
November 1986 LIDS-P-1623

A SURVEY OF LARGE TIME ASYMPTOTICS

OF SIMULATED ANNEALING ALGORITHMSt

John N. Tsitsiklis

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

Simulated annealing is a probabilistic algorithm for minimizing a general cost function which

may have multiple local minima. The amount of randomness in this algorithm is controlled by

the "temperature", a scalar parameter which is decreased to zero as the algorithm progresses. We

consider the case where the minimization is carried out over a finite domain and we present a

survey of several results and analytical tools for studying the asymptotic behavior of the simulated

annealing algorithm, as time goes to infinity and temperature approaches zero.

I. Introduction.

Simulated annealing is a probabilistic algorithm for minimizing a general cost function which

may have multiple local minima. It has been introduced in [1] and [21 and was motivated by the

Metropolis algorithm [3] in statistical mechanics. Since then, it has been applied to a variety of

problems, the main ones arising in the context of combinatorial optimization [1,4,5,6] and in the

context of image restoration [7].

Let S = (1,...,N} be a finite state space, let Z be the set of nonnegative integers and let

J S '- Z be a cost function to be minimized. We assume that, for each i E S, we are also given

a set S(i) c S, to be called the set of neighbors of i. Let us assume that

j E S(i) if and only if i E S(j). (11)

The neighborhood structure of S may be also described by a graph G = (5, E), where E, the set

of edges is defined by E = {(i,j) : j E S(i)}. Given a neighborhood structure, a natural method

for trying to optimize J is the "descent" method: given the present state i E 5, one examines

the neighbors of i and lets the state become some j E S(i) such that J(j) < J(i). The descent

method, in general, cannot find a global optimum; it is possible that J(i) < J(j), Vj E S(i),

without i being a global minimizer of J. Multistart algorithms provide a popular modification

of the descent method in which the above described procedure is repeated, starting from random

and independently chosen initial states. This guarantees that eventually a global minimum will be

reached, but depending on the structure of the problem, this may take too long.

t Research supported by the Army Research Office under contract DAAAG-29-84-K-0005.



2

Simulated annealing may be viewed as another probabilistic modification of the descent method

in which randomness is introduced in a somewhat different way. The algorithm proceeds as follows.

For each (i,j) E E we are given a positive scalar Qij. We assume that EjEs(i) Qij = 1. For

notational convenience we also let Qii = 0, if (i,j) 0 E. Let i be the state of the algorithm at

time t. Then, one chooses randomly a neighbor of i, with Qii being the probability that j E S(i)

is selected. If J(j) < J(i), the state moves to j. If J(j) > J(i), then the state moves to j, with

probability exp{-(J(j) - J(i))/T(t)}, or stays at i, with probability 1- exp{-(J(j)- J(i))/T(t)}.

Here T(t) is a time-varying parameter, called the temperature for historical reasons (see Section

II), which controls the amount of randomness in the algorithm. It is clear that simulated annealing

is similar to hill-climbing, except that transitions which increase the cost are sometimes allowed to

occur.

Notice that when temperature is small, the probability of upward transitions is small and there-

fore the algorithm will take a very long time to escape from a local (but non-global) minimum.

On the other hand if temperature is large, the tendency of the algorithm to move downwards is

reduced and the algorithm may oscillate for a long time in the neighborhood of a global minimum

before it reaches it. Thus, the choice of T(-) (which will be called a temperature schedule or simply

schedule) becomes a very delicate issue. The common prescription is to start with a fairly large

temperature and then gradually decrease it towards zero. In subsequent sections we explore the

dependence of the asymptotic behavior of the simulated annealing algorithm on the rate at which

temperature converges to zero. We should mention here that, as far as applications are concerned,

it is also important to study the asymptotic behavior of simulated annealing as a function of the

size of the problem being solved. Very few results [8j of this type are available at present.

Outline of the paper: In Section II we mention briefly the motivation of simulated annealing

from statistical mechanics. In Section III we examine the behavior of the algorithm for the case

where the temperature is kept at a small constant value. Then, in Section IV, we examine the case

where T(-) is piecewise constant and motivate the logarithmic schedules of the form

T(t) = ogt' (1.2)

where 6 is a positive scalar. In Section V we present some general tools for analyzing Markov chains

with rare transitions. These tools are used in Section VI to obtain a complete characterization of

the asymptotics of simulated annealing for a schedule which is a piecewise constant approximation

of the schedule (1.2). In Section VII we derive the smallest value of the constant 6 [see equation

(1.2)] for which convergence to the set of global minima is obtained.

The results in Sections III and IV are adaptations of some results in [7, 9, 10, 11, 12]. Some of

the results of Sections V and VI have been proved in [14], in somewhat more general form. The

main result of Section VII (Corollary 7.7) is due to Hajek [131. The derivation here is new and is

based on the results of Sections V and VI.
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II. The Origins of Simulated Annealing in Statistical Mechanics.

Consider a particle which may be found in any state in a state space S, let J be a nonnegative

integer valued function determining the energy of the particle, as a function of its state, and let S*

be the set of states at which J is minimized. One of the principles of statistical mechanics is that

such a particle, in thermal equilibrium with a heat bath at temperature T, will reside at state i

with probability

rT()= exp [ - J (2.1)

where ZT is a normalizing constant. It is then straightforward to verify that, the limit, as T l 0, of

the probability that the particle lies in the set S' of global minima of J, is equal to 1. This suggests

the following method for identifying elements of S*: simulate the behavior of such a particle, with

a small temperature, for a sufficiently long time to allow the particle to reach steady state; then,

the particle will, with very high probability occupy a state in S*. This is straightforward, provided

that we are able to construct a Markov chain whose invariant probability distribution is given by

equation (2.1). There are several alternatives for accomplishing this; the first one was suggested in

[3]. For our purposes we will only consider the alternative that follows.

