
A Survey of Leakage-Resilient Cryptography∗

Yael Tauman Kalai

Microsoft Research, MIT

yael@microsoft.com

Leonid Reyzin

Boston University

reyzin@bu.edu

March 15, 2019

Abstract

In the past 15 years, cryptography has made considerable progress in expanding the ad-
versarial attack model to cover side-channel attacks, and has built schemes to provably defend
against some of them. This survey covers the main models and results in this so-called “leakage-
resilient” cryptography.

1 Introduction

In most theoretical work on cryptography, parties are afforded complete privacy for their local
computations. An adversary may, perhaps, be able to obtain a signature on a chosen plaintext or a
decryption of a chosen ciphertext, but typically the signing or decryption process itself is assumed
to be entirely hidden from the adversary. In particular, the only information correlated with the
secret key that the theoretical adversary can obtain is typically confined to well-defined interfaces,
such as signing or decrypting. Such an adversary is sometimes called a “black-box” attacker.

Work in modern cryptography—much of it pioneered by Shafi Goldwasser and Silvio Micali—
demonstrated that it is possible to provably (based on certain computational complexity assump-
tions) defend against black-box attackers for large classes of cryptographic tasks, such as pseu-
dorandom generation [BM82, BM84, GGM84, GGM86], encryption [GM82, GM84], signatures
[GMR84, GMR88], zero-knowledge proofs [GMR85, GMR89, GMW86, GMW91], and secure multi-
party computation [GMW87, BGW88].

Real adversaries, unfortunately, do not always respect such clean abstraction boundaries. A
variety of successful side-channel attacks have demonstrated that information about the secret
key and the internal state of a computation can leak out to a determined adversary. These at-
tacks exploit the fact that every cryptographic algorithm is ultimately implemented on a phys-
ical device that affects the environment around it in measurable ways. To mention just a few
prominent examples, attacks have exploited the time taken by a particular implementation of a
cryptographic algorithm [Koc96], the amount of power consumed [KJJ99], or the electromagnetic
radiation [AARR03]. So-called “cold boot” attacks [HSH+08, HSH+09] have been used to recover
some fraction of a cryptographic secret key given physical access to a powered-off device. More
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recent attacks [LSG+18, KHF+19] allow processes to violate isolation boundaries and read infor-
mation from other processes on the same machine — even those in secure enclaves [BMW+18]. In
other words, the real adversary may not be black-box.

The emergence of side-channel attacks caused the cryptographic community to re-evaluate the
black-box adversary model and to create new adversary models and provably secure designs. This
line of work became known as “leakage-resilient cryptography.” Shafi Goldwasser and Silvio Micali
were again prominent in this effort, both because their past work on black-box security informed
models for leakage-resilience, and because they themselves proposed models that formalize side-
channel leakage and designed leakage-resilient schemes.

In this survey we cover some of the work on leakage-resilient cryptography. It is important to
emphasize that our selection is biased toward more theoretical and foundational works. Even among
those, our choices are necessarily biased by work we know. The field is vast and rapidly growing:
as of Februrary 2019, Google Scholar finds over 400 papers with the phrase “leakage-resilient” or
“leakage resilience” in the title, and about 2800 with the phrase “leakage-resilient” in the paper
(98% of them published after 2006).

We do not address the vast literature dealing with adversaries who actively tamper with the
memory or computation of the honest parties, rather than merely observe it (see, e.g., [GLM+04,
IPSW06, DPW10, FPV11, LL12, FMVW14, JW15, FMNV15, DLSZ15]), even though it is, of
course, connected to the literature on leakage resilience, and often includes leakage-resilience as one
of its goals.

We apologize in advance to authors whose work we could not include and to readers who will
be left to discover other work on their own.

Because leakage-resilient cryptography is a relatively young subset of cryptography, the gap
between theory and practice is fairly large. This gap manifests itself in the debates about the
practical relevance of theoretical models and the inefficiencies of provably secure constructions.
This survey focuses on more theoretical work. An excellent source of more applied research in
this field is the Conference on Cryptographic Hardware and Embedded Systems (CHES) and the
journal IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES).

A bibliographic note: For most papers, we cite the conference version. In the few cases we are
aware of the journal version, we cite it, as well. Many papers we cite have full versions that were
too long to appear in conference proceedings, easily found through an on-line search, more often
than not posted on https://eprint.iacr.org. These full versions sometimes correct errors that
appeared in the conference version.

1.1 Early Works

Early works, such as work on oblivious RAM [GO96], threshold [DF90] and proactive [HJJ+97]
cryptography, forward [Gün90, BM99] and intrusion-resilient [IR02] security, can be thought of, in
hindsight, as works on leakage resilience. There are many other examples, too numerous to mention
here.

We now elaborate on two particular lines of work. The first of these considers leakage of some
of the bits of the secret key. The second one considers leakage during computation.

Leaking Bits from Keys Motivated by the problem of key exposure, Canetti et al. [CDH+00],
followed by Dodis, Sahai, and Smith [DSS01], proposed an approach of storing a cryptographic key

2

https://eprint.iacr.org


in a redundant form, so that the key remains hidden even when some of the stored bits are leaked
to the adversary. They introduced the notion of an “exposure-resilient function” and showed a
connection to “all-or-nothing transforms” [Riv97, Boy99]. See [Dod00] for a detailed exposition of
these results. These results were limited to leakage that consisted of subsets of bits of the stored
secret, rather than more general functions of it.

This line of work was generalized by the long sequence of works on memory leakage, pioneered
by Dziembowski [Dzi06], Di Crescenzo, Lipton, and Walfish [DLW06], and Akavia, Goldwasser, and
Vaikuntanathan [AGV09], who considered arbitrary (poly-time computable) partial leakage from
memory. We elaborate on these works in Section 1.2 and Section 2.

Leakage from Computation Chari et al. [CJRR99] considered a formal model of attacks in
which every bit produced in a computation (i.e., every wire of a circuit) can be measured by
the adversary, but each measurement has noise (their model was informed, in particular, by the
differential power analysis attacks of [KJJ99]). Independently, Goubin and Patarin [GP99], also
concerned about differential power analysis attacks, considered how to keep individual wire values
in a smart-card circuit independent of the secret key. Both papers suggested the following counter-
measure: represent each bit b by k random bits whose exclusive-or is equal to b (this approach is
also known as XOR-secret sharing or boolean masking). Chari et al. [CJRR99] showed that, given
the noisy reading of all k shares of b, the adversary can distinguish b = 0 from b = 1 only with
advantage that is exponentially small in k. They did not, however, show how to compute on shared
versions of bits. In contrast, Goubin and Patarin [GP99] showed how to compute certain functions
using the shared versions of bits, but without a formal model in which to argue security.

Precise models and provable approaches to handling leakage from computation were pioneered
by the works of Ishai, Sahai, and Wagner [ISW03] and Micali and Reyzin [MR04]. We discuss this
line of work in Section 1.2 and Section 4.

1.2 Formalisms of Leakage-Resilient Cryptography

We coarsely divide the works on leakage-resilient cryptography into two strands. The first of these
considers leakage from memory, while the second considers leakage during computation.

Memory Leakage In most common models of memory leakage, the adversary is usually allowed
obtain an arbitrary polynomial-time computable but bounded-length leakage on the secret key. The
goal is to build cryptographic schemes that remain secure even if this partial information about the
secret key is available to the adversary.

Dziembowski [Dzi06] and Di Crescenzo, Lipton, and Walfish [DLW06] defined the term bounded
retrieval model, which assumes that the adversary can obtain at most K bits of information about
the secret key, for some (absolute, large) value K. The secret key is allowed to be larger than K,
as long as the efficiency of the scheme is not negatively affected: the running times of the rele-
vant algorithms should grow only polylogarithmically with K. They constructed leakage-resilient
symmetric password and authentication protocols in this model.

Akavia, Goldwasser and Vaikuntanathan [AGV09] considered arbitrary leakage in the public-
key setting. They considered the so-called bounded memory leakage, in which the amount of leakage
is not an absolute value but rather is expressed as a function of the secret-key size (but growing
the key is expensive, because the running times of the relevant algorithms can grow polynomially
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with the key size). Public-key schemes in the bounded retrieval model of [Dzi06, DLW06] were also
subsequently constructed [ADW09]. The bounded memory leakage model was later generalized
to so-called auxiliary input leakage [DKL09]. In this model, leakage is not necessarily bounded in
size: the only requirement is the minimum necessary for any security to remain, namely, that the
secret should remain computationally hidden even given the leakage. Memory leakage was also
generalized to the continual setting [BKKV10, DHLW10a], in which the secret key is periodically
updated, without updating the public key, and it is assumed that there is bounded memory leakage
within each time period, but there is no bound on the overall leakage.

We elaborate on this line of work in Section 2.

Computation Leakage The line of work on leakage from computation considers the situation in
which side-channel information comes from the intermediate values created during a computation,
rather than only from the secret itself. Sometimes memory leakage models discussed above can
also model leakage of intermediate values created during a computation, because these values are
just functions of the secret memory. However, this approach to modeling leakage from computation
fails whenever secret randomness is used during a computation (though a few papers on memory
leakage do model leakage from secret randomness; see Section 2 for details).

There are even more important distinctions between the models of memory and computation
leakage. Memory leakage models most typically consider one-time leakage (but see Section 2.5 for
exceptions), while computational leakage models typically consider continual leakage over multiple
uses of the secret key, forcing constructions to update the secret memory in order to maintain
security. On the other hand, computation leakage models usually place more restrictions on the
allowed leakage, such as, for example, assuming that different components of a computation that
are separated in space or in time leak independently (i.e., the adversary can obtain separate leakage
functions of some intermediate values, but not a joint function of them all), or that some memory
does not leak at all. This is in contrast to memory leakage models, which usually allow the leakage
to be an arbitrary (bounded) function of the entire secret.

Ishai, Sahai, and Wagner [ISW03] built on the work of Chari et al. [CJRR99] to model leakage
from wires of a circuit. In the model of [ISW03], the computation is performed by a clocked circuit
with a secret state (for example, a circuit implementing a block cipher with a secret key). The
circuit is run repeatedly on various inputs, producing outputs and possibly also updating the state.
The adversary is able to provide inputs and observe outputs as well as the exact values of some
internal wires during the computation. This model and its variants resulted in a long line of work
that we survey in Section 4.3.

Micali and Reyzin [MR04] gave a more general model of leakage during computation. They
modeled computation as proceeding in steps, and allowed the adversary to obtain different side-
channel information at each step. Specifically, they described their model in terms of Random-
Access Machines (RAMs, which are Turing Machines augmented with addressable memory) rather
than circuits, although circuit variants of their model were considered later. In this model, an
adversary is able to specify a leakage function (from a class of available functions) at each step of
the computation. The function is applied to the current state of the computing machine and the
output is given to the adversary, who uses this information to specify the function for the next step.
In order to enable security against such general attacks, Micali and Reyzin assumed the existence
of secure storage that is not given to the leakage function. That is, values can leak when being
computed on and being read from or written to memory; but once they are in memory, the leakage
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function has no access to them. This assumption became known as “Only Computation Leaks
Information,” commonly abbreviated as OCL. This assumption was generalized in later work, as
discussed in Sections 3 and 4 (see, in particular, Section 4.1). The power of this assumption comes
from enabling constructions that separate computation into two or more components that leak
independently, as shown in [DP08] (see Section 4.2.2).

We elaborate on leakage from computation in Section 4.

1.3 Roadmap

In this survey, we address the two strands of works on leakage-resilient cryptography: “leakage
from memory” (Section 2) and “leakage from computation” (Section 4).

We emphasize that this division is not perfect. Some papers consider both memory and compu-
tational leakage. In addition, some papers on memory leakage use results on computational leakage,
and vice versa. Nevertheless, we feel this division is helpful for systematizing knowledge in this
area.

There is yet another category of papers on “leakage-resilient storage”. This category lies in
between the two categories described above. It considers the problem of storage, rather than
computation, and thus considers leakage from memory. However, papers in this category typically
restrict the leakage function in the same way as works in the “computational leakage” category do:
the stored secret is separated into components, and leakage functions are applied separately to each
component, but never jointly to all of them. The works in this category are described in Section 3.

We assume that the readers possesses a solid background in cryptography and is familiar with
such concepts as CPA-secure encryption, zero-knowledge proofs, and secure multi-party computa-
tion. We assume the reader is reasonably comfortable with commonly used tools, such as random-
ness extractors1 and pseudorandom generators2.

2 Memory Leakage

The main goal of works discussed in this section is to build cryptographic schemes that can remain
secure even if some partial information about the secret key is available to the adversary. It is
important to recall the basic fact that the adversarial inability to recover the full secret key is a
necessary, but not a sufficient, condition for the security of a cryptographic construction.

2.1 The Models for Memory Leakage

As already mentioned in Section 1.2, Dziembowski [Dzi06] and Di Crescenzo, Lipton, and Wal-
fish [DLW06] considered arbitrary leakage from memory, proposing the bounded retrieval model. In
this model, the adversary can obtain an arbitrary polynomial-time computable leakage function
of the secret key, but the output size of this leakage function is bounded. Security is achieved by

1The notion of a seeded randomness extractor, introduced by Nisan and Zuckerman [NZ96], is defined as follows:
A function Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ is said to be a (k, ε) extractor if for any random variable X over {0, 1}n

with min-entropy k, and for a uniformly chosen r ← {0, 1}d, it holds that (r,Ext(x, r)) is ε-statistically close to a
uniform string over {0, 1}d+ℓ.

