puting architectures encounter the famous "von Neumann
bottleneck", "memory wall", and "functionality". Problems
such as “wall consumption” severely limit the improvement
of the processing energy efficiency of deep neural networks
[151]. The computational method of the biological brain
is completely different from the von Neumann computing
system. Biological neurons use pulse sequences based on
time and space encoding to transmit information rather than
encoded binary data. The SNN is a neural network that
simulates the biological brain. It is completely different from
the traditional neural network and requires fewer computing
resources. Therefore, studying the neural network deep learn-
ing architecture based on impulse power is a breakthrough in
solving the computational bottleneck and has new research
value.

SC is one of the important realization methods of a neural
network [152-154]. In 2001, Brown and Card first applied SC
to neural network calculation [155], replacing traditional bi-
nary number calculation units with SC units. The calculation
results show that the accuracy of the SC unit will decrease,
and there are obvious advantages in hardware circuit area
reduction, power consumption reduction, and calculation
speed improvement. Ardakani et al. proposed an effective
scheme for implementing DBN using integral probability.
The experimental results show that the system’s delay is
reduced by 84%, the hardware occupied area of the modified
scheme is reduced by 66%, and the power consumption is
reduced by 33%, which effectively improves the calculation
efficiency and accuracy [156]. LI et al. proposed an efficient
stochastic computing-based large-scale deep convolutional
neural network (DCNN) framework, using approximately
parallel counters and optimizing the train multiplier, and
proposed the stochastic computing-based ReLu activation
function for the first time. The results show that the hardware
circuit can accurately simulate the function output when the
input range of the function is limited to [-5,5] [157]. LI et al.
introduced two important technologies, Normalization, and
Dropout, in the deep convolutional neural network (DCNN)
based on SC and implemented the corresponding functions
on the hardware. When using the AlexNet model to verify
the ImageNet dataset. The results show that the accuracy of
Top-1 is improved by 3.26%, and the accuracy of Top-5 is
improved by 3.05% [158].

Ren first proposed the comprehensive design and opti-
mization framework of a deep CNN based on probabilis-
tic computation. Achieves extremely low hardware occu-
pancy, low power consumption, and power consumption
while maintaining high network accuracy. Comparing the
improved model with the traditional model, SC increases
the throughput of the hardware circuit by as much as 100
times [159]. Zhang et al. designed a motor controller based
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TABLE 3. Comparison of spiking neural network morphological chips

SNN model Design Time Weight Stor-
age

Neuron
size
(pcs)

Synapse
size(pcs)

Core
per
Chip

Chip
Area
(mm2)

Technology
(nm)

Power
or
energy

Bio-
Mimicry

Advantages Disadvantages

TrueNorth[106] Digital Discrete 1b 1
million

256 mil-
lion

4096 430 28 70mW LIF Highly
configurable

Only off-
camera study
is possible

SpiNNaker[111] Digital Discrete Indeterminate 1
billion

100 bil-
lion

16 102 130 4K LIF Study on film Excessive
volume

Tianjic[118] Simulation Discrete Indeterminate 40,000 10
million

156 14.44 28 1.54pJ LIF Compatible
with various
neural
models and
algorithms

NA

BrainScales[122] Simulation Discrete 4b 196608 50331648 352 50 430 174pJ AdExp-
IF

Highly
configurable

Cannot
handle actual
tasks

Neurogrid[100] Mixed Real
Time

off-chip 1
million

6 billion 1 168 180 3.1W LIF Fast operation
speed and
low power
consumption

Does not re-
flect synaptic
plasticity

Loihi[112] Digital Discrete 1 9b 131040 130 mil-
lion

128 60 14 36mW LIF On-chip
learning,
highly
configurable

Cannot
handle actual
tasks

DarwinMouse[120] Digital Discrete 1 15b 2048 4194304 576 25 180 0.84mW LIF Highly
configurable

Small chip
neuron size

ROLLS[101] Mixed Real
Time

Capactor 256 128k 1 51.44 180 4mW LIF Multiple
synaptic
plasticity
rules and
network
structures

Smaller

cxQuad[105] Mixed Real
Time

12b 1k 64k 4 43.8 180 945uW LIF Highly
configurable

Smaller

on a neural network and implemented its specific functions
on FPGA. The neural network is implemented by stochastic
computing. Compared with the traditional microcontroller or
DSP controller implementation, the experimental results The
motor controller was shown to achieve lower cost and higher
performance [160].

