
San Jose State University

From the SelectedWorks of Xiao Su

2008

A Survey of Worm Detection and Containment
Pele Li, San Jose State University
M. Salour, San Jose State University
Xiao Su, San Jose State University

Available at: https://works.bepress.com/xiao_su/7/

http://www.sjsu.edu
https://works.bepress.com/xiao_su/
https://works.bepress.com/xiao_su/7/

A Survey of Internet Worm Detection and Containment

Pele Li, Mehdi Salour, and Xiao Su

Computer Engineering Department

San Jose State University

One Washington Square San Jose, CA

Abstract
The self-duplicating, self-propagating malicious codes, known as

computer worms, spread themselves without any human interaction and launch
the most destructive attacks against computer networks. At the same time, being
fully automated makes their behavior repetitious and predictable.

This paper presents a survey an d comparison of Internet worm detection
and containment schemes. We first identify worm characteristics through their
behavior, and then classify worm detection algorithms based on the parameters
used in the algorithms. Further, we analyze and compare different detection
algorithms with reference to the worm characteristics by identifying the type of
worms that can and cannot be detected by these schemes.

After detecting the existence of worms, the next step is to contain them.
This paper explores the current methods used to slow down or stop the spread of
worms. The locations to implement the detection and containment, as well as the
scope of each of these systems/methods, are also explored in depth. Finally, this
paper points out the remaining challen ges of worm detection and future research
directions.

1

1. Introduction
 The self-propagating malicious codes, known as computer worms, spread

themselves without any human interaction and launch the most destructive
attacks against computer networks. Being fully automated, a worm’s behavior is
usually repetitious and predictable, making it possible to be detected.

A worm’s life consists of the following phases: target finding, transferring,
activation, and infection. Since worms involve network activities in the first two
phases, their behaviors in these two phases are critical for developing detection
algorithms. Therefore, this paper first focuses on worm characteristics that
facilitate their detection.

Many algorithms have been proposed in the past years to try to catch and
stop the spread of Internet worms. Most research papers discuss about efforts
that are related to their proposed work, but none of these papers gives a
comprehensive classification of the existing detection and containment systems.
This paper contains a survey and analysis of Internet worm detection and
containment systems. Our research categorizes these systems based on the
parameters used in each scheme. These categories are compared against worm
characteristics, and the insufficiency of the current systems is pointed out.

After detecting the existence of worms, the next step is to contain the
worms. This paper explores the current methods used to slow down or stop the
spread of worms. The locations to implement detection and containment, as well
as each of these system scopes, are also explored in depth at each level.

1.1 Overview
First, a terminology section is presented. Worm characteristics during

target finding and worm transferring phases are identified in Section 2. This is
followed by an overview of worm defense mechanisms in Section 3, namely,
detection and containment. The classification of detection algorithms is
presented in section 4, and the containment systems are presented in section 5.
Depending on where the detection and containment systems are implemented,
they may construct different views of worm propagation behaviors, so there may
be differences in the scope of their defenses. This is discussed in section 6. We
conclude the survey by identifying future research challenges in Section 7.

2

1.2 Terminology

Activation: Activation is when a worm starts performing its malicious activities.
Activation might be triggered on a specific date, or under certain conditions

False Alarm: False Alarm is an incor rect alert generated by a worm detection
system.

False Positive: False positive is a false alarm where an alert is generated wh en
there’s no actual attack or threat .

False Negative: False Negative means the detection system missed an attack. It is
a false negative if no alert is generated while the system is under an attack.

Infection: Infection is the result of the worm performing its malicious activities on
the host .

Target finding: Target finding is t he first step in a worm’s life to discover the
v ictims (vulnerable hosts)

Threshold: Threshold is a pre-defined condition that if met, indicates the existence
of specious traffic or a worm attack.

Transfer: Transfer refers to sending a copy of the worm to the target after the
victim (target) is discov ered

Virus: A virus is a malicious piece of code that attaches to other programs to
propagate. It can’t propagate by itself, and normally depends on certain user
intervention such as opening up an email attachment or running an executable
file to be activated [1] .

Worm: A worm is malicious piece of code which self-propagates often via
networks connections exploiting security flaws in computers on the n etwork. In
general, worms do not need any human intervention to propagate; however, a
category of worms called passive worms require certain host behavior or human
intervention to propagate. For example, a passive worm only propagates itself
until it is contacted by another host.

3

2. Internet Worms
Since the Morris worm in 1988, Internet worms have caused the most

extensive and widespread damage of all kinds of computer attacks. An Internet
worm is defined as a piece of malicious code that duplicates and propagates by
itself. Usually, it does not require any human interactions and spreads via
network connections.

The life of worm, after released, typically includes the following phases:
target finding, worm transferring, worm activation, and infection. Du ring the
phase of target finding and worm transferring, the worm is active over the
internet, making it possible for network based intrusion detection systems (NIDS)
to catch the worm. The activities in the later two phases are limited on the local
machines and are harder to detect by NIDSes. This paper categorizes the
characteristics of worms in target finding and worm transfer phases into four
categories based on worms’ target finding scheme, propagation scheme,
transmission scheme, and payload format. Each scheme is further divided into
sub-categories (See Figure 1). Each one of these categories will be discussed in
the following sections.

Internet Worms

Propagation
Scheme

Payload FormatTransmission
Scheme

Self-Carried

Second
Channel

Embedded

Botnet

TCP

UDP

Monomorphic

Polymorphic

Metamorphic

Target Finding
Scheme

Blind Scan

Hit-List

Topological

Passive

Web
Search

Figure 1 Categorization of Worm Characteristics

2.1 Worm Target Finding Schemes
The first step of a worm’s life is to find targets. There are many different

methods to find the next victim. One simple way is to use blind target scanning,
which means the worm has no prior knowledge about the targets. The three

4

types of blind target scanning are sequential, random, and permutation scanning.
All these methods are based on chance and have a relatively high failure
connection rate. Many worms use this method and many anomaly -based
detection systems are designed to capture this type of worm. Blind scanning
worms may be easier to implement, may spread fast, but are not very accurate.
The miss rate can be very high. An improved version of blind scanning scheme
is to focus on local subnet scanning with information obtained from the current
victim. Doi ng so can improve the hit rate of scanning.

Although most target scanning worms blindly scan the entire Internet
IPv4 address space, an advanced scanning worm --“routing worm” -- targets a
smaller scanning space without ignoring potential vulnerable hosts. A routing
worm uses the information provided by BGP routing tables to narrow the
scanning spectrum and target particular systems within a geographic location
(e.g. specific country), an Internet Service Provider (ISP), or an autonomous
system. A routing worm can spread between two to more than three times faster
than traditional worms [2] .

Further, there is a hypothetical category of scanning worms based on
importance scanning1. Instead of randomly choosing targets, importance
scanning worm samples targets in accordance to the underlying group
distribution of the vulnerable hosts. This type of worm usually works in two
stages, in the first stage random scanning or routing scanning is used to gather
information about enough IP addresses to build an initial group distribution of
vulner able hosts, and then worm uses importance sampling technique to reduce
the number of scans and to attack a large number of vulnerable hosts very fast [3] .

With the advent and adoption of Network Address Translation (NAT)
and IPv6, researchers have studied their impact on scanning worms. Upgrading
to IPv6 can dramatically increase the scanning space (2^64 IP addresses for a
single subnet comparing 2^32 IP addresses in the entire IPv4 space!), and as a
result, virtually prevent a worm from spreading through scanning (Zou et al.
calculated that for a worm with a scan rate of 100k hosts per second, it would
take 40 years to infect 500k vulnerable hosts on a single IPv6 subnet!) [2] .

In addition, Rajab et al. showed that NAT affects and limits the worm
propagation in three ways by first reducing the number of hosts that are globally
reachable. Second, if a host is compromised inside the private address space,
NAT affects how efficiently the host can discover other vulnerable hosts outside
of the private address space. Depending on the scanning technique used by the
worm, NAT sometimes limits the worm scan to only the private IP address space.

1 Importance scanning is based on importance sampling in statistics, which is used to reduce the sample
size for accurately estimating the probability of rare events.

5

Third, NAT can be a major obstacle for multi-stage worms where the shell code
of the worm on the infected machine needs to download its payload from
another victim using a file transfer protocol such as TFTP while the IP of the
other victim will not be globally accessible [4] .

The second way of finding targets is to use a pre-scanned list of
vulnerable addresses called the hit-list. This way, the worm knows exactly
where the target is. The hit -list can be generated stealthily before the release of a
worm or obtained somewhere else. It can be contained inside the worm, or
stored somewhere externally for worms to query. The bigger the size of the hit-
list, the harder it is to obtain and carry, but it is more accurate and may cause
more damage. Being pre-generated, a hit -list can be out of date since the Internet
is changing all the time, but the speed and accuracy of the initial spread will
improve greatly compared with pure blind scan. Because of the high accuracy,
the worm will cause very low anomaly on the network and, therefore, be hard to
detect with conventional anom aly-based NIDSes.

Staniford et al. [5] had simulated a very fast spreading worm named the
Warhol Worm that, with the combination technique of the hit-list and
permutation scanning, is able to infect most vulnerable systems in possibly less
than 15 minutes. The hit -list helps the initial spread and the permutation keeps
the speed and hit rate high for longer than with just using random scanning. An
extended version of the Warhol Worm, which is equipped with a global size hit-
list, is a flash worm. Staniford et al. also simulated this type of worm [6] . The
result of the simulation showed that a UDP flash worm can infect 95% of one
million vulnerable hosts in 510 milliseconds, while a TCP version of flash worm
can cause the same damage in 1.3 second.

Many hosts on the Internet store information about other hosts on the
network (e.g. /etc/hosts) and possibly reveal their vulnerabilities. Topological
worms use th is information to gain knowledge of the topology of the network
and use that as the path of infection. This makes the attack more accurate since
the scanning and infection may look like normal traffic as each infected host
needs to contact few other hosts and does not need to scan the entire network.
Further, topological worms can spread very fast especially on networks with
highly connected applications [7] .