Let ZT(-) be a stationary, discrete time, Markov chain with state space S = {1,..., N}, and let

its one step transition probabilities be

qT(i,j) = P(T(t + ) = j T(t)=i) =Qiexp [-max{O, J(j)-J(i)}] i j (2.2a)

qT(i,i) = 1 - qT(i,j). (2.2b)
jfi

Here, the scalars Qij have the properties postulated in Section I. We further assume that this

Markov chain is irreducible and aperiodic and that

Qii = Qji, (strong reversibility). (2.3)

Under these assumptions we have the following.

Lemma 2.1: The (unique) vector of invariant probabilities of the Markov chain XT(.) is given by

(2.1).

Proof: Some straightforward algebra shows that YiES rT(i)qT(i,j) = XT(i), and the result follows.

We notice that the simulated annealing algorithm is no different from the above Markov chain,

were it not for temperature variations. This provides us with some additional understanding of the

role of the temperature parameter. Equation (2.1) shows that a small temperature is desirable,

since it leads to a large probability of being at S*'. On the other hand it turns out that if T is small,

then the above described Markov chain requires a long time to reach steady state (see Section III).

This is just a different aspect of the tradeoff mentioned in Section I.
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If strong reversibilty fails to hold but instead we assume the condition

Qij > 0 if and only if Qji > 0, (structural reversibility), (2.4)

then the steady state probabilities are not given by (2.1) anymore. Nevertheless, it remains true

that

lilimim P(xT(t) E S) = 1. (2.5)
TI0 t--oo

Equation (2.5) shows that in order to obtain a state in S* (with high probability) we may

simulate the chain ST(-), at a fixed temperature, until steady state is reached, then simulate it

again with a smaller temperature and so on. However, we would like to obtain a state in S* with

a single simulation. A solution which suggests itself is that we decrease the temperature in the

course of a single simulation. This argument provides some motivation for schedules with decreasing

temperature, such as the one given by equation (1.2).

III. Time Evolution in the Constant Temperature Case.

The time evolution of simulated annealing is a lot simpler to understand when temperature is

kept constant. We thus assume that T has been fixed to a small positive value and we consider

the Markov chain zT(.) with transition probabilities defined by (2.2). We first change our notation

slightly by introducing a new parameter e defined by e = exp{-1/T}. (Accordingly, with a slight

abuse of notation, we will write z,(t) instead of ZT(t).) Notice that 0 < e < 1 and that the one

step-transition probabilities of z ,(t), expressed as functions of e, are given by the formula

q,(ij) = p~jec( ii) (3.1)

where each Rji is positive and where each a(i, j) is either a nonnegative integer or equal to infinity.

(We use the convention 0°° = 0.) In particular, for j 5 i we have a(i,j) = oo, if Qii = 0, and

a(i,j) = max{0, J(j) - J(i)}, otherwise. We are thus dealing with a Markov chain whose one

step transition probabilities are powers of a small parameter. This is the situation encountered in

perturbation theory of Markov chains [15,16,17,18]. In particular, the following are known. The

eigenvalue of largest magnitude is equal to 1 and it is an isolated eigenvalue if z, (-) is irreducible.

Assuming that zx(-) is also aperiodic, the eigenvalue A, with largest modulus among the remaining

eigenvalues satisfies

A, = 1- AEA + o(eA), (3.2)

where A is some constant, A is a nonnegative integer and o(eA) represents terms which are negligible

compared to eA, as e I 0 [15].

Equation (3.2) provides us with some information on the long-run behavior of z,(.) because the

time constant which governs the rate at which x,(.) reaches steady state is equal to 1/A,. However,

the constant A of equation (3.2) is, in general, hard to compute and for this reason the earlier work

on simulated annealing has been based on bounds for A.
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A simple estimate for Ae, and a corresponding bound for A, may obtained as follows. Let r be

the smallest integer such that the number Be defined by

Be = max min P(x, (r) = i I ,(O) = j) (3.3)
i 

is positive. (Such a r is guaranteed to exist if xe(.) is irreducible and aperiodic and is independent

of E because it only depends on the set of transitions which have positive probability and not on

the exact numerical values of the transition probabilities.) We let

R = min Ri, (3.4)

a* = max max a(i,j), (3.5)
i jEs(i)

where a(i,j), Rij have been defined in equation (3.1). Every transition probability q6(i,j) which

is nonzero is bounded below by REc * . It follows that the constant Be defined by (3.3) satisfies

B, > (ReC)r.

We now use the well-known estimate (Ae)r < 1- Be. Thus,

A, < (1- Rrera)l/r < 1_ RrrET'. (3.6)

By comparing (3.6) with (3.2), we conclude that A < ra*. We have thus proved the following.

Proposition 3.1: Assume that xz,() is irreducible and aperiodic, for every e > 0. Let A, r, ca* be

defined by (3.2), (3.4), (3.5), respectively. Then, A < ra'.

IV. The Evolution in the Case of Piecewise Constant Temperatures.

Let {tk} be an increasing sequence, with t1 = 1. Let us consider a schedule of the form T(t) = k 

for tk < t < tk+l. Equivalently,

e(t) = e- , tk < t < tk+1 (4.1)

Following the prescription of Section II, we shall take the difference t,+l - tk to be large enough

so that the stationary Markov chain (at temperature 1/k) comes arbitrarily close to steady state.