Hirtzlin and Penkovsky et al. proposed to apply SC to
binary neural networks, and tests on the Fashion-MNIST and
CIFAR-10 datasets showed only a 1.4% drop in accuracy.
Still, the circuit area could be reduced by 62% [161]. Sim
et al. proposed a matrix-vector probabilistic multiplier [162].
The results show that the multiplier can balance the random
sequence length and calculation accuracy and reduce the
calculation delay compared with the traditional algorithm.
Energy consumption also has a significant effect. Hojabr and
Kamyar et al. proposed the SkippyNN architecture [163], a
stochastic computation-based convolutional neural network
architecture for embedded devices, which can reduce the
computation time based on SC in the CNN convolutional
layers. Experimental The results show that the SkippyNN
architecture achieves 1.2 times the computational speed im-
provement and 2.7 times the energy saving compared to the
traditional binary implementation.

Hojabr and Kamyar et al. proposed the SkippyNN archi-
tecture [102], a Stochastic computation-based convolutional
neural network architecture for embedded devices, reducing

the computation time of Stochastic-based computation in the
CNN convolutional layer compared with traditional algo-
rithms. Experimental results show that the SkippyNN archi-
tecture achieves a 1.2-fold increase in computational speed
and a 2.7-fold energy saving compared to the conventional
binary implementation. Xiong et al. use a non-correlation
independent non-random encoding of random sequences and
apply this encoding to a random multiplier to adjust the
sequence length by an adaptive algorithm. The results of
the study show that the sequence length was significantly
reduced to 64 bits, reducing the overall computational latency
[103]. Wang and Zhang et al. designed a non-scaling high-
precision random adder applied to a CNN in combination
with the Winograd algorithm. The results showed computa-
tional accuracy of the arbitrary computation was guaranteed
while reducing the hardware complexity of the convolutional
operation [104].

Xiong et al. proposed a non-correlated and independent
non-random encoding method for random sequences [164].
They applied this encoding method to random multipliers to
adjust the sequence length through an adaptive algorithm.
The results show that the sequence length is affected by
significantly reduced to 64 bits, reducing overall compu-
tational latency. Wang and Zhang et al. designed a non-
scaling high-precision random adder and applied it to a CNN
. Combined with the Winograd algorithm, the results show
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that the hardware complexity of the convolution operation
is reduced while ensuring random computing. The compu-
tational accuracy of [165]. Neil et al. propose Minitaur, an
event-driven FPGA-based SNN accelerator for investigating
the capabilities of FPGA platforms to implement a real-time,
event-driven deep spiking network that achieves 92% accu-
racy on the MNIST dataset. accuracy [166]. Stromatias et al.
implemented a spike-based DBN on the SpiNNaker platform,
achieving 95% classification accuracy on the MNIST dataset,
which is only 0.06% lower than the software implementation,
while consuming 0.3 W, the average classification latency is
20ms [167].

For the first time, Esser et al. used the offline training
method of backpropagation to create a network that recon-
ciled the incompatibility between the backpropagation al-
gorithm and neuromorphic hardware. The proposed SNN
architecture achieved a recognition accuracy of 99.42% on
the MNIST dataset and ran the network in real-time on
TrueNorth chips [168]. Luo et al. proposed a network consist-
ing of interconnected nodes, each containing logical compu-
tation, enhanced dynamic random access memory (eDRAM),
and a router structure. This architecture can achieve 450.65
times speedup and 150.31 times cooling reduction on GPU
[169]. Chen et al. proposed a CNN accelerator named Eye-
riss, which can support the computation of high-throughput
CNNs and is optimized for the energy efficiency of the
whole system, including the accelerator chip and off-chip
dynamic random access memory (DRAM) [170]. Han et al.
proposed an Energy Efficient Inference Engine (EIE), which
utilized weight sharing and distributed storage computing to
accelerate neural networks, showing obvious advantages in
energy consumption and hardware area reduction [171]. Ren
et al. adopted a top-down approach to design an optimization
framework for SC-based DNNs, fully using SC’s advantages,
significantly reducing the hardware area and achieving low
power consumption while maintaining high network accu-
racy [172].