If a worm does not aggressively seek the target but patiently waits, it is
said to take the passive approach. Instead of voluntarily scanning the network, it
waits for potential victims to approach the machine where the worm resides and
then replies with a copy of the worm. It may also wait for certain user actions to
find the next victim. For example, Gnuman is a passive worm which acts as a
Gnutella node waitin g for queries to copy itself, and CRClean is a passive worm

6

waiting for an attack from Code Red II to counter it by installing itself on the
attacker’s machine [7] . This method is slow, but it is very stealthy and hard to
detect.

To avoid being caught by traditional scanning worm detection techniques,
a new category of worms has recently emerged which uses popular search
engines such as Google and Yahoo to find vulnerable targets. Such worms use
carefully crafted queries to find vulnerable hosts on the Internet. As an example,
a new worm called “Santy” uses Google to sea rch for web servers which contain
the string “viewtopic.php” to exploit a vulnerability in phpBB2 and infect the
web server [8] .

2.2 Worm Propagation Schemes
After the next victim is found, a copy of the worm will be sent to the

target. There are different schemes for worm propagation. In [7] , three
propagation schemes are mentioned: Self Carried, Second Channel, and
Embedded scheme.

In Self Carried worms, propagation is straight forward; the worm payload
is transferred in a packet by itself. Other worms are delivered through a second
channel, that is, after finding the target, the worm first goes into the target, and
then downloads the worm’s payload from the Internet or a pr eviously infected
machine, through a backdoor, which has been installed using RPC or other
applications. A more deceitful worm may append the payload after, or replace,
the legitimate traffic to hide itself. This embedded propagation scheme is very
stealthy. No anomalous events will be triggered, and it is hard for anomaly-
based detection systems to detect. Contagion strategy is an example of a worm
that uses embedded propagation [7] .

In addition to the three propagation schemes discussed, botnets have been
utilized to propagate worms, spams, spyware, and launching Di stributed Denial
of-Service (DDoS) attacks [9] . A botnet is a group of compromised hosts under
the control of a botmaster. The communication channel for the botmaster to issue
commands can be implemented using different protocols such as http or P2P
protocols; however, majority of botnets use the Internet Relay Chat (IRC)
protocol for this purpose [10] . Witty is an example worm propagated by botnets.
Witty infected 12000 vulnerable hosts in 45 minutes, and when the machine that
launched the initial attack was discovered, it was not subject to the vulner ability
exploited by the witty worm, instead a different vulnerability was used to take
over the control of the machine by a botmaster to launch the attack [9] .

Full treatment and defense against botnets themselves are outside the
scope of this paper. However, some of the methods that we discuss in section 6.2

7

such as combining the intelligence of the control and data plane by Zhang et al.
[11] can be also used to combat botnets.

2.3 Worm Transmission Schemes
Based on how worms are transmitted, there are TCP worms and UDP

worms. The major difference between these two types of worms is that TCP
worms are latency -limited and UDP worms are bandwidth-limited.

All TCP connections require a three-way handshake to establish
connection before transmission. Therefore, after a host sends out a TCP SYN
packet to initiate a connection, it must wait until it receives a corresponding
SYN/ACK or timeout packet from the other end before it can take any further
actions. Compared with UDP worms, TCP worms need an additional round -trip
time and the two 40 bytes packets to establish the connection. During this wait
time, the thread or process is blocked and can’t infect other hosts.

UDP is connectionless, so UDP worms do not require a connection to be
established before the infection can begin. The implementation of the worm is
normally self-carried and is included in the first packet sent to the target. Since
there’s no wait time required like TCP worms, UDP worms normally spread very
rapidly, and their speed is only limited by network bandwidth. UDP worms
often have to comp ete over each other for the network resources [12].

2.4 Worm Payload Formats
The term payload used here means the actual worm code. Traditionally

worms send the payload in a straightforward, unchanged fashion. By matching
the worm payload with the signatures in a database, signature-based detection
systems can identify them. Some worms make the payload variable size by
padding the payload with garbage data, but the signature won’t change, this is
still a monomorphic worm.

Worm authors can make changes in the payload to make them appear
innocent to ev ade detection systems. They may fragment worm payload
differently and re-assemble the pieces at the target. This type of worm is also
classified as monomorphic worm. The term polymorphic worm used here
describes those worms that change their payload dy namically by scrambling the
program. So every instance of the worm looks different but functions exactly
the same way. With changing appearances of the worms, it is very hard for
traditional signature-based detection systems to detect such worms.

If a worm can change not only its appearance but also its behavior, it is a
metamorphic worm. If the worm also uses a complicated encryption scheme to
hide its true purpose, then it will be even harder to defend against [13] .

8

2.5 Existing Internet Worms
In this section, we look at one of the first Internet worms, Morris worm,

which gained extensive media coverage, then discuss five of more recent Internet
worms, Code Red, Nimda, Sasser, Slammer, and Witty based on their
characteristics.

2.5.1 Morris worm
Morris worm was one of the first Internet worms whose devastating effect

gained the wide attention of the media. Morris worm was launched in
November 1988 by Robert Tappan Morris who was a student at Cornell
University at the time. It is the first known worm to exploit the buffer overflow
vulnerability. It targeted sendmail and finger services on DEC VAX and Sun 3
hosts [1] .

Based on the creator’s claim, Morris worm was not intended to cause any
harm, but it was designed to discover the number of the hosts on the Internet.
The worm was supposed to run a process on each infected host to respond to a
query if the host was infected by the Morris worm or not. If the answer was ‘Yes’,
the infected host should had been skipped, otherwise, the worm would copy
itself to the host; however, a flaw in the program caused the code to copy itself
multiple times to already infected machines, each time running a new process,
slowing down the infected hosts to the point that they became unusable [14].

2.5.2 Code Red I & Code Red II
Code Red I was first seen in July 2001 affecting computers running

Microsoft's Internet Information Server (IIS) web service. In the first 20-25 days
after getting into the machine, Code Red I uses a blind scan scheme that scans
port 80 on random IP addresses to find other vulnerable machines, and then it
launches a Denial-of-Service (DoS) attack targeting a set of IP addresses. The
infected websites will display: "HELLO! Welcome to http://www.worm.com!
Hacked By Chinese!"

Code Red II was released one month later. It is a variant of the original
Code Red. Code Red II no longer launches a DoS attack against pre-defined IP
address instead it installs a backdoor into the infected systems. It still employs
b lind scan but focuses more on the local subnet, and targets mainly systems with
Chinese language setting.

Code Red I sends its payload in monomorphic format and has a signature
starting with “GET /default.ida?NNNNNNN”. Code Red II has a similar

9

http:http://www.worm.com

signature but replaces N with X. Both versions of Code Red are self-carried and
transfer via TCP connections.

2.5.3 Nimda
Nimda was first reported in September 2001 targeting Microsoft Windows

workstations as well as servers.
Nimda is an advanced multi-vector worm, which uses multiple

mechanisms to spread itself including from client to client via email, from client
to client via network shares, from web server to client via browsing the
compromised web sites, from client to web server by active scanning for various
vulnerabilities of Microsoft IIS 4.0 / 5.0, and from client to web server by
scanning for the back doors installed by Code Red II and Sadmind/IIS [15] ,[16] .

Nimda propagates itself by sending emails to anything that looks like an
email address inside .htm or .html files in user’s web cache folder as well as
contents of user’s email messages retrieved via the MAPI ser vice. The subject line
of the message is variable, and the attached binary also has some variations
resulting in different MD5 checksums, but all binaries are exactly the same size
(57344 bytes). In addition, Nimda scans the network to find and infect vulnerable
IIS servers on TCP port 80 as well as using the UDP port 69 to download the
worm to IIS via tftp [16] .

Once a host infected, Nimda allows the attacker to run commands with
the same privileges of the infected user as well as using the infected host as a
zombie to participate in DoS attacks on third parties. In addition, high scanning
rate of Nimda can result in bandwidth DoS attacks on networks with infected
hosts.

Further, Nimda replaces existing binaries on the system with the Trojan
horse copies and infects all web contents such as .htm, .html, and .asp on the
system, so any user browsing these contents on the system via a web browser
will download a copy of the worm, and in some cases, certain browsers will
execute the code automatically infecting the user’s host [16] .

2.5.4 Slammer/Sapphire
Slammer, also known as Sapphire, was one of the smallest worms ever

seen. It was found in January 2003 targeting Microsoft SQL server 2000 or MSDE
2000.

Slammer worm uses UDP port 1434 to exploit a buffer overflow in MS
SQL server. The code size is 376 bytes. Adding the UDP header makes the
worm 404 bytes long in total [12] . It uses blind scan scheme where randomly
generated numbers are used as IP addresses in searching for vulnerable hosts.

10

To initialize the random number generator, Slammer uses GetTickCount()
function from Win32 API. Sometimes the random generator returns values that
are broadcast addresses, such as a.b.c.255, and causes all the hosts in that
network to receive the worm packets, making the spread of the Slammer worm
more rapid. Like most UDP worms, Slammer is self-carried and has a
monomorphic payload.

Slammer doesn’t write to the disk of the infected machines, it only
overloads the victim system and slows down the traffic [17] .

2.5.5 Sasser
Sasser was released in April 2004 targeting systems running Microsoft

Windows XP or Windows 2000 that haven’t been patched for the vulnerability of
Local Security Authority Subsystem Service (LSASS). Sasser exploits a buffer
overflow vulnerability of LSASS to gain access to the remote systems and to
spread further. Sasser tran sfers with a second channel via TCP connection and
uses a monomorphic payload.

