
 Open access Journal Article DOI:10.1145/937503.937506

A survey of key management for secure group communication — Source link

S. Rafaeli, David Hutchison

Institutions: Lancaster University

Published on: 01 Sep 2003 - ACM Computing Surveys (ACM)

Topics: Key management, Multicast, IP multicast, Encryption and Rekeying

Related papers:

 Secure group communications using key graphs

 Iolus: a framework for scalable secure multicasting

 Key establishment in large dynamic groups using one-way function trees

 Key Management for Multicast: Issues and Architectures

 The VersaKey framework: versatile group key management

Share this paper:

View more about this paper here: https://typeset.io/papers/a-survey-of-key-management-for-secure-group-communication-
j6k6j75dtp

https://typeset.io/
https://www.doi.org/10.1145/937503.937506
https://typeset.io/papers/a-survey-of-key-management-for-secure-group-communication-j6k6j75dtp
https://typeset.io/authors/s-rafaeli-4shaivuioe
https://typeset.io/authors/david-hutchison-2dbq6ttwns
https://typeset.io/institutions/lancaster-university-ssfvgmrp
https://typeset.io/journals/acm-computing-surveys-32i2aemk
https://typeset.io/topics/key-management-3nunhtps
https://typeset.io/topics/multicast-2beme6v0
https://typeset.io/topics/ip-multicast-2wcnuznf
https://typeset.io/topics/encryption-3by21bfi
https://typeset.io/topics/rekeying-2j2lsgfw
https://typeset.io/papers/secure-group-communications-using-key-graphs-15x6myh6sq
https://typeset.io/papers/iolus-a-framework-for-scalable-secure-multicasting-2ob1ymq2lc
https://typeset.io/papers/key-establishment-in-large-dynamic-groups-using-one-way-un5khjof28
https://typeset.io/papers/key-management-for-multicast-issues-and-architectures-1t45nltwsa
https://typeset.io/papers/the-versakey-framework-versatile-group-key-management-3padjkjwu3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-survey-of-key-management-for-secure-group-communication-j6k6j75dtp
https://twitter.com/intent/tweet?text=A%20survey%20of%20key%20management%20for%20secure%20group%20communication&url=https://typeset.io/papers/a-survey-of-key-management-for-secure-group-communication-j6k6j75dtp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-survey-of-key-management-for-secure-group-communication-j6k6j75dtp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-survey-of-key-management-for-secure-group-communication-j6k6j75dtp
https://typeset.io/papers/a-survey-of-key-management-for-secure-group-communication-j6k6j75dtp

A Survey of Key Management for Secure Group Communication

SANDRO RAFAELI AND DAVID HUTCHISON

Computing Department, Lancaster University

Group communication can benefit from IP multicast to achieve scalable exchange of
messages. However, there is a challenge of effectively controlling access to the
transmitted data. IP multicast by itself does not provide any mechanisms for preventing
nongroup members to have access to the group communication. Although encryption
can be used to protect messages exchanged among group members, distributing the
cryptographic keys becomes an issue. Researchers have proposed several different
approaches to group key management. These approaches can be divided into three main
classes: centralized group key management protocols, decentralized architectures and
distributed key management protocols. The three classes are described here and an
insight given to their features and goals. The area of group key management is then
surveyed and proposed solutions are classified according to those characteristics.

Categories and Subject Descriptors: C.2.2 [Computer Systems Organization]:
Network Protocols; K.6.5 [Computing Milieux]: Security and Protection

General Terms: Design, Management, Security

Additional Key Words and Phrases: Multicast Security, Group Key Distribution

1. INTRODUCTION

Group communication applications can
use IP multicast [Deering 1989] to trans-
mit data to all n group members using
minimum resources. Efficiency is achieved
because data packets need to be transmit-
ted once and they traverse any link be-
tween two nodes only once, hence saving
bandwidth. This contrasts with unicast-
based group communication where the
sender has to transmit n copies of the same
packet.

However scalable, IP multicast does not
provide mechanisms to limit the access

The work presented here was done within the context of ShopAware—a research project funded by the
European Union in the Framework V IST Programme.

Authors’ address: D. Hutchison, Computing Department, Faculty of Applied Sciences, Engineering Building,
Lancaster University, Lancaster LA1 4YR, United Kingdom; S. Rafaeli, Rua Atanasio Belmonte, 175/828,
Porto Alegre, Brazil, CEP 90520-550; email: sandro@hydra.trix.net.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212)
869-0481, or permissions@acm.org.
c©2003 ACM 0360-0300/03/0900-0309 $5.00

to the data being transmitted to autho-
rised group members only [Ballardie and
Crowcroft 1995]. Any multicast-enabled
host can send IGMP [Fenner 1997] mes-
sages to its neighbour router and request
to join a multicast group. There is no
authentication or access control enforced
in this operation [Hardjono and Tsudik
2000]. The security challenge for multicast
is in providing an effective method for con-
trolling access to the group and its infor-
mation that is as efficient as the underly-
ing multicast.

A primary method of limiting access
to information is through encryption and

ACM Computing Surveys, Vol. 35, No. 3, September 2003, pp. 309–329.

310 S. Rafaeli and D. Hutchison

selective distribution of the keys used to
encrypt group information. An encryption
algorithm takes input data (e.g., a group
message) and performs some transforma-
tions on it using a cryptographic key. This
process generates a ciphered text. There
is no easy way to recover the original mes-
sage from the ciphered text other than
by knowing the right key [Schneier 1996].
Applying such a technique, one can run se-
cure multicast sessions. The messages are
protected by encryption using the chosen
key, which in the context of group commu-
nication is called the group key. Only those
who know the group key are able to recover
the original message.

Furthermore, the group may require
that membership changes cause the group
key to be refreshed. Changing the group
key prevents a new member from decod-
ing messages exchanged before it joined
the group. If a new key is distributed to the
group when a new member joins, the new
member cannot decipher previous mes-
sages even if it has recorded earlier mes-
sages encrypted with the old key. Addi-
tionally, changing the group key prevents
a leaving or expelled group member from
accessing the group communication (if it
keeps receiving the messages). If the key
is changed as soon as a member leaves,
that member will not be able to decipher
group messages encrypted with the new
key.

However, distributing the group key to
valid members is a complex problem. Al-
though rekeying a group before the join
of a new member is trivial (send the new
group key to the old group members en-
crypted with the old group key), rekey-
ing the group after a member leaves is far
more complicated. The old key cannot be
used to distribute a new one, because the
leaving member knows the old key. There-
fore, a group key distributor must provide
another scalable mechanism to rekey the
group.

A simple scheme for rekeying a group
with n members has the key distribution
centre (KDC) assigning a secret key to
each member of the group. In order to dis-
tribute the group key, the KDC encrypts it
with each member’s secret key. This opera-

tion generates a message O(n) long which
is then transmitted to the whole group
via multicast. On receiving the message,
a member can recover the group key from
the appropriate segment of the message
using its own secret key.

In fact, this is not so simple or scalable.
Generating one copy of the group key for
each member means that the KDC has to
encrypt the group key n times. The size of
the broadcast message has to be consid-
ered as well. For example, a message in-
cluding all n copies of the encrypted group
key, assuming n equal to one million and
using a cryptographic algorithm with a
key 56 bits long, the message would have
size 10253 KB. A session where the mem-
bership changes very frequently becomes
difficult to administrate. Even though the
process is simple, the cost of using the sim-
ple scheme in large groups is very high.

The literature presents us with several
different approaches to group key man-
agement. We can divide them into three
main classes:

—Centralized group key management pro-
tocols. A single entity is employed for
controlling the whole group, hence a
group key management protocol seeks
to minimize storage requirements, com-
putational power on both client and
server sides, and bandwidth utilization;

—Decentralized architectures. The man-
agement of a large group is divided
among subgroup managers, trying to
minimize the problem of concentrating
the work in a single place;

—Distributed key management protocols.
There is no explicit KDC, and the mem-
bers themselves do the key generation.
All members can perform access con-
trol and the generation of the key can
be either contributory, meaning that all
members contribute some information
to generate the group key, or done by
one of the members.

This survey will unfold as follows: In
Section 2, we give an overview of the com-
mon goals of those classes cited above.
The main contribution of this paper is
described in Section 3. In Section 4, we

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Survey of Key Management for Secure Group Communication 311

present and analyse the group key man-
agement protocols. The decentralised ar-
chitectures are described in Section 5. Fi-
nally, the distributed key management
schemes are analysed in Section 6.