2The notion of a cryptographic pseudorandom generator (PRG), introduced in [BM82, Yao82, BM84], is defined
as follows: A function G : {0, 1}k → {0, 1}ℓ is a PRG if, for a uniform secret s, the output G(s) is computationally
indistinguishable from a uniform string over {0, 1}ℓ.
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making the secret key longer than this leakage length bound. While in most cryptographic schemes
long secret keys would translate into long running times, this model requires that essentially the
only price for increased leakage should be increased secret storage: the running time of the par-
ties should grow only logarithmically with the leakage length bound. In particular, the parties
do not need to access the entire long secret key for each operation. We discuss this model and
relevant constructions in Section 2.4. Initially, works in the bounded retrieval model achieved only
symmetric-key cryptographic constructions, because growing the secret key size while maintaining
the public key the same presents a challenge.

In the public key setting, Akavia, Goldwasser, and Vaikuntanathan [AGV09] considered arbi-
trary leakage from the secret key, defining the term bounded memory leakage, also known as relative
memory leakage. In this model, similarly to the bounded retrieval model, the leakage function is
an arbitrary bounded-output-length polynomial-time computable function; but the output length
of this function is expressed as function of the key length (or, more generally, of the min-entropy
of the key). Typically, the goal is to obtain security even if a large fraction of the secret key (or its
min-entropy) is leaked. Unlike the bounded retrieval model, this model does not place any restric-
tions on running times, and thus increasing key size in order to allow more leakage (in absolute
terms) will negatively affect the performance of most constructions. We elaborate on this model in
Section 2.2.

Shortly after, Dodis, Kalai, and Lovett [DKL09] generalized the notion of bounded leakage to
so-called auxiliary input leakage. In this model, the leakage function can have unbounded output
length, and the only restriction is that given the leakage (and the public interface) it is (com-
putationally) hard to find the secret key. This restriction seems to be the minimal necessary to
achieve meaningful security, because no security remains if the secret key can be computed from
the leakage. We elaborate on this model in Section 2.3.

Even though the auxiliary input leakage model seems the strongest possible for one-time leakage,
it cannot protect against continual leakage, where the secret key is leaked continually few bits at a
time, since in this case the secret key can eventually leak entirely. To handle leakage over the long
term, the continual memory leakage model, defined by [BKKV10, DHLW10a], considers the setting
in which the secret key is periodically updated, without updating the public key, and assumes that
there is bounded memory leakage (in the sense of [AGV09]) within each time period, but there is
no bound on the overall leakage. We elaborate on this line of work in Section 2.5.

We emphasize that in all four models mentioned above, each bit of leakage can be an arbitrary
efficiently computable function of the secret key (with the minimal necessary restriction in the
auxiliary input case). This is in contrast to the leakage models that are considered in Sections 3
and 4, where the leakage functions are restricted in some way (such as OCL, noisy, or low-complexity
leakage).

In Sections 2.2-2.5, we define the foregoing leakage models and show constructions of specific
leakage-resilient cryptographic systems. We emphasize that, in most cases, the leakage function is
applied only to the secret key (and publicly available information, such as the public key), and no
leakage occurs during computation. For example, leakage cannot depend on the secret randomness
used during a computation. There are a few exceptions, starting from the work of Boyle, Segev,
and Wichs [BSW11] (mentioned in Section 2.2 below), which constructs a signature scheme in the
bounded memory leakage that is secure even if the leakage is applied to the secret key and the
randomness used to generate a signature.

In Sections 2.2-2.5, we focus on constructing non-interactive cryptographic primitives, such as
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leakage-resilient encryption schemes and signature schemes. In Section 2.6 we consider leakage-
resilient interactive protocols, which are different from cryptographic schemes discussed in Sec-
tions 2.2-2.5, in that the leakage does not necessarily come from the secret key. Thus, in the setting
of interactive protocols, it is more difficult to define security in the presence of leakage, since we
have to account for leakage coming not from secret keys, which are meaningless on their own, but
from protocol inputs (for example, witnesses to ZK statements), which carry meaningful private
information.

2.2 Bounded Memory Leakage

As mentioned above, Akavia, Goldwasswer, and Vaikuntanathan [AGV09] introduced the notion of
bounded memory leakage. They considered an adversarial model in which the adversary can request
a bounded amount of leakage on the secret key, adaptively one bit at a time. Let κ be the length
of the secret key sk and let α ∈ (0, 1) be the allowed leakage fraction. In this model the adversary
can make ακ oracle queries, where each query consists of a Boolean circuit C : {0, 1}κ → {0, 1}
and is answered by C(sk). Each circuit can be chosen based on previous leakage information and
other information known to the adversary from the public interface (such as the public key, known
signatures, etc.). We note that the size of each circuit is obviously bounded by the running time of
the adversary, and hence leakage functions have bounded complexity. If the adversary cannot break
the scheme after at most ακ such leakage queries, then the scheme is said to be α-leakage-resilient.

As observed by [AGV09], any public key encryption scheme that is secure against adversaries
running in time 2ακ, is also α-leakage-resilient. Intuitively, this follows from the fact that if one can
break the scheme with L = L(κ) bits of leakage in time T = T (κ), then one can break the scheme
without any leakage in time 2L · T . This observation was made in the context of Regev’s public
key encryption scheme [Reg05], but easily extends to any exponentially secure encryption scheme.

Naor and Segev [NS09] constructed a public key encryption scheme that is secure against
bounded memory leakage under standard polynomial-time assumptions. They started with the
observation that the circular secure scheme of Boneh et al. [BHHO08] is already leakage-resilient
under the DDH assumption. More generally, they showed how to construct a leakage-resilient pub-
lic key semantically secure encryption from any hash proof system [CS02], thus showing how build
leakage-resilient encryption schemes on a variety of assumptions, such as the Quadratic Residuosity
Assumption, DDH, and Nth Residuosity Assumption. Moreover, they prove that the Naor-Yung
paradigm [NY90] is applicable in this setting, and thus obtain leakage-resilient encryption schemes
that are CCA2-secure. These schemes are reslient to 1− o(1) leakage rate.

These schemes (as well as schemes in followup work) have the following blueprint: The public
key has exponentially many valid secret keys, so that even given the leakage (and the public key), the
secret key still has high min-entropy. For example, in the encryption scheme of [BHHO08], the secret
key is (g1, g2, . . . , gℓ, s1, s2, . . . , sℓ), where g1, g2, . . . , gℓ are random generators in a group G of prime
order p, and s1, s2, . . . , sℓ are all randomly chosen in Zp; the public key is (g1, g2, . . . , gℓ, h) where
h = gs11 ·gs22 · · · · ·gsℓℓ . In addition, there is an alternative mode for generating ciphertexts (used only
in the proof of security), such that even given the entire secret key one cannot distinguish between
an honestly generated ciphertext and one that is generated via the alternative mode. Importantly,
if the secret key has sufficient min-entropy then a ciphertext generated via the alternative mode
information theoretically hides the message.

For example, in the encryption scheme of [BHHO08], the correct ciphertext corresponding
to a message m is of the form (gr1, g

r
2, . . . , g

r
ℓ , (g

s1
1 · gs22 · · · · · gsℓℓ )r · m) for randomly chosen r
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in Zp. In the alternative mode, the ciphertext is generated by (gr11 , gr22 , . . . , grℓℓ , gs1·r11 · gs2·r22 ·
· · · · gsℓ·rℓℓ · m), for randomly chosen r1, r2, . . . , rℓ in Zp. By DDH, even given the secret key
(g1, g2, . . . , gℓ, s1, s2, . . . , sℓ), the correct and alternative ciphertexts are indistinguishable. The
alternative ciphertext information-theoretically hides the message m, as long as sufficient min-
entropy remains in the secret key after leakage, because for fixed (g1, g2, . . . , gℓ), the mapping
from (s1, s2, . . . , sℓ, r1, r2, . . . , rℓ) to gs1·r11 · gs2·r22 · · · · · gsℓ·rℓℓ is a strong randomness extractor when
(r1, r, . . . , rℓ) is viewed as the seed and (s1, s2, . . . , sℓ) is viewed as the source. Indeed, it was proven
in [NS09] that this scheme is resilient to 1 − o(1) leakage rate, i.e., security holds even if all but
o(1)-fraction of the secret key is leaked.

This blueprint (of analyzing security by showing indistinguishability to a setting where se-
curity holds information-theoretically) is used in many followup works, including constructions of
leakage-resilient CCA secure encryption schemes, identity based encryption scheme, pseudo-random
functions, and more. See, for example, [FKPR10, DHLW10b, BHK11, GV13a, FNV15].

We emphasize that typically, leakage-resilient encryption schemes assume that the leakage hap-
pens before the ciphertext is generated, and security is guaranteed only for future ciphertexts.
Halevi and Lin [HL11] considered the model of after-the-fact leakage. They formulated the notion
of entropic leakage-resilient public key encryption, which captures the intuition that as long as the
entropy of the encrypted message is higher than the amount of leakage, the message still has some
(pseudo) entropy left. They show that this notion is realized by the Naor-Segev constructions men-
tioned above. In order to achieve more traditional CPA security against after-the-fact leakage, they
move to a weaker leakage model (so-called OCL model); we discuss this result and some follow-up
work in Section 4.2.6, after the OCL model is introduced in Section 4.1.

Katz and Vaikuntanathan [KV09] showed how to construct a leakage-resilient signature scheme
in the bounded memory leakage model. Loosely speaking, their blueprint is somewhat similar to the
above: Start with a public verification key pk that has exponentially many secret keys associated
with it. In particular, the public verification key contains a hash value y = h(x) and the secret key
contains the pre-image x.

Their first observation is that any target-collision-resistant hash function3 h is leakage-resilient.
Namely, given y = h(x) and bounded (efficiently computable) leakage L(x) on x, it is hard to invert
h on y. The reason is that even given y and L(x), x still has sufficient min-entropy, and thus if
an adversary can invert y (given L(x)) then with high probability it will output x′ 6= x such that
h(x′) = h(x) and L(x′) = L(x). Thus, this adversary can be used to break the target collision
resistant property, which gives the adversary even more information (namely, all of x).

Their signature scheme has the property that an adversary that forges a signature must “know”
a secret key corresponding to y (which is part of the public key). This is achieved by having the
signature contain an encryption of x, along with a non-interactive zero-knowledge (NIZK) proof
that indeed the ciphertext decrypts to a pre-image of y. We note that in order to make the
proof go through, one needs to use what is known as a “simulation sound” NIZK [BFM88, Sah99]:
When using the adversary to break the target collision resistance property, we need to provide this
adversary with signatures to messages of its choice, and to ensure that the secret key still has high
min-entropy; these signatures will contain a ciphertext that decrypts to 0 (rather than a valid secret
key), along with a simulated NIZK. The simulation soundness guarantees that the adversary must
still generate a ciphertext that decrypts to a secret key.

3A function h is target-collision-resistant (also known as universal one-way hash function) if given a random
element x in the domain it is hard to find x′ 6= x such that h(x) = h(x′).
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All the works mentioned above constructed leakage-resilient schemes based on specific number-
theoretic assumptions. Hazay et al. [HLWW13, HLWW16] construct a leakage-resilient CPA-secure
encryption scheme from any (not leakage-resilient) CPA-secure encryption scheme. Loosely speak-
ing, Hazay et al. extend the work of Naor and Segev [NS09], and construct a leakage-resilient
encryption scheme from any weak hash-proof system. In addition, they show how to build such
weak hash-proof system from any CPA-secure encryption scheme. However, the leakage rate α in
their resulting scheme is quite low. They also construct a leakage-resilient symmetric encryption
scheme, weak PRF, and message authentication code from any one-way function. In addition,
they extend their results to the after-the-fact leakage model of [HL11] mentioned above and to the
bounded retrieval model (see Section 2.4).

We emphasize that in all the schemes mentioned above, the leakage is only a function of the
secret key (and publicly available information, such as the corresponding public key). Boyle et
al. [BSW11] (and followup works) constructed a signature scheme where the leakage can also depend
on the randomness used to generate the signatures. This leakage model is somewhat reminiscent
to the leakage models considered in Section 4, where the leakage occurs during computation. In
particular, such leakage-resilient signature scheme must have the property that signatures hide the
secret key, even given bounded leakage on the entire state of this computation.

2.3 Auxiliary Input Memory Leakage

Shortly after the formalization of bounded memory leakage, Dodis, Kalai, and Lovett [DKL09]
formulated the notion of auxiliary input memory leakage. The motivation for this model is that in
reality side-channel attacks can leak many bits about the secret key, more than the length of the
secret key. Of course, if the secret key is fully computable from the leakage, all hope is lost. On the
other hand, even if many bits are leaked, as long as the secret key is not computable from them, it
may still be possible to build a secure cryptographic scheme.

Formally, the auxiliary input model considers any (efficiently computable) leakage function f
applied to the secret key sk, even one with long output, as long as given f(sk), together with other
public information, it is computationally (sufficiently) hard to find a valid secret key. Namely, in
this model, the adversary can choose an arbitrary leakage function f : {0, 1}κ → {0, 1}∗ (modelled
as a Boolean circuit) to be applied to the entire secret key sk, so long as f is (sufficiently) hard to
invert, given all the information known to the adversary, such as the public key. As above, security
is required to hold even against adversaries that are given f(sk). This function f can be adaptively
chosen based on all the information known to the adversary.

Because this model requires only that the secret key should have computational secrecy given
the leakage, it is more general than the bounded memory leakage model of Section 2.2, which
requires that the secret key should have some information-theoretic uncertainty given the leakage.
The auxiliary input leakage model attempts to consider the most general possible leakage that does
not trivially break security. This model is inspired by the work of Canetti [Can97], which studies
cryptography with auxiliary inputs in the context of perfect one-way functions.4

In their work, Dodis, Kalai, and Lovett [DKL09] constructed a symmetric encryption scheme
secure against auxiliary input leakage, as long as the leakage function satisfies the condition that
every polynomial size algorithm can invert it with probability at most 2−ǫn for some constant

4We note that Goldwasser and Kalai [GK05] considered the auxiliary input model in the context of obfuscation.
However, they obtained mainly negative results, demonstrating the impossibility of obfuscation with auxiliary input.