If Sasser successfully infects a system, it will act as an FTP server listening
on TCP port 5554. Sasser then generates 128 scanning threads (Sasser B uses
processes instead of threads) to find vulnerable systems using random IP
addresses. The worm probes and tries to connect to the next victims through
TCP port 445, then attempts to connect to the victim’s command shell available
on TCP port 9996. Once the connection is successful, the victim will download
the worm code from the attacker using FTP. The sizes of Sasser A through E are
15-16 Kbytes. Sasser F and later versions are larger; Sasser F is 74KB [18] and
Sasser G is 58KB [19] .

After Sasser worm enters the system, it makes a copy of itself, stores one
copy in the Windows directory, and adds itself to the Registry. Transactions
through the FTP server are logged to 'C:\win.log'.

2.5.6 Witty Worm
The Witty worm was released in March 2004, targeting buffer overflow

vulnerability in several ISS (Internet Security Systems), including RealSecure
Server Sensor, RealSecure Desktop, and BlackICE. Witty took advant age of a
vulnerability of ISS Protocol Analysis Module (PAM) used for ICQ instant
messaging.

Witty is a self-carried, monomorphic, UDP worm that employs a blind
target finding scheme. It sends out UDP packets to 20000 random generated IP
addresses on random destination ports from source port 4000, with a random
packet size ranging between 768-1307 bytes. The code size of Witty is only 637

11

bytes, and the rest of the payload is padded with data from system memory.
This padding doesn’t change the monomorphic format of Witty. The payload
contains the text “(^.^) insert witty message here (^.^)” and that’s why it is
named Witty. Witty randomly writes data onto the disk of infected machines
[20].

It is harder to detect Witty worms than worms with fixed size packets
targeting fixed destination port number because of its random characteristics.
The size of Witty worms is larger than Slammer worms (some can be doubled),
but they spread faster than Slammer. This proves that size is not always the
bottleneck for the spreading of UDP worms [21] .

Another significance of the Witty worm, as mentioned in section 2.2, is
that Witty was one of the first known worms distributed using botnets [9] .

We summarize the characteristics of the above worms in Table 1.

Table 1 Existing Internet Worm Implementation
Target

Finding
Scheme

Propagation
Scheme

Transmission
Scheme

Payload
Format

Morris Blind Self-Carried TCP Monomorphic
Code Red Blind* Self-Carried TCP Monomorphic

Nimda Blind Self-Carried TCP & UDP Monomorphic
Slammer Blind Self-Carried UDP Monomorphic

Sasser Blind Second-Channel TCP Monomorphic
Witty Blind Botnet UDP Monomorphic

*Code Red II focus on local subnet scan

2.6 Multiplatform and Multiexploit Worms
Up until now, most worms attack only one type of operating system, and

often target a single vulnerability, so the network administrators only need to
patch one type of system after receiving the worm alert. If a worm can perform
multiplatform attacks, it will be harder and more complicated to defend against.
And since there’s more work to be done, the response time will be slower as well.

If a worm infects the victims by using multiple vulnerabilities, a single
worm can cause greater damage at a faster rate, and the work of patching will
also be harder as well. This presents a challenge in worm research.

12

3. Defending Against Internet Worms
Now that the nature of the Internet worms is known, the next question is

how to defend against them? This task breaks down into worm detection and
worm containment. Detection and containment systems can be implemented at
different locations in the network and thus give different scopes of defense. We
categorize worm defense schemes in Figure 2 and will discuss each sub -category
in the remaining sections of this paper.

Defeating Worms

Detection Scheme Containment
Scheme

Location of
ImplementationScope of Defense

Signature-based Anomaly-based

Known
Signature

Connection
Attempts

Illegal
Traffic

SYN

DSC

RST/ICMP

Fail Ratio

DarkNet

HoneyPot

Slowing
Down

Blocking

Address
Blocking

Content
Filtering

Honeypot

LAN

ISP

Global

Local
Network

Gateway
Border

Distributed

Payload
-based

Unknown
Signature

Figure 2 Categorization of Internet Worm Defense

13

4. Worm Detection
Based on the parameters used for detection, detection algorithms can be

roughly divided as signature-based and anomaly -based schemes as seen in
Figure 2. There are many proposed algorithms for both schemes, this section
first introduces signature-based detection and then discusses about anomaly-
based detection.

4.1 Signature-Based
Signature-based detection is a traditional technique used for Intrusion

Detection Systems and is normally used for detecting known attacks. There are
different definitions of worm signature. In this paper, our discussion will focus
on content signature, which is often a string of characters that appear in the
payload of the worm packets as a part of the attack.

No knowledge of normal traffic is required but a signature database is
needed for this type of detection systems. This type of system doesn’t care how a
worm finds the target, how it propagates itself, or what transmission scheme it
uses. The signature-based systems take a look at the payload and identify
whether or not it contains a worm. Since every packet will be examined,
signature-based systems can catch worms that employ self-carried or second
channel propagation schemes. The embedded worms may not be detected
because the payload can be different from worm to worm, depending on the
embedding method used.

One big challenge of the signature-based IDS is that every signature
requires an entry in the database, and so a complete database might contain
hundreds or even thousands of entries. Each packet is to be compared with all
the entries in the database. This can be very resource-consuming and doing so
will slow down the throughput and making the IDS vulnerable to DoS attacks.
Some of the IDS evasion tools use this vulnerability and flood the signature-
based IDS systems with too many packets to the point that the IDS can not keep
up with the traffic, thus making the IDS time out and miss packets, and as a
result, possibly miss attacks [22] . Further, this type of IDS is still vulnerable
against unknown attacks.

We believe the deficiencies of the signature-based detection method can
be addressed by incorporating an anomaly-based unknown signature detection
scheme with the signature-based detection in a two-tier architecture, supported
by an aging and removal process to keep the size of the signature dat abase small.
The signature-based detection engine can run on a small and efficient database to
look for any known threats, and at the same time the anomaly-based unknown
signature detection scheme can work slower on the traffic and provide

14

signatures for any new threat to the IDS’ database. The aging process ensures
removal of the old signature not seen for a long time from the database to keep
the database small and the process as efficient as possible; if an old worm
resurfaces again, it will be detected by the unknown signature detection engine
and will be added back to the database.

4.2 Anomaly-Based
The signature of a new worm is unknown before it’s seen, and it is

difficult to draw conclusions based on a small number of packets. All fast
spreading w orms seen so far create large traffic volume and most of them
employ blind scan. Lots of the scans target non-existing addresses and closed
ports. Since most networks behave in a particular and consistent fashion most of
the time, when there are lots of abnormal phenomena occurring on the network,
it often means something is wrong.

Signature-based detections check the payload of the worms to generate
and match signatures. Most anomaly-based detections do not care about the
payload format or content; instead, they check the header of the packets to define
the type of connection the packet belongs to. They observe the network traffic
volume and the monitored hosts’ behavior. The three most common purposes
for a packet, sent or received by a host, are: to initialize a connection, indicate a
failed connection attempt and to send data via an already established connection.
The system may also keep track of the traffic between source and/or destination
addresses and try to find the scanner.

While packet’s header information is useful to detect attacks exploiting
vulnerabilities of the network stack or the attacks probing hosts for vulnerable
services, packet’s payload information can be used to detect attacks directed at
vulnerable applications. There is a category of anomaly -based detections that
examines the packet payload to detect attacks directed at applications as the
connection in these types of attacks is normally established (so checking the
headers would not reveal the attack). An example of this an omaly-based NIDS is
POSEIDON [23] .

In general, the anomaly -based detection systems detect abnormal
behaviors and generate alarms. This technique often requires the definition of
the normal network behavior, which depends upon a training period before the
system can be effective in protecting the network. If an attack is crafted carefully,
it may possibly train the system to take an anomaly as normal or trigger false
alarms. While this method is generally the best approach to detect unknown
worms, the big challenges of anomaly based detection systems are definin g what
a normal network behavior is, deciding the threshold to trigger the alarm, and

15

preventing false alarms. The users of the network are normally human, and
people are hard to predict. If the normal model is not defined carefully, there
will be lots of false alarms and the detection system will degrade performance.

As seen in Figure 2, anomaly -based algorithms are categorized based on
connection attempts, illegal traffic, or packet payload. Using connection
attempts, the schemes may rely on connection count/traffic rate, failure
connection rate, success/failure ratio, or destination-source correlation in their
detection. Using illegal traffic, the schemes may monitor darknet and Honeypots.
Using packet’s payload, the schemes try to measure anomaly by comparing the
packet payloads to a reference model made during the normal traffic (training
period). The following sub-sections will explained these categories in details.

4.2.1 Traffic Rate/Connection Count – TCP SYN
Worms send out large number of scan s to find victims. Keeping track of

the outbound connection attempts is a traditional way to detect scanning worms.
TCP/IP protocol stacks require the host to send out a TCP SYN packet to initiate
a connection (shown in Figure 3, part A), and this is used as the parameter for
connection count detection. The idea is if the number of SYN packets sending
from a certain host exceeds a threshold value within a period of time, the host is
considered to be scanning.

This method is used in many older algorithms and some commercial
IDSes, such as the older version of snort [24] . Tracking TCP SYN packets may be
able to catch most of the active scanning worms with most of the scanning
schemes, but it is very easy to cause false alarms. It is not widely used n owadays
because it’s not very accurate, nor is it efficient. Also, if the system logs TCP
SYN only, then it is useless against UDP worms. Due to inefficiencies and high
number of false alarms, this method is for the most part obsolete, and we do not
recommend using it.

16

Figure 3 Connection Attempts

4.2.2 Connection Failure Rate – TCP RST & ICMP
Many worms implement blind target finding schemes. No matter if the

worms use sequential scan, permutation techniques, or randomly generated IP
address and/or random ports scan, the scan will include unused address spaces
and closed ports, causing the connection attempt to fail. While the ordinary
users access the Internet mainly via domain names, they are less likely to
encounter failed connection attempts.