2. KEY MANAGEMENT ROLE

Key management plays an important role
enforcing access control on the group key
(and consequently on the group communi-
cation). It supports the establishment and
maintenance of key relationships between
valid parties according to a security pol-
icy being enforced on the group [McDaniel
et al. 1999]. It encompasses techniques
and procedures that can carry out:

—Providing member identification and
authentication. Authentication is im-
portant in order to prevent an intruder
from impersonating a legitimate group
member. In addition, it is important
to prevent attackers from impersonat-
ing key managers. Thus, authentication
mechanisms must be used to allow an
entity to verify whether another entity
is really what it claims to be.

—Access control. After a party has been
identified, its join operation should be
validated. Access control is performed
in order to validate group members
before giving them access to group
communication1 (the group key, in par-
ticular).

—Generation, distribution and installa-
tion of key material. It is necessary to
change the key at regular intervals to
safeguard its secrecy [Schneier 1996].
Additional care must be taken when
choosing a new key to guarantee key
independence. Each key must be com-
pletely independent from any previous
used and future keys, otherwise compro-
mised keys may reveal other keys.

The key secrecy can be extended to
membership changes. When a group re-
quires backward and forward secrecy [Kim
et al. 2000], the key must be changed for

1This is because hiding information is not the only
matter. If anyone can obtain the key, it does not make
sense to encrypt the content at all.

every membership change. Backward se-
crecy is used to prevent a new member
from decoding messages exchanged before
it joined the group. If a new key is dis-
tributed for the group when a new mem-
ber joins, it is not able to decipher previous
messages even if it has recorded earlier
messages encrypted with the old key. For-
ward secrecy is used to prevent a leaving
or expelled group member to continue ac-
cessing the group’s communication (if it
keeps receiving the messages). If the key is
changed as soon as a member leaves, that
member will not be able to decipher group
messages encrypted with the new key.

As multicast is being used for group
transmission, it is generally assumed that
multicast should also be used to rekey
the group.2 It is not reasonable to con-
sider transmitting data using a scalable
multicast communication and rekeying
the members under a non-scalable peer-
to-peer communication. If the group has
thousands of members, sending them a
new key one by one would not be effi-
cient. Although rekeying a group before
the join of a new member is trivial,3 rekey-
ing the group after a member leaves it is
far more complicated. The old key cannot
be used to distribute a new one, because
the leaving member knows the old key. A
group key distributor must therefore pro-
vide other mechanisms to rekey the group
using multicast messages while maintain-
ing the highest level of security possible.

3. CONTRIBUTION OF THIS ARTICLE

This article presents a survey of group key
management. We present the group key
management solutions proposed so far in
the literature, distributing them into the
classes previously introduced in Section 1.
We analyze them comparatively within
their respective class. This survey effec-
tively extends and updates Moyer’s survey
[Moyer et al. 1999].

2The term rekey determines the action of distributing
a new key in order to replace a previous one.
3Send the new key to the group encrypted with the
old one.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

312 S. Rafaeli and D. Hutchison

4. CENTRALIZED GROUP KEY

MANAGEMENT PROTOCOLS

In a centralized system, there is only one
entity controlling the whole group. The
central controller does not have to rely
on any auxiliary entity to perform ac-
cess control and key distribution. How-
ever, with only one managing entity, the
central server is a single point of fail-
ure. The entire group will be affected if
there is a problem with the controller. The
group privacy is dependent on the success-
ful functioning of the single group con-
troller; when the controller is not working,
the group becomes vulnerable because the
keys, which are the base for the group pri-
vacy, are not being generated/regenerated
and distributed. Furthermore, the group
may become too large to be managed by
a single party, thus raising the issue of
scalability.

The group key management protocol
used in a centralized system seeks to
minimise the requirements of both group
members and KDC in order to augment
the scalability of the group management.
The efficiency of the protocol can be mea-
sured by:

—Storage requirements. The number of
key encryption keys (KEKs) that group
members and the KDC need to keep;

—Size of messages. Characterized by the
number of bytes is a rekey message
for adding and removing members. The
protocol can combine unicast and mul-
ticast messages to achieve the best re-
sults. Note that the usage of unicast
channels implies establishing a secure
channel, hence increasing the final cost
of the protocol;

—Backwards and forward secrecy. As de-
scribed in Section 2, the capability of
a protocol to provide secrecy despite
changes to the group membership;

—Collusion. Evicted members must not be
able to work together and share their
individual piece of information to regain
access to the group key.

Throughout this Section, ki represents
a shared key. Encryption and decryption

of x with key k are respectively {x}k and
{x}−1

k . Additionally, {x}ki ,k j
means that x

was encrypted with both ki and k j . Finally,
n is the number of members.

4.1. Group Key Management Protocol

The Group Key Management Protocol
(GKMP) [Harney and Muckenhirn 1997a,
1997b] enables the creation and mainte-
nance of a group key. In this approach, the
KDC helped by the first member to join the
group creates a Group Key Packet (GKP)
that contains a group traffic encryption
key (GTEK) and a group key encryption
key (GKEK). When a new member wants
to join the group, the KDC sends it a copy
of the GKP. When a rekey is needed, the
GC generates a new GKP and encrypts it
with the current GKEK ({GTEK}GKEK). As
all members know the GKEK, there is no
solution for keeping the forward secrecy
when a member leaves the group except
to recreate an entirely new group without
that member.

4.2. Logical Key Hierarchy

Other contributions (Wong et al. [2000]
and Wallner et al. [1999]) propose the use
of a Logical Key Hierarchy (LKH). In this
approach, a KDC maintains a tree of keys.
The nodes of the tree hold key encryption
keys. The leaves of the tree correspond
to group members and each leaf holds a
KEK associated with that one member.
Each member receives and maintains a
copy of the KEK associated with its leaf
and the KEKs corresponding to each node
in the path from its parent leaf to the root.
The key held by the root of the tree is the
group key. For a balanced tree, each mem-
ber stores at most (log2 n) + 1 keys, where
(log2 n) is the height of the tree. For ex-
ample, see Figure 1, member u1 knows k1,
k12, k14 and k.

A joining member is associated with a
leaf and the leaf is included in the tree.
All KEKs in the nodes from the new leaf ’s
parent in the path to the root are com-
promised and should be changed (back-
ward secrecy). A rekey message is gen-
erated containing each of the new KEKs

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Survey of Key Management for Secure Group Communication 313

Fig. 1. KEKs affected when a member joins
the tree.

Fig. 2. Necessary encryptions when
a member joins the tree in the basic
LKH.

encrypted with its respective node’s chil-
dren KEK. The size of the message pro-
duced will be at most 2 · (log2 n) keys long.
Figure 1 shows an example of the KEKs
being affected. The new member u3 re-
ceives a secret key k3 and its leaf is at-
tached to the node k34. The KEKs held by
nodes k34, k14 and k, which are the nodes
in the path from k3 to k, are compromised.
New KEKs (k′

34, k′
14 and k′) are generated

as shown in Figure 2. Finally, the KEKs
are encrypted with each of its respective
node’s children KEK ({k′

34}k3,k4
; {k′

14}k12,k′
34

;
and {k}k′

14
,k58

(see Figure 2). The size of a
rekeying message for a balanced tree has
at most 2 · (log2 n) keys.

Removing a member follows a similar
process. When a member leaves (or is
evicted from) the group, its parent node’s
KEK and all KEKs held by nodes in the
path to the root are compromised and
should be updated (forward secrecy). A

Fig. 3. Necessary encryptions when
a member is removed from the basic
LKH.

rekey message is generated containing
each of the new KEKs encrypted with its
respective node’s children KEK. The ex-
ception is the parent node of the leaving
member’s leaf. The KEK held by this node
is encrypted only with the KEK held by
the remaining member’s leaf. As the key
held by the leaving member was not used
to encrypt any new KEK, and all its known
KEKs were changed, it is no longer able to
access the group messages.

Figure 3 presents what happens when
a member leaves. Member u4 is leaving
the group and it knows KEKs k34, k14 and
k. KEKs k′

34, k′
14 and k′ are updated and

encrypted with each of its respective chil-
dren’s KEKs. An exception is made for the
k′

34. This KEK is encrypted only with k3,
which is the key of the remaining member
of n34.

The algorithm proposed by Waldvogel
et al. [1999] is different for joining oper-
ations. Instead of generating fresh keys
and sending them to members already in
the group, all keys affected by the mem-
bership change are passed through a one-
way function.4 Every member that already
knew the old key can calculate the new
one. Hence, the new keys do not need to
be sent and every member can calculate
them locally. This algorithm is known as
LKH+.

4This scheme has been first proposed by Radia Perl-
man during an IETF meeting.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

314 S. Rafaeli and D. Hutchison

Fig. 4. Ancestor and sibling sets of member
u4.