For this to occur, it is sufficient to let tk+1 - tk correspond to an arbitrarily large number of time

constants of the Markov chain XT(.), at temperature T = 1/k (equivalently, with e = e-k). Using

equation (3.2), the relevant time constant is of the order of E-C, that is, of the order of ekA. We

thus let

tk+l - tk = exp{kS}, (4.2)

where 6 is a scalar strictly larger than A. Equation (4.2) implies that tk ; exp{k5} (within

a bounded multiplicative constant). Thus, T(tk) = 1/k - -ot'. We have been thus led to

a logarithmic schedule, similar to the one in equation (1.2). The schedule here is a piecewise
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constant approximation of the scedule (1.2). A piecewise constant schedule is much easier to

analyze because the machinery of perturbed stationary Markov chains, such as the result quoted

in Section III [equation (3.2)], becomes applicable. For this reason we focus in this paper on the

case of such piecewise constant schedules and refer the reader to the literature for the extension to

more general cases. The following result summarizes the above discussion.

Proposition 4.1: Assume that the stationary Markov chain z,(.), whose transition probabilities are

determined by (2.2), is irreducible and aperiodic for every e E (0,1) and that equation (2.3) holds.

With the schedule determined by equations (4.1), (4.2), and with 6 > A, we have

lim P(x(t) E S*Iz(O) = i) = 1, Vi e S, (4.3)
t--*00

where z(.) is the resulting non-stationary Markov chain.

The outline of the proof of Proposition 4.1 that we have provided is conceptually similar to the

ones in [7] and [10], except that these references do not mention the second eigenvalue but work

with conservative estimates of the second eigenvalue, similar to the estimate provided by equation

(3.6). Reference [11] works with the eigenvalue exponent A and carries out the proof for the more

general case of nonincreasing temperature schedules which are not piecewise constant and obtains

an extension of Proposition 4.1. Let us also point out here that Proposition 4.1 remains valid even

if the condition S > A is weakened to 6 > A.

Proposition 4.1 does not furnish the best possible conditions for the validity of (4.3). To illustrate

this, consider a cost function J in which every local minimum is also a global minimum. For such

a cost function, pure descent (that is, zero temeperature) will satisfy (4.3) and this is also the

case for any temperature schedule such that limt-.o T(t) = 0. On the other hand if an increase

in costs is necessary in order to go from one local minimum to another, then the time needed to

reach equilibrium goes to infinity, as T I 0, and therefore A is nonzero; thus Proposition 2.1 places

an unnecessary restriction on the admissible schedules. In the next few sections we obtain tighter

conditions (necessary and sufficient) on 6, for equation (4.3) to hold.

V. Order of Magnitude Estimates for Markov Chains with Rare Transitions.

In this section we present some results concerning a family of stationary Markov chains {x (-)),

parametrized by a small positive parameter e > 0. These results are applicable to the simulated

annealing algorithm for time intervals during which the temperature is constant. We will use them,

in particular, to analyze the case of the piecewise constant schedule determined by (4.1), (4.2).

Let A. be the set of all functions from S x S into the set {0, 1,2,...)} {oo). Thus any a E A

corresponds to a collection a = {a(i,j) : i,j E S} of coefficients. Let C 1 , C 2 be constants. We

assume that, for any e E [0, 1), we have a stationary Markov chain xz(.) whose one-step transition

probabilities satisfy the inequalities

Cl'a(ii,) < P(X,(t + 1) = i I z,(t) = j) < CGE•(i i ) , Ve E [0, 1). (5.1)
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(We use the conventions that E°° = 0 and 0 ° = 1.) Notice that equation (3.1) is a special case of

(5.1). Notice that in the context of Markov chains a is not completely arbitrary. In particular, the

probabilities out of a fixed state have to add to 1. This implies that for every i there exists some

j such that a(i,j) = 0. We let A be the set of all a E A that have this property.

The result that follows provides us with similar inequalities describing the long run behavior of

Proposition 5.1: We assume that for any c E [0,1) the stationary Markov chain xz(-) satisfies (5.1),

is irreducible and each one of the irreducible components in an ergodic decomposition of x0 (-) is

aperiodic. Then, for any positive integer d, there exists a collection of coefficients Vd E A and two

positive constants Cd, Cd such that

Cd1'V(ui' ) < P( x(t + E- d ) = i I xt(t) = j) < CdEVd(i,), VE E (0, )t. (5.2)

A proof of this result may be found in [14]. A related result, in somewhat different form, is

implicit in [17]. The above result is should not be surprising and its only nontrivial feature is that

the same constants Cd, Cd work for all choices of e.

What is more interesting for our purposes is the actual computation of the coefficients Vd(i,j)

in terms of the original coefficients a(i,j). For this, we need to develop some auxiliary notation

and terminology. We define a map H': A '- A, as follows. For every a E A, we let (Ha)(i,j) be

the shortest distance from i to j, where the length of link (k, e) is taken to be equal to a(k, e). A

useful property of H is that it is monotone: if a _< , then Ha < Hp. Furthermore, for every

a E A and for any i,j, k E S we have the triangle inequality (Ha)(i, k) < (Ha)(i,j) + (Ha)(j, k).