Attempting to connect to a non -existing IP address or an existing address
with the target port closed, the connection attempt is considered failed.
According to TCP/IP protocol, if the destination host does not exist, an ICMP
host unreachable packet is returned (shown in Figure 3, part D). A TCP RST
packet is returned when a TCP connection targets an existing host with the
destination port closed (shown in Figure 3, part B) and an ICMP destination
unreachable packet error message is returned if this is a UDP connection (shown
in Figure 3, part C). With these characteristics of TCP/IP protocols, keeping track
of these error messages will work well against blind target finding schemes. The
scan is blind, so the failure rate is higher than normal. In the case of hit-list,
topological, or passive scanning worms, failure rate won’t be much useful
because the scan and spread of worms have valid targets and won’t cause these
error messages.

Compared with the traditional method of detecting TCP SYN packets for
connection count, it is more efficient and accurate to detect active scanning
worms depending on failed connections. This approach may be useful for both
TCP and UDP worms. ICMP error messages will be sent for both TCP and UDP

17

connection attempts, but TCP RST works with TCP connections only. However,
this scheme becomes less effective if the ICMP error messages are blocked or
dropped by some border routers or gateway systems.

Berk, Bakos, and Morris [25] proposed a global detection algorithm based
on ICMP destination unreachable er ror messages. Routers often generate ICMP
error messages to notify the source that the target IP address does not exist on
the network. By forwarding these messages to a central collection point, an alert
can be generated when the number of such error messages reaches a certain
threshold. The Distributed Anti -Worm (DAW) architecture [26] identifies
scanning sources by keeping track of both TCP SYN and RST packets, dealing
with TCP worms only.

If the source address is forged in the packet header, then it will be very
difficult to detect the scan source. This can be used as a feint attack by the worm
authors. If the system administrator actually traces back the fake information
given in the header, it will be a waste of effort. The worm may also use this
technique to trigger false alarms. Forging header information is used in many
Internet attacks. Although this technique is not commonly seen in worm attacks
yet, it is still an issue worth paying attention. The Worm Early Warning System
(WEW) proposed by Chan and Ranka [27] considered this problem. The
proposed architecture utilizes gateways and hash algorithms to not only detect
the error messages from failure connection attempts, but also verify whether the
source address is legitimate or forged. The system only takes actions on failed
connection attempts that are sent from existing source addresses.

Another issue of detection schemes based on the connection failure rate is
that the worm might initiate thousands of connect ions before enough failures are
observed. Schechter et al. proposed an algorithm based on a combination of
Reverse Sequential Hypothesis Testing algorithm to monitor the connection
failures and Credit -Based Connection Rate Limiting (CBCRL) algorithm to limit
the rate, in which the first-contacts can be initiated by each host on the local
network [28] .

 Further, any meth od relying on connection status requires resources to
keep track of hosts and connection information which means such a method will
not be suitable for large networks.

4.2.3 Ratio of Success and Failure Connections
Instead of counting the failure or successful connection attempts, some

believe it is the ratio or the correlation of successful and failed connections that
matters. Counting the number of connections, whether they are successful or not,
it depends on the usage of the Internet and the size of the network to be effective.

18

If the usage is too low or the network is too small, using connection counts as
detection parameter may be less accurate. Thus, both success and failure
connections should be taken into account. When the percentage of failed
connection is large enough, this is said to be anomalous and an alert will be
generated. Similar to the previous method of detecting failure connection
attempts, this method works well against blind scans, but not with other
scanning techniques where the targets are specific and legitimate.

Jung et al. [29] proposed Threshold Random Walk (TRW) algorithm,
derived from Sequential Hypothesis Testing. The algorithm says that for a given
remote host R, if it tries to make a connection to a local host L, this attempt can be
a success (marked as 0) or a failure (mark as 1). With a sequence of these results
of connection attempts, the system can decide whether the remote host is a
scanner based on the test of hypothesis. This algorithm requires very few
packets (4-5 packets only) to draw conclusion and does not require training of
the sy stem in advance. It focuses on detecting TCP traffic only.

Weaver et al. [30] introduced the concept and importance of the hard-
LANs. They explained the three limitations of TRW algorithm: it is offline, it
requires infinite states, and it requires potentially unlimited memory access time.
Because of these limitations, they proposed an improved algorithm that instead
of identifying a connection to be completed or failed, it considers all new
connections as failures, and changes the status to success when there is a
response. It also keeps track of UDP connections. This “guilty until proven
innocent” method keeps a counter for every IP address, starting with a miss. If
the connection succeeds, the corresponding counter decrements. The counter
increments if the connection is failed. When a counter is greater than 10 or other
pre-defined value, the corresponding system is considered a scanner. This
algorithm requires a fairly small amount of memory and is suitable for
integration into switches or other low-cost networking devices.

Monitoring the connection status, no matter successful, failure or both,
often requires keeping track of each host’s and/or each connection’s information.
If the network being monitored is large, this can be very resource consuming.

4.2.4 Destination-Source Correlation (DSC)
Destination-Source Correlation (DSC) algorithm is a two-phase local

worm detection algorithm that aims to detect fast spreading scanning worms [31]
[32]. Instead of watching for connections and the ratio of successful and failed
attempts, th is algorithm is based on the correlation between incoming and
outgoing traffic. DSC keeps track of SYN packets and UDP traffic of the source
and destination. It is illustrated in Figure 4, where for every port, if a host inside

19

the monitored network previously receives a packet on certain port (e.g., port 25
in the illustration) and then starts sending packets designated to the same port
that it previous received packets, a counter is incremented. When the counter
reaches a certain threshold, an alert will be issued.

3RUWV 3RUWV

3RUWV 3RUWV

Figure 4 Illustration of Destination-Source Correlation Scheme

The DSC algorithm is able to detect almost all types of scans, as long as
the scan is frequent enough (based to the threshold) and the infection of the
worm is targeting on the same port. It can detect aggressive scans including
blind and topological scans. The effectiveness for passive scan depends on the
incoming traffic rate since it relies on the interaction with the worm. It works for
both TCP and UDP worms.

The major issue of DSC is that it can only capture scans from worms
targeting the same port. To address this issu e, Qin et al. [32] combined HoneyStat
with a modified version of DSC. Based on the DSC algorithm, the system
monitors IP or MAC addresses to defend against worms using IP spoofing.
HoneyStat is used to gather statistical data about the attack. Since DSC only
capture scans with the same port and HoneyStat can capture scans with different
por ts, HoneyStat can cover what DSC can’t see.

In addition, the EarlyBird system combines unknown signature-based
algorithm with DSC-like algorithm for worm detection [33] . An alarm is
generated when packets with similar contents are sent to a number of destination

20

IP addresses, are received from a large number of source IP addresses, or are sent
from a number of hosts to a large number of hosts (source and destination IP
address pairs). Staniford et al. [6] also indicated that this type of system may be
able to capture Flash worms.

4.2.5 DarkNet/Unused Address Space
Worms using blind scan generate random numbers for target addresses.

There’s a very high chance that these addres ses are unused. Monitoring unused
address space instead of used ones is another approach. This is a branch of the
anomaly-based detection since scanning or connection attempts toward non
exiting addresses are abnormal behaviors of regular network.

The monitored address space has to be big enough to have this method be
useful. Chen, Gao, and Kwiat [34] presented the Analytical Active Worm
Propagation (AAWP) model, which simulates the propagation of random
scanning worms. Using this model they derived the size of address space
needed to detect active worms. They suggested that an address space of 224 IP
addresses is large enough to detect worms effectively, and an address space
smaller than 220 addresses will be too small to obtain a realistic result of the
spread of worms.

A scanner host is normally a host infected by worms. In other words, it is
a victim itself. Wu et al. [35] proposed an algorithm based on the number of
victims. The victim is defined as: “the addresses from which a packet is sent to
an inactive address” [35] . This means if an IP address send packet to an unused
IP address, then this source IP address is considered as a victim. To prevent false
alarms, they combined this definition with the Two Scan Decision Rule (TSDR),
which means if the system captured two packets sending to unused IP addresses
from the same host, the host is a victim. When victim count reaches a certain
threshol d, the system will generate a worm alert.

One of the major advantages of this method is that it requires significantly
less resources comparing to the methods looking at the normal traffic in the used
address space (as there should be normally no traffic to the unused address
space!), and it records much less information in the IDS database.

Monitoring the unused IP address can find worms using blind target
finding scheme. But again, it’s not very useful against hit -list, topological or
passive scans. This method works for both TCP and UDP worms since both
transmission schemes require IP addresses.

21

4.2.6 Honeypots
Honeypot technology can be used for anomaly-based worm detection.

Honeypot is a vulnerable system on the network that does not provide any real
services. In [36] , Spitzner defines the Honeypot as “security resource whose
value lies in being probed, attacked, or compromised”. Figure 5 illustrates the
setup of a Honeypot where it appears as a normal vulnerable machine on the
same network, just like other servers and hosts to lure attackers.

Figure 5 Honeypot Used in Worm Detection and Containment

There are many different implementations based on the level of
interaction the Honeypot provides. In a normal situation, no traffic is suppose to
come toward the Honeypot, therefore, any traffic targeting the Honeypot is
considered anomalous, and may be an attack. Co mparing with other IDSes,
Honeypot systems gather less but higher quality data because every piece of data
is information of probing or attack.

Honeypot can detect blind scan worms for the same reason as the
approach of monitoring unused address spaces. Honeypot is also possible to
defend hit-list scanning worms. If the hit -list is generated automatically, the pre-
scan may very likely include Honeypot systems because it appears as a normal
vulnerable host on the Internet. Honeypot can be useful against topological
worms if other working hosts on the network contain proper information of the
Honeypot and let the worm finds it. But Honeypots are not useful against
passive worms because they only sit and wait but don’t initiate connections. As
long as they are properly configured, Honeypots can detect both TCP and UDP
worms.