9



ǫ > 0, where n is the length of the secret key. In what follows we outline the ideas behind their
scheme. The first observation is that constructing a symmetric encryption scheme that is resilient
to leakage seems to be much easier than constructing a public key one, since intuitively, one can
apply a seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ to the (partially leaked) secret key, and
use Ext(x, r) as the secret key, where r is a random seed that is appended to the ciphertext, so
that the party decrypting this message could reconstruct the effective secret key Ext(x, r). We note
that this general approach gives only one-time (or bounded-time) security; i.e., security holds only
if the adversary is allowed to see only bounded number of ciphertexts. Indeed, if the adversary is
given many pairs (ri,Ext(sk, ri)) then he may be able to efficiently reconstruct the secret key sk.
However, we can obtain many-time security by adding some “noise,” as we explain next.

Specifically, consider the inner product seeded extractor Ext : {0, 1}n×{0, 1}n → {0, 1}, defined
by Ext(x, r) = 〈x, r〉. When using this extractor in the approach above, with additional noise,
we obtain the following symmetric encryption scheme: To encrypt a message b ∈ {0, 1} using a
(partially leaked) secret key sk, choose a random r ∈ {0, 1}n and let the ciphertext be (r, 〈sk, r〉 ⊕
e ⊕ b), where e is 1 with small probability ǫ and is 0 otherwise. Note that this ciphertext has a
decryption error of ǫ. This decryption error is overcome via repetition: Namely, an encryption
of b ∈ {0, 1} will consist of many pairs (ri, 〈sk, ri〉⊕ ei⊕ b), where each ei is sampled independently
and is 1 with small probability ǫ and is 0 otherwise. This is indeed a symmetric encryption, and
its (many-time) security follows from the assumption that learning parity with noise (LPN) is
hard. More importantly, one can argue that even if the secret key is partially leaked (and only has
sufficiently high min-entropy), then this encryption remains secure. Intuitively, this follows from
the fact that the inner product is an extractor.

Recall, however, that our goal is to prove that security holds given f(sk), for any polynomial-
time computable function f that is sufficiently hard-to-invert.5 This follows from the hard-core
predicate theorem of Goldreich and Levin [GL89], which asserts that for every one-way function
f : {0, 1}n → {0, 1}∗, the pair (r, 〈sk, r〉) is computationally indistinguishable from uniform even
given f(sk).

The foregoing idea was carried over to the public key setting by Dodis et al. [DGK+10], who
constructed a public-key encryption scheme and proved that it is CPA secure against auxiliary
inputs under the learning with errors (LWE) assumption. They proved leakage resilience against
any sub-exponential hard-to-invert leakage function (i.e., any leakage function such that poly-size
circuits can invert it with probability at most 2−nǫ

for some constant ǫ > 0, where n is the size of
the secret key).

They also showed that the BHHO encryption scheme [BHHO08], which was proven to be resilient
to bounded memory leakage, is in fact CPA secure against such sub-expontentially hard-to-invert
auxiliary inputs under the DDH assumption. Recall that the in the BHHO encryption scheme,
the secret key is of the form (g1, g2, . . . , gℓ, s1, s2, . . . , sℓ), where each gi is randomly chosen from
a group G of prime order p, and each si is randomly chosen from Zp, and the public key is
(g1, g2, . . . , gℓ, h) where h = gs11 · gs22 · · · · · gsℓℓ . The encryption of a message m is of the form
(gr1, g

r
2, . . . , g

r
ℓ , h

r · m). As mentioned in Section 2.2, even given the secret key, this cipertext is
indistinguishable from an alternative ciphertext of the form (gr11 , gr22 , . . . , grℓℓ ,

∏
grisii · m), where

r1, r2 . . . , rℓ are all chosen randomly and independently in Zp. Denoting each gi = gαi , where g is
an (arbitrary) generator of the group G, we note that the (alternative) ciphertext masks m with
g〈r,s〉, where r = (r1, r2, . . . , rℓ) and s = (s1, s2, . . . , sℓ). Thus, the result of [DGK+10] is obtained

5In particular, sk may have no min-entroypy conditioned on f(sk).
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by extending the Goldreich-Levin theorem to provide a hard-core value over large fields.
More generally, [DGK+10] proved that these schemes are secure against a richer class of leak-

age functions, for example, leakage functions that are polynomially hard-to-invert with probabil-
ity 2−polylog(n) (however, then the corresponding assumptions are the sub-exponential security of
LWE/DDH). Following this work, Goldwasser et al. [GKPV10] used a similar approach to argue
that the LWE assumption itself is robust to auxiliary inputs.

Brakerski and Goldwasser [BG10] showed how to construct a public-key encryption scheme
secure against sub-exponentially hard-to-invert leakage, based on the Quadratic Residuosity (QR)
and Decisional Composite Residuosity (DCR) hardness assumptions. Brakerski and Segev [BS11]
considered the problem of deterministic public-key encryption in the presence of auxiliary leakage,
and proposed several constructions based on the DDH assumption and subgroup indistinguishability
assumptions.

Summary of the leakage models discussed so far. In Section 2.2 we defined bounded memory
leakage, where the length of the leakage is bounded relative to the length of the secret key, which in
turn depends on the security parameter. In Section 2.3 we defined the auxiliary input model, where
the length of the leakage is arbitrary, but it is required that given this leakage (and other public
information), finding the secret key should be hard. Unfortunately, the theoretical restrictions
on the leakage function are unsupported by the bitter reality that the key may eventually leak
completely over time. While at first glance it may seem impossible to do anything about this
problem, as the auxiliary input leakage seems to impose the minimal necessary requirement on
the leakage function, two approaches have been proposed to address it. The first is the bounded
retrieval discussed in Section 2.4, and the second is the continual memory leakage model discussed
in Section 2.5.

2.4 Bounded Retrieval Model

The bounded retrieval model (BRM), defined by Di Crescenzo, Lipton, and Walfish [DLW06] and
Dziembowski [Dzi06], assumes that there is a bound B on the overall leakage. However, as opposed
to the bounded memory leakage of Section 2.2, this bound is thought of as being extremely large,
and in particular, can be significantly larger than the security parameter, and longer than the
number of steps it takes to decrypt or sign. For security, the minimum requirement is that the
secret key must be longer than B (else it could leak entirely); the goal of constructions in this
model is to make sure that the efficiency of the system does not degrade with this bound B. That
is, the goal of BRM is to protect against large amounts of leakage by making the secret key even
larger, while ensuring that this necessary inefficiency in storage is essentially the only inefficiency
of the system. This means that for every operation, honest users should have to read only a small
portion of the secret (this property is called locality), and their computation and communication
should not be much larger than in conventional cryptosystems. To put it differently, the bounded
retrieval model studies the same problem as the bounded memory leakage model, but allows the
users to increase their secret key size flexibly, so as to protect against large amounts of leakage,
without degrading other efficiency parameters. This model is motivated by various malware attacks,
in which a persistent virus may transmit a large amount of private data to a remote attacker.

As mentioned above, this model preceded the bounded leakage model, and the original work that
introduced this model [DLW06, Dzi06] constructed leakage-resilient password and authentication
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protocols. The work of Alwen, Dodis, and Wichs [ADW09] constructed leakage-resilient identifi-
cation schemes, signature schemes, and authenticated key agreement protocols in this model, and
shortly after, Alwen et al. [ADN+10] constructed a leakage-resilient public key encryption scheme
in this model.

Loosely speaking, these schemes are constructed via a generic leakage-resilience amplification
process. Namely, start with a leakage-resilient primitive in the bounded memory leakage model of
Section 2.2 (also known as the relative leakage model and use it to construct a B-leakage-resilient
primitive in the bounded retrieval model (for an arbitrary value of B).

The naive approach is to artificially inflate the security parameter to be larger than the bound B.
This approach clearly does not satisfy the desired efficiency requirements. A better approach is to
use parallel repetition. For the sake of concreteness, suppose we start with a public key encryption
scheme that is secure in the relative leakage model (described in Section 2.2). As a first attempt
at converting this scheme to the bounded retrieval model, store many secret keys sk1, . . . , skN ,
together with the corresponding public keys pk1, . . . , pkN . To ensure that the ciphertext remains
succinct, to encrypt a message m, choose a few random indices i1, . . . , iκ ∈ [N ], secret share the
message via a κ-out-of-κ secret sharing scheme (e.g., by choosing κ random messages m1, . . . ,mκ

such that m = m1 ⊕ · · · ⊕mκ), and output (Encpki1
(m1), . . . ,Encpkiκ (mκ)). Intuitively, even if ǫN

bits are leaked, since the adversary does not know ahead of time which indices i1, . . . , iκ will be
chosen during the ciphertext generation, at least one of the secret keys {skij}j∈[κ] is likely to “still
have sufficient min-entropy conditioned on the leakage”, which in turn seems to imply that security
holds. Unfortunately, formalizing this intuition is currently beyond reach, because the leakage can
be a complex function of all keys sk1, . . . , skN .

Note that the ciphertext is small, independent of the absolute leakage bound B. However, the
length of the public key (pk1, . . . , pkN ) is large (and grows with B). This shortcoming is overcome
by using an identity based encryption (IBE) scheme, as opposed to a standard encryption scheme.
The public key of the parallel repetition scheme is simply the master public key of the IBE scheme.
The secret key is the secret keys corresponding to N fixed IDs ID1, . . . , IDN .

This scheme satisfies the required efficiency guarantees: the ciphertexts and the public key are
succinct (do not grow with B), encryption is efficient, and decryption is efficient given random
access to the secret key.

Security. Despite the intuition above, it turns out that this scheme is not necessarily secure.
In particular, [ADN+10] construct an artificial IBE scheme for which this blueprint results in an
insecure scheme. Loosely speaking, this IBE scheme has the property that given secret keys of many
identities, one can compress these keys to a short “digest” (of size independent of B) such that
from this digest one can reconstruct all the compressed secret keys. To get around this problem,
[ADN+10] construct an IBE scheme with an additional special structure, which they call “identity-
based hash proof system”, and prove the security of the above blueprint if the IBE scheme used
is an identity-based hash proof system. They construct such an identity-based hash proof system
based on several standard assumptions (such as Quadratic Residuosity, Learning with Errors, and
Bilinear Diffie-Hellman).

We refer the reader to Alwen, Dodis, and Wichs [ADW10] for a fantastic survey on the bounded
retrieval model.
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2.5 Continual Memory Leakage

The continual leakage model considers the setting in which the total leakage is unbounded and
yet all the parameters of the scheme (including the length of the secret key) are bounded (and
depend only on the security parameter). In particular, the leakage can eventually reveal as many
bits as there are in the secret key, and we still want to argue security in this case. This seemingly
impossible task is achieved by periodically updating the secret key, without changing the public
key. Namely, as is often the case in leakage-resilient schemes, in this setting a public key pk has
(exponentially) many secret keys associated with it. The initial secret key is sk1; it is updated
every time period, to sk2, sk3, etc., so that all the secret keys sk1, sk2, sk3 . . . correspond to the same
public key pk. The security guarantee is that even if the adversary obtains bounded leakage on each
ski (but unbounded leakage overall), the scheme remains secure.

Specifically, in the continual leakage model security holds even given L1(sk1), . . . , LN (skN ),
where N is adversarially chosen, and L1, . . . , LN are adversarially chosen functions (represented as
circuits) of bounded output length. Of course, for any security to hold, the output length of each
Li must be smaller than |ski|.

The model was first considered by Brakerski et al. [BKKV10] and Dodis et al. [DHLW10a],
who constructed public-key encryption and signature schemes that are secure even when the leakage
length in each time period is a constant fraction |ski|, under the decisional linear assumption in
bilinear groups. These works allow no leakage during the key updates.6

The encryption scheme (constructed in [BKKV10]) is a variant of the BHHO encryption scheme,
discussed above. Let the secret key be a random vector s = (s1, . . . , sℓ) ∈ Z

ℓ
p. Let g be a generator

of a group G of prime order p. Let a = (a1, . . . , aℓ) be a random element in Z
ℓ
p such that the

inner product 〈a, s〉 = 0 modulo p, and the public key be (ga1 , . . . , gaℓ). To encrypt a bit 0, choose
a random r ∈ Zp and output (ga1r, . . . , gaℓr), and to encrypt the bit 1 output a random element
in Gℓ. Decryption is done by raising the ciphertext to the power of s = (s1, . . . , sℓ) coordinate-wise,
multiplying all the coordinates together, and outputting 0 if the resulting product is the identity
element of G, and 1 otherwise.

This scheme is resilient to bounded memory leakage, and even to auxiliary input memory
leakage, via a similar analysis to the ones outlined in Sections 2.2 and 2.3, respectively. However, it
is not clear how to (efficiently) update the secret key, in order to make this scheme secure against
continual memory leakage.

Given a secret key s = (s1, . . . , sℓ) and a public key (ga1 , . . . , gaℓ), we can efficiently update
the secret key by choosing a random α ∈ Zp and setting the updated secret key to be αs =
(αs1, . . . , αsℓ). However, this scheme is not secure against continual memory leakage, since an
adversary can, for example, normalize the secret key by dividing all the coordinates by the first
coordinate, and leak on this normalized key, which remains unchanged.

To get around this attack, rather than setting the secret key to be s = (s1, . . . , sℓ), set it to
be gs = (gs1 , . . . , gsℓ). In order to maintain the ability to decrypt we need to rely on a group G
with a bilinear map e : G × G → GT . To decrypt, pair the ciphertext (gy1 , . . . , gyℓ) with the
secret key(gs1 , . . . , gsℓ), to obtain

∏ℓ
i=1 e(g

yi , gsi), and output 0 if the value obtained is the identity
element of GT ; otherwise output 1. To update the secret key, simply raise the secret key to the
power of a random α ∈ Zp (coordinate by coordinate).