Table 4 shows the parameter comparison of neural net-
works based on SC and other software and hardware plat-
forms. It can be seen that there is a theoretical and time basis
for applying SC to neural networks. The application of neural
networks on the device side is greatly limited, mainly because
embedded devices cannot provide enough computing power,
storage units, and bandwidth. The bit-wise execution of SC
can greatly reduce the hardware complexity. On the other
hand, the neural network model usually has multiple passes
and iterations in the inference process, which also makes the
random error in the inference process less likely to occur. It
severely impacts the overall accuracy, which also matches the
highly error-tolerant nature of stochastic computing. Com-
pared with traditional binary computing, SC significantly
improves computing speed and computing energy efficiency
and reduces resource consumption. Since the parameters
such as accuracy, Throughput, Area Efficiency, and Energy
Efficiency are too different, only the chip area as shown in
figure 12 (a) and power consumption as shown in figure 12(b)

are compared.

（a）Chip size comparison between 
different platform

（b）Power comparison between 
different platform

FIGURE 12. compares die area and power consumption of different platforms.

Compares the stochastic computing-based neural networks
and other software and hardware platforms in table 4 . It can
be seen that there is a theoretical and temporal basis for ap-
plying SC to neural networks. The bit-by-bit execution of SC
can massively reduce the hardware complexity. On the other
hand, there are usually multiple passes and iterations in the
inference process of neural network models, which makes the
random errors in the inference process do not have a serious
impact on the overall accuracy, which also matches the highly
error-tolerant nature of Stochastic computation. Compared
with traditional binary calculation, SC is significantly faster,
more energy-efficient, and less resource-consuming.

B. APPLICATION OF SC IN SNN CHIP
The SNN is a new data storage and computing technology
based on neural networks. Simulating the working mech-
anism of the brain can break through the von Neumann
bottleneck encountered by traditional computers when deal-
ing with large-scale problems and significantly improve the
speed of information processing. Significantly reduces power
consumption and has self-learning and adaptive capabilities.

In recent years, some researchers have attempted to reduce
power consumption and area overhead while retaining the
original advantages of SNN. Kuang and Wang et al. proposed
to use the Euler approximation method to design the LIF
neuron model to solve the problem of non-differentiable
impulses [173]. Using the Euler method to simplify and
accumulate neuron models can significantly reduce the com-
putational complexity of SNNs. However, this approach still
suffers from a large area overhead due to the many multipliers
involved.

As a unique data representation and processing technol-
ogy, stochastic computing many complex arithmetic opera-
tions can be implemented using simple logic gates in the
SC framework, providing a huge design space for neuron
integration. And SC has strong fault tolerance, because in SC,
data is processed in the form of a bit stream, and these data
are interpreted as probabilities. So SC enables fully parallel
and scalable hardware implementation of large-scale deep
learning systems.
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TABLE 4. Comparison between the neural network with the addition of SC
method and other neural networks

Neural Network Model Network type Dataset Platform Area
(mm2)

Power
(W)

Accuracy(%) Throughput
(Images/s)

Area
Efficiency (Im-
ages/s/mm2)

Energy
Efficiency
(Images/J)

Minitaur[166] ANN MNIST FPGA 32.5 1.5 92.00 4880 N/A ≥ 3253
SpiNNaker[167] DBN MNIST ARM 102 0.3 95.00 50 N/A 166.7
TrueNorth[168] SNN MNIST ASIC 430 0.18 99.42 1000 2.3 9259
HEIF(128bit)[157] CNN MNIST ASIC 22.9 2.6 99.07 3203125 139874 1231971
DaDianNao[169] CNN ImageNet ASIC 67.7 15.97 N/A 147983 2185 9263
Eyeriss[170] CNN layer ImageNet ASIC 12.25 0.28 N/A 35 2.8 125
EIE-64PE[171] AlexNet ImageNet ASIC 40.8 0.59 N/A 81967 2009 138927
HEIF(128bit)[157] AlexNet ImageNet ASIC 24.7 1.9 N/A 2520161 102030 1326400
SC-DCNN(No.6)[172] CNN MNIST ASIC 36.4 3.53 98.26 781250 21439 221287
SC-DCNN(No.11 )[172] CNN MNIST ASIC 17.0 1.53 96.64 781250 45946 510734