 Virtual Honeypot was used for worm detection [32] [36, 37] . In an
emulator, they created a minimal Honeypot that uses virtual machines and

22

multihome to cover a large address space, called HoneyStat. It is used to gather
information about worms as well as capturing worms. Their HoneyStat
simulation runs on VMware GSX, so if there are 64 virtual machines running
windows and every window have 32 IP addresses, then a single node can have
211 IP addresses. The hardware requirement for such a system can be as low as
32MB RAM and 770MB virtual drives to capture worms. HoneyStat generates
alerts base on the correlation of three types of events: memory, disk write, and
network events. An example of memory event is buffer overflow. An example
of network event is a downloading of some malicious code. And an example of
disk event is writing to registry keys or critical files.

HoneyD [38] , a low interaction open source Honeypot daemon that
supports both UNIX and Windows platforms, can detect and log connection on
any TCP or UDP ports. When a connection to HoneyD is established, HoneyD
will emulate the configured personality or operating system and port behavior
based on the configuration script. HoneyD can emulate any of the 437 exi sting
operating systems and any size of network address space with desired topology.
Provos [39] , the author of HoneyD, took HoneyD and built a system on top of it
for worm detection. It can detect intrusion as well as be configured to replay
incoming packets to higher interaction Honeypots for analysis of unusual
activities.

A Honeypot that uses scripts is more flexible than the one with limited
configuration settings. But no matter what, Honeypot has a narrower view, since
it can only see the traffic coming towards the addresses that it simulates.
Honeypots can also be used for containment. It will be discussed it in session 5.3.

Honeypots are most useful when combined with other IDS methods. For
example, Honeycomb project complements honeypot -based IDS system with
generation of signatures to detect unknown worms. Honeycomb uses Longest
Common Substring (LCS) algorithm to detect similarities and patterns in the
packet payloads of the traffic seen on the honeypot [44].

4.2.7 Anomaly Detection Systems Based on Packet’s Payload
The anomaly-based detection systems that we have discussed so far do

not use packet’s payload information. While packet’s header information is
useful to detect attacks exploiting vulnerabilities of the network stack or the
attacks probing hosts for vulnerable services, packet’s payload information can
be used to detect attacks directed at vulnerable applications since the connection
in these types of attacks is normally established and checking the headers would
not reveal the attack [23] .

23

Packet Header Anomaly Detection (PHAD) is a partly payload-based
system, which learns the normal ranges of values for each packet header field at
the data link (Ethernet), network (IP), and transport/control layers (TCP, UDP,
ICMP); however, PHAD does not check the application layer protocols. PHAD
examines 33 packet header fields, and its design is to be as much protocol
independent as possible. PHAD, like all anomaly -based systems, checks for
unusual events and uses ranking systems to decide how unusual they are. The
rarer they are, the more likely they are to be hostile. PHAD uses the rate of
anomalies during the training period to estimate the probability of anomalies in
the network traffic. Based on this information, PHAD calculates a score for each
packet header inversely proportional to the probability of being anomalous. At
the end, the scores for all 33 packet header fields are added up to calculate the
final score of the packet to help decide if the packet should be considered as
being anomalous [40] .

PAYL is a fully payload-based system based on modeling normal payload
that are expected to be delivered to the network specific to the site that PAYL is
installed. During the training period, PAYL creates a profile based on the traffic
to each service during normal operation, and it produces a byte frequency
distribution as a model for normal payloads. Based on this information, a
centroid model is created prior to the anomaly detection phase for each service.
In the anomaly detection phase, the distance of each packet payload from the
centroid model is calculated, and if the payload is too distant from the normal
payload, it will be considered as anomalous. The main difference of PAYL in
comparison to PHAD is that PAYL looks at the whole payload r ather than
looking at the 33 packet header fields, so it can also detect application level
anomalies. Further, PAYL clusters the centroids to increase accuracy and
dramatically reducing the resource consumption [41] .

POSEIDON is one of the most recent anomaly detection systems based on
packet’s payload. POSEIDON has a two-tier architecture, including a Self-
Organizing Map (SOM) as a pre-processor to classify the payload data, and a
slightly modified PAYL system. SOM is a topology -preserving single-layer map,
which preserves the neighborhood relation between nodes during the
classification. It requires some par ameters on the start-up including total number
of nodes on the network. The modification in PAYL system used in POSEIDON
is the pre-processing of packets by SOM. Damiano Bolzoni et al. [23] reports that
POSEIDON has higher detection rate, lower number of false positives, and
higher runtime efficiency, when compar ed with PAYL and PHAD [23] .

24

4.2.7.1 Detecting Polymorphic Worms Based on Unknown Signature Detection
Systems

In section 4.1, we mentioned that one of the limitations of the signature-
based detection systems is the vulnerability against unknown attacks. To remedy
this issue, some algorithms have been proposed to detect unknown attacks by
generating signatures in real-time. These algorithms are considered as anomaly
based as they generate the signatures based on what they detect to be a worm
when analyzing the network traffic rather than using existing signatures to
detect worms. As discussed in the previous section, PAYL is a good example of
such a system capable of automatically generating signatures for unknown
worms [42] .

Madhusudan and Lockwood [43] introduced an algorithm to detect
frequently -occurring strings in packets and use them as signatures to use for
detection. In this system, a signature detection device (DET) sits between the
router and subnets, and monitors the traffic flow to detect Internet worms. It is
implemented in hardware and the throughput was improved by parallelism and
hashing. The EarlyBird system used a similar approach to find frequently
occurring sub -strings in packets [33] . As the algorithms detect sub -strings in a
worm signature, they can not only detect unknown worms sent in one packet,
but also be effective against worms sent in fragments across several packets, even
when worms break the payload differently each time. In addition, it can catch
worms th at are embedded in legitimate packets for propagation.

In section 4.2.6, we discussed honeypots and how they can be used as
non -payload anomaly -based detection systems. Further, honeypots can be also
used to generate signatures for unknown worms. Honeycomb is a honeypot
based IDS system, which is capable of generating signatures for unknown worms.
Honeycomb deploys Longest Common Substring (LCS) algorithm to spot
similarities and patterns in packet payloads of the traffic seen on the honeypot
[44].

No matter whether the signature is known or unknown, most detection
algorithms target monomorphic worm payloads only, and have no defense
against polymorphic worms, which change the payload dynamically. Kim and
Karp [45] proposed “autograph”, a distributed worm signature detection system
capable of dealing with polymorphic and potentially metamorphic worms.
Autograph relies on unsuccessful scans to identify suspicious source IP
addresses and segregates flows by destination port. It automatically generates
signatures for TCP worms by analyzing the contents of the payload based the
most frequently occurring byte sequence in the suspicious flow. Autograph
consists of three modules: a flow classifier, a payload-based signature generator,

25

and tattler. Tattler is a protocol based on RTCP (RTP Control Protocol), which
facilitates sharing suspicious source addresses among all monitors distributed
across the network [45] .

Autograph still relies on a single, contiguous substring of worm’s payload
of sufficient length to match th e worm, and the assumption is that this single
payload substring will remain invariant on every worm connection; however, a
worm in theory can substantially change its payload by encoding and re-
encoding itself on each connection to evade being detected by a single substring
[46]. To address this problem, Newsome, Karp, and Song [46] proposed
“polygraph”, an algorithm to automatically generate signatures for polymorphic
worms without a single payload substring. They found that even though
polymorphic worms change the payload dynamically, certain contents will not
be changed. Such contents include protocol framing bytes (e.g., GET an d HTTP
protocol indicator), and the value used for return address or pointer to overwrite
a jump target. Based on this characteristic of polymorphic worms, they divide
signatures into tokens. The system generates tokens automatically and detects
worms based on these tokens. An algorithm that detects polymorphic worms
can detect monomorphic worms as well, but not the other way around, so it’s a
more thorough approach.

Unknown signature detection generates signatures from the traffic flow.
Even though it takes time to generate signatures, compared with known
signature-based detection systems, it may be less efficient when facing known
worms, but it can detect newly released worms and possibly catch other kinds of
internet attack such as DDoS attack. It may also help in detecting embedded
worms since the signature can be part of the packet payload instead of the whole
content. Unknown signature detection systems often do not store all the
signatures. As a previously generated signature ages, it will eventually be
eliminated from the database, so the database doesn’t just grow bigger and
bigger. This conserves the system resource from the processing time of
comparing signatures and the storage space of the database.

4.2.8 Detecting Search Worms
The techniques that are used to detect scanning worms (e.g. TCP/SYN,

connection failure/success rate) do not work for search worms. Also, signature-
based systems are not suited to detect search worms as different queries can
produce the same result. Provos et al. has proposed a solution based on the
“Polygraph” framework, which is not dependent on the search queries, but
instead looks for the search results. If it finds a particular query returns too many

26

vulnerable hosts (which are tagged during indexing), it removes the vulnerable
results from the return list, hence stopping the spread of the worm [8] .

4.3 Limitations, Benefits, and Combination Usage of Detection Schemes
So far in this section, we have discussed various algorithms in worm

detection. These systems can be classified as signature-based or anomaly-based,
and are further organized into several sub -categories based on the algorithms.
Different detection schemes are useful against different worm characteristics.
This is summarized in Table 2.

An unknown signature-based detection system may defend zero-day
attacks as well as known worms. But it takes time to generate signatures, and
since there are defined signatures already, why not just use them? A system
equipped with a known worm signature database and an additional real-time
signature generator may be more comprehensive and efficient, and it would be
even better if it also has the capability of detecting polymorphic worms.

A worm can be detected on the network during the phase of target finding
and transmission. Different detection methods catch different types of worms,
and no single current algorithm is perfect. A hybrid system with the integration
of both anomaly -based and signature-based types of detection techniques will
give a broader and more complete view to a detection system. Ideally, a hybrid
system should check for both the signature and network anomaly, and have
Honeypot to aid the detection and the gathering of worm information.