6More generally, these works are resilient to logarithmic amount of leakage during key updates. Very loosely
speaking, this follows from the fact that such small quantity of leakage can be guessed with non-negligible probability
and thus cannot be of much help to the adversary.
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One can prove that this scheme is secure against continual leakage under the DDH assumption;
however, this assumption is known to be false in groups with bilinear maps. This obstacle is
bypassed by either considering an asymmetric map, and relying on the SXDH assumption, or setting
the secret key to be a matrix with two rows, and relying on the decisional linear assumption.

To prove security, we rely on the fact that under the SXDH assumption (or the decisional
linear assumption), an adversary cannot distinguish between the case that the updates are done
as prescribed, and the case that they are done by choosing a fresh random secret s in the kernel
of a, and raising it to the power of g; and this indistinguishability holds even given the secret key.
Moreover, one can prove that if the key is updated in the alternative way described above, then
security holds in the continual memory leakage model.

Leakage during updates. Lewko, Lewko, and Waters [LLW11] showed how to achieve constant
leakage rate during key updates; the security of their scheme is under the subgroup decision as-
sumption in composite order bilinear groups. This work was improved by Dodis et al. [DLWW11]
and modified to achieve leakage-resilient storage (see Section 3).

Dachman-Soled et al. [DGL+16] showed a generic way to tolerate leakage during key updates.
Specifically, they showed how to use obfuscation to compile any public-key encryption or signature
scheme that satisfies a slight strengthening of continual memory leakage (which they refer to as
“consecutive” memory leakage) but does not tolerate leakage on key updates, to one that is resilient
to continual memory leakage with leakage on key updates.

Further strengthening the model. The continual leakage model was further strengthened in
different ways. Yuen et al. [YCZY12] considered the continual auxiliary input leakage model, in
which the leakage per time period is not required to be bounded in length, but rather can be an
arbitrary hard-to-invert function of the secret key, like the leakage in Section 2.3. They construct
identity-based encryption which is secure in this model, by applying a modified version of the
Goldreich-Levin theorem, together with the ideas from [LLW11], of using dual system encryption
systems for leakage-resilience.

Malkin et al. [MTVY11] consider continual memory leakage, where leakage can occur also during
computations. They present a signature scheme that is resilient to continual leakage, where leakage
can occur during the signing process, and thus the leakage is a function of both the secret key
and the randomness used to sign a message. We discuss other signature schemes that can handle
leakage during the signing process in Section 4.2.6.

Dziembowski, Kazana, andWichs [DKW11] consider a combination of continual memory leakage
with the bounded retrieval model described in Section 2.4, and construct schemes that are resilient
against such leakage if the leakage function itself has limited space for its computation (see also
Section 4.2.4 for more on their model).

2.6 Interactive Protocols

So far, we mainly focused on leakage-resilient cryptographic primitives, such as encryption schemes
and signature schemes, with the goal of preserving the original security guarantees in the presence
of leakage.

In this section, we extend the notion of leakage resilience to the context of interactive protocols.
The initial works that construct leakage-resilient interactive protocols focused on specific tasks, such
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as coin tossing [BGK11], zero-knowledge [GJS11, BCH12], secure message transmission, message
authentication, commitment, and oblivious transfer [BCH12]. These works, as well as followup
works, consider the setting where an adversary can obtain arbitrary (bounded) leakage on the
entire state of each (honest) party during the entire protocol execution.

Boyle, Goldwasser, and Kalai [BGK11] constructed a coin tossing protocol with the standard
security guarantee upgraded for leakage resilience: namely, even if the adversary leaks a constant
fraction of the state of each (honest) party, she cannot distinguish the output from a random coin
toss. In the context of zero-knowledge, it is easy to see that achieving similar leakage resilience under
the standard zero-knowledge definition is simply impossible. For example, consider an adversary
that leaks ℓ bits of information from the state of the prover, by leaking the first ℓ bits of the witness.
Clearly, this adversary’s view cannot be efficiently simulated (assuming these bits of the witness are
hard to compute). Instead, the (concurrent) works of Garg, Jain, and Sahai [GJS11] and Bitansky,
Canetti, and Halevi [BCH12] weaken the zero-knowledge condition in the leaky setting, to require
that the protocol does not reveal any information beyond the validity of the statement and the
leakage obtained by the adversary. Defining this formally is non-trivial, as we explain below.

Bitansky, Canetti, and Halevi [BCH12] presented a general framework for expressing security
requirements of interactive protocols in the presence of arbitrary (poly-time) leakage. Noting that
standard “ideal world” security, where the side-channel adversary does not learn more than the
inputs and outputs of the malicious parties, is in general impossible, they defined the notion of
leakage tolerance, as follows. Consider an adversary who leaks a total of ℓ bits of information from
all the (honest) parties. A leakage-tolerant protocol ensures that such an adversary learns at most
what can be learned in the leaky ideal world, in which the ideal-world adversary also gets ℓ bits of
leakage.7 Thus, a leakage tolerant protocol is one where the level of security gracefully degrades
with the amount of leakage (which may develop over time).

In more detail, they consider a “real world” in which the adversary can get leakage on the entire
state of any one party at any time (but cannot get joint leakage on the states of many parties).
To account for the security degradation this leakage necessarily causes, they also allow the same
amount of leakage in the “ideal world.” More specifically, the leaky ideal model they consider is
the so-called individual leakage model, which allows the ideal world adversary to obtain leakage on
the input of each party separately, as long as the total number of bits leaked is at most ℓ.

Constructing leakage tolerant protocols is highly non-trivial. Intuitively, the initial difficulty is
that we need to simulate the protocol without knowing the inputs of the honest parties and then
later “explain” the leaked information. As observed in [GJS11, BCH12], this is reminiscent to the
difficulty in constructing adaptively secure protocols. This connection was formalized in [NVZ13].

For example, consider the most basic task of message transmission. Typically, in order to
transmit a message m securely, one encrypts m with a secure encryption scheme. However, note
that given Enc(m; r) together with leakage L(m; r), it may be possible to efficiently compute m,
even if the amount of leakage is significantly smaller than the length of m. Bitansky, Canetti, and
Halevi [BCH12] observe that if instead of using any secure encryption, one uses a non-committing
encryption [CFGN96], then the message transmission becomes leakage tolerant.8

A non-committing encryption scheme, a concept that was developed for adaptively secure com-
munication, allows one to generate a simulated (equivocal) ciphertext ct without knowing a cor-
responding plaintext and later given any plaintext m generate randomness r that explains this

7They formalize their notion in the UC framework, but in this survey we focus on the stand-alone setting.
8This observation was previously used in [BCG+11], in the context of constructing obfuscation with leaky hardware.
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ciphertext; i.e., such that ct = Enc(m; r). This ensures that the ciphertex does not leak additional
information, beyond what is already leaked by the leakage function. Similar ideas were used in
[BCH12] to construct leakage tolerant zero-knowledge, message authentication, commitment, and
oblivious transfer protocols. In particular, to construct a leakage tolerant zero-knowledge protocol,
rather than using a standard commitment scheme, they use equivocal commitments [FS90].

Ananth, Goyal, and Pandey [AGP14] extend the work of Garg, Jain, and Sahai [GJS11] (men-
tioned above) to the continual leakage setting. Namely, they construct an interactive proof for
every language L ∈ NP, such that any PPT verifier cannot learn a witness corresponding to x ∈ L,
even after interacting many times with a prover who proves that x ∈ L (for the same x), and
even if in each such interaction a constant fraction of the prover’s memory is leaked. Their formal
requirement is that such an adversary cannot later convince an honest verifier that x ∈ L. Loosely
speaking, this is done by encoding the witness using an encoding scheme that is robust to continual
leakage.

General leakage-resilient MPC. While the works discussed above were for some specific in-
teractive tasks, such as coin tossing and zero-knoweldge, the works Boyle et al. [BGJ+13, BGJK12]
consider the task of constructing arbitrary two-party and multi-party secure computation that re-
main secure in the face of leakage. Namely, these works consider the setting where during the
protocol execution, the state of the honest parties may be partially leaked. Clearly, one cannot
hope to achieve “ideal world” security in the face of leakage, since the adversary can leak some of
the bits of the input of the honest parties, and obtain information that is not leaked in the ideal
world. To deal with this limitation, in [BGJ+13] the ideal world adversary is allowed to obtain
some leakage. The difference between the model of [BGJ+13] and the leakage-tolerant model of
[BCH12] discussed above is that [BGJ+13] allows both the real-world and the ideal-world leakage
function to be a joint function of all the inputs, rather than locally computed for each party; in
addition, [BGJ+13] allows the leakage length to be arbitrary (but the same in both the real and
the ideal world). In contrast, the work of [BGJK12] does not allow leakage in the ideal world, but
allows a leak-free preprocessing stage, where the secret inputs are pre-processed and shared among
the parties before the adversary obtains any leakage. We now discuss these works in more detail.

Boyle et al. [BGJ+13] define the notion of multi-party protocols that are secure against adap-
tive auxiliary information. In their model, the adversary can corrupt an arbitrary subset of parties
and, in addition, can learn arbitrary auxiliary information on the entire states of all honest parties
(including their inputs and random coins), in an adaptive manner, throughout the protocol exe-
cution. There is no a priori bound on the amount of the auxiliary information that the adversary
may be able to learn. Their protocol guarantees that for any amount of information the real-world
adversary is able to (adaptively) acquire throughout the protocol, this “same amount” of auxiliary
information is given to the ideal-world simulator, thus providing graceful degradation of security.9

For any (efficiently computable) functionality they construct a secure (two-party or multi-party)
protocol that realizes this functionality securely against malicious adversaries in the presence of
adaptive auxiliary input. Their protocols are in the common reference string model, and the security
is based on the linear assumption over bilinear groups and on the nth residuosity assumption.

In [BGJK12], continual memory leakage was considered in the MPC setting. This is in contrast
to [BGJ+13] and all the other leakage resilient protocols that were mentioned so far, which consider

9Note that it is not immediately apparent how to formalize this notion. We refer the reader to [BGJ+13] for
details.
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the single execution setting. [BGJK12] construct multi-party secure computation protocols that
achieve standard ideal-world security (where no leakage is allowed in the ideal world) against real-
world adversaries that may leak repeatedly from the secret state of each honest player separately,
assuming a one-time leak-free preprocessing phase, and assuming the number of parties is large
enough (larger than polylog(n), where n is the security parameter).

More specifically, they construct a multi-party computation (MPC) protocol that is secure even
if a malicious adversary, in addition to corrupting 1 − ǫ fraction of all parties for an arbitrarily
small constant ǫ > 0, can leak information about the secret state of each honest party. This leakage
can be continual for an unbounded number of executions of the MPC protocol, computing different
functions on the same or different set of inputs.

Interestingly, even though their MPC is secure against continual memory leakage, they achieve
their result by relying on techniques from the only computation leaks (OCL) model (see Section 4.1).
At a very high level, their basic idea is to run the MPC protocol of [BGJ+13] that is resilient to
adaptive auxiliary information, but rather than running the protocol on the underlying function,
they run it on an OCL-compiled version of it. Roughly speaking, the OCL version has the property
that local leakage does not leak any sensitive information. Therefore, even if all parties have leaked
partial information at a certain point in the protocol execution, this leakage corresponds to local
leakage in the underlying circuit, and since the underlying circuit is resilient to OCL leakage, no
sensitive information is revealed.

This connection between continual memory leakage and the OCL model was further established
in the work of Bitansky, Dachman-Soled, and Lin [BDL14]. Similarly to [BGJK12], they construct
multi-party protocols in the continual leakage setting, but as opposed to requiring a leak-free input-
dependent preprocessing phase, they only utilize a leak free input-independent preprocessing phase.
As a result they can only achieve leakage tolerance (as opposed to leakage resilience). However, as
opposed to [BGJ+13], where the ideal world leakage is a joint function of all the inputs, in this
work the real world leakage can be simulated by individually leaking on each party separately in
the ideal world, thus giving a stronger security guarantee. Similarly to [BGJK12], their protocols
are resilient to the corruption of 1− ǫ fraction of all parties for an arbitrarily small constant ǫ > 0,
where the number of parties grow with the security parameter.

Very recently, Benhamouda et al. [BDIR18] showed that in the honest-but-curious setting, and
assuming the number of parties n is large enough, the GMW compiler [GMW87] implemented with
a high-threshold version of the Shamir secret sharing scheme [Sha79], is robust against leakage
one-time leakage in the preprocessing model. However, the leakage rate is quite small (roughly,
O(n)
|C| where C is the circuit the parties are computing). We refer the reader to Section 3 for further
details.

3 Leakage from Storage

In this section, we consider the following generalization of exposure-resilient functions, mentioned
in 1.1. Suppose a secret is encoded before being stored in memory; the adversary can repeatedly
and adaptively apply a leakage function (from a set of allowed functions) to the encoding. The
adversary’s goal is to distinguish the stored secret from uniform. Thus, the security requirement
for protecting the secret is stronger than in Section 2, where some information about the secret
is allowed to leak as long as the leakage does not enable the adversary to break the underlying
cryptographic scheme (e.g., encryption or signatures). On the other hand, the set of allowed
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leakage functions, which will depend on the construction, will be generally more restricted than in
Section 2.

This model, called “leakage-resilient storage,” was introduced by Davi, Dziembowski, and Ven-
turi [DDV10]. They propose two constructions, both secure only if the leakage is applied a bounded
number of times (in their constructions, the encoding is not updated, which makes unbounded leak-
age impossible to achieve).