For any a E A we let R(a) be the subset of S defined by R(a) = (i: (Ha)(i,j) = 0 implies

(Ha)(j,i) = 0}. For any a E A, i E R(a), we let Ri(a) = {j: (Ha)(i,j) = 0O. It is easy to see

that if i E R(a) and j E Ri(a), then j E R(a) and i E R,(a). It is useful to think of R(a) as the

set of recurrent states in the fastest time scale. That is, for times of the order of 1, we neglect any

transitions which have probability of the order of e or smaller and we identify R(a) as the set'of

recurrent states for the resulting state transition diagram.

We define a mapping F: A 4-* A by

(Fa)(i,j) = a(i,j) - 1, if i E R(a), j S Ri(a), (5.3a)

(Fa)(i,j) = a(i,j), otherwise. (5.3b)

Finally, we define a mapping t : A . A by

(fa)(ij) = min [(Ha)(i,k) + (HFa)(k,) + (Ha) )(e,j)]. (5.4)
k,tER(a)

t Of course, e- d may be non-integer, but we may define zx(-) to be a right-continuous step

function, with jumps only at integer times; thus, E, (t + e-d) is well-defined.
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In particular, if i,j E R(ct), then H(i,j) is the length of a shortest path from i to j, where the

length of a path is taken to be equal to the sum of the ca(k, t)'s along this path, minus the number

of classes Rk (a) which are exited in the course of this path.

The following result, shows that the coefficients Vd may be recursively computed by iteratively

applying the map H.

Proposition 5.2: Let V ° = a. Under the assumptions of Proposition 5.1, we have

V +l(i,i) = (fVd) (,j), Vd > 0, Vi, j. (5.5)

The proof of Proposition 5.2 is somewhat tedious and is therefore omitted. It may be found in

[14]. It is suggested that the reader applies the iteration (5.5) on a simple example, and its content

will become quite transparent.

Let us provide here an intuitive justification for the formula for Vl(i,j), for the case where

i,j E R(a). Notice that for any path from i to j, the parameter e raised to the power equal to the

sum of the a(k, t) 's along the path is an approximation of the probability that this path is followed,

during a time interval of 0(1) duration. Let us now look at a time interval of the order of 1/e.

Suppose that k E R(ca) and that at some time the state is equal to k. Then, the state stays inside

Rk(a) for at least 0(1/e) time and keeps visiting state k. Thus, a transition from a state k to a

state te Rk(ta) has 0(1/e) opportunities to occur. Therefore, the probability of this transition is

of the order of a(,tt)-l. This should provide some insight as to why the mapping F appears in

formula (5.4).

The following result will be useful later.

Proposition 5.3: Let a E A.

(i) If i E R(cr) and j 0 Ri(a), then ct(i,j) > 1.

(ii) For every i, there exists some j E R(a) such that (Hca)(i,j) = 0.

Proof: (i) If j ¢ R,(a), then a(i,j) > (H-o)(i,j) > 1.

(ii) Suppose that i E R(ca). Let j be such that a(i,j) = 0. Then j E R(a) and (Hca)(i,j) <

a(i,j) = 0.

We now consider the case i ¢ R(a). Consider the following algorithm. Given a current state

ik ¢ R(a), go to a state ik+1 such that at(ik,ik+l) = 0 and (Ha)(ik+l,ik) : 0- [Such a ik+1 must

exist, because otherwise we would have ik E R(a).] This algorithm cannot visit twice the same

state ik, because in that case we would have (Ha)(ik+l, ik) = 0, which is a contradiction. Thus,

the algorithm must eventually enter R(a) and it follows that there exists a zero length path (with

respect to a) from i ¢ R(a) to R(a). -

The following result collects a few useful properties of the coefficients Vd.

Proposition 5.4: (i) For any d > 0, and for any i,j, k we have Vd(i,j) < Vd(i, k) + Vd(k, j).

(ii) If d > 0, i E R(Vd) and j E R/(Vd), then Vd(i,j) = 0.
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(iii) R(Vd+l) c R(Vd).

Proof: (i) Because the map f is defined in terms of shortest path problems [see equation (5.4)], it

easy to verify that (Hra)(i,j) < (fra)(i, k) + (Ho)(k, j), i, j, j k, Va E A, and the result follows.

(ii) If i E R(Vd) E RE RP(Vd), then (HVd)(i,j) = 0. The triangle inequality (part (i)) translates to

HVd - Vd and the result follows.

(iii) Suppose that i 4 R(Vd). Then, Vd(j,i) > 0, Vj E R(Vd), and using (5.4), (5.5), we have

Vd+l(j, i) > O, Vj E R(Vd). On the other hand, there exists some j E R(Vd) such that Vd(i,j) = 0

(Proposition 5.3(ii)) and using (5.4), (5.5), once more, we obtain Vd+l(i,j) = 0. It follows that

i R(vd+l) .

The definition of R(Vd) and inequality (5.2) show that R(Vd) is the set of states on which

probability is concentrated for times of the order of 1/ed. For this reason, we may be interested in

the coefficients Vd(i,j) only for i,j E R(Vd). If this is the case, then the following result provides

a somewhat simpler procedure for computing these coefficients.

Proposition 5.5: Given a E A, let U0 = a and

Ud+l = HFUd. (5.6)

Then, the following are true:

(i) Ud(i,j) = Vd(i,j), Vi,j E R(Vd-), Vd > 1.

(ii) For every d > 0, i E S, there exists some j E R(Vd) such that Ud(i,j) = O, if d > O, or

(HUd)(i, j) = , if d = 0;

(iii) R(Vd) = n=d R(UC), Vd > 0.