4.3. One-way Function Tree

An improvement in the hierarchical bi-
nary tree approach is a one-way function
tree (OFT) and was proposed by McGrew
and Sherman [1998]. Their scheme re-
duces the size of the rekeying message
from 2 · (log2 n) to only (log2 n). Here a
node’s KEK is generated rather than just
attributed. The KEKs held by a node’s chil-
dren are blinded using a one-way function
and then mixed together using a mixing
function. The result of this mixing func-
tion is the KEK held by the node. This is
represented by the following formula:

ki = f (g (kleft(i)), g (kright(i))) (1)

Where left(i) and right(i) denote respec-
tively the left and right children of node
i. The function g is one-way, and f is a
mixing function:

Ancestors of a node are those nodes in
the path from its parent node to the root.
In this article, the set of ancestor of a node
is called ancestor set and the set of siblings
of the nodes in ancestor set are called sib-
ling set (see Figure 4). Each member re-
ceives the key (associated to its leaf node),
its sibling’s blinded key and the blinded
keys corresponding to each node in its sib-
ling set.

For a balanced tree, each member stores
log2n + 1 keys. For example, in Figure 4,
member u4 knows key k4 and blinded keys
kB

3 (its sibling’s blinded key) and kB
12 and

kB
58 (blinded keys in u4’s sibling set). Ap-

Fig. 5. Necessary encryptions when u3
joins the tree in the improved LKH.

plying this information to the formula 1,
member u4 is able to generate all keys in
its ancestor set (k34, k14 and k).

The message size reduction is achieved
because in the standard scheme, when
a node’s key changes, the new key must
be encrypted with its two children’s keys,
and in the OFT scheme, the blinded key
changed in a node has to be encrypted only
with the key of its sibling node. Figure 5
shows an example of this scheme. Mem-
ber u3 joins the group at node n34. It re-
quires keys k34, k14 and k to be changed.
The only values that must be transmit-
ted are the blinded KEKs kB

3 , k′B
34 and k′B

14.
Each is respectively encrypted with k4, k12

and k58. The new KEKs can be calculated
by every group member: k′

34 = f (g (k3),
g (k4)), k′

14 = f (g (k12), g (k′
34)) and k′ =

f (g (k′
14), g (k58)).

4.4. One-way Function Chain Tree

Canetti et al. [1999a] proposed a slightly
different approach that achieves the
same communication overhead. Their
scheme uses a pseudo-random-generator
[Goldreich et al. 1986] to generate the new
KEKs rather than a one-way function and
it is applied only on users removal. This
scheme is known as the one-way function
chain tree. The pseudo-random-generator,
G(x), doubles the size of its input (x), and
there are two functions, L(x) and R(x),
that represent the left and right halves of
the output of G(x) (i.e., G(x) = L(x)R(x),

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Survey of Key Management for Secure Group Communication 315

Fig. 6. New key r is attributed to leaf K2.

where |L(x)| = |R(x)| = |x|). When a user
u leaves the group, the algorithm to rekey
the tree goes as follows:

(1) a new value rv is associated to every
node v from u to the root of the tree
using rp(u) = r for the first node and
rp(v) = R(rv) for all other v (where p(v)
denotes the parent of v).

(2) the new keys are generated as k′
v =

L(rv).

(3) each rp(v) is encrypted with key ks(v)

(where s(v) denotes the sibling of v) and
sent off.

From rv, one can compute all keys k′
v,

k′
p(v), k′

p(p(v)) up to the root node key.

Taking into account the example of
Figure 1, if u1 leaves the group (Figure 6),
nodes n12, n14 and n0 will be associate re-
spectively with r, R(r) and R(R(r)) and
these values will be encrypted for n2, n34

and n58, with their respective KEKs (k2,
k34 and k58). Finally, the new KEKs k12, k14

and k will be L(r), L(R(r)) and L(R(R(r))).
Rafaeli et al. [2001] presented a varia-

tion of this scheme called the efficient hi-
erarchical binary tree (EHBT) protocol.

4.5. Hierarchical a-ary Tree with Clustering

Canetti et al. [1999b] proposed the clus-
tering of members around single leaves of
a a-ary tree (Li et al. [2001] showed how
to compute the cluster size for Canetti’s
model). Dividing the group with n mem-
ber into clusters of size m and assigning a
cluster to a unique leaf node, then we have

n/m clusters. Thus, the depth of the tree
is (loga (n/m)) (see Figure 7).

All members in a cluster share the same
cluster KEK. Every member of the cluster
is also assigned a unique key ki, which is
shared only with the KDC. The KDC uses
a random seed r as an index for a pseudo-
random function fr to generate the key ki

for member i (ki = fr (i)). Hence, for each
cluster, only the seed and the cluster KEK
are stored. Members of the same cluster
also share the set of keys in the path from
the leaf node to the root, which means
that every member in a cluster holds also
(loga (n/m)) + 1 KEKs.

When a member leaves, the cluster hold-
ing it receives a new cluster KEK. The
new KEK is encrypted with the individual
KEKs of all remaining members. Hence,
when a member is removed from a clus-
ter, the KDC performs m − 1 encryptions
to update the common cluster KEK to all
remaining m−1 members. In addition, the
KDC updates all keys in the path from the
cluster leaf to the root, and every new KEK
is encrypted with its respective node’s chil-
dren KEK. That is, when a single mem-
ber is deleted, the update message has
m − 1 + a(loga (n/m)) keys.

4.6. Centralized Flat Table

Waldvogel et al. [1999] extended their own
solution proposing to change the hierar-
chical tree for a flat table (FT) with the
effect of decreasing the number of keys
held by the KDC. The table has one entry
for the Traffic Encryption Key (TEK) and
2w more entries for KEKs, where w is the
number of bits in the member id. There are
two keys available for each bit in the mem-
ber id, one associated with each possible
value of the bit (Table I shows an exam-
ple with w = 4). A member knows only the
key associated with the state of its bit. In
total, each member holds w + 1 keys. For
example, a member with id 0101 knows
KEK0.0, KEK1.1, KEK2.0 and KEK3.0 (see
Table I).

When a member leaves the group, all
keys known by it are changed and the KDC
sends out a rekey message containing

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

316 S. Rafaeli and D. Hutchison

Fig. 7. Example of tree with degree 2 and cluster 4.

Table I. Flat ID Assignment

TEK

ID Bit #0 KEK 0.0 KEK 0.1

ID Bit #1 KEK 1.0 KEK 1.1

ID Bit #2 KEK 2.0 KEK 2.1

ID Bit #3 KEK 3.0 KEK 3.1

Bit 0 Bit 1

two parts. The first part has the new
TEK encrypted with each unchanged KEK
(any member with an id with at least
one single bit of difference from the leav-
ing member’s id can recover the TEK). In
the second part, each of the new KEKs
is encrypted with its old KEK and with
the new TEK (see Table II). This way,
every remaining member can update its
old KEKs without gaining further knowl-
edge about the KEKs other members
had.

A group from IBM proposed a similar
scheme [Chang et al. 1999] to the one
from the ETH group. Although the IBM
proposal has the same properties as the
flat table, they presented an optimisa-
tion for the number of messages needed
for rekeying the group based on Boolean
function minimisation techniques (BFM)
[Wegener 1987]. In this case, rather than
always sending a message containing the
new TEK encrypted by each unchanged
KEK, they apply the techniques and find
the smallest set of KEKs needed to rekey
all remaining members.

This scheme is susceptible to collu-
sion attacks. A set of evicted members,
which have IDs with complementary bits,
may combine their sets of keys to re-
cover a valid set of keys, hence are able

to have unauthorised access to group
communication.

4.7. Efficient Large-Group Key

Perrig et al. [2001] proposed the Efficient
Large-group Key (ELK) protocol. The ELK
protocol uses a hierarchical tree and is
very similar to the OFT in the sense that a
parent node key is generated from its chil-
dren keys. ELK uses pseudo-random func-
tions (PRFs) to build and manipulate the
keys in the hierarchical tree. A PRF uses
a key K on input M of length m to gener-
ate output of length n represented by the
following notation: PRF

m→n
k (M).

Using the PRF on a key, it is possible
to derive four different keys to be used
in different contexts: kα

i = PRF
n→n

ki
(1), used

to generate values n1 and n2 (see below),
k

β

i = PRF
n→n

ki
(2), used to encrypt key update

messages, k
γ

i = PRF
n→n

ki
(3), used to gener-

ate hints, and kδ
i = PRF

n→n
ki

(4), used to up-
date key nodes.