The first construction splits the stored secret into two components, and the assumption is that
the two components leak independently (i.e., the two components are given to separate leakage
functions rather than a single one; this model is known as the OCL model—see Section 4.1). Their
construction uses a two-source extractor10 2-Ext as follows: To hide a secret s ∈ {0, 1}, simply
choose at random u, v ∈ {0, 1}n such that 2-Ext(u, v) = s, and store the string u in one component
and the string v in the other.11 The secret s is reconstructed by simply evaluating 2-Ext on the
two stored strings u and v. This approach has proven quite fruitful, resulting, in particular, in the
leakage-resilient encryption and signatures of [DF11] (Section 4.2.6) and circuit compilers of [DF12]
(Section 4.3.4).

The second construction of [DDV10] does not require the leakage to be applied to two parts
independently; rather, the leakage function is restricted to a limited complexity class. The idea is to
use a deterministic extractor, instead of a two-source extractor. While deterministic extractors do
not exist in general, Trevisan and Vadhan [TV00] constructed, for any polynomial time bound T , a
deterministic extractor for sources that are sampleable in time T (and have sufficient min-entropy).
Thus, if the leakage function is restricted to be computable in some a priori bounded time T (and
its output length is also bounded), then one can store a secret s by simply choosing a random
u ∈ {0, 1} such that Ext(u) = s, where Ext is a deterministic extractor for T -time sampleableable
distributions. Both constructions require no computational assumptions, except on the leakage
function.

Protection against continual leakage requires the ability to update the stored secrets. In the OCL
model (in which components leak independently), components should be updated before they leak
too much information. Akavia, Goldwasser, and Hazay [AGH12] provide such a construction with
two components, where the update requires interaction between the components. More generally,
they construct a leakage-resilient public key encryption scheme, where the secret key is stored in
two components, and the assumption is that the leakage on each component happens separately (we
refer the reader to Section 4.2.6 for details). This scheme relies on computational assumptions; in
particular it assumes that there exists a group with a bilinear map, for which the linear assumption
holds and the Bilinear Decisional Diffie-Hellman assumption holds.

Eliminating communication during updates presents an additional challenge. This challenge
was solved by Dodis et al. [DLWW11] (they also consider extensions to more than two components
and allow full compromises of some). In their scheme, the updating of each component happens
independently of the other, without the need for communication or synchronization. Technically,

10A two-source extractor produces an output that is close to uniformly random as long as the two sources are
independent and each has sufficient entropy

11Storing a secret s ∈ {0, 1}k that consists of many bits can be done in a bit-by-bit manner, but this approach
can be secure only against 1/k-fraction leakage of each component. To improve the leakage bound, we can use a two
source extractor 2-Ext with k-bit outputs. However, it may be hard to choose at random u, v ∈ {0, 1}n such that
2-Ext(u, v) = s, since it may be hard to sample u and v given s. Instead, one can choose at random u, v ∈ {0, 1}n,
let 2-Ext(u, v) = sk, encrypt the secret s using the secret key sk, and store (u, sk) in one component and store v in
the other.

18



this work builds on [LLW11]: they encrypt the secret, store the ciphertext in one component and
the secret key in the other component, and update both the key and the ciphertext, separately.
This work also improves and simplifies the construction of [LLW11] for the continual leakage model
(see Section 2.5). Their scheme assumes the existence of a group with a bilinear map, for which
the linear assumption holds.

Faonio and Nielsen [FN17] consider the problem of leakage during the encoding process itself,
to obtain so-called fully leakage-resilient codes. Leakage during the encoding process means that
the secret cannot be completely protected; instead, the requirement is relaxed to leakage-tolerance
of [BCH12] (see Section 2.6), in which the simulator is allowed to obtain some leakage on the secret.

Benhamouda et al. [BDIR18] consider storage of a secret in n shares produced via additive or
high-threshold Shamir secret sharing over a prime field. Assuming each share leaks independently
(i.e., in the n-component OCL model), they show that storage remains secure even if each share
leaks about a quarter of its bits, for large enough n and field size. While this result requires many
independently-leaking components, its advantage is that the secret sharing technique is standard,
and readily usable in multiparty protocols. They use this result for secure computation (assuming
leak-free preprocessing), in which each uncorrupted party can leak, once, a short function of its
entire state.

Leakage-resilient storage is often an implicit ingredient in many constructions of leakage-resilient
computation, because the master secret must be stored in a leakage-resilient way. Thus, many works
discussed in Section 4 also provide some form of leakage-resilient storage.

4 Leakage from Computation

In this section, we consider leakage models that focus on adversary’s access to the entire compu-
tation rather than just the secret memory. In general (with some exceptions, noted throughout
this section), the goal of works discussed in this section is to protect against continual, rather than
one-time, leakage. Thus, some models considered in this section are similar to models considered in
Section 2.5, and some works could be placed into either section. On the other hand, the classes of
leakage discussed in this section are typically more restricted than the classes of leakage discussed
in Section 2.

The work on leakage from computation can be roughly divided into two categories: construc-
tions of specific cryptographic primitives (Section 4.2) and general compilers that work for any
cryptographic primitive and, in fact, for any computation (Section 4.3). There are, naturally, inter-
actions between the two categories, and general compilation techniques are often applied to specific
schemes, as we discuss throughout this section.

The most common leakage models are noisy or probabilistic leakage of each wire introduced in
[CJRR99], wire-probing leakage of [ISW03], only-computation leaks (OCL) model of [MR04], and
leakage of limited computational complexity introduced in [FRR+10]. There is considerable debate
as to whether these models correctly capture actual side-channel attacks. Thus, heuristic, rather
than fully provable, evaluation approaches are also common, because of the difficulty of capturing
actual side-channel attacks with theoretical leakage models. We discuss these briefly in Section 4.4.

Because so many constructions are in the only-computation-leaks model, and because this model
has slightly different variants and interpretations, we start by giving an overview of this model and
its many versions.
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4.1 The Only Computation Leaks (OCL) model

The general model of leakage during computation introduced by Micali and Reyzin [MR04] (see
Section 1.2) contains one crucial assumption: the existence of leak-free memory. The model allows
for values to be moved to that memory when they are not needed in a computation. Formally, the
adversarial leakage function at each step of the computation takes as input the entire state of the
Turing machine, including the values on its tapes, except the state of the leak-free memory. It is
important to note, however, that leak-free memory does not mean leak-free values, because values
in this leak-free memory cannot be used directly: they have to be read from the memory to the
working tapes when needed for computation, and written from the working tapes into the leak-free
memory when stored. Leakage functions have access to the values when they are on the working
tapes and, in particular, during the reading and writing operations. (Recall that in the general
model of [MR04], leakage functions come from some allowable class, and if the class is sufficiently
limited, the adversary doesn’t simply see whatever the leakage function sees.) A good analogy is a
computer whose CPU, caches, and memory bus leak, but RAM doesn’t. Alternatively, one can push
the leak-free assumption one level lower in the memory hierarchy, and imagine a computer in which
everything leaks except the hard disk. This assumption became known as “Only Computation
Leaks Information,” commonly abbreviated as OCL. See Section 4.2.1 for the first constructions in
this model.

Dziembowski and Pietrzak [DP08] showed that the following special case of this general OCL
model suffices to get strong results. In their model, the state of the computation is broken up into
a few (specifically, three) parts. The computation proceeds in steps, and each step uses only some
(specifically, two) of the parts. Each step leaks a bounded amount of information (specified by an
adversarially chosen polynomial-time leakage function with a bounded output), and the part that
is not used does not leak (i.e., is not given to the leakage function). See Section 4.2.2 for the first
constructions in this model.

As pointed out by [DP08], the restriction on when each part leaks is not important for security;
what is important, rather, is that the parts leak independently (i.e., any given leakage function
does not have access to all of the parts at once), and only a bounded amount of leakage is available
at each step of the computation. This independent leakage assumption became commonly used in
many subsequent constructions of leakage-resilient cryptographic schemes (Section 4.2) and leakage-
resilient storage (Section 3).

The OCL assumption was also used for the purpose of building general leakage-resilient circuit
compilers in the style of [ISW03] (see 1.2 and 4.3.1) rather than specific cryptographic schemes.
This line of work, discussed in Sections 4.3.4 and 4.3.5, assumes that the transformed computation
can be broken up into parts that leak independently. Each part can leak an arbitrary (or, depending
on the model, any polynomial-time) function of its state, as long as the output size of the function
is bounded. Since the leakage function on each component is powerful enough to simulate the inner
wires of the component, we do not need to provide the wires explicitly as inputs to the leakage
function; it suffices to provide the inputs and the randomness used in each component. Thus, the
situation for each component is similar to bounded memory leakage (see Sections 2.1 and 2.2), and
techniques for protection against such leakage are often helpful in this setting.

This line of work can be interpreted in the original OCL model of [MR04], in which the CPU
leaks and memory does not. Each component corresponds to reading some data from memory,
performing the component’s work on the CPU, and writing the data back. It can also be interpreted
in the circuit model of computation (like the work of [ISW03]); the circuit is broken up into separate
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topologically ordered components, and the leakage function specified by the adversary is limited
to working separately on the wires of each component (again, for each component it suffices to
give the leakage function only the the wires going into it and the randomness generated within it).
The latter model is articulated in [GR10]. The connection between the models is explained in, for
example, [GR15, Section 1.2].

Constructions in the OCL model can be also naturally viewed as protocols between two or more
stateful parties; the adversary can obtain leakage from each party, but the leakage is independent
for each party. Parties can correspond to circuit components in the previous paragraph, with
inter-component wires modeled as inter-party communication. More generally, however, each party
can be invoked more than once per execution of the protocol, and so there may be fewer parties
than components (every invocation of a party corresponds to writing and reading non-leaking
memory in the model of [MR04] and to a new circuit component in the model of [GR10]). The
parties are assumed to be able to erase parts of their state that they are no longer using (else
the adversary could obtain unbounded leakage about the first invocation by leaking information in
subsequent invocations). This model is articulated in [DP08] and [JV10] for the two-party setting;
the observation that the number of parties can be flexible is made in [DF12]. For some protocols,
such as [DP08] and [JV10], communication between the parties is fully available to the adversary;
for others, such as [DF12], it counts against the adversary’s leakage allowance (the adversary can
use the leakage function to compute sent messages; received messages are given as input to the
leakage function of the receiving party).

Several papers observed that their constructions are secure against a stronger class of leakage
functions than just OCL as defined in [MR04]: namely, leakage need not be restricted to com-
putation. The adversary can obtain leakage from any of the parties at any time, repeatedly and
adaptively, as long as the amount of leakage is bounded. This bound may be per party, as in
[BCG+11, DF12], or total, as in [GIM+16]. This view is equivalent to having leakage computed by
viruses that have infected all the parties but have limited ability to communicate with each other
(virus communication messages correspond to the outputs of the leakage functions); [GIM+16] call
it “bounded-communication leakage” or BCL (note that “communication” here refers not to the
computing parties, but to the leakage functions).

This connection between the OCL model and the multi-party protocol model was made more
formal and exploited by several works (e.g., [BGJK12, BDL14, DDN15, DLZ15, BDIR18]—see
Sections 2.6, 3, and 4.3.4).

It should be noted that the leakage functions in the OCL model need not necessarily be limited
by the number of output bits, although this is how the limitation on the leakage functions is most
commonly stated. What matters, informally, is the amount of useful information contained in the
leakage. In particular, if the leakage is noisy, it may be able to hide information even if it’s long
(see, in particular, Section 4.3.5).

4.2 Specific Schemes

Because leakage can occur during every computation on a given secret key, the main challenge in
most constructions discussed in this section is to evolve the secret key (while securely erasing the
previous versions), so that repeated leakage of, for example, one key bit at a time cannot lead
the adversary to discover the entire key. In this way, the problems considered in this section are
often similar to the problems encountered in the continual memory leakage model discussed in
Section 2.5. Such key evolution is generally harder to achieve for public-key primitives, because
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the public key must remain the same as the secret key changes.
Similarly to works on the continual memory leakage model, most works discussed in this section

assume that key generation is completely leak-free, and that secure erasure is possible — once
erased, values do not leak. However, in contrast to continual memory leakage, most constructions
discussed here assume OCL leakage model described in Section 4.1.

4.2.1 Pseudorandom Generators of [MR04]

Micali and Reyzin [MR04] showed constructions of leakage-resilient pseudorandom generators out
of simpler leakage-resilient building blocks (such as leakage-resilient one-way permutations). These
“physical reductions” are analogous to cryptographic reduction based on complexity-theoretic as-
sumptions. This approach makes assumptions on the leakage of the building block as it processes
data, but allows full leakage whenever other code is executed. The reasoning behind this approach
is that it may be easier for hardware designers to protect a simple building block.

Specifically, the work of [MR04] shows that if the output of a length-preserving one-way function
is indistinguishable from random even given the leakage, then the Blum-Micali [BM84] construction
(specifically, iterating the one-way function) with the Goldreich-Levin [GL89] hardcore bit (used
as an extractor to “remove” the leakage) is next-bit-unpredictable when the bits are output in
reverse order. The same paper also showed that indistinguishability is harder to achieve than
unpredictability. Subsequent work on unpredictable generators (which became known as “leakage-
resilient stream ciphers”) is discussed in Sections 4.2.2 and 4.2.3.

4.2.2 The Power of Only-Computation-Leaks: The Stream Cipher of [DP08]

The remarkable power of the only-computation-leaks (OCL) assumption was demonstrated by
Dziembowski and Pietrzak [DP08], who built a stream cipher that provably provides leakage re-
silience based on very mild assumptions. In addition to the OCL assumption, they assume that
a bounded number of bits is leaked during an evaluation of two basic cryptographic primitives: a
pseudorandom generator and a randomness extractor. They do not make any other restrictions on
the leakage function: in fact, like in the model of [MR04], the adversary can choose any leakage
function to be applied to the currently used portion of the state, as long as it is efficiently com-
putable and its output is not too long. More generally, the leakage function can have arbitrary
output length, as long as the secret maintains (pseudo)entropy given the leakage.