Proof: From (5.6), it is easy to see that Ud satisfies the triangle inequality Ud(i,j) < Ud(i, k) +

Ud(k,j), Vij, k, Vd > 0, a fact that we will use freely. (Recall that Vd also satisfies the triangle

inequality, by Proposition 5.4(i).)

The proof is by induction on d. For d = 0, we have U0 = V ° and part (iii) is trivially true. Part

(ii) follows from Proposition 5.3(ii) and the fact U° = V ° .

We now assume that the result is true for some d > 0 and we shall prove it for d + 1.

(i) Let i,j E R(VO). Then, by definition (5.4), we have Vl(i,j) = (HFV°)(i,j) = (HFU0 )(i,j) =

U'(i,j), and this proves part (i) for d = 1.

Suppose now that the result holds for some d > 0. Then, Vd and Ud satisfy the triangle

inequality. Let i,j E R(Vd). Using the definition (5.4) of Vd(i,j) and the triangle inequality,

it is easy to see that Vd+l(i,j) = Elml [Vd(ik,ik+l)- 1], for some path il,i2,...,im such that

il = i, i, = j, ik E R(Vd) and ik+1 ¢ R/- (Vd). Using part (i) of the induction hypothesis we

have Vd(ik, ik+l) - 1 = Ud(ik, ik+1) - 1. Using part (iii) of the induction hypothesis, R(Vd) c

R(Ud) and therefore ik E R(Ud). Furthermore, ik+l ¢ Rik(Vd), which implies Ud(ik,ik+l) =

Vd(ik,ik+l) > 0, which shows that ik+l ¢ Ri,(Ud). Thus Ud(ik,ik+l) - 1 = (FUd)(ik, ik+l).

Thus, Vd+1(i,j) > (HFUd)(i,j)= Ud+l(i,j).
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For the reverse inequality, let il,...,i* be a path from i to j which is of minimal length, with

respect to FUd. Using the triangle inequality again, we may assume, without loss of generality

that ik E R(Ud) and ik+l / Rk (Ud). Then, Ud+l = k=_l[Ud(ik, ik+l) - 1l. For every k, let i' be

an element of R(Vd) such that Ud(ik, i') = 0, which exists by part (ii) of the induction hypothesis.

Since ik E R(Ud), we also have Ud(i, ik) = 0.

Now, using part (i) of the induction hypothesis, the triangle inequality and the above remarks,

we have Vd(iXik+l) - Ud(i, ik+1 < Ud(i, ik) + Ud(ik,ik+l) + Ud(ik+l, i +) = Ud(ik,ik+l).

Furthermore, ik E R(Vd), by construction, and Vd(ik,sik+l) > 0, because otherwise the triangle

inequality would yield Ud(ik,ik+1) = 0, which would contradict the assumption ik+l ¢ Ri,(Ud).

Thus, ik+ R/i (Vd). Therefore, Vd+l(i,j) < [Vd(ia l ik+l)1 =

Ud+1(i,j). This completes the induction step for part (i).

(ii) Let us fix some i and let j E R(Vd) be such that Ud(i,j) = 0. Such a j exists by part (ii) of the

induction hypothesis. We also have Ud+1(i,j) = 0, because Ud+1 < Ud. Then, let k E R(Vd+l)

be such that Vd+l(j,k) = 0, which exists by Proposition 5.3(ii). Now, k also belongs to R(Vd)

(Proposition 5.4(iii)) and therefore, Ud+ l (j, k) = Vd+ l (j, k) = 0. Using the triangle inequality for

Ud+I, we obtain Ud+±(i, k) = 0, and since k E R(Vd+l), we have completed the induction step for

part (ii).

(iii) We first prove that R(Ud+) n R(Vd) c R(Vd+'). Let i E R(Ud+l)n R(Vd) and let k be such

that Vd+l(i, k) = 0. We need to show that Vd+l(k, i) = 0. To show this, we first find some j E

R(Vd + l ) such that Vd+l(k,j) = 0 (Proposition 5.3(ii)). By the triangle inequality, Vd+ (i,j) = 0.

In particular, i,j E R(V d) and by part (i) of the induction hypothesis, we have Ud+l(i,j) = 0.

Furthermore, we have assumed that i c R(Ud+l) and this implies that Ud+1 (j, i) = 0 which finally

shows that Vd+1 (j, i) = 0. Then the triangle inequality yields Vd+l (k, i) = 0, as desired.

We now prove the reverse inclusion. Let i E R(Vd+l). In particular, i E R(Vd). In order to

prove that i E R(Ud+l), let j be such that Ud+l(i,j) = 0 and we need to show that Ud+l(j, i) = 0.

Let k E R(Vd+1) be such that Ud+l(j,k) = 0. (Such a k exists because part (ii) has already

been proved for d + 1.) By the triangle inequality, Ud+ (i,k) = 0, and since i,k E R(Vd), we

get Vd+1(i,k) = 0, using part (i) of the induction hypothesis. Since i E R(Vd+l), this yields

Vd+l(k,i) = 0 and therefore Ud+l(k,i) = 0. Finally, Ud+l(j,i) < Ud+l(j,k) + Ud+l(k,i) = 0,

which completes the proof. *

A further simplification of the formula for Ud is possible.

Proposition 5.6: For any a E A we have HFHca = Far.

Proof: (Outline) Assume that j E R(ca). By definition, (HFa)(i,j) equals the shortest distance

from i to j, with respect to the cost function which is equal to the sum of the coefficients ca along

a path minus the number of times that the path exits from a set Rk(c).