As shown in Table 2, no single algorithm provides complete protection
against worms with different characteristics. Most anomaly-based systems focus
on detecting blind scan worms, which is by far the most commonly seen
technique for active worms. There is no algorithm that can detect passive
scanning worms because these worms do not trigger any error messages and
normally don’t cause high traffic volume. Worms that use embedded
propagation schemes are harder to detect because if the worm payload is
appended to the packet content, then the signature, as a whole, may be different
for each worm, unless the system breaks the signatures into pieces and inspect
them individually with the consideration of the other pieces. Passive scan and
embedded payload are often used together in worm implementations. Doing so
will make the worm very stealthy, but its spread is slow and results in less
damage, making it less of a thr eat .

There aren’t too many systems that are able to catch worms using
topological or hit -list scanning schemes because they cause less or no failure
connections. But it is not impossible since they often still generate large traffic
volume. Antonatos et al. proposed Network Address Space Randomization

27

(NASR) a solution based on the concept of frequently changing the IP addresses
of the nodes on the network to neutralize hit-list worms; however, this method
has many limitations and faces issues including dealing with hosts with static IP
addresses or entries in DNS [47] . This is an area for future research.

Only token -based signature detection is able to detect truly polymorphic
worms. If the worm fragments itself differently every time it attacks, only
systems that are able to han dle partial signatures can catch them.

As for the metamorphic worms, there are limited solutions available. M.
Chouchane and Lakhotia proposed the “engine signature” approach to detect
metamorphic worms based on a scoring system that would measure how likely
the code (worm) might have been generated by a known instruction -substituting
metamorphic engine [48] .

There have been a lot of work done in worm detection, but there are still
more challenges to face in this field.

28

Table 2 Anomaly Detection Methods vs. Worms Characteristic
Characteristic

of Worms

Method of

Detection

Target Finding Scheme Propagation Scheme
Transmission

Scheme
Payload Format

Blind Hit list
Topo

logical
Passive

Self-

Carried

Second

Channel

Embedde

d
TCP UDP

Mono

morphic

Poly-

morphic

Meta

morphic

Signature

Known Signature — — — — v v maybe v v v x x

Token based Signature — — — — v v v v v v v x

A
nom

aly B
ased

Destination Source Correlation v v v x v — — v v — — —

TCP SYN - Connection Count v v v x v — — v maybe — — —

Failed Connection Attempts v x x x v — — v maybe — — —

Ratio of Success/Failure Attempts v x x x v — — v maybe — — —

Monitoring DarkNet v x x x v — — v v — — —

Honeypot v v maybe x v — — v v — — —

Payload-based (Unknown Signature) — — — — v v maybe v v v v maybe

H
ybrid

Modified DSC + HoneyStat [21] v v v x v — — v v — — —

Early Bird (unknown sig+DSC) v v v x v v v v v v x x

29

5. Containment
Detecting worms is important, but it is just as important to stop them from

spreading. If a worm can be found ahead of the infection, say if the system
detects the worm by its signature at the border gateway, then the system can try
to block the worm and prevent any machine from being infected. But this is not
the case most of the time. System administrators and users don’t realize there’s a
worm attack until a victim is having some abnormal behavior and the damage
has already been caused. Reacting quickly and minimizing the damage after the
infection is as important as preventing and detecting worms.

At this point, the worm is found to exist. Those characteristics used for
detection no longer matter. We need containment systems to eliminate the
worms. Many containment methods were proposed in the past few years. These
methods are summarized in Figure 2 and are classified into three categories:
slowing down, blocking, and decoying worms.

5.1 Slowing Down Infection
The first approach is to slow down the spread of worms and give time for

human reaction and intervention. Several methods were presented, such as
using a feedback loop to delay suspicious traffic [49] , and using rate limiting
techniques at different network level to slow down the infection [50] .

These proposals suggest ways to slow down the speed of worm
propagation, but worms normally spread at an extremely high speed. Within
minutes, worms can spread through whole networks. Human reaction time is a
lot slower than a well-designed computer system. A good w orm containment
system should be automated and should not only slow down an infection, but it
should try to stop it.

5.2 Blocking
Automatically blocking off certain worm-like traffic is another method of

containment. When a worm-like behavior is discovered, the source has to be
isolated from the rest of the network to prevent more machines from getting
infected. Blocking is often used together with the slowing down method. The
system can first try to slow down the infection when the first level threshold is
met to avoid false positives, and if the situation becomes worse and the second
threshold is reached, then blocking will be utilized.

There are two major approaches for blocking. One is to block off packets
with certain content, and the other is to block traffic to and/or from certain
addresses. Moore el al. [51] had simulated containment with both methods and
the result shows that content blocking is more efficient and more effective than

30

address blocking. For either blocking scheme, the challenge is to define when
and whom to block to avoid false alarms.

5.2.1 Address Blocking
Address blocking means when a host is identified as a scanner or victim,

any traffic from that host address is dropped. This technique is normally
implemented at the border router/gateway, so the containment system is able to
perform this task. The system will need to keep a black-list, which contains
addresses to be blocked.

Several algorithms had been proposed for address block-based
containment. One system mentioned in Section 4.2.3, which uses the
success/failure connection ratio for detection, is also designed to block the
address when the miss and hit ratio is greater than 10 or other pre-defined value
[30]. The DAW architecture [26] mentioned before also implements address
blocking. If certain hosts persistently keep a high failure rates, the address is
blocked and the system waits for human intervention for unblocking or further
analysis.

Address blocking has to be implemented very carefully to reduce false
alarms. In the case of false positives, the non-infected hosts might get blocked off
and if the attackers use this loophole, they can trigger this network malfunction,
launch denial-of-service attacks, and bring damage to the organization. In
addition, Brumley et al. analysis showed that the effectiveness of address
blocking is dependent on short reaction time in putting infected hosts on the
blacklist. This can especially pose severe challenges to defend against fast
propagating worms [52] .

5.2.2 Content Blocking
Content blocking is used in most signature-based detection systems. If

packet content matches a worm signature, the packet will be dropped
automatically. The system can also make decisions based on the type of packet
obtained from the header information. Furthermore, certain error message
might not be let through to avoid giving information to a scan source.

In the containment algorithm proposed by Weaver et al. [53] , after the
traffic anomaly reaches a certain threshold, the system will only allow packets
from already established connections to go through. Scan-like packets such as
TCP SYN to initialize connec tion and TCP RST that’s not from a pre-established
connection will be dropped.

31

Content blocking allows the legitimate traffic to pass while stopping
infection-like traffic from going to its destination. It may cause less harm when
false alarms arise.

5.3 Honeypot to Decoy
Honeypot was originally designed to lure the attackers as a non-existing

host that appears to be valid. Following this spirit, Honeypot can be used as a
decoy to lure Internet worms. Worms aggressively find victims to infect. Why
not just let them find and infect some fake hosts and leave the real machines
alone? Figure 5 shows how Honeypot can be used to contain Internet worms.
The top part of the illustration shows that worms infect one machine then
propagate and infect more hosts on the network (shown in solid lines). The
bottom part of the figure illustrates the case when worms infect a Honeypot
machine. The worm stays there without infecting more hosts (shown in dotted
lines). This is because the targets that the worms have found and try to infect are
all simulated by the Honeypot, which the worms are trapped inside.

In [39] , Provos noted that HoneyD not only can be used in worm detection,
but also it can be configured to appear as a host having vulnerable applications
to decoy and control the spread of worms. HoneyD can emulate large size of
network address space, so it can be used to lure the worm into thinking it is
infecting actual hosts, but it is actually attacking the Honeypot, thus slowing
down the infection of real hosts on the network. These Honeypots should be
installed and activated as soon as a worm is detected. The earlier this activation
is, the less damage the worm will cause. In the research reported in [39] , if the
Honeypot starts 20 minutes after the beginning of the worm spread, with a
deployment of about 262,000 virtual Honeypots, the system is able to stop the
worm completely.

32

6. Fighting Worms in Different Scopes
Different detection and containment systems are designed for deployment

in different locations of the Internet, which may have differ ent views of network
traffic. A system installed at a LAN gateway has the scope of the local network
and can monitor traffic coming in and going out of that network. A system
implemented inside an ISP can monitor multiple LANs and has a broader view.
Further, a distributed system may gather data across a wider coverage and
monitor all the traffic on the Internet to obtain a global view.

This paper discusses worm detection and containment in the scope of
LAN, ISP, and global as shown in Figure 2. Thes e systems can be located inside
the network, at a network border, or scattered on the Internet.

6.1 Location of Defense
A common point to place IDS is at the network boundary such as the

gateway or border router. Sitting at the edge of a network, the IDS can inspect
all traffic going in and out of the network to discover suspicious packets. This is
useful if the system employs signature-based detection algorithms, since the
system needs to match the content of each packet with the signature database. It
is also good for many anomaly -based systems because many detection
algorithms are based on header information as well as several based on the
payload information. For example, border routers check the headers of every
packet for routing purpose. Some anomaly -based systems can also be located
inside the network, depending on the parameters used for detection. For
example, Honeypots are normally implemented inside the network or at the
DMZ and appear to be regular hosts or servers.

A detection algorithm implemented at the border router is good for
defending pure random scanning worms and is less likely to catch worms that
employ local network preferred scan. Containment is normally better located at
the border than inside the network because most of the algorithms try to block
off or slow down certain traffic, and it is easier to execute at the gateway of the
network.

In their research of slowing down Internet worms using rate limiting,
Wong et al. [50] tested rate limiting at individual host, edge routers or backbone
routers in the simulation. The result shows that rate control at backbone routers
is as effective as implementation at all the hosts that the backbone routers
covered. But it’s more complex to install rate limiting filter at every single host
than only at the backbone routers. If it’s in an enterprise environment, they
suggest installing rate limiting filters at both the edge router and some portion of
the individual hosts to have better protection.