The specific use of the OCL assumption in [DP08] is quite simple. The stream cipher proceeds
in rounds, outputting a fresh string of pseudorandom bits in each round and evolving its state.
The stream cipher state is stored in three variables: two variables M0 and M1 that are used and
updated in alternate rounds (never together), and the third variable K that is used and updated in
every round. The one variable not used in the current round is assumed not to leak (equivalently,
is stored in non-leaky memory); formally, it is not given as input to the leakage function. The
variable K that is used in every round can be fully public without compromising security.

Dziembowski and Pietrzak also pointed out that in their setting, the OCL assumption can be
viewed simply as a restriction on the leakage function. Instead of assuming that some parts of the
state do not leak, we can simply assume that a separate leakage function is applied to different
parts the state. In other words, different parts of the state leak independently rather than jointly.
This view of the OCL assumption was adopted by many subsequent works.
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The construction of [DP08] works as follows. Let G be a pseudorandom generator (PRG). The
nonsecret variable K is an extractor seed. In each round ℓ, K is used to extract three values
from Mi (where i = ℓ mod 2): the stream cipher output bits, a new value for the extractor seed
K, and a PRG seed X. Mi is then replaced with G(X). Note that in this construction, the
extractor seed that is used for Mi is itself extracted from M1−i in the previous round, using a seed
extracted from Mi in the round before, and so on. This technique, introduced in [DP07], is known
as alternating extraction. As already shown in [DP07], if M0 and M1 start with sufficient entropy,
alternating extraction will keep producing uniform values even in the presence of leakage, as long as
the leakage function does not get to see M0 and M1 simultaneously. Alternating extraction is not
enough, however, because it works only until the information-theoretic entropy of M0 and M1 is
exhausted. To make a stream cipher that outputs more random bits than its seed, Dziembowski and
Pietrzak introduce the second ingredient: the PRG, which replaces limited information-theoretic
entropy with as much computational entropy as needed. To prove security of the overall scheme,
they had to prove that a PRG will work even in the presence of leakage (i.e., when the PRG seed
X is not uniform to the adversary). This result, independently also shown in [RTTV08], became
known as the “dense model theorem”: it quantifies the amount of entropy in a PRG output given
a certain amount of leakage from the PRG seed or computation (see [FR12] for an entropy-based
formulation). We note that PRGs secure against specific leakage (rather than arbitrary bounded
leakage of dense model theorem) have also been considered—e.g., [ISW03, IKL+13].

Note that because the stream cipher never needs to output past values, the construction of
[DP08] is able to update the secret state in a one-way fashion. This fact allows the construction of
[DP08] to be more efficient than the construction of [ISW03], which is forced to create fresh ran-
domized representations of the same logical secret state in order to allow for general computations,
and thus must use fresh randomness at each iteration and work with a state that is represented via
XOR-based secret sharing (also known as masking).

4.2.3 More Leakage-Resilient Stream Ciphers

Following the breakthrough result of [DP08], work continued on provably secure leakage-resilient
symmetric encryption and pseudorandom objects, such as stream ciphers, pseudorandom functions
(PRFs), and pseudorandom permutations (PRPs, also known as block ciphers). A number of
results offered various tradeoffs between construction complexity, assumptions used, and security
achieved. We briefly mention only some of the relevant work.

Pietrzak [Pie09] simplifies the construction of [DP08] by assuming a stronger underlying prim-
itive (a so-called weak PRF instead of just a pseudorandom generator used in [DP08]).

Standaert et al. [SPY+10] argued that a different leakage model than OCL may be more
reflective of real side-channel attacks and may also improve efficiency of constructions. The difficulty
in designing a good leakage model is that without sufficient restrictions on the leakage class, the
adversarially supplied leakage function can perform a “precomputation” attack, in which the leakage
function precomputes the value that the pseudorandom object would output far in the future, thus
making the value no longer random-looking when it is finally output. To design a leakage class that
is both reflective of reality and prevents these theoretical attacks is a difficult task (OCL is one
such design). Standaert et al. suggested not allowing the adversary to choose the leakage function
adaptively (as already suggested in [MR04]), or employing a random oracle that can be queried by
the construction, but not by the leakage function. Both of these leakage models were considered by
[YSPY10]; following the discovery by [FPS12] of a mistake in one of the proofs of [YSPY10], fixes
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and further improvements were proposed by [YS13]. The random oracle of [YSPY10] is replaced
by a so-called “simulatable leakage” assumption in [SPY13], where it is argued that though the
assumption may seem strong, it is more realistic than length- or entropy-based restrictions on the
leakage function; see [LMO+14] for a discussion on how to break various simulators and [FH15] for
connections between simulatable leakage and other leakage-function restrictions.

Leakage-resilient pseudorandom generators “with input” (i.e., whose state can be continually
updated by additional input) are considered in [ABP+15].

4.2.4 Leakage-Resilient Key Evolution

One-way key evolution, which is the main ingredient in leakage-resilient stream ciphers, was con-
sidered as a separate primitive by Dziembowski, Kazana, and Wichs [DKW11]. Like the authors
of [YSPY10], they work in the random oracle model. However, they do not assume that the leak-
age function cannot evaluate the random oracle; instead, they assume the leakage function is space
bounded, and use graph pebbling problems to protect against such leakage. They show applications
of their construction to authentication and to obtaining security against continual leakage in the
bounded retrieval model (see Sections 2.4 and 2.5). Their construction was improved by [SZ13].

4.2.5 Leakage-Resilient Block Ciphers, Encryption, and Authentication

A significant stumbling block for achieving efficient leakage-resilient constructions of PRFs, PRPs,
and higher level symmetric primitives, such as encryption and authentication, is the fact that the
secret state does not naturally evolve in the mathematical description of the primitive, in contrast
to stream ciphers, which naturally evolve their secret state in a one-way fashion. The state does
not naturally evolve for PRFs and PRPs because they need to repeatedly produce the same output
on the same input. Higher-level primitives, such as encryption and authentication, have multiple
participating parties who cannot be assumed to update the state synchronously (in particular, what
was encrypted yesterday needs to still be decryptable today).

Such primitives are sometimes called “stateless” in the literature (which is a bit of a misnomer,
because they have a secret state—they just don’t change it), in contrast to “stateful” stream ciphers
discussed above. If such a primitive is used repeatedly with the same secret state, and the leakage
class is sufficiently rich, then the adversary will eventually obtain the entire secret state.

General compilers discussed in Section 4.3 can be used for any cryptographic primitive and,
therefore, can be used to address this challenge. Some works have optimized general compila-
tion techniques for particular symmetric primitives, especially block ciphers. We review these
approaches in Sections 4.3.2, 4.3.5, and 4.4. For the remainder of this section, we focus on ap-
proaches that have less general applicability. Many of these approaches split the secret key into
multiple parts that can evolve even when the secret key remains the same, and thus provide some
form of secure storage (see Section 3) in such a way that the stored value can be used in the
computation by the symmetric primitive.

Dodis and Pietrzak [DP10] get around the problem of evolving state for PRFs and PRPs by
limiting the leakage class: they consider nonadaptive OCL leakage, in which the adversary must fix
the leakage function in advance and keep it the same every time the PRF or PRP is invoked. They
construct a PRF and a PRP that are reslient to such nonadaptive OCL leakage without the need
for key evolution. They also show generic side-channel attacks on Feistel-based PRP constructions.
Faust, Pietrzak, and Schipper [FPS12] consider models in which the adversary does not get to
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choose the leakage function and/or the inputs adaptively, showing that these relaxations lead to
more efficient constructions of PRFs and PRPs secure against OCL leakage.

Another way to get around the problem of evolving state is to force all participants to evolve
it. In particular, leakage-resilient MACs in which both sides evolve the secret key were considered
by Schipper [Sch10].

Some states can be easily split into multiple evolving components using algebraic techniques
(instead of more traditional symmetric primitives), even when the underlying secret (which is never
reconstructed) does not evolve. Following ideas from the public-key encryption scheme of [KP10]
(discussed in Section 4.2.6), Martin et al. [MOSW15] use bilinear groups (in the generic group
model) to construct a leakage-resilient MAC in the OCL model. The construction splits the secret
into two parts multiplicatively and assumes the two parts leak independently. Since their scheme
does not allow leakage during verification, it can be seen as a weaker variant of a PRF, with output
that is unpredictable rather than pseudorandom. Barwell et al. [BMOS17] demonstrate both a PRF
and a MAC that resists leakage during verification using a three-share variant of this construction.
Note that bilinear pairings are considerably less efficient than typical block-cipher-based MAC
constructions, though they are competitive with public-key schemes.

Andrychowicz, Masny, and Persichetti [AMP15], propose, as an application of their general
compiler discussed in 4.3.4, a particularly efficient leakage-resilient implementation of interactive
secret-key authentication protocol Lapin [HKL+12]. The construction splits the secret into two
parts that are assumed to leak independently, using the inner-product extractor (see Section 3)
over large finite fields.

Pereira, Standaert, and Vivek [PSV15] obtain symmetric encryption and MACs by combining
a leak-free block cipher in which the key does not evolve with a leaking primitive that evolves its
key, emphasizing that the leak-free primitive is more expensive and thus used sparingly. The key of
the leak-free block cipher is the master key of the entire scheme, and is used to generate temporary
keys for the leaky primitive. The approach of generating temporary keys using a master key is
sometimes called re-keying. While [PSV15] assume a leak-free primitive for re-keying, some works
design leakage-resilient re-keying schemes: at each invocation, such a scheme generates a fresh key
for a stream cipher and updates its own state. Re-keying was addressed in theory and practice
well before leakage-resilient cryptography was formalized (e.g., [AB00, Koc03]); in the context of
leakage-resilience, see [ABF13, DFH+16], and references therein. The idea of combining a low-
leakage (expensive to implement) primitive with a higher-leakage (inexpensive) one is sometimes
called the “leveled leakage setting”.

Authenticated symmetric encryption (which protects both secrecy and authenticity of the mes-
sage against chosen-ciphertext attacks) presents more opportunities for leakage, because, in addition
to leakage during computation, the decryption oracle may leak information about how exactly an
invalid ciphertext failed to decrypt. This problem was addressed via generic composition of leakage-
resilient PRFs, MACs, and symmetric encryption in [BMOS17], and via the leveled approach (as
discussed in the previous paragraph) in a series of works (see [GPPS18] and references therein);
some of these works also provide protection in case of poor randomness or nonce generation. One
suggestion for implementing the expensive PRF is to use the bilinear-pairings based PRF construc-
tion of [BMOS17].

It’s important to note that there is no consensus on the leakage model for symmetric encryption
schemes, because a single bit of leakage about the plaintext trivially breaks the standard indistin-
guishability notion. Some works (e.g., [BMOS17]) prohibit leakage during the challenge phase;
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others (e.g., [PSV15, GPPS18]) permit it, but provide designs that first hide the plaintext via some
operation assumed to leak nothing useful.

4.2.6 Leakage-Resilient Public-Key Objects

Micali and Reyzin [MR04] construct the first leakage-resilient signature scheme in the OCL model.
Specifically, the observe that the following classical stateful signature scheme is already leakage-
resilient in the OCL model: the public key is the root for a Merkle tree [Mer88] of one-time public
keys, where each one-time public key is for Lamport’s one-time signature scheme [Lam79]. Leakage
resilience in the OCL model is trivial, because the model assumes there is no leakage during key
generation, and after key generation, there is no computation on secret values, except to output
some of them as part of a signature. The proposed scheme requires an a priori bound on the total
number of signatures that will ever be produced and key generation time that is proportional to
that bound; it is also stateful.

Faust et al. [FKPR10] reduce key generation time and remove the a priori bound on the number
of signatures by replacing the Merkle tree in the signatures of [MR04] with a signature tree. They
observe each secret signing key is used at most three times (to sign two leaves and a message),
and therefore if the underlying signature scheme is resilient against memory leakage that results
from three signatures, the resulting tree-based signature scheme will be leakage-resilient in the OCL
model. This signature scheme is still stateful, however.

Malkin et al. [MTVY11], building on techniques of [ADW09, KV09, BKKV10] for memory
leakage (see Section 2.1), construct signature schemes that resist leakage during the signing process
without the OCL assumption.

Kiltz and Pietrzak [KP10] construct a leakage-resilient public-key encryption scheme resistant
against continual leakage in the OCL model (however, unlike the one-time leakage results discussed
in the previous paragraph, in their model no leakage is allowed once the challenge ciphertext is given
to the adversary). The main idea of their construction is as follows. Start with ElGamal encryption
[ElG85], but use bilinear groups (i.e., a bilinear pairing operator e that takes two elements of a source
group into a single element of a target group) in order to enable multiplicative sharing of the secret
key. That is, instead of the usual secret key x, let the secret ket be gx in the source group, where g
is the group’s generator. The public key is its image in the target group, X = e(gx, g). Encryption
is the usual ElGamal, except the the first component is in the source group: an encryptor chooses
a random r, outputs gr, and uses Xr as a symmetric key to encrypt the message. Decryption
is done by first computing e(gx, gr) = e(gx, g)r = Xr. To make this scheme leakage-resilient,
multiplicatively share the secret key gx into two shares stored in two separate components, and
decrypt by working with each share separately within each component and multiplying the results.
To obtain security against continual leakage, rerandomize these shares at every decryption. Both
decryption and update require a single message between the two components. Note that to obtain
security, it is essential for leakage resilience that x is stored in the exponent, because additive secret
sharing of x could allow an adversary to obtain sensitive information about x via OCL leakage.

Kiltz and Pietrzak show that this scheme is CCA1-secure in the presence of OCL leakage (i.e.,
independent leakage from the two shares of the secret key) in the so-called generic group model,
an idealized model in which group elements are assumed to have random representations that leak
only equality information. Galindo et al. [GGL+16] show a software implementation of a variant
of this scheme, and then evaluate the implementation to determine whether the amount of leakage
is indeed sufficiently small per invocation, as required for security to hold.