ELK employs a timely rekey, which
means that the key tree is completely up-
dated in each time interval. The group
key is updated using the derivation
k′

G = PRF
n→n

k
γ

G
(0) (group key) and all other

k′
i are derived by k′

i = PRF
n→n

k
γ

i
(kG). By de-

riving all keys, ELK does not require any
multicast messages during a join opera-
tion (apart from unicast messages that
are needed when members move around
the tree due to insertion of new member
nodes).

When members are deleted, new keys
have to be generated for those nodes in
the path from the removed node to the

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Survey of Key Management for Secure Group Communication 317

Table II. Message to Exclude Member 0101

TEK

(KEK 0.0new) TEKnew (TEKnew) KEK 0.1 ID Bit #0

(TEKnew) KEK 1.0 (KEK 1.1new) TEKnew ID Bit #1

(KEK 2.0new) TEKnew (TEKnew) KEK 2.1 ID Bit #2

(TEKnew) KEK 3.0 (KEK 3.1new) TEKnew ID Bit #3

Bit 0 Bit 1

Table III. Comparison Table of Group Key Management Protocols

Secrecy
Secure

Message Storage

Scheme/ Against join

Feature back fore Coll. multicast unicast leave KDC member

Simple Y Y Y nK K nK nK K

GKMP Y N Y 2K 2K — 2K 2K

LKH Y Y Y (2d − 1)K (d + 1)K I + 2d K (2n − 1)K (d + 1)K

OFT Y Y Y (d + 1)K (d + 1)K I + (d + 1)K (2n − 1)K (d + 1)K

OFCT Y Y Y d I (d + 1)K I + (d + 1)K (2n − 1)K (d + 1)K

m − 1+ loga(n
m) m − 1 n

m
a

a−1 + loga(n
m)+

Clusters Y Y Y a loga(n
m) 2 a loga(n

m) n
m 2

FT Y Y N 2I K (I + 1)K 2I K (2I + 1)K (I + 1)K

ELK Y Y Y 0 (d + 1)K I + d (n1 + n2) (2n − 1)K (d + 1)K

root. This is accomplished by deriving the
new key k′

i as k′
i = PRF

n→n
CLR

(ki), with CLR =

PRF
n→n1

kα
il

(ki) | PRF
n→n2

kα
ir

(ki), where kil and

kir are respectively left and right child
key of node i. The server then multicasts
{PRF

n→n1
kα

il
(ki)}k

β

ir
and {PRF

n→n2
kα

ir
(ki)}k

β

il
.

ELK also introduces the idea of hints. A
hint is a small piece of information, which
is smaller than a key update message, that
can be used to recover possible lost rekey
message updates. It is provided to improve
the reliability of the rekey operation and
it is conveyed in data messages. Every key
ki is generated from n1 bits from the left
side child and n2 bits from the right-side
child. Moreover, using a key verification
value, which is derived from the new key
VK ′ = PRFK ′ (0), the right child can brute-
force the left child’s n1 bits (trying all com-
binations) and recover K ′

i . The right child
can do the same with the right child’s n2

bits. Normally, n1 < n2; therefore, the right
child would need more computations to
recover the right n2 bits; hence, it also
needs the n2 − n1 least significant bits of

the right child contribution. In conclusion,
a hint conveys the key verification value
(VK ′) and the n2 − n1 least significant bits
of the right child contribution.

4.8. Summary

In this section, we summarize and com-
pare the properties of those protocols pre-
sented in Section 4 in a quantitative way.
We focus our criteria on those charac-
teristics presented at the beginning of
Section 4. We have divided the compar-
ison into two tables. Table III identifies
those protocols that provide backward and
forward secrecy; also, we show the size
of messages for join and leave operations
and storage requirements from both KDC
and members. Table IV identifies compu-
tations required from KDC and members
during join and leave operations.5

The notation used in Tables III and IV
is described in Table III:

5Values written in bold are the best values for a cer-
tain column.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

318 S. Rafaeli and D. Hutchison

Table IV. Comparison Table of Group Key Management Protocols

Scheme/ Join processing Leave processing

Feature KDC member KDC member

Simple nE D nE D

GKMP 2E 2D — —

LKH dH + 3dE (d + 1)D 2dE dD

OFT (d + 1)H + dX + 3dE (d + 1)D + d (H + X) d (H + X + E) D + d (H + X)

OFCT dH + (d + 1)E (d + 1)D d (PRG + E) D + dPRG

(m − 1)PRG+

Cluster mPRG + (m + a loga(n
m))E (loga(n

m) + 2)D (m + a loga(n
m) − 1)E (loga(n

m) + 2)D

FT 2IE ID (2I + 1)E (I + 1)D

ELK 2(2n − 1)E + 2E + (d + 1)E (d + 1)D 8dE dD + 5dE

Notation for Tables III and IV.

n number of member in the group
I number of bits in member id
a degree of the tree
d height of the tree (for a balanced

tree d = loga n)
m cluster size
H hash function
X xor operation
E encryption operation
D decryption operation
K size of a key in bits

PuK size of a public key
PrK size of a private key

Note that for a join operation, n in-
cludes the joining members, and for a
leaving operation, n excludes the leaving
member.

Tables III and IV show that every proto-
col achieves different results when apply-
ing different techniques. Some protocols
achieve exceptionally better results than
others do. However, in order to reach those
performances, they demand some strong
requirements and may create unbearable
risks for the group security.

The protocol GKMP achieves excep-
tional results for storage, communication
and processing on both KDC and mem-
bers. However, those results are achieved
by providing no method for rekeying the
group after a member has left, hence seri-
ously compromising the forward secrecy.

ELK needs no multicast message for
join operations, because it employs a timed
rekey, which means that the tree is com-

pletely refreshed at intervals, in spite
of any membership changes. Due to the
refreshing time intervals, ELK imposes
some delay on the joining member before
it receives the group key.

ELK has a slightly smaller multicast
message for leave operations than the
other protocols, because it enables the key
length to match the security requirements
of the group.

So far, the best solutions for a group key
management protocol appear to be those
using a hierarchical tree of KEKs. They
achieve good overall results without com-
promising any aspects of security.

5. DECENTRALIZED ARCHITECTURES

In the decentralized subgroup approach,
the large group is split into small sub-
groups. Different controllers are used to
manage each subgroup, minimizing the
problem of concentrating the work on a
single place. In this approach, more enti-
ties are allowed to fail before the whole
group is affected.

We use the following attributes to
evaluate the efficiency of decentralized
frameworks:

—Key independence. As described in Sec-
tion 2, disclosure of a key must not com-
promise past keys;

—Decentralized controller. A centralizing
manager should not manage the sub-
group managers. The central manager
raises the same issues as the central-
ized systems seen in Section 4, namely

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Survey of Key Management for Secure Group Communication 319

if the centralizing manager is unavail-
able, the whole group is compromised;

—Local rekey. Membership changes in
a subgroup should be treated locally,
which means that rekey of a subgroup
should not affect the whole group. This
is also known as the 1-affects-n problem
[Mittra 1997];

—Keys vs. data. The data path should
be independent of the key manage-
ment path, which means that rekey-
ing the subgroup should not impose
any interference or delays to the data
communication;

—Rekey per membership. Related to back-
ward and forward secrecy;

—Type of communication. Groups with a
single data source are said to use 1-to-n
communication, and groups with sev-
eral or all members being able to trans-
mit are characterized by using n-to-n
communication.

5.1. Scalable Multicast Key Distribution

RFC1949 [Ballardie 1996] proposes a
scheme to use the trees built by the Core
Based Tree (CBT) multicast routing pro-
tocol to deliver keys to a multicast group.
Any router in the path of a joining mem-
ber from its location to the primary core
can authenticate the member since the
router is authenticated with the primary
core. This scheme requires some modifi-
cations to the IGMP6 [Fenner 1997] and
assumes that CBT is deployed. Further-
more, there is no solution for forward se-
crecy other than to recreate an entirely
new group without the leaving members.

5.2. Iolus

Mittra proposes Iolus [Mittra 1997], a
framework with a hierarchy of agents
that splits the large group into small sub-
groups. A Group Security Agent (GSA)
manages each subgroup. The GSAs are
also grouped in a top-level group that is
managed by a Group Security Controller
(see Figure 8).

6The description of the modifications required can be
found in the Appendix B of RFC1449.

Fig. 8. Iolus hierarchy.

Iolus uses independent keys for each
subgroup and the absence of a general
group key means membership changes in
a subgroup are treated locally. It means
that changes that affect a subgroup are
not reflected in other subgroups. In addi-
tion, the absence of a central controller
contributes to the fault-tolerance of the
system. If a subgroup controller (namely
GSA) fails, only its subgroup is affected.