Notice that R(ca) = R(Ha) and Rk(a) = Rk(Ha), Vk E R(ac). Thus (HFHor)(i,j) is equal to

the shortest distance from i to j with respect to the cost function which is equal to the sum of the



coefficients (Ha)(i,j) along a path minus the number of times that the the path exits from a set

Rk(a). Given a shortest path for the above defined problem (that is a shortest path with respect to

the coefficients FHa), we replace each one of its arcs (k, l) by a path for which the sum of the a's

along that path equals (Ha)(k, e). The length (with respect to Ha) of the original path is equal to

the length (with respect to a) of the second path. Furthermore the number of times that a set Rk (a)

is exited is at least as large for the second path. This shows that (HFHa)(i,j) > (HFa)(i,j). An

almost identical argument establishes the same conclusion if j V R(a).

On the other hand, Hao < a and R(a) = R(Ha) imply FHa < Fa. The mapping H is clearly

monotone, which implies that HFHa < HFa. This concludes the proof. .

As a corollary of Proposition 5.6 we obtain

Ud = HFda, (5.7)

where Fd is defined by F0 = F and Fd+la = F(Fda). This formula is deceivingly simple because

in order to apply F on Fda we must find R(Fda) and this requires the computation of HFda.

Nevertheless, this formula turns out to be particularly useful for analyzing the case of the simulated

annealing algorithm, under a reversibility assumption, which will be done in Section VII.

VI. Necessary and Sufficient Conditions for Convergence under Piecewise Constant

Schedules.

We consider a family {x (.)} of stationary Markov chains whose one-step transition probabilities

satisfy (5.1) and an associated non-stationary Markov chain z(.) which is obtained by varying e

according to the schedule determined by equations (4.1), (4.2). For simplicity of exposition, we

assume that S is an integer.

Throughout this section a is fixed once and for all. Let Vd be the collection of coefficients

defined in Proposition 5.1 and, for every d let Rd(a) = R(Vd) and R4(ac) - Ri(Vd). As long as a

is fixed, we will employ the simpler notations Rd and Rd.

Proposition 6.1: Assume that the family {x(.-)} of stationary Markov chains satisfies the assump-

tions of Proposition 5.1. The the following hold for the above defined non-stationary Markov chain

(i) limk,,,O P(Z(tk) E R6 I (1)= i) = 1;

(ii) If i E R 6 , then liminfk.,,. P(z(tk) = il z(1) = i) > 0.

Proof: Because of equation (4.1), during the interval [tk, tk+1) we are dealing with a stationary

Markov chain x,(-), where e = E(tk) = e-k. We also notice that tk+l- t = e- 6. Thus, Proposition

5.1 is applicable.

Let us fix i as the initial state and let Bk = P(Z(tk) E R6 ). Propositions 5.1 and 5.3(ii) show that

P(X(tk+l) E R6 I Z(tk) = j) > C6, Vj E S. Furthermore, by Propositions 5.1, 5.3(i), P(X(tk+l) ¢

R6 I Z(tk) E R 6 ) < C6E(tk), Vj E S. It follows that Bk+l > (1 - Bk)CI + Bk(l - C6e(tk)). Using2 2\k) V rI ~lV1 IQ VTu~ 2'\R/ ""
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this last inequality and the fact that limk-.oo E(tk) = 0, we see that limk,,o Bk = 1 and we obtain

part (i).

For the proof of part (ii), let us assume that i E R6 and let Fk = P(z(tk) E Ri6 I z(0) = i).

Clearly, F1 = 1. Using Propositions 5.1, 5.3, as before, we conclude that Fk+1 > (1- C6e(tk))Fk =

(1 - C6e-k)Fk. Since the sequence e- k is summable it follows easily that the sequence Fk is

bounded away from zero. Now given that the state at time tk belongs to R6, it is easy to show

that, for each j E R~ the probability that z(tk) = j is bounded away from zero. (This is because

for the time intervals we are dealing with, all states in the same class R, communicate" with 0(1)

probability. This completes the proof. *

Thus, with the schedule (4.1), (4.2), R6 is the smallest subset of S which gets all the probability,

asymptotically. Suppose that our objective is to ensure that equation (4.3) holds; for this, it is

necessary and sufficient that R s C S*. This, together with the fact that R6 decreases when 6

increases (Proposition 5.4(iii)), leads to the following corollary.

Corollary 6.2: A necessary and sufficient condition for (4.3) to hold, under the schedule (4.1), (4.2),

and under the other assumptions of Proposition 6.1, is that 6 > 6*, where 6' is the smallest integer

d such that Rd C S*.

Notice that in Proposition 6.1 and Corollary 6.2 we have not made any reversibility assumptions.

On the other hand, reversibility turns out to be a useful assumption because it leads to a simple

characterization of the sets Rd. We should mention here that without assuming some form of

reversibility there may exist no S such that R' C S*. In such a case, Corollary 6.2 simply states

that there is no choice of 6 such that equation (4.3) holds.

Proposition 6.1 and Corollary 6.2 remain valid under more general circumstances, as long as the

schedule T(.) is nonincreasing and converges to zero, as t -- oo. One generalization is the following:

Proposition 6.3: Consider the nonstationary Markov chain x(.) resulting from a schedule T(-) sat-

isfying limt-.o. T(t) = 0 Then, (4.3) holds if and only if

Eexp= T(t)=o,

where 6* is the smallest value of S such that R6 C S*.