26



Galindo and Vivek [GV13b, GV13a] and Tang et al. [TLNL14] adapt the approach of [KP10] to
digital signatures, basing their schemes on identity-based encryption (IBE) and signatures schemes
of [BB11, BLS04, Wat05, Sch91]; Wu, Tseng, and Huang [WTH16] extend it further to identity-
based signatures.

Instead of multiplicative sharing of [KP10], Dziembowski and Faust [DF11] use the inner-
product-based sharing introduced in the leakage-resilient storage work of [DDV10] (see Section
3) to construct CCA2-secure encryption (that handles even post-challenge leakage), identification
schemes, and signature schemes in the OCL model. They build on ideas of [DDV10] and on work in
the memory leakage model, such as [NS09] (see Section 2.2) and [ADW09] (see Section 2.4). Their
schemes operate in a prime-order group with generators g1, g2; the secret key for each scheme is a
pair of values x1, x2, and the public key is gx1x2 (thus ensuring, as in the continual memory leakage
model of Section 2.5, that there are multiple secret keys for each public key). The secret key is
shared into two parts, L and (R1, R2) (where L, R1, R2 are vectors), so that the inner product
of L and Ri is xi for i = 1, 2. The encryption scheme is similar to ElGamal [ElG85] (and similar
to [NS09]), while the identification and signature schemes are based on those of Okamoto [Oka93]
(which were analyzed in the bounded rertrieval model by [ADW09]). The most innovative part of
this work is a two-message protocol to update the shares L and (R1, R2) in a way that ensures
security even if the adversary can obtain leakage during the protocol. The protocol requires a
leak-free component that samples pairs of values from a fixed, input-independent distribution (this
assumption is considerably weaker than the assumption of leak-free updating made in the many
works discussed in 2.5). The ideas of this work led to a general compiler by [DF12] discussed in
Section 4.3.4.

Akavia, Goldwasser, and Hazay [AGH12] consider a model very similar to the two-component
OCL model of [KP10] and [DF11]: there are two parties who hold shares of the secret and commu-
nicate over a public channel; the parties’ secrets leak independently. In this model they construct
CPA-secure public-key encryption and IBE, as well as CCA2-secure public-key encryption (using
the IBE-to-CCA transformation of Boneh et al. [BCHK07]); no post-challenge leakage is allowed.
They do not require idealized models or leak-free components. The main idea is to share the master
secret key gα of the Boneh-Boyen [BB04] IBE between the two parties via encryption that is similar
to Naor-Segev [NS09], with one party holding the secret key and the other holding the ciphertext.
Both decryption and share updates are accomplished by a two-party two-message protocol that
(again) uses Naor-Segev-like encryption, relying on its homomorphic properties. This scheme can
also be used for leakage-resilient storage (see Section 3), using the interactive updating protocol to
update the stored shares.

Barthe et al. [BBE+18] show how to implement the lattice-based signature scheme of Güneysu,
Lyubashevsky, and Pöppelmann [GLP12] in the wire-probing model of [ISW03], using many of the
recent advances developed for masking-based circuit transformations (see Section 4.3.2), as well
as developing additional techniques, such as conversion between masking modulo 2 and modulo a
large prime.

We close this section by discussing a few works that address one-time leakage rather than
continual leakage discussed above. (Most work addressing one-time leakage is discussed in Section 2;
we single out the following works for this section because they work in the OCL model.) Halevi and
Lin [HL11, Section 4], building on their result that the Naor-Segev [NS09] construction maintains
entropic security against memory leakage even if it occurs after the challenge ciphertext is known
to the adversary (see Section 2.2), show how to build a public encryption scheme in the 2-state
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OCL model that is CPA-secure for one-time post-challenge leakage. The idea is to store two secret
keys separately, use each of them to decrypt a random string, and use the inner product of the two
random strings (which is a two-source extractor—see Section 3) to decrypt the message. Zhang,
Chow, and Cao [ZCC15] show how to upgrade this scheme’s security to CCA, as well as how
to construct IBE schemes by building on techniques from [ADN+10]. Fujisaki et al. [FKN+15]
show a similar upgrade to CCA security as well as security against leakage from the encryptor’s
randomness.

4.3 General Compilers

While Section 4.2 discussed specific cryptographic primitives, here we discuss general transforma-
tions to achieve leakage resilience for any computation. They are, of course, also applicable to the
specific cryptographic goals discussed above, but often less efficient than the specific constructions.

The commonly used paradigm for general leakage-resilient compilers was introduced by Ishai,
Sahai, and Wagner [ISW03] (see Section 1.2). To recap, they address the situation in which compu-
tation is performed by a clocked circuit with a secret state (for example, a circuit implementing a
block cipher with a secret key). The circuit is run repeatedly on various inputs, producing outputs
and possibly also updating the secret state. They consider adversaries who are able to provide
inputs and observe outputs as well as observe some leakage function of the internal wires during
the computation. The security goal is to build a circuit in such a way that the adversary learns
nothing useful about the secret state from the leakage. The notion of “learning nothing useful”
is defined by the existence of a simulator who faithfully simulates the leakage by observing only
the input/output behavior. The initial secret state is stored in some specially encoded form and is
assumed to be placed into the circuit without any leakage. In order to protect against repeated leak-
age on multiple inputs, constructions must update the secret state and erase the previous version,
similar to constructions in Section 4.2.

General compilers achieve this security goal for any computation. The computation itself is
specified by a stateful, but not leakage-resilient, circuit C. The goal of a compiler is to create a
new circuit C ′ (and an encoding of the secret state) so that C ′ computes the same functionality as
C and is leakage-resilient in the sense described above.

The specific leakage function considered by [ISW03] was wire probing: the adversary could
obtain leakage from t wires. We discuss their construction in Section 4.3.1. We cover other trans-
formations secure against wire-probing leakage in Section 4.3.2.

Following the introduction of general leakage functions in [MR04], researchers have considered
other types of leakage. A folklore result, attributed to Impagliazzo by [GR15, Section 1], is that
general leakage-resilient computation is impossible under even a single bit of leakage without some
constraint on the leakage function, because of the general impossibility of black-box obfuscation
[BGI+01] (the connection between leakage-resilient computation and obfuscation has been also
explored by other works—see, e.g., [BCG+11]). Thus, some restrictions on the leakage functions,
besides the amount of leakage, are necessary.

Transformations secure against a variety of leakage classes are discussed in Sections 4.3.3 (leak-
age of limited complexity), 4.3.4 (OCL leakage), and 4.3.5 (noisy and noisy OCL leakage).

Before proceeding, we should note the following folklore result (see, e.g., [BCG+11, Section
1.1]): to achieve a general compiler secure against some leakage, it often suffices to build a leakage-
resilient construction for decryption of a fully-homomorphic encryption scheme. The secret state
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can then be stored encrypted under such a scheme, and all computation and state update can be
carried out encrypted until the output is needed.

4.3.1 The Compiler of [ISW03]

The transformation of [ISW03] is similar to the one in [CJRR99]: each wire carrying a bit b is
a replaced by a bundle of t + 1 wires carrying the boolean masking of b, i.e., t + 1 bits whose
exclusive-or is equal to b. The main technical tool is the design of a gadget for the logical AND
operation: it takes two wire bundles for bits b1 and b2 and outputs a wire bundle for the bit b1 ·b2, in
such a way that the adversary cannot learn anything by observing t wires, because the distribution
of wire values is t-wise independent. The gadget is made up Θ(t2) bit gates and uses Θ(t2) random
bits.

The secret state is stored encoded in the same way: each bit b is replaced by t + 1 bits that
XOR to b. Inputs are encoded and outputs are decoded to the same representation (leakage during
encoding and decoding is not a concern, because the adversary is assumed to be able observe
inputs and outputs). The encoded secret state is updated (rerandomized) before being stored
again, whether the actual secret state changes or not.

As already mentioned, this construction is secure against continual leakage. At its core is a
transformation secure against one-time leakage. Specifically, given a stateful circuit C, treat initial
state as an additional input and the updated state as an additional output, resulting in a circuit C̃
that has state, but only inputs and outputs. The goal of a one-time-secure (also known as stateless)
transformation is to transform C̃ into C̃ ′ that leaks nothing useful about its input. To enable such
a transformation, we will allow C̃ ′ to receive its input already encoded, and to produce encoded
outputs. The stateful C ′ that is secure against continual leakage is produced by taking C̃ ′, storing
the encoded state in memory registers, and adding input encoding and output decoding.

One-time-secure (stateless) transformations are sometimes interesting on their own. They do
not always result in secure transformations against continual leakage, because it is not always
possible to update the secret state so that cumulative leakage does not add up to reveal it.

The transformation of Ishai, Sahai, and Wagner [ISW03] achieves perfect security. The authors
also show more efficient transformations for large values of t that achieve statistical security, and a
derandomized construction that achieves computational security.

4.3.2 Improved Compilers for Wire Probing Leakage

Considerable effort has been devoted to improving the compiler of [ISW03].
Many subsequent papers improved efficiency of [ISW03]. Some papers design special masking-

friendly block ciphers (e.g., [PRC12], [GLSV15]) or more efficient masking techniques (see, e.g.,
[GM17], [GR17], [JS17], and references therein). Some consider automated synthesis and verifica-
tion of masked circuits for specific computations—see, in particular, [BBD+15, BBD+16, BBP+16,
Cor18, BGI+18, BGR18] and references therein (a good overview of this area is given in [BDF+17,
Section 1.2]). Some reduce the amount of randomness used (e.g., [BBP+16, BBP+17, FPS17]).
Some consider both Boolean masking and masking modulo a power of two (see [BCZ18] and refer-
ences therein) or a large prime (see [BBE+18]); the ability to switch between the two gives more
efficient implementations. Masking is not the only countermeasure used in this setting—see, e.g.,
[CRZ18] for a randomized table countermeasure and a discussion of other countermeasures used.
Even though block cipher constructions are the primary goals of these works, many of them present
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techniques of general applicability. Some works combine leakage-resilience with resilience to glitches
(e.g., [FGP+18]).

Many of the works mentioned above try to optimize not only the circuit size, but also the
amount of randomness. Ishai, Sahai, and Wagner [ISW03] showed that if we are willing to settle for
computational, rather than information-theoretic security against leakage, then their construction
can be fully derandomized (except for an initial random seed) with the help of a leakage-resilient
pseudorandom generator that they construct. For the case of perfect security, the randomness
complexity is improved from t2 per gate to t1+ǫ for the entire circuit in [IKL+13, AIS18], with the
help of different leakage-resilient (so-called “robust”) pseudorandom generators (t random bits are
necessary according to [AIS18]).

A series of works by Balasch et al. (see [BFG+17] and references therein) considers so-called
“inner-product” masking instead of boolean masking. It presents both general compilation tech-
niques and applications to AES. This basic idea is similar to [ISW03]: replace wires with wire
bundles, and gates with gadgets. However, this masking operates on words rather than bits, so, to
start with, a “wire” carries b-bit elements of the finite field GF(2b). Like in [FRR+10] (see Section
4.3.3), the masking operation replaces each such wire with a wire bundle whose inner product with
a fixed vector (which is a system parameter) is equal to the wire value. We note that this usage of
the inner product operation is different from how the inner product is used in [DF12] (see Section
4.3.4), where a wire is represented by two vectors whose dot product is equal to the wire’s value,
because in [DF12] both vectors are random, while in [BFG+17] one vector is a fixed parameter.
The value of this fixed parameter is of little importance to the theoretical evaluation (as long it has
no zero coordinates), but matters to the heuristic security evaluation: in addition to theoretical
security evaluation, these and other similar works are evaluated in heuristic evaluation frameworks
we discuss in Section 4.4.

On the more theoretical side, a number of works considered the problem of leakage rate (i.e.,
the ratio of leaking wires to total wires in the compiled circuit). Because the circuit size in the
construction of [ISW03] increases by a factor of t2 during compilation, the leakage rate is quite
low and, in fact, decreases linearly as t increases. If the choice of leaking wires is not completely
up to the adversary (for example, each wire leaks with some probability, or not too many wires
leak in any particular region of the circuit), then the leakage rate can be improved to a constant
[Ajt11, ADF16, AIS18].

4.3.3 Compilers for Leakage of Limited Complexity

Faust et al. [FRR+10, FRR+14] showed two compilers. Both compilers, in addition to the leakage-
class restriction, assume the existence of certain leak-free hardware (which is input-independent),
thus providing a reduction from a simple leak-free piece of hardware to a general leak-free circuit,
in the spirit of [MR04]. The first compiler provides security against noisy leakage of every wire; we
discuss it in Section 4.3.5. Here we focus on the second compiler of Faust et al., which is secure
against a class of leakage functions that cannot decode a linear secret sharing scheme (the specific
linear secret sharing scheme determined the class of leakage functions that could be tolerated). In
particular, by using the same boolean masking as used by [ISW03], but different AND gadgets,
the compiler achieves security against leakage functions in the complexity class AC0 (i.e., leakage
functions computable by unbounded fan-in constant-depth circuits with “and”, “or”, and “not”
gates). It is not practical: to tolerate leakage of λ bits of information per round of execution, the
circuit size has to increase by a multiplicative factor of more than λ12. Its theoretical efficiency was
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been improved in subsequent work [ADD+15], using techniques from multi-party computation (in
particular, working over large fields and using packed secret sharing), although concrete parameters
are not analyzed. It is improved to withstand more leakage, and, in a surprising application, used
to construct zero-knowledge PCP by Ishai, Weiss, and Yang [IWY16].