The rate coding method in SNN is similar to the SC
coding in SC-based computation [174]. However, the results
of the SC method depend on the correlation of the input
pulse sequences involved. When two (or more) pulse trains
are used as the input to the SC circuit, the cross-correlation
between them will affect the computational accuracy [175].
If the pulse train involved has high cross-correlation, then the
pulse train output through the SC circuit has low randomness,
and vice versa. On the other hand, many researchers use
finite state machine (FSM) processes to implement many
nonlinear functions to improve accuracy [176]. By following
this design concept, Smithson et al. proposed using the FSM
process to implement the LIF neuron model and its hardware
architecture [177], [178]. However, this approach still suffers
from a large area and power overhead.

To reduce the area overhead, Chen and Kou et al. proposed
to use SC adders and multipliers to implement low-cost
SNN neurons [179]. Using a large-scale SNN structure, to
further reduce the calculation error caused by the cross-
correlation of the bit stream. The pruning method can be used
to avoid unnecessary calculations in the SNN process, which
makes the pulse transmission between each SNN neuron
layer. Becoming sparse also helps to improve computational
accuracy. Using 40nm process technology to implement the
SC-based SNN architecture and analyze the hardware effi-
ciency can save 72.38% to 75.64% of the area overhead and
81.37% to 90.58% of the power consumption compared to
the SNN model without the SC method. Xiao et al. proposed
an adaptive exponential integral-excited neuron model SC-
AdEx based on SC, using probability integrator and AND
gate as the basic calculation unit. Compared with AdEx
without SC, it occupies a larger area small, faster, and has
a lower cost [180].

A high-precision SC-SNN hardware design framework
proposed by Tang and Han utilizes the cumulative distribu-
tion function of the input signal to generate pulse trains and
a priority encoder to convert these pulse trains into index-
based signals. In this way, the connection between neuron
layers is reduced from O(N2) to O(NlogN), which solves
the problem of relatively low information density and realizes
efficient hardware design. Implemented on FPGA for clas-
sifying the MNIST dataset, experimental results show that

almost the same accuracy as ANN is achieved [181]. Liu and
Liang et al. proposed an efficient hardware tripartite synapse
structure based on SC. SC is used to replace conventional
computing components such as DSP in hardware devices,
and the extended SC logic is used to scale the data range
during the computing process. The results show that the pro-
posed hardware architecture has the same output as software
simulation with lower hardware resource consumption so that
it can be applied to large-scale SNNs [182]. Chen and Song
et al. designed a probabilistic spiking neuron and realized the
reconfigurable computing architecture of the neural network.
8.82 times that of a conventional binary accumulator [183].
Gao and Chen et al. proposed an asynchronous architecture
of SNN based on SC, which realized the forward inference
operation of SNN based on LIF neurons with 784 inputs and
10 outputs. Used the method of SC to convert the numerical
value into a pulse sequence and realized further reduced the
power consumption of circuits and systems [184].

SC has been widely used because it can reduce the energy
cost of hardware computing [185]. Two main approximation
strategies are used for neural network applications: network
compression and classical SC.

Because neural networks have too many parameters, re-
searchers targeting embedded applications began to reduce
weights and activation accuracy to reduce the memory foot-
print of ANNs, a method known as network compression
or quantization. Also, due to the fault tolerance of neural
networks and their ability to compensate for approximations
while training, the reduced bit precision results in only a
small loss of precision [186]-[189]. When implemented in
hardware, weight quantization (WQ) shows an energy gain
of 1.5 to 2 times with less than a 1% loss in accuracy [190],
[191]. Rathi et al. achieved an accuracy loss of about 3%
with an energy gain of 2.2 to 3.1 times [192]. There can
be a trade-off between the accuracy of the SNN application
and the energy and area requirements of the neural network.
SC can also implement computational circuits of neurons,
where unimportant cells can be deactivated to reduce the
computational cost of evaluating SNNs [193].