Proposition 6.3 (in a continuous time setup) was proved in [13] under a reversibility assumption,

slightly more general than (2.4) and with a different definition of 6'. Of course, that alternative

definition of 6* is equivalent to ours, under the reversibility assumption (see Section VII). The more

general version stated above was proved in [14], using a more refined version of the argument in

Sections V-VI.

VII. The Value of 6* for the Reversible Case.

In this section we elaborate on the comment made in the last paragraph of the preceding section,
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regarding the possibility of an alternative but equivalent characterization of 6*, for the reversible

case.

Let r be the set of all functions J from S into the set of nonnegative integers. Given a cost

function J E 7, the transition probabilities of the simulated annealing algorithm, at constant

temperature, are of the form (3.1), where the set of coefficients a belongs to A and is uniquely

determined by J and the set E of allowed transitions. In this section, we will be assuming that E

has been fixed once and for all and that it has the following properties: if (i, j) E E, then (j, i) E E

and E is strongly connected, meaning that there exists a path from every i to every j. We also

assume that the structural reversibility assumption (2.4) holds.

Let G : 7 '- A be a mapping that determines the coefficients a(i,j) in terms of J. More

precisely, we let

(GJ)(i,j) = oo, (i,j) 0 E and i y j, (7.1a)

(GJ)(i,j) = [J(j) - J(i)]+, (i,j) E E or i = j.t (7.lb)

In the light of Corollary 6.2, our objective is to find a characterization of the smallest 6 such that

R6(QJ) c S*.

Let Pij be the set of all paths from i to j. For any p E Pij, let hp(i,j; J) be the maximum of

J(k), over all nodes k belonging to the path p. Let

h(i,j; J) = min hv(i,j; J). (7.2).
pEPii

We define the depth D(i; J) of a state i E S (with respect to the cost function J) to be equal to

infinity if i is a global minimum of J and equal to

min [h(i,j; J) - J(i), (7.3)
{j: J(j)<J(i)}

otherwise. Thus, D(i; J) stands for the minimal amount by which the cost has to be temporarily

increased in order to get from state i to a state of lower cost. By comparing this with the definition

of R(GJ), we see that

R(GJ) = {i: D(i; J) > 0}. (7.4)

We now recall equation (5.7) which provides a method for determining the coefficients Ud, for

any d. Once these coefficients are computed, the sets Rd(QJ) are also determined by Proposition

5.5(iii). The procedure of Section V works in terms of the structure coefficients ac. In the present

case, it is GJ which plays the role of a. Given that GJ is determined by the cost function J, it is

reasonable to try to reformulate that procedure so that it operates directly on cost functions. The

following definition turns out to be appropriate. We define a mapping T: 7 . 7 by

(TJ)(i) = J(i) + 1, if i E R(GJ), (7.5a)

t We employ the notation [x]+ = max{O0, z}.
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(TJ)(i) = J(i), otherwise. (7.5b)

The following result shows that T is isomorphic to the mapping F of Section V.

Proposition 7.1: For any J E7 we have FGJ = GTJ.

Proof: We first prove the following.

Lemma 7.2: If (i,j) E E, then

(i) [TJ(j) - TJ(i)]+ = [J(j) - J(i)]+ - 1, if i E R(GJ), j 4 Rj(GJ);

(ii) [TJ(j) - TJ(i)]+ = [J(j) - J(i)]+, otherwise.

Proof of the Lemma: We consider four cases:

(a) If i f R(GJ), j 0 R(GJ), then TJ(i) = J(i) and TJ(j) = J(j) and the result holds.

(b) If i 0 R(GJ) and j E R(GJ), then J(i) > J(j) + 1 and therefore [TJ(j) - TJ(i)]+ =

[J(j) - J(i) - 11+ = o = [J(j) - J(i)]+.

(c) If i E R(GJ), j 0 Ri(GJ), then J(j) > J(i). (Otherwise, (GJ)(i,j) = 0 and (GJ)(j,i) > 0,

contradicting the assumption j E Ri(G). Therefore, [TJ(j) - TJ(i)]+ = [J(j) - J(i) - 1]+ =

J(j)- J(i)- 1 = [J(j) - J(i)]+ - 1 and the result holds.

(d) If i E R(GJ), j E Ri(GJ), then j E R(GJ) and TJ(i) = J(i) + 1, TJ(j) = J(j) + 1, from

which the result follows. This completes the proof of the Lemma. *

The proof of the proposition is completed by comparing the definition of FGJ with GTJ, where

TJ is given by Lemma 7.2. and noticing that they are identical. *

Our next result shows that the coefficients Ud defined by (5.6) may be obtained directly from

J, by applying the T operation d consecutive times. Let Td be defined by T 1 = T and Td(J) =

T(Td-'(J)).

Proposition 7.3: (i) Ud = HGTdJ.

(ii) Rd(GJ) = n=d R(GTCJ).

Proof: (i) From equation (5.7), Ud = HFdGJ which is equal to HGTdJ, by Proposition 7.1.

(ii) This is an immediate consequence of Proposition 5.5(iii) and the fact R(HGTCJ) = R(GTCJ).

Lemma 7.4: If i E R(GJ) and j / R (GJ), then h(i,j; J) = h(i,j; TJ).