Although Iolus is scalable, it has the
drawback of affecting the data path. This
occurs in the sense that there is a need
for translating the data that goes from
one subgroup, and thereby one key, to an-
other. This becomes even more problem-
atic when it is taken into account that the
GSA has to manage the subgroup and per-
form the translations needed. The GSA
may thus become a bottleneck.

5.3. Dual-Encryption Protocol

In order to solve the problem of trusting
third parties, Dondeti et al. [1999b] pro-
posed a dual-encryption protocol (DEP).
In their work, they suggest a hierarchical
subgrouping of the members where a sub-
group manager (SGM) controls each sub-
group. There are three kinds of KEKs and
one Data Encryption Key (DEK). KEKi1 is
shared between a SGMi and its subgroup
members. KEKi2 is shared between the
Group Controller (GC) and the members
of subgroup i, excluding SGMi. Finally, GC
shares KEKi3 with SGMi. In order to dis-
tribute the DEK to the members, the GC
generates and transmits a package con-
taining the DEK encrypted with KEKi2

and encrypted again with KEKi3 (SGMs’
KEK). On receiving the package, SGMi

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

320 S. Rafaeli and D. Hutchison

decrypts its part of the message using
KEKi3 and recovers the DEK encrypted
with its subgroup KEK (KEKi2), which is
not known by the SGMi. SGMi encrypts
this encrypted DEK using KEKi1 shared
with its subgroup members and sends it
out to subgroup i. Each member of sub-
group i decrypts the message using KEKi1

and then, decrypting the message using
KEKi2 (shared with GC), recovers DEK.
The DEK cannot be recovered for any en-
tity that does not know both keys. Hence,
although there are third parties involved
in the management (SGMs), they do not
have access to the group key (DEK). When
the subgroup i’s membership changes, the
SGMi changes KEKi1 and sends it to its
members. Future DEK changes cannot be
accessed for members of subgroup i that
did not received the new KEKi1. How-
ever, evicted members that did not re-
ceive KEKi1 can still access the group
communication until the DEK is changed
(note that it has not been changed with
KEKi1), and this compromises forward
secrecy.

Weiler [2001] proposed SEMSOMM, a
system with similar properties to those
of DEP, namely the dual-encryption
technique. However, SEMSOMM uses
the dual-encryption technique to encrypt
the group communication rather than the
group key. This achieves forward secrecy
from the moment that a subgroup key
is changed (KEKi1 from DEP). However,
because the intermediate nodes have to
translate messages sent by the sender,
SEMSOMM presents the same limitation
of Iolus affecting the data path.

5.4. MARKS

In MARKS, Briscoe [1999] suggests slic-
ing the time-length to be protected (such
as the transmission time of a TV program)
into small portions of time and using a dif-
ferent key for encrypting each slice. The
encryption keys are leaves in a binary
hash tree that is generated from a single
seed. The internal nodes of the tree are
also called seeds. A blinding function, such
as MD5 [Rivest 1992], is used on the seed

Fig. 9. Binary hash tree.

to create the tree in the following way:

(1) first, the depth D of the tree is chosen.
The depth, D, defines the total number
(N) of keys (N = 2D).

(2) then, the root seed, S0,0, is randomly
chosen. In Si, j , i represents the depth
of the seed in the tree, and j is the
number of that key in level i.

(3) after that, two intermediate seeds (left
and right) are generated. The left node
is generated by shifting S0,0 one bit to
the left and applying the blinding func-
tion on it (S1, 0 = b(ls(S0,0))). The right
node is generated by shifting S0,0 one
bit to the right and applying the blind-
ing function on it (S1, 1 = b(rs(S0,0))).

(4) the same algorithm is applied to the
following levels until the expected
depth is reached.

Users willing to access the group com-
munication receive the seeds need to gen-
erate the keys required. For example,
Figure 9 shows a binary hash tree of
depth 3. if a user wants to participate in
the group from time 3 to 7, it would be nec-
essary to have only two seeds: S3,3, as K3,
and S1,1, to generate K4 till K7.

This system cannot be used in situa-
tions when a membership change requires
change of the group key, since the keys are
changed as a function of the time.

5.5. Cipher Sequences

Molva presented a framework for multi-
cast security [Molva and Pannetrat 1999]

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Survey of Key Management for Secure Group Communication 321

Fig. 10. An RPS tree.

that is based on Cipher Sequences (CS).
A function f (S, a) is called Cipher Group
(CG) if it has the following characteris-
tics: there is a sequence of n elements,
such as a1≤i≤n; and there is a sequence
of n + 1 elements, such as S0≤i≤n, where
Si = f (Si−1, ai), for i > 0 and S0 is the ini-
tial value; and for every couple (i, j), where
i < j , there exists a function hi, j such as
Si = hi, j (j). The multicast group is placed
in a tree, where the root of the tree is the
multicast source, the leaves of the tree are
group members and the internal nodes of
the tree are intermediate elements in the
multicast communication.

Now let S0 be the information to be
multicast and let every node Ni be as-
signed a value ai > 1. Every node Ni can
perform function f , so that when Ni

receives a value S j from its parent N j , it
computes Si = f (S j , ai) and sends Si to its
children in the tree (note that the children
can be other nodes or leaves). The leaves
were assigned the function h0,n, which en-
ables them to compute S0 from Sn, since
S0 = h0,n(Sn), and therefore recovers the
original data.

Figure 10 shows an example of Molva’s
scheme that may be described as:

—the root calculates S1 = f (S0, a1) and
sends S1 to N1;

—node N1 calculates S2 = f (S1, a6) and
sends S2 to N2;

—node N2 calculates S3 = f (S2, a7) and
sends S3 to leaf L3;

—leaf L3 calculates S0 = h0,3(S3) and re-
covers the original data (S0).

A leaf may be composed of several group
members and all members in the same
leaf share the same function h0,n. When

a membership change occurs in a leaf, the
node Nn receives a new value a′

n and all
members in the leaf receive a new function
h′

0,n. Naturally, if the membership change
occurred because of member removal, the
removed member will not receive the new
h′

0,n, thus will not be able to recover S0.

5.6. Kronos

Setia et al. [2000] proposed Kronos. It is an
approach driven by periodic rekeys rather
than membership changes, which means a
new group key is generated after a certain
period of time, disregarding whether any
member has joined, left or been ejected
from the group. Although Kronos can be
used within a distributed framework such
as IGKMP, it works differently because
the DKD does not directly generate the
group key. Instead, each AKD indepen-
dently generates the same group key and
transmits it to its members at the end of
the predetermined period.

For this scheme to work, the AKDs first
have to have their clocks synchronized and
they have to agree on a rekey period. The
authors suggest using the Network Time
Protocol (NTP) [Mills 1992] for clock syn-
chronization. Second, the AKDs also have
to agree on two secret factors, namely K
and R0, where R0 is an initial value and
K is a master key. The AKDs can receive
the secret factors from DKD via a secure
channel. To generate the group key, with
name R1, the AKDs apply an encryption
algorithm, E, to R0 using K as the se-
cret key (R1 = EK (R0)). The same algo-
rithm applies for the next key generations:
Ri+1 = EK (Ri), i >= 0. Although Kronos
does not use a central controller and
the subgroup controllers can generate the
new keys independently, which makes the
system fault-tolerant, it compromises
the group security because it generates
the new key based on the previous one. If
one key is disclosed, then it compromises
all following keys.

5.7. Intra-Domain Group Key Management

DeCleene et al. [2001] present an intra-
region group key management protocol

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

322 S. Rafaeli and D. Hutchison

Fig. 11. Intra-Domain Group Key Management
Elements.

(IGKMP). IGKMP is divided in admin-
istratively scoped areas [Meyer 1998].
There is a Domain Key Distributor (DKD)
and many Area Key Distributors (AKD).
Each AKD is responsible for one area. The
group key is generated by the DKD and
is propagated to the members through the
AKDs. The key managers (DKD and AKD)
are placed in a multicast group, named
All-KD-group (see Figure 11). The All-
KD-group is used by the DKD to trans-
mit the rekey messages to the AKDs. All
areas in the domain use the same group
key. Therefore, data packets do not need to
be translated when passing from one area
to another. In addition, the DKD does not
need to keep track of all group members,
it only has to keep track of the AKDs. Nev-
ertheless, since Intra-domain protocol em-
ploys a central controller (namely, DKD)
for controlling the subgroup controllers
(namely, AKDs), it presents the undesir-
able feature of allowing the whole group to
be disrupted if the DKD is compromised.
Moreover, if an AKD is unavailable no
members in that area are able to access the
group communication, since they will not
be able to access AKDs from other areas.