Training ANNs with random synapses leads to better gen-
eralization and has already yielded better accuracy on the test
set [194, 195]. The same method applies to SNNs. Spikes
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with synaptic randomness FPGA implementations of neuro-
morphic systems have been shown to improve the accuracy of
the network while reducing memory requirements [196]. And
nanoelectronic devices with inherent cycle-to-cycle variabil-
ity, such as memristors [197] or V O2 [198], can reduce the
area and power overhead of random number generation. Chen
et al. [199] also exploited probabilistic rewiring to increase
their throughput, with fewer synapses meaning fewer spike
integrations, and thus an increased algorithmic time step.
Experimental results show an 8 times speedup and a 7.3 times
increase in energy gain, and the accuracy loss in MNIST
digit recognition is only 0.25%, from 98.15% to 97.9%. Thus,
randomized and quantized synapses can significantly reduce
the memory requirements and power consumption of SNN
accelerators, and can even be further reduced by pruning
insignificant weights. Another approach is to design PEs
that approximate their computations by employing modified
algorithmic logic units [202]. Jin et al. have shown that when
evaluating SNNs on neuromorphic hardware for character
recognition [203], carrying-skip adders can achieve 2.4 times
and 43% faster speed and energy gains, respectively, with an
accuracy loss of only 0.97 %.

Therefore, software and hardware levels SC methods can
significantly advance power consumption and speed. How-
ever, as the complexity of the dataset increases. with the
depth of the network topology, such as the use of ResNet on
ImageNet [200], the accuracy loss becomes a non-negligible
factor [201].

Shows the classification results on the MNIST dataset
based on random SNN, DNN, SNN, and optimized SNN
[213] and also compares the energy consumption in table
5. The performance of SNNs on the very simple MNIST
image recognition dataset is still marginal; the test accuracy
is less than 95% [214] [215], and Smithson et al. found that
spiking neurons perform the same as SC when performing
rate encoding. The proposed SNN based on SC can further
reduce the power consumption of the hardware and achieve
95% accuracy on the MNIST dataset [216].

DNN uses the RELU activation function, and SNN uses
the RELU function to convert into IF neurons. Then, from
[217] we find the energy consumption required for each
operation. The results in Table 5 show that our proposed
scheme achieves almost the same performance as the original
DNN and better performance than the state-of-the-art SNN.
Furthermore, random-based SNNs are more energy efficient
compared to other networks. At the same time, Figure 13(a)
represents the recognition accuracy of the neural network
on the IMDb dataset; Figure 13(b) represents the energy
consumption of the neural network on the IMDb dataset;
Figure 13(c) represents the recognition accuracy of the neural
network on the MNIST dataset; Figure 13(d) shows the
power consumption of the neural network on the MNIST
dataset..

（a）Accuracy comparison between different NN 
architecture (IMDb dataset)

（c）Accuracy comparison between different NN 
architecture (MNIST dataset)

（b）Energy Consumption(μJ) comparison between 
different NN architecture

（d）Power Consumption(mW) comparison between 
different NN architecture

FIGURE 13. compares Accuracy, Energy Consumption (J), and Power (mW)
for different NN architectures.

C. DELAY PROBLEM OF SC
SC uses discrete pulse sequences to replace sequential binary
numbers to achieve lower computing resource consumption.
However, its latency or computational accuracy sacrifice also
becomes a challenge for hardware design. In response to the
above problems, some researchers have made preliminary
attempts. Lu et al. proposed a new architecture to implement
the fast Winograd algorithm on FPGA [204], reducing the
calculation delay and improving the accuracy. Mathieu et
al. used FFT and the convolution theorem to reduce the
arithmetic complexity of convolutional layers [205], and
Vasilache et al. improved a fast Fourier transform convolution
implementation based on NVIDIA’s cuFFT library [206], and
in NVIDIA cuDNN implemented in the library. Strassen’s
algorithm [207] for fast matrix multiplication was used by
Cong et al. [208] to reduce the number of convolutions in
a convolutional network layer, thereby reducing its overall
arithmetic complexity.

Lavin et al. proposed a new fast algorithm for convolu-
tional neural networks [209], which is based on the minimal
filtering algorithm discovered by Toom [210] and Cook [211]
and popularized by Winograd [212]. Compared to direct
convolution, this algorithm can reduce the arithmetic com-
plexity of convolutional layers by up to 4 times. Arithmetic
is performed by dense matrix multiplication of sufficient
dimensions. Memory requirements are also low compared
to traditional fast fourier transform(FFT) convolution algo-
rithms. These factors make practical implementation possi-
ble. And achieved state-of-the-art throughput for all mea-
sured batch sizes from 1 to 64 for the NVIDIA Maxwell
GPU implementation, found to use up to 16MB of workspace
memory simultaneously.