Several subsequent papers improved protection against leakage functions from a restricted com-
plexity class. Rothblum [Rot12] improved the AC0-leakage compiler of [FRR+10] to remove the
need for leak-free hardware, but at the cost of adding a computational hardness assumption. This
transformation (which builds on the ideas of [GR12, GR15] discussed in 4.3.4) replaced the leak-free
hardware with a leakage-resilient computation, and required changes to the wire-bundle encoding
and gate gadgets in order to make simulation possible.

Miles and Viola [MV13] proposed a circuit transformation that resists more powerful classes
of leakage functions, such as AC0 augmented with gates that compute any symmetric function
(including parity), and, under certain computational assumptions, the class TC0 (i.e., leakage
functions computable by unbounded fan-in constant-depth circuits with “threshold” and “not”
gates). Their transformation follows the wire bundles and gadgets approach of prior work, but uses
group operations over the alternating group A5 instead of boolean masking for sharing each wire
(and, of course, completely new gadgets). Miles [Mil14] extended this result to leakage functions
in NC1 (all leakage functions computable by polynomial-size logarithmic-depth constant fan-in
circuits) under the assumption that L 6=NC1. These compilers, like those of [FRR+10], require an
input-independent leak-free hardware. While precise parameters are not analyzed, they do not
seem to be in the realm of practical.

The above work is for continual leakage from stateful circuits. For the more limited case of one-
time leakage from circuits without persistent state (see Section 4.3.1), Bogdanov et al. [BIVW16]
showed that constructions secure against wire-probing leakage of t wires also achieve security against
low-complexity leakage, where “low-complexity” means low approximate degree of the leakage func-
tion. The main technical insight is an equivalence between the notion of low approximate degree
of a function and the function’s inability to distinguish t-wise indistinguishable distributions (i.e.,
distributions whose projections on t symbols are identical). This result is similar to the result of
[DDF14] for the connection between wire-probing and noisy leakage (see Section 4.3.5). Bogdanov
et al. exploit the connection between secure multi-party computation and circuits resilient to wire-
probing leakage (observed already in [ISW03]) to obtain new constructions of circuits resilient to
one-time low-complexity leakage. However, it is not known how to extend their ideas to stateful
circuits with security against continual leakage.

4.3.4 Compilers for OCL leakage

See Section 4.1 for a discussion of the “only computation leaks” (OCL) model and its variants.
Two general compilers in the OCL model were shown by Juma and Vahlis [JV10] and Goldwasser

and Rothblum [GR10], using very different approaches.
Juma and Vahlis presented their result in two-component OCL model. One component stores

the secret state encrypted under a public key for a fully homomorphic encryption scheme (FHE).
The other component stores the FHE secret key. The facts that the two components leak separately
and only a bounded amount are used to prove that information about the FHE plaintext is not
accessible to the leakage function. In order to evaluate a circuit C, leakage-resilient computation
is performed homomorphically under the cover of FHE by the first component; the result is then
decrypted with the help of the second component. At the same time, fresh FHE keys are generated
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to update the state of the second component, and the component’s state is re-encrypted under these
keys (using decryption under the cover of the FHE) to refresh the ciphertext. The amount of leakage
per invocation that this construction can tolerate is logarithmic in the FHE security; the leakage
function must be polynomial-time computable. The construction depends on an input-independent
leak-free component that produces FHE ciphertexts for a fixed (e.g., all-zero) plaintext.

Goldwasser and Rothblum [GR10] divide the computation into many more independently leak-
ing pieces — as many as gates in C. They use a leakage-resilient encryption scheme (with addi-
tional properties) as the underlying building block. They replace each wire value of the original
circuit C with its ciphertext, and each gate of C with a gadget that takes ciphertexts as inputs
and produces ciphertexts as outputs. In order to make the gadget leakage-resilient, they use the
encryption scheme of [BHHO08, NS09] (see Section 2.2), slightly modified and augmented with
(input-indepenent) leak-free hardware. The encryption keys are updated for each iteration. Under
the assumption that each gadget leaks independently, the compiled circuit can tolerate a fixed
amount of polynomial-time leakage per gadget. Thus, in contrast to circuit compilers described
in Section 4.3.3 and the result of [JV10], the amount of leakage they can tolerate grows with the
circuit size.

Dziembowski and Faust [DF12] and, independently, Goldwasser and Rothblum [GR12, GR15]
eliminate the need for computational assumptions in [GR10], achieving security against arbitrarily
complex (rather than only polynomial-time) leakage functions. Miles and Viola [MV13] provide
another construction, by observing that their compiler against computationally-bounded leakage
also provides security in the OCL model; however, it tolerates less leakage that the constructions
of [DF12, GR12, GR15].

The compiler of [DF12], like prior work, assumes some leak-free hardware. It uses so-called
“inner-product masking”: each wire is represented by two vectors whose inner-product is equal to
the wire value, as in the leakage-resilient storage of [DDV10] (see Section 3). Because the inner
product function is a two-source extractor (which means the output is close to uniformly random as
long as the two sources are independent and each has sufficient entropy), as long as the two vectors
leak independently and not too much, the wire value is well-hidden. Gadgets that operate on the
vectors are constructed with the help of (input-independent) leak-free hardware. This construction
can be viewed in the circuit model, having 2n independently leaking components (where n is the
number of wires in the original circuit). It can also be viewed as a two-party protocol, where each
party keeps one of the two vectors for each wire, and the parties communicate for each gate. The
latter view allows for much less leakage. The efficiency of this compiler has been improved by
Andrychowicz et al. [ADD+15].

The compiler of [GR12, GR15] eliminates not only computational assumptions, but also leak-
free hardware, by replacing the computational encryption scheme of [GR10] with an information-
theoretic one and replacing the leak-free components with leakage-resilient computation. Thus, the
only remaining assumption is on the leakage function: that each component leaks independently,
and the amount of leakage per component is bounded (it is also assumed, like in previous work,
that the compilation itself, which is randomized and places the secret state into the circuit, doesn’t
leak; this assumption is shown necessary in [DDN15]). The number of components is the same as
the number of gates in the original circuit.

Bitansky, Dachman-Soled, and Lin [BDL14] obtain a protocol with a constant number of
independently-leaking components without computational assumptions or leak-free hardware. The
number of parties is estimated to be about about 20 in [DLZ15]). Each component is invoked

32



a linear (in the circuit size) number of times. The main idea of the construction is to use the
2-component version of the compiler of [DF12], and replace the leak-free hardware by the leakage-
resilient computation of [GR12, GR15].

Dachman-Soled, Liu, and Zhou [DLZ15] reduce the number of components even further—down
to the optimal two—without relying on leak-free hardware, but at the cost of very strong computa-
tional assumptions. The technical idea behind their construction is to start with a two-component
compiler that requires leak-free hardware (such as [JV10] or [DF12]) and then replace the leak-free
hardware with a leakage-resilient two-party protocol. This protocol is what requires the computa-
tional assumption.

For the case of one-time security of stateless circuits (see Section 4.3.1), Goyal et al. [GIM+16]
build compilers in the 2-component bounded-communication leakage model (which is a general-
ization of the OCL model; see Section 4.1). In this stateless setting, they are able to reduce the
assumptions of [DLZ15] and increase efficiency compared to prior constructions, without resorting
to leak-free hardware. The technical idea of the construction is a result that shows that protection
against leakage functions that simply compute parities of wire values is essentially sufficient. It
is not known how to extend this construction to protect against continual leakage in the stateful
case.

Genkin, Ishai, and Weiss [GIW17] observe that leakage-resilient stateless circuits make sense
as implementation to trusted third parties, in which multiple participants provide inputs and rely
on the trusted third party to compute an output. While the party is trusted to compute the
output correctly and not leak information deliberately, it may be under a side-channel attack by an
adversary. This setting presents its own challenges not present in the usual stateful compilers (in
particular, what happens if some participants provide invalidly encoded inputs). Building on the
work of [GIM+16] for stateless compilers and the work of [IWY16], they show how these challenges
can be overcome.

Most of the papers discussed above focus on the theory feasibility results and do not analyze
the practical feasibility of their compilers. Further work is needed to make any of them practical.

On the more applied side, Andrychowicz, Masny, and Persichetti [AMP15] propose a two-
component OCL compiler using inner-product masking over large finite fields (and some leak-free
components), and apply it to the “Lapin” secret-key authentication protocol [HKL+12], producing
a working implementation. They evaluate both the concrete leakage-resilient and concrete per-
formance of their proposal, reporting a 30-fold slowdown over the standard version of Lapin for
reasonable security parameters.

4.3.5 Compilers for Noisy and Noisy OCL Leakage

As already mentioned above, one of the compilers of Faust et al. [FRR+14] works in a noisy
leakage model that is reminiscent of the noisy leakage model of Chari et al. [CJRR99]. Specifically,
the assumption is that every wire’s value is provided to the adversary, but each one is flipped
independently with probability p. The compiler uses the same boolean masking as [CJRR99,
ISW03], but builds AND gadgets differently. Unfortunately, the compiler is far from practical,
requiring at least a million-fold increase in the circuit size even for small security parameters (in
particular, to achieve security 2−λ when the error probability for the leakage of each wire is p ≤ 1

2 ,
the circuit size has to increase by a factor of more than max(105 · λ2, p−12λ/100)).

Subsequent work considered more general noisy leakage functions, many of them in a variant
of the OCL model. In the version of the OCL model used in most works mentioned in 4.3.4,
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the leakage can be an arbitrary polynomial-time function of the relevant portion of the state, but
of limited output length. An objection to this model of leakage (raised in multiple forums; e.g.,
[SPY+10, SPY13]) is that it is both too strong and too weak. It is too strong because in reality, the
physical side channels do not compute arbitrary polynomial-time functions, and ensuring protection
against arbitrary polynomial-time leakage forces the designs to have unnecessary complexity. It is
too weak because real side-channel attacks receive many bits of leakage—typically many more than
the amount of secret state.

Addressing these objections, Prouff and Rivain [PR13] show a circuit compiler in the OCL
model (with a linear number of independently leaking components), where the leakage from each
component of the circuit reveals limited information (in the statistical sense of biasing the distribu-
tion) about the value being leaked. (Note that the model of power analysis attacks by Chari et al.
[CJRR99], discussed in Section 1.1, has this property.) Their compiler uses additive secret sharing
(also known as masking) for the wires, and gadgets similar to [ISW03, FRR+14] for multiplication;
it is specialized to block ciphers that consist of s-box and linear operations, following the ideas of
[CGP+12]. It uses some leak-free components. The security model of [PR13] is weaker than the
model of [ISW03]; in particular, it does not provide the adversary with the input-output behavior
of the circuit, but only with leakage under random inputs.

Duc, Dziembowski, and Faust [DDF14] show a much stronger compiler for the class of leakage
functions considered in [PR13]. They demonstrate that the original compiler of [ISW03], without
any leak-free components, and for arbitrary circuits, is also secure against noisy OCL leakage.
Moreover, security holds for the strong definition of [ISW03], which allows the adversary to probe
the input-output behavior of the circuit while obtaining side-channel leakage. They achieve this
result by showing equivalence between noisy and wire-probing leakage; this equivalence has been
used in subsequent works, as well. Duc, Faust, and Standaert [DFS15a, DDF19] further improve
on the result by measuring the “noisiness” of statistical distance via a mutual information metric
rather than statistical distance; it is argued that this metric is easier to estimate in practice. The
quantitative bounds (relating the amount of noise to the security of the overall scheme) are further
improved by Dziembowski, Faust, and Skórski [DFS15b, DFS16]. Andrychowicz, Dziembowski,
and Faust [ADF16] and Goudrazi, Joux, and Rivain [GJR18] (using techniques from [ADD+15])
show how to improve the leakage rate and the efficiency of the transformed circuit.

4.4 Heuristic Security Evaluation of Leakage-Resilient Constructions

Much effort has also been devoted to understanding the security properties of masking in general
and particularly in the context of block ciphers. As already mentioned, the [ISW03] compiler is
secure against wire probing attacks that do not touch more than t wires. However, most realistic
attacks with current technology do not obtain information about only a few wires; instead, they
get noisy information about many wires. This kind of leakage is discussed in Section 4.3.5, in the
simulatability framework of [ISW03]. However, simulatability is a very strong requirement, and is
often unachievable within realistic efficiency constraints. Thus, researchers have used approaches
based on evaluating the best known classes of attack strategies, in order to understand the security
of designs for which the simulation proofs either do not exist or do not give meaningful security
bounds. These approaches provide weaker security guarantees, because they do not consider all
possible adversaries, but rather the best classes of adversaries known today. Nevertheless, they
are often very useful for understanding the cost/benefit tradeoffs of various designs, and are used
extensively in applied literature.
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A prominent heuristic evaluation framework was put forward by [SMY09]. A large number
of cryptographic designs and side-channel countermeasures have been evaluated in this framework
(many of these are referenced in [DFS15a, Section 1]). A comparison between this approach and the
more theoretical approach of [DP08, Pie09] (see Sections 4.2.2 and 4.2.3) is provided in [SPY+10].
An alternative evaluation framework was proposed in [WO11a, WO11b]. Some works combine prov-
able and heuristic evaluations—see, e.g., [DFS15a]. The heuristic evaluation frameworks continue
to evolve and mature; see [GS18] and references therein.

Barthe et al. [BDF+17] observe that side-channel attackers are often faced with the task of
estimating statistical moments of random variables they receive as leakage functions. They therefore
propose that the goal of a secure design it to make sure these moments, up to some order, are
independent of the secret state of the circuit (the reasoning is that higher-order moments, which
may be dependent, are very difficult to estimate). They relate their security goal to the wire-
probing leakage of [ISW03] and argue that their model is particularly suitable for highly parallel
(i.e., hardware rather than software) implementations.

Because of this survey’s focus on approaches with a provable security foundation, we do not
discuss heuristic evaluation frameworks in more detail, despite their strong impact on applied work.
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