5.8. Hydra

Rafaeli and Hutchison [2002] proposed
Hydra. In Hydra, the large group is di-
vided into smaller subgroups, and a server
called the Hydra Server (HS) controls each
subgroup. Hydra is a decentralized group
key management scheme without a cen-
tral subgroup controller. If a membership
change takes place at HSi, and a new
key must be generated, it can generate
the new group key and send this key

to the other HS j involved in that session.
The case when one or more HSs become
unavailable will not cause a problem for
the remaining HSs. In order to have the
group key distributed to all HSs a syn-
chronized group key distribution protocol
(SGKDP) is employed. The SGKDP pro-
tocol ensures that only a single valid HS
is generating the new group key at every
given time.

5.9. Summary

In this section, we summarize and com-
pare the properties of those architectures
presented at the beginning of Section 5.
We focus our criteria on those charac-
teriztics presented in Section 5. Table V
shows a summary of the properties that
should be provided by an architecture for
group key management. A value written
in bold is the best value for a certain
column.

Kronos does not provide key indepen-
dence because it generates new keys based
on old ones, and if any past key is compro-
mised, all future keys are disclosed. The
same happens with MARKS if a seed is
compromised.

Although DEP provides key indepen-
dence, it uses a timed rekey, which causes
delays to change the group key after a
member has left, thus that member can
still access the group communication dur-
ing that period of time. The same occurs
with Kronos. In SMKD, the lack of rekey
after a membership change is even more
serious. SMKD uses the same technique
as the GKMP (seen in Section 4), namely
using a unique KEK to encrypt the next
group key, which has the undesirable ef-
fect of not allowing removal of members.

Limiting the rekey operation to the sub-
group where the membership change has
occurred avoids the need for making all
members change to a new key. It min-
imizes the number of control messages.
However, the only solutions proposed so
far employ the use of different keys per
subgroup. This solution requires direct in-
terference with the data path by means
of translating messages transiting from a
subgroup to another due to the different

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Survey of Key Management for Secure Group Communication 323

Table V. Comparison Table of Decentralized Frameworks

Scheme/ key Decent. Local Keys vs. Fault Comm.
Feature indep. Mngmt KDC rekey data Rekey tolerant Type

SMKD Y Y Y N Y N N Both

Iolus Y Y Y Y N Y Y 1-to-n

DEP Y N Y N Y N N Both

CS Y N N N Y Y N 1-to-n

MARKS N Y — N Y N Y Both

Kronos N Y Y N Y N Y Both

IGKMP Y Y N N Y Y N Both

Hydra Y Y Y N Y Y Y Both

keys being employed by those subgroups.
Both Iolus and SEMSOMM solve the one-
affects-all problem, but require the data to
be translated.

Finally, we look at the decentralized
controller feature. There are architectures
that, athough using subgroup controllers,
rely on a central subgroup controller to
either control access to the group or gen-
erate the group key. The former situation
clearly spoils the scalability of the system,
because the central controller has to be
contacted to verify the membership valid-
ity of every member in the group. The lat-
ter situation may create a hazard for the
group security if the central controller is
incapable of generating the required keys.

In both CS and DEP architectures, the
central controller has to be contacted dur-
ing join operations in order to authorise it.
However, in the DEP case, the subgroup
controllers do not have to be contacted
again when members leave. Moreover, in
CS, DEP, SEMSOMM, SMKD and IGKMP
frameworks, if the central controller is un-
available the whole group is affected.

6. DISTRIBUTED KEY MANAGEMENT

The distributed key management ap-
proach is characterized by having no group
controller. The group key can be either
generated in a contributory fashion, where
all members contribute their own share
to computation of the group key, or gen-
erated by one member. In the latter case,
although it is fault-tolerant, it may not
be safe to leave any member to generate
new keys since key generation requires se-

cure mechanisms, such as random number
generators, that may not be available to
all members. Moreover, in most contribu-
tory protocols (apart from tree-based ap-
proaches), processing time and communi-
cation requirements increase linearly in
term of the number of members. Addition-
ally, contributory protocols require each
user to be aware of the group member-
ship list to make sure that the protocols
are robust.

We use the following attributes to eval-
uate the efficiency of distributed key man-
agement protocols:

—Number of rounds. The protocol
should try to minimize the number
of iterations among the members to
reduce processing and communication
requirements;

—Number of messages. The overhead in-
troduced by every message exchanged
between members produces unbearable
delays as the group grows. Therefore,
the protocol should require a minimum
number of messages;

—Processing during setup. Computa-
tions needed during setup time. Setting
up the group requires most of the com-
putation involved in maintaining the
group, because all members need to be
contacted;

—DH key. Identify whether the proto-
col uses Diffie–Hellman (DH) [Diffie and
Hellman 1976] to generate the keys. The
use of DH to generate the group key im-
plies that the group key is generated in
a contributory fashion.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

324 S. Rafaeli and D. Hutchison

6.1. Burmester and Desmedt Protocol

Burmester and Desmedt [1994] proposed
a very efficient protocol that executes in
only three rounds:

(1) member mi generates its random ex-
ponent ri and broadcasts Z i = αri ;

(2) member mi computes and broadcasts
X i = (Z i+1/Z i−1)ri ;

(3) member mi can now compute key k =

Z
nri

i−1 · X n−i
i · X n−2

i+1 · · · X i−2mod p.

The BD protocol requires n + 1 expo-
nentiations per member and in all but one
the exponent is at most n − 1. The draw-
back is the requirement of 2n broadcast
messages.

6.2. Group Diffie–Hellman Key Exchange

Group Diffie–Hellman key exchange
[Steiner et al. 1996] is an extension for
the DH key agreement protocol that
supports group operations. The DH pro-
tocol is used for two parties to agree on
a common key. In this protocol, instead
of two entities, the group may have n
members. The group agrees on a pair of
primes (q and α) and starts calculating
in a distributive fashion the intermediate
values. The first member calculates the
first value (αx1) and passes it to the next
member. Each subsequent member re-
ceives the set of intermediary values and
raises them using its own secret number
generating a new set. A set generated by
the ith member will have i intermediate
values with i−1 exponents and a cardinal
value containing all exponents.

For example, the fourth member re-
ceives the set:

{αx2x3 , αx1x3 , αx1x2 , αx1x2x3}

and generates the set

{αx2x3x4 , αx1x3x4 , αx1x2x4 , αx1x2x3 , αx1x2x3x4}.

The cardinal value in this example is
αx1x2x3x4 . The last member (n) can eas-
ily calculate k from the cardinal value
(k = αx1···xn mod q). Member n raises

all intermediate values to its secret value
and multicasts the whole set. Each group
member extracts its respective intermedi-
ate value and calculates k. The setup time
is linear (in terms of n) since all mem-
bers must contribute to generating the
group key. Therefore, the size of the mes-
sage increases as the sequence is reach-
ing the last members and more inter-
mediate values are necessary. With that,
the number of exponential operations also
increases.

6.3. Octopus Protocol

Becker and Wille [1998] proposed the oc-
topus protocol. This protocol is also based
on DH key exchange protocol. In Octopus,
the large group (composed by n members)
is split into four subgroups (n/4 members
each). Each subgroup agrees internally
on an intermediary DH value (Isubgroup =
αu1···un/4 , where ui is the contribution from
user i) and then the subgroups exchange
their intermediary values. All group mem-
bers can then calculate the group key. The
leader member in each subgroup is re-
sponsible for collecting contributions from
all its subgroup members and calculat-
ing the intermediary DH value (Isubgroup).
Let us call the subgroup leaders A, B,
C and D. First, A and B, using DH, ex-
change their intermediary values (Ia and
Ib) creating α Ia .Ib. Also, C and D do the
same and create α Ic .Id . Then, A and C ex-
change α Ia .Ib and α Ic .Id . Leaders B and D
do the same. Now, all of them can calculate
α Ia .Ib.Ic .Id . After that, A, B, C and D send to

their respective subgroups α
Ia .Ib.Ic .Id

ui , where
i = 1 · · · (n − 4)/4, and all members of the
group are capable of calculating the group
key.

6.4. Conference Key Agreement

Boyd [1997] proposed yet another proto-
col for conference key agreement (CKA)
where all group members contribute to
generating the group key. The group key
is generated with a combining function:
K = f (N1, h(N2), . . . , h(Nn)), where f is
the combining function (a MAC [Schneier
1996]), h is a one-way function, n is the

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Survey of Key Management for Secure Group Communication 325

group size and Ni is the contribution
from group member i. The protocol spec-
ifies that n − 1 members broadcast their
contributions (Ni) in the clear. The group
leader, for example U1, encrypts its con-
tribution (N1) with the public key of each
n− 1 group member and broadcasts it. All
group members who had their public key
used to encrypt N1 can decrypt it and gen-
erate the group key.