VI. CHALLENGES AND THE ROAD AHEAD
Artificial intelligence and deep learning are already being
applied in many different areas, and in the coming years,
AI will be the economy’s driving force. The development
and popularization of artificial intelligence applications are
closely related to technological progress. The algorithm is
deployed on a chip consisting of several devices implemented
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TABLE 5. Comparison of performance accuracy and Power for different NN
architectures.

NN architecture Dataset Accurcy(%) Power Consumption(mW) or
Energy Consumption(µJ)

Data-Norm SNN [174] IMDb 98.64 31.8µJ
SNN[174] IMDb 98.48 31.5µJ
DNN[174] IMDb 98.68 657.75µJ
Stochastic SNN[174] IMDb 98.65 17.2µJ
Baseline SC-SNN[216] MNIST 76 147.99mW
Baseline SNN[214] MNIST 87 608.56mW
Euler-based SNN[215] MNIST 82 307.70mW
SC-SNN [179] MNIST 86 57.33mW

in a certain technology, such as CMOS technology. The
growth in the number and complexity of AI applications
places increasing performance requirements on hardware
(application-driven development). On the other hand, the de-
velopment of new technologies and hardware improvements
allow the development of more complex and, therefore, more
accurate applications. The two development directions con-
tinue to complement each other and form a virtuous circle.
To maintain such a high growth rate, industry and academia
will face new challenges in the coming years, proposing two
possible development directions.

A. DEVELOPMENT PROSPECTS IN TERMS OF
HARDWARE IMPLEMENTATION
The advent of memristors and their synapse-like behavior
opened up the possibility of overcoming the limitations of
CMOS technology. Memristors can be as small as a few
nanometers, but can be densely packed in two-dimensional
layers with nanoscale spacing, potentially providing higher
neuron and synapse densities. Since the manufacturing pro-
cess is much cheaper than CMOS, the memristor layers can
be stacked in 3D. This approach can achieve the neuronal
and synaptic densities of the human brain on a single plate.
Furthermore, the tight 3D dense packing between the CMOS
neural computing unit and the memristive adaptive memory
synaptic element can significantly reduce the current con-
sumption of the final system [129].

The 3D integration technology centered on TSV through-
silicon interconnection technology mainly affects the in-
terconnection structure between chips, so this technology
mainly reduces the circuit board area required for inter-
connection between chips. This technology is generally im-
plemented by vertically stacking multiple memory or logic
function chips, and connecting the TSVs made in the upper
layer of the stacked structure to the bond pads on the top of
the lower chips. . However, at this time, each layer of chips
in the stacked structure adopts its own design and is still
a traditional two-dimensional structure, so the circuit-level
interconnection inside each layer of chips is still a traditional
two-dimensional design.

In contrast, in the monolithic 3D technology, the 3Dization
of the interconnection layer inside the chip is more thorough,
so people usually call this technology "true 3D integrated
design". At this time, each layer of chips in the chip stack

structure is designed as a functional unit in the whole, so that
each layer of chips in the stack structure can use the same
interconnection structure inside , so this design can further
reduce the length of interconnect lines. Moreover, due to the
unified design, the area occupied by the signal relay circuit
and the like is also smaller, so the overall footprint of the
chip can be smaller.

3D integration technology brings high bandwidth advan-
tages; shorter interconnect designs and potentially high paral-
lelism. Circuits can be interconnected on multiple planes and
routed vertically through the planes. Using 3D techniques to
improve neuromorphic computing efficiency by implement-
ing 3D layers layer by layer [218, 219], it is also possible
to separate memory and logic parts on different layers [219,
220]. Zhang et al. proposed that in monolithic 3D [218],
the implementation of digital neuromorphic chips for formal
processing is more performant if both memory and logic are
distributed across multiple chips, which can save relative to
the same 2D implementation about 20% power. However,
regarding speed, Kim et al. proposed that stacked mem-
ory can greatly improve throughput relative to traditional
memory-to-side implementations [220]. In addition, some
researchers utilize through-silicon via technology processes
to limit interconnect density [221, 222] to design analog
neuron models with reduced capacitance footprints, increas-
ing throughput and reducing power consumption. However,
3D circuits are not yet a mature technology [223, 224]. 3D
technology has no unique constraints in terms of design but
also has high process costs. Furthermore, since the AER
protocol already allows low-power communication between
neural cores, further work is required to understand to what
extent 3D techniques can improve the performance of SNN
accelerators.