33

While detection at the host level does not provide many of the benefits of
detection at the network border level such as visibility on all packets going in
and out of the network, it provides its own unique benefits and advantages.
These advantages include: 1) verification of an attack by checking if the attack or
exploit was successful (less prone to false positives when compared to network
border level detection) 2) ability to monitor system specific activities such as
adding or removing users, root/admin privileges, and the system logs 3) ability
to monitor changes, such as file size or disk space usage, to specific key
components of the system such as libraries, DLLs, and executable files. 4) ability
to monitor and inspect application -specific logs and information not normally
available at the network level detection systems [54] . However, Brumley et al.
analysis showed if the local detection and containment is used alone, to be
effective, there is a need for a very high deployment ratio (to slow down the
worm propagation by factor of two, half of the hosts on the network need to
deploy the defense) [52] .

Instead of having the detection or containment system at one single
location, distributed sensors and containment systems also have their advantage.
A distributed system can cover greater portion of the network and have a
broader view and possible to stop the worms faster and more effectively. Malan
and Smith [55] proposed a collaborative detection system to reduce the false
positive in host -based an omaly detection systems by defining a host as behaving
anomalous if it’s behavior correlates too well with other networked, but
independent hosts. Using this system, they were able to distinguish non-worms
processes on a system from worm processes 99% of t he time [55] .

Stolfo [56] proposed the Worminator project that detects, reports, and
defends against early attack events. This on going project is a collaboration of
several academic institutions including Columbia University, GIT, FIT, MIT, and
Syracuse University. They use Antura sensors and the Columbia Packet Payload
Anomaly Detector (PAYL) sensors [57] to detect stealthy scans and probes from
outside of the firewalls. Analyzing the feedback of these sensors provides a
greater picture of worm behavior.

In [51] , Moore et al. simulated Internet worm containment in different
percentages of customer Autonomous Systems (ASes) and different coverage of
top ISP’s ASes. The result shows that implementing in the ISP ASes is far more
effective than the customer’s ASes. In order to have the containment to be useful,
the paths covered by the top 100 largest ASes have to be included. This means
almost all Internet paths have to employ containment system and requires a
wide cooperation among ISPs, which is very difficult to achieve.

34

6.2 Scope of Defense
The different location of implementation gives different scope of worm

detection and containment. Figure 6 illustrates the correlation of these different
network levels. Most IDSes are designed for local area or enterprise network
detection and containment. The local area or enterprise network is a clearly
defined entity, and it is normally controlled by one single organization, w hich
has a central management when it comes to making decision on the type of IDS
to implement.

Figure 6 Different Scopes of Detection and Containment

A higher extent, that’s well defined, is the scope of an ISP or Autonomou s
System (AS), which has multiple customer networks connecting to it. After
detecting worms from certain customer network, the ISP can slow down or block
off partial traffic from that network to prevent worms from spreading to other
customer networks. The detection might be more complex for signature-based
algorithms because it has to deal with large amount of traffic, so anomaly-based
algorithms may be more feasible. Wagner and Plattner proposed an Entropy2

based anomaly detection system to detect worms in fast IP networks (networks
with large amount of traffic) such as the Internet backbones [58] . Essentially, the
larger the coverage is, the more accurate the normal model definition would be.
Distributed Anti-Worm architecture [26] is another example of a system done for

2 Entropy is a measure on how random the traffic is and comes into perspective as worm traffic is
more structured in some respects and more random from other respects when compared with the
normal network traffic [58].

35

this scope, which is implemented with anomaly-based detection and
containment inside an ISP network.

Different parameters are used for different scopes of detection. As the
scope grows bigger, the detection may be rougher, but the containment is more
effective. Worms spread at a very fast speed. The damage of a worm outbreak is
normally very broad, often across countries. In previous sections, we see that
many of the worm detection algorithms are implemented based on monitoring
larger size networks (220 nodes or more). Moore et al. [51] also showed that
worm containment is only practical if a large fraction of the Internet unite and
work together. This leads us to conclude that global scope is necessary in
defending worms. Zhang et al. [11] proposed a system combining both control
plane data (routing data) as well as d ata plane (packet headers and payloads) to
detect and contain Internet worms more effectively. In this system, anomalies
detected on data plane are used to identify ASes that are associated with the
attacks and apply control plane filters to contain them. Furthermore, anomalies
detected on the control plane (such as IP hijacking) can be used to deploy strict
data plane controls on a particular ASes [11] .

The idea of setting up a Center for Disease Control (CDC) for global scope
detection was brought up by Staniford, Paxson, and Weaver [5] . They believe
that the CDC should have the following roles: identifying outbreaks, rapidly
analyzing pathogens, fighting infections, anticipating new vectors, proactively
devising detectors for new vectors, and resisting future threats. This center
should be deployed across the globe. There are real benefits for this approach
when “one’s allies are awake and working while one sleeps”.

Qin et al. [32] suggested that CDC is not very practical if used by itself.
One reason is privacy, where not all organizations are willing to share their data
with others. Another reason stated in the paper is that the architecture of CDC
requires a victim, a participant won’t hear ab out the worm outbreak until there’s
a victim, and this victim could be any participant.

The detection system utilizing ICMP error messages [25] discussed in
Section 4.2.2 is another system that tries to obtain global scope. This global-scale
worm detection and analysis system is based on ICMP destination unreachable
error messages forward by routers. This method is not possible until there are
enough participating routers. To deal with such large amounts of data, this
central point will need a considerable amount of resource for processing. The
global scope is essential, yet very hard to achieve mainly because it requires wide
cooperation among ISPs, organizations or countries and there is also the privacy
issues. In addition, these entities might have conflicts in their interests which can
make the cooperation very difficult.

36

Detection and containment have to be implemented with a hierarchical
approach. Most of the enterprises already have their own security systems to
protect their networks. Other local area networks should do the same to defend
attacks at the lowest level even going as far as having detection mechanisms on
some individual hosts as discussed in section 6.1. Detections at the local area
network level are more detailed when compared to the ISP level, and if these
local networks can flag the ISPs when worms are found, ISPs can then confirm
with this situation and start the containment procedures. ISPs have a great
position in worm containment since they are the junction of data exchange. At
the same time, the ISP can alert other ISPs of their findings about the worm and
take necessary precautions. Since a worm outbreak can be a worldwide disaster,
everybody should work together. Briesemeister and Porras [59] presented an
approach to evaluate collaborative worm defense mechanisms against future,
unseen, and possibly defense aware worms. In their model, Briesemeister and
Porras don’t assume any specific worm propagation strategy and consider all
possible infection sequences and propose that studying these propagation
sequences will result in understandin g how the current worm defense
algorithms can be improved to prevent worms with similar patterns from
succeeding in the future [59] .

37

7. Conclusion
We have identified the characteristics of existing and hypothetical worms

during target finding and propagation phases of a worm’s life cycle. They are
classified based on target finding, propagation, transmission schemes, and the
payload format. Current detection algorithms are organized based on the
categories of signature-based, anomaly-based or hybrid approach. We have
evaluated these categories against worm characteristics. We have classified
current containment schemes based on the methods they use to control the
spread of worms. We have also explored the implementations of detection and
containment at differen t network locations and system scopes.

An ideal system should use a combination of the schemes to have a more
comprehensive coverage. Different detection schemes are useful at different
levels of implementation. So far, there’s no ultimate solution to deal with all the
existing and hypothetical worms. New attacking technologies are being
developed everyday and the threat constantly exists. We pointed out the
remaining challenges and future work to be done based on the analysis of
current algorithms. So far, there are limited solutions on detecting passive and
topological scanning worms, flash worms and metamorphic worms; nevertheless,
as pointed out in a research by Kienzle and Elder [60] , majority of new worms
coming out everyday are not novel and are derivative in nature. As a result, by
defending against yesterday’s worms, we can effectively protect ourselves
against most new worms, while at the same time, we also need to prepare for the
threats of new novel worms that can hit us in the future[60] .

38

References

[1]	 E. Spafford, "The Internet Worm Program: An Analysis," Computer
Communication Review, 1989.

[2]	 D. T. C. Zou, W. Gong, S. Cai, "Routing Worm: A Fast,
Selective Attack Worm Based on IP Address Information," Proceedings of
19th ACM/IEEE/SCS Workshop on Principles of Advanced and
Distributed Simulation (PADS'05), 2005.

[3]	 C. J. Z. Chen, "A Self-Learning Worm Using Importance Scanning,"
Proceedings of ACM CCS Workshop on Rapid Malcode (WORM'05), 2005.

[4]	 F. M. Moheeb Abu Rajab, Andreas Terzis, "On the Impact of Dynamic
Addressing on Malware Propagation," Proceedings of ACM Workshop on
Rapid Malcode (WORM'06), 2006.

[5]	 V. P. S. Staniford, & N. Weaver, "How to Own the Internet in Your Spare
Time," Proceedings of the 11th Usenix Security Symposium, 2002.

[6]	 D. M. S. Staniford, V. Paxson, & N. Weaver, "The Top Speed of Flash
Worms," Proceedings of the 2004 ACM Workshop on Rapid Malcode, 2004.

[7]	 V. P. N. Weaver, S. Staniford, & R. Cunningham, "A Taxonomy of
Computer Worms," Proceedings of the 2003 ACM workshop on Rapid
Malcode WORM '03, 2003.

[8]	 J. M. Niels Provos, Ke Wang, "Search Worms," Proceedings of ACM
Workshop on Rapid Malcode (WORM'06), 2006.

[9]	 G. P. Schaffer, "Worms and Viruses and Botnets, Oh My! Rational
Responses to Emerging Internet Threats," IEEE Security & Privacy
Magazine, vol. 4, pp. 52-58, 2006.

[10]	 J. Z. Moheeb Abu Rajab, Fabian Monrose, Andreas Terzis, "A Multifaceted
Approach to Understanding the Botnet Phenomenon," Proceedings of 6th
ACM SIGCOMM on Internet measurement IMC '06, 2006.

[11]	 E. C. Ying Zhang, and Z. Morley Mao, "Internet-Scale Malware Mitigation:
Combining Intelligence of the Control and Data Plane," Proceedings of
ACM Workshop on Rapid Malcode (WORM'06), 2006.