6.5. Distributed Logical Key Hierarchy

A distributed approach based on the log-
ical key hierarchy is suggested by Rodeh
et al. [2000]. In this approach, the GC is
completely abolished and the logical key
hierarchy is generated among the mem-
bers, therefore there is no entity that
knows all the keys at the same time. This
protocol uses the notion of subtrees agree-
ing on a mutual key. This means that two
groups of members, namely subtree L and
subtree R, agree on a mutual encryption
key. Member ml is assumed to be L’s leader
and member mr is R’s leader. Subtree L
has subtree key kL and subtree R has sub-
tree key kR . The protocol used to agree on
a mutual key goes as follows:

(1) Member ml chooses a new key kLR , and
sends it to member mr using a secure
channel.

(2) Member ml encrypts key kLR with key
kL and multicasts it to members of sub-
tree L; member mr encrypts key kL R
with key kR and multicasts it to mem-
bers of subtree R.

(3) All members (L∪R) receive the new
key.

Figure 12 shows an example of the dis-
tributed LKH tree:

(1) Members 1 and 2 agree on subtree key
k12

Members 3 and 4 agree on subtree key
k34

Members 5 and 6 agree on subtree key
k56

Members 7 and 8 agree on subtree key
k78

(2) Members 1, 2 and 3, 4 agree on subtree
key k14

Fig. 12. LKH tree.

Members 5, 6 and 7, 8 agree on mutual
key k58

(3) Members 1, 2, 3, 4 and 5, 6, 7, 8 agree
on mutual key k18

In this case, the algorithm takes three
rounds and each member stores three
keys. This algorithm takes log2 n rounds to
complete, with each member storing log2 n
keys.

6.6. Distributed One-way Function Tree

Another approach using logical key hierar-
chy in a distributed fashion was proposed
by Dondeti et al. [1999a]. This protocol
uses the one-way function tree proposed
by McGrew and Sherman. The difference
is that there is no centralized controlling
entity. Moreover, every group member is
trusted with access control and key gener-
ation. A member is responsible for gener-
ating its own key and sending the blinded
version of this key to its sibling. As in the
centralized one-way function tree, every
member knows all keys in the path from
its node to the root node and all blinded
keys from the sibling node to the nodes in
the path to the root.

6.7. Diffie–Hellman Logical Key Hierarchy

Perrig [1999] and Kim et al. [2000] also
used a logical key hierarchy to minimise
the number of key held by group mem-
bers. The difference here is that group
members generate the keys in the upper
levels using the Diffie–Hellman algorithm
rather than using a one-way function.
The key of each node is generated from
its two children (k = αkl kr mod p). Using

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

326 S. Rafaeli and D. Hutchison

Table VI. Comparison Table of Distributed Key Management Protocols

Scheme/ No. messages Setup

Feature Nro. rounds Multicast Unicast DH key Leader Others

BD 3 2n 0 N — (n + 1)Ex

G-DH n n n − 1 Y — (i + 1)Ex

Octopus 2(n − 4)/4 + 2 0 3n − 4 Y (2(n − 4)/4 + 2)Ex 4Ex

CKA 3 n n − 1 N H + (n − 1)(E + H) + M D + nH + M

D LKH 3 1 n N log2 nEx log2 nD

D OFT log2 n 0 2 log2 n N — log2 n(H + X)

DH-LKH log2 n log2 n 0 Y — (log2 n + 1)Ex

DFT n 0 2n − 1 N (i-1)E iD

Figure 12 as an example, keys k12 = αk1k2

mod p, k34 = αk3k4mod p, k56 = αk5k6mod p
and k78 = αk7k8mod p. Following the algo-
rithm, keys k14 = αk12k34mod p and k58 =
αk56k78mod p, and k18 = αk14k58mod p (or

k18 = ααα
k1k2 α

k3k4
αα

k5k6 α
k7k8

mod p).

6.8. Distributed Flat Table

Waldvogel et al. [1999] extends further
its solution, proposing to use the flat ta-
ble in a distributed (DFT) fashion with no
Group Controller. In this scheme, no mem-
ber knows all the keys at any time. Each
member knows only the KEKs that it is
entitled to. The distributed management
has an inconvenience, namely that a join-
ing member is obliged to contact a group of
members to get all the keys needed. Fur-
thermore, since many members could be
changing the same key at the same time,
there could be serious delays in synchro-
nizing the keys.

6.9. Summary

In this section, we summarize and com-
pare the properties of those distributed
key management protocols presented in
Section 6. We focus our criteria on those
characteristics presented at the beginning
of Section 6. Table VI shows a summary
of the properties that we analyze on a
key management protocol. A Value writ-
ten in bold is the best value for a certain
column.

The notation used in Table VI is de-
scribed in Table VI:

The elements that appear in Table VI
mean:

Notation for Table VI.

n number of members in the group
i index of member
I index size
H hash function execution
X xor operation
E encryption
D decryption

Ex exponentiation
M MAC

The DH key column has no values in
bold, because the use of DH to generate
the group key does not imply any direct
benefit. DH key generation is only a tech-
nique that can be used for generating the
group key in a contributory fashion.

Those protocols that do not rely on a
group leader during setup time have an
advantage over those with a group leader
because, without a leader, all members are
treated equally and if one or more mem-
bers fail to complete the setup, it will not
affect the whole group. In those protocols
with a group leader, a leader failure is fa-
tal for creating the group and the opera-
tion has to be restarted from scratch.

Both CKA and DH-LKH have a fixed
number of rounds, which means that the
number of interactions among the mem-
bers is independent of the number of mem-
bers in the group. The operations in these
two protocols can be done in parallel, min-
imizing the amount of time needed to
create the group key. However, they both
rely on a leader to collect contributions

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Survey of Key Management for Secure Group Communication 327

from all other members and then broad-
cast them to the others, and as we have
discussed before, if the leader fails, the
whole group is affected and the whole op-
eration has to be restarted.

Protocols like D-OFT and DH-LKH do
not have a leader during setup time
and all members compute the interme-
diary values independently. At the final
round, all members compute the same
group key. Any member failure can be ig-
nored, because it does not block the other
members.

7. CONCLUSION

In this article, we presented a survey
in the secure group communication area,
particularly regarding the secure distri-
bution and refreshment of keying ma-
terial. We reviewed several proposals,
placing them into three main classes:
group key management protocols, which
try to minimise the requirements of
KDC and group members; decentralized
architectures, which divide large group
in smaller subgroups in order to make
the management more scalable; and fi-
nally, the distributed key management
protocols, which gives all members the
same responsibilities. Every class has its
particularities, presenting different fea-
tures, requirements and goals.

Our analysis made it clear there is no
unique solution that can achieve all re-
quirements. While centralized key man-
agement schemes are easy to implement,
they tend to impose an overhead on a sin-
gle entity. Protocols based on hierarchical
subgrouping are relatively harder to im-
plement and raise other issues, such as
interfering with the data path or imposing
security hazards on the group. Distributed
key management, by design, is simply
not scalable. Additionally, the best solu-
tion for a particular application may not
be best for another, hence it is important
to understand fully the requirements of
the application before selecting a security
solution.

A solution for secure group commu-
nication should complement a multicast
application rather than drive its imple-

mentation. Primarily, the usage of secu-
rity mechanism for secure group commu-
nication should be made transparent to
the user and it should also work well with
other protocols.

REFERENCES

BALLARDIE, A. 1996. Scalable Multicast Key Distri-
bution. RFC 1949.

BALLARDIE, A. AND CROWCROFT, J. 1995. Multicast
specific security threats and counter-measures.
In Proceedings of the Symposium on Network
and Distributed System Security. (San Diego,
Calif., Feb.).

BECKER, C. AND WILLE, U. 1998. Communication
complexity of group key distribution. In Proceed-
ings of the 5th ACM Conference on Computer
and Communications Security. (San Francisco,
Calif., Nov.). ACM, New York.

BOYD, C. 1997. On key agreement and confer-
ence key agreement. In Proceedings of the In-
formation Security and Privacy: Australasian
Conference. Lecture Notes in Computer Sci-
ence, vol. 1270. Springer-Verlag, New York, 294–
302.

BRISCOE, B. 1999. MARKS: Multicast key manage-
ment using arbitrarily revealed key sequences.
In Proceedings of the 1st International Workshop
on Networked Group Communication. (Pisa,
Italy, Nov.).