Proof: We have TJ > J, which implies that h(i,j; J) < h(i,j;TJ). For the converse inequality,

let p E Pij be such that h(i,j; J) = hp(i,j; J). Let k be a node which maximizes J, over the

set of all nodes belonging to the path p. If J(k) > J(i) or J(k) > J(j), then D(k; J) = 0 and

k 0 R(GJ). Therefore, (TJ)(k) = J(k), which shows that hp(i,j;TJ) = hp(i,j; J) = h(i,j; J)

and we are done. The case J(k) < J(i) or J(k) < J(j) is impossible; so we are left with the case

J(j) = J(i) = J(k). However, this would imply that h(i,j; J) = J(i) and therefore j E Ri(GJ)

which is a contradiction. ·

Lemma 7.5: If d is a nonnegative integer and D(i; J) _ d > O, then D(i; TJ) > d - 1.

Proof: Suppose that the result is false. Then, there exists some i such that D(i; J) > d > 0 and

there exists some j such that (TJ)(j) < (TJ)(i) and h(i, j; TJ)-(TJ)(i) < d- 2. Since D(i; J) > 0,
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it follows that i E R(GJ) and TJ(i) = J(i) + 1. Furthermore, j / R,(GJ), because otherwise we

would have J(j) = J(i) which would imply that (TJ)(j) = J(j) + 1 = J(i) + 1 = (TJ)(i). We

may' therefore apply Lemma 7.4 to conclude that h(i,j; J)- J(i) = h(i, j; TJ)- TJ(i) + 1 < d- 1.

Therefore, D(i; J) < d - 1 which is a contradiction and proves the Lemma. -

Proposition 7.6: Rd(GJ) = R(GTdJ) n ... n R(J) = {i: D(i; J) > d}.

Proof: The first equality is simply a restatement of Proposition 7.3(ii). We thus concentrate on

the second equality. Suppose that D(i; J) > d > O. Then, by Lemma 7.5, D(i; TkJ) > d - k > O

Vk < d. Using equation (7.4), it follows that i E R(GTkJ), Vk < d. This shows that {i: D(i; J) >

d) c R(GTdJ) n . n R(J).

We now prove the reverse containment. Suppose that i E nd=0R(GTkJ). Using the definition

of T, it follows that (TdJ)(i) = J(i) + d. Suppose that D(i; J) < d. Then, there exists some j such

that J(j) < J(i) and some path p E Pij such that hp(i,j; J) < J(i) + d.

For any k < d we have (TkJ)(j) < J(j) + k < J(i) + k = (TkJ)(i). This shows that for any

k < d we have j ¢ RP(GTkJ). We then apply Lemma 7.4, d consecutive times, to conclude that

hp(i,j; J) = hp(i,j; TdJ). Therefore, hp(i,j;TdJ)- (TdJ)(i) = hp(i,j; J)- J(i)- d < 0. Thus,

D(i; TdJ) = 0 which shows that i 0 R(GTdJ), which is a contradiction and concludes the proof of

the proposition. *

Proposition 7.6 is the main result of this Section. An immediate corollary is the following result

[13].

Corollary 7.7: Consider the simulated annealing algorithm with the schedule determined by (4.1),

(4.2). Assume that structural reversibility (2.2) holds, that the graph G = (S,E) is strongly

connected and that the zero-temperature algorithm is an aperiodic Markov chain. Then, P(x(t) E

S*) converges to 1, for every initial state, if and only if the constant 5 of equation (4.2) is greater

than or equal to maxims. D(i; J).

Proof: By Corollary 6.2, convergence to S*, for every initial state, is obtained if and only if 6 is

such that R 6 (GJ) c S*. We now use Proposition 7.6 to see that R 6(GJ) = {i: D(i; J) > 6}.

Therefore, the condition on 5 is equivalent to the requirement that if D(i; J) > 6, then i E S*.

Equivalently, >_ maxi~s. D(i; J). ·

In a certain sense, our method of proving Corollary 7.7 is isomorphic to the proof in [13]. In

particular, the mapping T corresponds to "filling the cups", in the terminology of [13]. On the

other hand, our approach separates the general probabilistic issues (Sections V, VI) from the special

graph-theoretic properties due to reversibility (this Section); in particular, Sections V, VI show

that the handling of the probabilistic issues is independent of the reversibility assumptions.

We now have enough machinery available to characterize the constant A of Section III. Since

1/Ae is the time needed for the Markov chain to exhibit some mixing, it follows that for times

of the order of e- A there should be a single "recurrent class". Thus, A is the smallest 6 so that

R 6(a) consists of a single class R (a). Equivalently, h(i,j; J) < J(i) + A, Vi E S, Vj E S*. The
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above outlined argument establishes the following result, which has been established in [19] using

the results of [20].

Proposition 7.8: Under the reversibility assumption (2.2), the constant A of equation (3.2) is equal

to maxiEs maxEs. [h(i, j; J) - J(i)].

In particular, we see that A > 6', as expected. Equality holds if SF is a singleton, but the

inequality may be strict if SF is not a singleton.

VIII. Discussion.

From Corollary 7.2 we obtain a temperature schedule T(t) = 5' which is has the fastest rate

of cooling in the class of schedules for which convergence to the set S* is obtained. One might be

tempted to call this schedule 'optimal". However, it can be shown that with this schedule and with

a random initial state, the expected time until z(t) first enters the set S' is, in general, infinite.

(This is easily verified with an example which has only two states with different costs.)

In all results presented in this paper we talk about the asymptotic behavior of simulated an-

nealing for a fixed state space S and a fixed cost function J. Thus, we ignore the dependence of

the parameters of interest on the size N of the state space. However, if one is to compare the

algorithmic efficiency of simulated annealing with other available algorithms, it is precisely this

dependence on N that has to be analyzed. A first result of this type has been obtained in [8] but

more research of this nature is needed.
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