Except for crossbar arrays and 3D circuits. Morro et al.
propose to replace part of an ASIC designed with traditional
digital gates with neuromorphic hardware [225]. This hybrid
neuromorphic integration may be relevant for other appli-
cations. Yousefzadeh et al. developed a chip for evaluating
formal ANNs that uses event-driven communication between
layers [226], a topology they refer to as a hybrid neural
network. It requires circuitry to convert asynchronous event-
driven information into frames and vice versa. They employ
the AER protocol between layers, where the information is
encoded in 4 bits, thus guaranteeing minimal AER bus width
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overhead. For each non-zero activation, a single-word packet
is sent through the asynchronous NoC, which is enough
to transmit the complete information from one neuron to
another. This technique can combine the advantages of SNNs
and ANNs while mitigating their disadvantages.

B. DEVELOPMENT PROSPECTS OF SC IN SMART
CHIPS
By comparing the application of SC in various neural net-
works, it can be found that the neural network based on SC
has great advantages in the area and power consumption. Due
to the extreme parallelization of the SC circuit, all data can
technically be preloaded into local memory before the start
of the SC cycle. At the same time, a random stream can
take hundreds or even thousands of clock cycles to complete
(each clock for each random bit). SC can pipeline all SNN
arithmetic operations from top to bottom, with all bits at a
particular moment in each SC clock cycles through all SNN
layers. Therefore, the memory bandwidth bottleneck is not a
problem in SC circuits. The arithmetic circuits in SC allow
massive parallelization, which benefits SNN hardware im-
plementation in edge computing applications. This advantage
is prominent when noise margin is essential at higher clock
speeds when parallelizing large SNN models with big data.

Due to the high degree of parallelism of SCs, SC designs
can achieve similar performance to traditional binary designs.
These advantages make stochastic computation-based SNNs
a potential competitive candidate in resource-constrained
applications. Despite the strong parallelism of SC, the data
bandwidth bottleneck remains a significant challenge. To
address this, the algorithm can be modified to reduce the
number of data items used (for example, model compression,
pruning, or quantization).

One solution is increasing memory bandwidth, which
is what high-bandwidth memory (HBM) is for, a stacked
DRAM integrated with processing elements through a sili-
con interposer. The bandwidth of a single HBM2 block is
256GB/s, which is lower than the 616GB/s bandwidth of
more traditional Graphics Double Data Rate 6 (GDDR6)
memory. However, a stack with four HBM blocks achieves
a bandwidth of 1TB/s. HBM2 memory is currently used for
Nvidia V100 and P100 GPUs.

Another option is in-memory computing (IMC), which
involves moving logic in memory. IMC enhances SNN ac-
celeration by reducing the latency and power consumption re-
quired to access memory hierarchies in traditional von Neu-
mann architectures. In addition, parallelization is increased
by processing all memory cells simultaneously.

SC takes hundreds or even thousands of clock cycles to
complete so that data transfers can be pipelined and buffered
asynchronously. Furthermore, a large amount of data needs
to be prepared in addition to SC elements. Therefore, limita-
tions of local storage elements such as SRAM (ASIC term)
or BRAM/Flip Flop (FPGA term) should be a concern. In
any case, memory-centric computing design should be the
direction of SC development, especially in SC SNNs, where

hundreds of thousands or even millions of operations can be
parallelized. Since most modern FPGAs consist of 6-input
lookup tables, there is still much room for optimization in
implementing SC on FPGAs. ASIC logic may not translate
efficiently to FPGA fabric because lookup tables are hard-
wired. Although FPGAs are flexible in terms of hardware im-
plementation, they are not as customizable as ASICs. Modern
FPGAs also include other resources capable of performing
performance calculations, such as digital signal processors or
arithmetic logic waiting to be used. There are also challenges
in overcoming randomness, further improving classification
accuracy, and at the same time maintaining high energy
efficiency. However, with the application of SC designs in
large networks of SNNs, SC provides an alternative, scalable
solution for the hardware implementation of spiking neural
networks with the potential for efficient machine learning.