BURMESTER, M. AND DESMEDT, Y. 1994. A secure and
efficient conference key distribution system (ex-
tended abstract). In Advances in Cryptology—
EUROCRYPT 94, A. D. Santis, Ed., Lecture
Notes in Computer Science, vol. 950. Springer-
Verlag, New York, pp. 275–286.

CANETTI, R., GARAY, J., ITKIS, G., MICCIANCIO, D., NAOR,
M., AND PINKAS, B. 1999a. Multicast Security:
A Taxonomy and Some Efficient Constructions.
In Proceedings of the IEEE INFOCOM. Vol. 2.
(New Yok, N.Y., Mar.). 708–716.

CANETTI, R., MALKIN, T., AND NISSIM, K. 1999b. Effi-
cient communication-storage tradeoffs for mul-
ticast encryption. In Advances in Cryptology—
EUROCRYPT ’99, J. Stem, Ed. Lectures Notes
in Computer Science, vol. 1599. Springer-Verlag,
New York, pp. 459–474.

CHANG, I., ENGEL, R., KANDLUR, D., PENDARAKIS, D.,
AND SAHA, D. 1999. Key management for se-
cure internet multicast using boolean function
minimization techniques. In IEEE INFOCOM.
Vol. 2. (New York, March 1999), 689–698.

DECLEENE, B., DONDETI, L., GRIFFIN, S., HARDJONO, T.,
KIWIOR, D., KUROSE, J., TOWSLEY, D., VASUDEVAN,
S., AND ZHANG, C. 2001. Secure group commu-
nications for wireless networks. In Proceedings
of the MILCOM. (June).

DEERING, S. 1989. Host Extensions for IP Multicas-
ting. RFC 1112.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

328 S. Rafaeli and D. Hutchison

DIFFIE, W. AND HELLMAN, M. E. 1976. New direc-
tions in cryptography. IEEE Trans. Inf. Theory
IT-22, 6 (Nov.), 644–654.

DONDETI, L., MUKHERJEE, S., AND SAMAL, A. 1999a.
A distributed group key management
scheme for secure many-to-many commu-
nication. Tech. Rep. PINTL-TR-207-99, De-
partment of Computer Science, University of
Maryland.

DONDETI, L., MUKHERJEE, S., AND SAMAL, A. 1999b.
Scalable secure one-to-many group communi-
cation using dual encryption. Comput. Com-
mun. 23, 17 (Nov.), 1681–1701.

FENNER, W. 1997. Internet Group Management
Protocol, Version 2. RFC 2236.

GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. 1986.
How to construct random functions. J. ACM 33, 4
(Oct.), 792–807.

HARDJONO, T. AND TSUDIK, G. 2000. IP multicast se-
curity: Issues and directions. Ann. Telecom. 324–
340.

HARNEY, H. AND MUCKENHIRN, C. 1997a. Group
Key Management Protocol (GKMP) Specifica-
tion. RFC 2093.

HARNEY, H. AND MUCKENHIRN, C. 1997b. Group
Key Management Protocol (GKMP) Architecture.
RFC 2094.

KIM, Y., PERRIG, A., AND TSUDIK, G. 2000. Sim-
ple and fault-tolerant key agreement for dy-
namic collaborative groups. In Proceedings of
the 7th ACM Conference in Computer and
Communication Security, (Athens, Greece Nov.).
(S. Jajodia and P. Samarati, Eds.), pp. 235–
241.

LI, M., POOVENDRAN, R., AND BERENSTEIN, C. 2001.
Optimization of key storage for secure. In Pro-
ceedings of the 35th Annual Conference on In-
formation Sciences and Systems (CISS). (John
Hopkins, Mar.).

MCDANIEL, P., PRAKASH, A., AND HONEYMAN, P. 1999.
Antigone: A flexible framework for secure
group communication. In Proceedings of the
8th USENIX Security Symposium. (Washington,
D.C. Aug.). 99–114.

MCGREW, D. A. AND SHERMAN, A. T. 1998. Key es-
tablishment in large dynamic groups using one-
way function trees. Tech. Rep. No. 0755 (May),
TIS Labs at Network Associates, Inc., Glenwood,
Md.

MEYER, D. 1998. Administratively Scoped IP
Multicast. RFC 2365.

MILLS, D. L. 1992. Network Time Protocol (Version
3) Specification, Implementation and Analysis.
RFC 1305.

MITTRA, S. 1997. Iolus: A framework for scalable
secure multicasting. In Proceedings of the ACM
SIGCOMM. Vol. 27, 4 (New York, Sept.) ACM,
New York, pp. 277–288.

MOLVA, R. AND PANNETRAT, A. 1999. Scalable mul-
ticast security in dynamic groups. In Proceed-
ings of the 6th ACM Conference on Computer and

Communications Security. (Singapore, Nov.).
ACM, New York, 101–112.

MOYER, M. J., RAO, J. R., AND ROHATGI, P. 1999. A
survey of security issues in multcast communi-
cations. IEEE Netw. Mag. 13, 6 (Nov./Dec.), 12–
23.

PERRIG, A. 1999. Efficient collaborative key man-
agement protocols for secure autonomous group
communication. In Proceedings of the Interna-
tional Workshop on Cryptographic Techniques
and E-Commerce (CrypTEC’99). (Hong Kong,
China, July). M. Blum and C H Lee, Eds. City
University of Hong Kong Press, Hong Kong,
China, pp. 192–202.

PERRIG, A., SONG, D., AND TYGAR, J. D. 2001. ELK, A
new protocol for efficient large-group key distri-
bution. In Proceedings of the IEEE Symposium
on Security and Privacy. (Oakland, Calif., May).
IEEE Computer Society Press, Los Alamitos,
Calif.

RAFAELI, S. AND HUTCHISON, D. 2002. Hydra: A de-
centralised group key management. In Proceed-
ings of the 11th IEEE International WETICE:
Enterprise Security Workshop, A. Jacobs, Ed.
(Pittsburgh, Pa., June). IEEE Computer Society
Press, Los Alamitos, Calif.

RAFAELI, S., MATHY, L., AND HUTCHISON, D. 2001.
EHBT: An efficient protocol for group key man-
agement. In Proceedings of the 3rd Interna-
tional Workshop on Networked Group Commu-
nications. (London, U.K., Nov.). Lecture Notes
in Computer Science, vol. 2233. Springer-Verlag,
New York, pp. 159–171. Springer-Verlag.

RIVEST, R. 1992. The MD5 Message-Digest Algorithm.
RFC 1321.

RODEH, O., BIRMAN, K., AND DOLEV, D. 2000. Opti-
mized group rekey for group communication sys-
tems. In Network and Distributed System Secu-
rity. (San Diego, Calif., Feb.).

SCHNEIER, B. 1996. Applied Cryptography Second
Edition: protocols, algorithms, and source code
in C. Wiley, New York. ISBN 0-471-11709-9.

SETIA, S., KOUSSIH, S., AND JAJODIA, S. 2000. Kronos:
A scalable group re-keying approach for se-
cure multicast. In Proceedings of the IEEE
Symposium on Security and Privacy. (Oakland
Calif., May). IEEE Computer Society Press, Los
Alamitos, Calif.

STEINER, M., TSUDIK, G., AND WAIDNER, M. 1996.
Diffie-Hellman key distribution extended to
group communication. In SIGSAC Proceedings
of the 3rd ACM Conference on Computer and
Communications Security. (New Delhi, India,
Mar.). ACM, New York, pp. 31–37.

WALDVOGEL, M., CARONNI, G., SUN, D., WEILER, N.,
AND PLATTNER, B. 1999. The VersaKey frame-
work: Versatile group key management. IEEE
J. Sel. Areas Commun. (Special Issue on Middle-
ware) 17, 9 (Aug.), 1614–1631.

WALLNER, D., HARDER, E., AND AGEE, R. 1999. Key
Management for Multicast: Issues and Architec-
tures. RFC 2627.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Survey of Key Management for Secure Group Communication 329

WEGENER, I. 1987. The Complexity of Boolean
Functions. Wiley, New York. ISBN: 0-471-
91555-6.

WEILER, N. 2001. SEMSOMM—A scalable multi-
ple encryption scheme for one-to-many multi-
cast. In Proceedings of the 10th IEEE Interna-

tional WETICE Enterprises Security Workshop,
(Cambridge, Mass., June). IEEE Computer So-
ciety Press, Los Alamitos, Calif.

WONG, C. K., GOUDA, M. G., AND LAM, S. S. 2000.
Secure group communications using key graphs.
IEEE/ACM Trans. Netw. 8, 1 (Feb.), 16–30.

Received July 2001; accepted June 2003

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