[12]	 V. P. D. Moore, S. Savage, C. Shannon, S. Staniford, & N. Weaver, "Inside
the Slammer Worm," IEEE Security & Privacy Magazine, vol. 1, pp. 33-39,
2003.

[13]	 D. G. Glazer, "Computer worms," vol. May, 2005:
http://www.research.umbc.edu/~dgorin1/is432/worms.htm.

[14]	 "Morris (computer worm)," vol. Retrieved July, 2007:
http://en.wikipedia.org/wiki/Morris_worm.

39

http://en.wikipedia.org/wiki/Morris_worm
http://www.research.umbc.edu/~dgorin1/is432/worms.htm

[15]	 "F-Secure Virus Descriptions : Nimda," vol. Retrieved July, 2007:
http://www.f-secure.com/v -descs/nimda.shtml, 2001.

[16]	 "CERT® Advisory CA-2001-26 Nimda Worm," vol. Retrieved July, 2007:
http://www.cert.org/advisories/CA-2001-26.html , 2001.

[17]	 "F-Secure Computer Virus Information Pages: Slammer," vol. May, 2005:
http://www.f-secure.com/v -descs/mssqlm.shtml.

[18]	 "Sasser Worm Analysis - LURHQ," vol. May, 2005:
http://www.lurhq.com/sasser.html .

[19]	 "Secunia - Virus Information - Sasser.G," vol. May, 2005:
http://secunia.com/virus_information/11515/sasser.g.

[20]	 "F-Secure Computer Virus Information Pages: Witty," vol. May, 2005:
http://www.f-secure.com/v -descs/witty.shtml.

[21]	 C. S. D. Moore, "The Spread of the Witty Worm," IEEE Security & Privacy
Magazine, vol. 2, pp. 46-50, 2004.

[22]	 R. A. e. al., "Snort 2.1 Intrusion Detection," 2nd ed. Rockland, MA:
Syngress (Distributed by O'Reilly and Associates), 2004, pp. 490-491.

[23]	 S. E. D. Bolzoni, P. Hartel, "POSEIDON: a 2-tier Anomaly-based Network
Intrusion Detection System," Proceedings of 4th IEEE International
Workshop on Information Assurance (IWIA), 2006.

[24]	 "Snort," http://www.snort.org, retrieved May, 2005.
[25]	 G. B. V. Berk, & R. Morris, "Designing a framework for active worm

detection on global networks," Proceedings of 1st IEEE International
Workshop on Information Assurance (IWIA), 2003.

[26]	 S. C. Y. Tang, "Slowing Down Internet Wor ms," Proceedings of The 24th
IEEE International Conference on Distributed Computing Systems, 2004.

[27]	 S. C. S. Ranka, "An Internet-Worm Early Warning System," Proceedings of
IEEE Global Telecommunications Conference, 2004.

[28]	 S. S. J. Jung, A. Berger, "Fast Detection of Scanning Worm Infections,"
Proceedings of The Seventh International Symposium on Recent
Advances In Intrusion Detection (RAID), 2004.

[29]	 V. P. J. Jung, A. W. Berger, & H. Balakrishnan, "Fast Portscan Detection
Using Sequential Hypothes is Testing," Proceedings of IEEE Symposium
on Security and Privacy, 2004.

[30]	 D. E. N. Weaver, S. Staniford, & V. Paxson, "Worms vs. perimeters - the
case for hard -LANs," Proceedings of the 12th Annual IEEE Symposium on
High Performance Interconnects, 2004.

[31]	 M. S. G. Gu, X. Qin, D. Dagon, L. Wenke, & G. Riley, "Worm Detection,
Early Warning and Response Based on Local Victim Information,"

40

http:http://www.snort.org
http://www.f-secure.com/v
http://secunia.com/virus_information/11515/sasser.g
http://www.lurhq.com/sasser.html
http://www.f-secure.com/v
http://www.cert.org/advisories/CA-2001-26.html
http://www.f-secure.com/v

Proceedings of 20th Annual Computer Security Applications Conference,
2004.

[32]	 D. D. X. Qin, G. Gu, W. Lee, M. Warfield, & P. Allor, "Worm detection
using local networks," Technical report, College of Computing, Georgia Tech,
2004.

[33]	 C. E. S. Singh, G. Varghese, & S. Savage, "The EarlyBird System for Real-
time Detection of Unknown Worms," UCSD Tech Report CS2003 -0761, 2003.

[34]	 L. G. Z. Chen, & K. Kwiat, "Modeling the Spread of Active Worms,"
Proceedings of IEEE Computer and Communications Societies Annual
Joint Conference, 2003.

[35]	 S. V. J. Wu, L. Gao, & K. Kwiat, "An efficient architecture and algorithm
for detecting worms with various scan techniques," Proceedings of
Network and Distributed System Security Symposium, 2004.

[36]	 L. Spitzner, Honeypot: Tracking Hackers. Boston: Addison -Wesley, 2002.
[37]	 X. Q. D. Dagon, G. Gu, W. Lee, J. Grizzard, J. Levine, & H. Owen,

"Honeystat: Local Worm Detection Using Honeypots," Proceedings of the
7th Symposium on Recent Advances in Intrusion Detection (RAID), 2004.

[38]	 "Honeyd Virtual Honeypot," http://honeyd.org, retrieved, August 2005.
[39]	 N. Provos, "A virtual honeypot framework," Proceedings of the 13th

USENIX Security Symposium, 2004.
[40]	 P. K. C. Matthew V. Mahoney, "PHAD: Packet Header Anomaly Detection

for Identifying Hostile Network Traffic," Florida Institute of Technology
Technical Report CS-2001 -04, 2001.

[41]	 S. J. S. Ke Wang, "Anomalous Payload-based Network Intrusion
Detection," Proceedings of Recent Advances in Intrusion Detection (RAID
2004), 2004.

[42]	 G. C. Ke Wang, Salvatore J. Stolfo, "Anomalous Payload-based Worm
Detection and Signature Generation," Proceedings of the Eighth
International Symposium on Recent Advances in Intrusion Detection
(RAID 2005), 2005.

[43]	 B. M. J. Lockwood, "Design of a system for real-time worm detection,"
Proceedings of the 12th IEEE Annual Symposium on High Performance
Interconnects, 2004.

[44]	 J. C. C. Kreibich, "Honeycomb - Creating Intrusion
Detection Signatures Using Honeypots," Proceedings of the 2nd Workshop
on Hot Topics in Networks (HotNets-II), 2003.

[45]	 B. K. H. Kim, "Autograph: Toward Automated, Distributed Worm
Signature Detection," Proceedings of the 13th USENIX Security
Symposium, 2004.

41

http:http://honeyd.org

[46]	 B. K. J. Newsome, & D. Song, "Polygraph: Automatically Generating
Signatures for Polymorphic Worms," Proceedings of IEEE Symposium on
Security and Privacy, 2005.

[47]	 P. A. S. Antonatos, E. P. Markatos, K. G. Anagnostakis, "Defending against
hitlist worms using network address space randomization," Proceedings
of the ACM workshop on Rapid malcode WORM '05, 2005.

[48]	 A. L. Mohamed R. Chouchane, "Using Engine Signature to Detect
Metamorphic Malware," Proceedings of the ACM Workshop on Rapid
Malcode (WORM'06), 2006.

[49]	 J. C. R. Dantu, & A. Yelimeli, "Dynamic control of worm propagation,"
Proceedings of International Conference on Information Technology:
Coding and Computing, 2004.

[50]	 C. W. C. Wong, D. Song, S. M. Bielski, & G. R. Ganger, "Dynamic
Quarantine of Internet Worms," Proceedings of International Conference
on Dependable Systems and Networks, 2004.

[51]	 C. S. D. Moore, G. M. Voelker, & S. Savage, "Internet Quarantine:
Requirements for Containing Self-Propagating Code," Proceedings of
IEEE INFOCOM, 2003.

[52]	 L.-H. L. David Brumley, Pongsin Poosankam, Dawn Song, "Design space
and analysis of worm defense strategies," Proceedings of the ACM
Symposium on Information, computer and communications security, 2006.

[53]	 S. S. N. Weaver, & V. Paxson, "Very fast containment of scanning worms,"
Proceedings of the 13th USENIX Security Symposium, 2004.

[54]	 B. Laing, "How To Guide-Implementing a Network Based Intrusion
Detection System," Retrieved July, 2007:
http://www.snort.org/docs/#deploy , 2000.

[55]	 D. J. M. a. M. D. Smith, "Exploiting Temporal Consistency to Reduce False
Positives in Host -Based, Collaborative Detection of Worms," Proceedings
of the ACM Workshop on Rapid Malcode (WORM'06), 2006.

[56]	 S. J. Stolfo, "Worm and Attack Early Warning," IEEE Security & Privacy
Magazine, vol. 2, pp. 73-75, 2004.

[57]	 "Worminator Projector,"
http://worminator.cs.columbia.edu/public/index.jsp, retrieved April, 2005.

[58]	 B. P. A. Wagner, "Entropy Based Worm and Anomaly Detection in Fast IP
Networks," Proceedings of the 14th IEEE WET ICE / STCA security
workshop, 2005.

[59]	 P. A. P. L. Briesemeister, "Automatically deducing propagation sequences
that circumvent a collaborative worm defense," Proceedings of the 25th

42

http://worminator.cs.columbia.edu/public/index.jsp
http://www.snort.org/docs/#deploy

IEEE Conference on Performance, Computing, and Communications
(IPCCC), 2006.

[60]	 M. E. D. Kienzle, "Recent Worms: A Survey and Trends," Proceedings of
the ACM Workshop on Rapid Malcode (WORM'03), 2003.

43

	San Jose State University
	From the SelectedWorks of Xiao Su
	2008

	A Survey of Worm Detection and Containment
	Worm Detection and Containment Paper_acc_v9_accepted.PDF