VII. SUMMARY
This paper summarizes five neuron models, coding methods,
network topology and learning algorithms commonly used
in SNNs, and introduces the basic principles and application
scenarios of SC. On this basis, three traditional spiking neural
network chips, namely digital-analog hybrid neuromorphic
chip, pure digital neuromorphic chip and memristor-based
neuromorphic chip, are reviewed. The relative characteristics
and advantages and disadvantages of synapse scale, chip area
and manufacturing process are compared and summarized.
It can be seen that SNN chips have opened up a new way
for high-performance neural computing platforms to realize
low-power neural network computing. However, the research
on SNN chips is not mature and is in a stage of rapid
development, facing many challenges. At present, there are
mainly the following: Several problems: First, the parameters
of the processor are highly configurable and have the ability
to accurately handle actual tasks; the second is to realize the
software-hardware correspondence to run the same program
on the simulator and the chip, so that the parameter update
can not only be It can be implemented in software, and
parameters can be adjusted on the chip. It can support the
parallel computing of SNN algorithm and traditional ANN
algorithm, making the chip universal. The third is to use
extremely low power consumption to run and train SNN
to realize low power consumption of neural network. edge
computing. It is still difficult to design a low-power, highly
scalable and parallel SNN chip.

The advent of memristors opened up the possibility of
overcoming the limitations of CMOS technology. Memris-
tors are small in size but densely packed in two-dimensional
layers with nanoscale spacing, providing greater neuronal
and synaptic density. Memristors are made in a much cheaper
process than CMOS and can be stacked in 3D. This ap-
proach can achieve the neuronal and synaptic densities of
the human brain on a single plate. Furthermore, the tight
3D dense packing between the CMOS computing unit and
the memristive adaptive memory synaptic element can sig-
nificantly reduce the current consumption of the final sys-
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tem. 3D integration technology brings the advantages of
high bandwidth, shorter interconnect designs and potentially
high parallelism. Circuits can be interconnected on multiple
planes and routed vertically through the planes. Leverage
3D technology to improve neuromorphic computing effi-
ciency by implementing 3D layers layer by layer.However,
memristor-based neuromorphic computing is still in the early
stage of research, and the main research is still to verify
the possibility of realizing neural computing with a single
device in principle or to conduct small-scale experiments
by building a small-scale non-reconfigurable memristor net-
work. Achieving large-scale multi-core reconfigurable mem-
ristor neuromorphic chips remains a challenge.

SC is a logic calculation that converts binary numbers into
probability-encoded digital pulse code streams, which has the
advantages of extremely low area, low power consumption,
and high energy efficiency. And the application of probability
calculation in traditional neural network chips can not only
solve the problems of high power consumption and large
memory bandwidth of traditional von Neumann architecture
processors but also maintain a high accuracy rate. The SC
is added to the SNN chip to realize a computing circuit
with extremely low power consumption and high computa-
tional efficiency at the milliwatt level. Based on the SC, the
traditional ANN and SNN algorithm can be implemented,
and ANN transformation can also be completed. For the
calculation of SNN, the chip is universal. Although some
achievements have been made in building neural network
chips using SC, there are still shortcomings. The first is that
the accuracy of SC is closely related to the correlation of
the input sequence. Second, increasing the sequence length
can increase the calculation’s accuracy. Still, an excessively
long sequence will lead to long delays and low throughput,
making it difficult for the network to operate at high speed
and in the real-time application below. To improve the com-
putational performance of SC, reducing the sequence length
and combining it with the Winograd algorithm can reduce
the computational delay and energy consumption. It is also
possible to avoid unnecessary computation during the SNN
operation by a pruning-based method. It can also alleviate the
irrelevance between input signals, making the transmission of
spikes between each spiking neuron layer sparse, which also
helps Improve calculation accuracy.

The SNN based on SC retains the original advantages of
the SNN. It provides a new idea for the chip design based on
the SNN. However, there are still several problems. First, it
is impossible to use the greatest advantages of neuromorphic
chips in terms of efficiency and energy consumption for
on-chip learning; second, the high configurability of system
parameters and the diversification of configurable parameters
have not yet been achieved. However, with the rapid develop-
ment of artificial intelligence, the development of SNN chips
will further tap the potential of ANNs.
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