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Abstract—Image Segmentation has been an active field of
research, as it has the potential to fix loopholes in healthcare,
and help the mass. In the past 5 years, various papers came up
with different objective loss functions used in different cases such
as biased data, sparse segmentation, etc. In this paper, we have
summarized some of the well-known loss functions widely used
for Image segmentation and listed out the cases where their usage
can help in fast and better convergence of a Model. Furthermore,
We have also introduced a new log-cosh dice loss function and
compared its performance on NBFS skull-stripping with widely
used loss functions. We showcased that certain loss functions
perform well across all datasets and can be taken as a good
choice in unknown-distribution datasets.

Index Terms—Computer Vision, Image Segmentation, Medical
Image, Loss Function, Optimization, Healthcare, Skull Stripping,
Deep Learning

I. INTRODUCTION

Deep learning has revolutionized various industries ranging
from software to manufacturing. Medical community has
also benefitted in large from deep learning, innovations from
disease classification, tumor segmentation using U-Net, cancer
detection using SegNet, CapsNet has saved many hours of
physicians and helped reduce costs by millions of dollars.
Among this, Image segmentation is one of the crucial con-
tribution of deep learning community to medical fields, as
apart from telling that some disease exists it also showcase
where exactly it exists, which has drastically helped in creating
automated softwares to detect lesions etc in CT scans.

Image Segmentation can be defined as classification task
on pixel level; an image consists of various pixels, and these
pixels grouped together define different elements in image,
therefore a method of classifying these pixels into the a ele-
ments is called semantic image segmentation. While designing
such complex image segmentation based Deep learning archi-
tectures we come across a crucial choice, which loss/objective
function to choose, as they instigate the learning process of
algorithm. The choice of loss function is very crucial for
any architecture to learn proper objective, and therefore since
2012 various researchers have came across to design domain
specific loss function to obtain better results for their datasets.
In this paper we have summarized 15 such segmentation based
loss functions that has been proven to provide state of art
results in different domains. These loss function can be widely
categorized into 4 categories: . Distribution-based, Region-
based, Boundary-based, and Compounded (Refer I). We have

also discussed the conditions to determine which objective/loss
function might be useful in a scenario. Apart from this, we
have also proposed a new log-cosh dice loss function for
semantic segmentation. To showcase its efficiency, we have
also compared the performance of all loss functions on NBFS
Skull-stripping dataset and shared the outcomes in form of
Dice Coefficient, Sensitivity, and Specificity. The code im-
plementation is available at GitHub: https://github.com/shruti-
jadon/Semantic-Segmentation-Loss-Functions.

Fig. 1. Sample Brain Lesion Segmentation CT Scan [1]. In this segmentation
mask you can see, that number of pixels of white area(targeted lesion) is ¡
number of black pixels.

TABLE I
TYPES OF SEMANTIC SEGMENTATION LOSS FUNCTIONS

Type Loss Function
Distribution-based Loss Binary Cross-Entropy

Weighted Cross-Entropy
Balanced Cross-Entropy

Focal Loss
Distance map derived loss penalty term

Region-based Loss Dice Loss
Sensitivity-Specificity Loss

Tversky Loss
Focal Tversky Loss

Log-Cosh Dice Loss(ours)
Boundary-based Loss Hausdorff Distance loss

Shape aware loss
Compounded Loss Combo Loss

Exponential Logarithmic Loss



II. LOSS FUNCTIONS

Deep Learning Algorithms uses stochastic gradient descent
approach to optimize and learn the objective. To learn an
objective accurately and faster, we need to ensure that our
mathematical representation of objectives, also known as loss
functions are able to cover even the edge cases. The intro-
duction of loss functions have roots in traditional machine
learning, where these loss functions were derived on basis
of distribution of labels. For example, Binary Cross Entropy
is derived from Bernoulli distribution and Categorical Cross-
Entropy from Multinoulli distribution. In this paper, we have
focused on Semantic segmentation instead of Instance Seg-
mentation, therefore the number of classes at pixel level is
restricted to 2. Here, we will go over 15 widely used loss
functions and understand their use-case scenarios.

Fig. 2. Graph of Binary Cross Entropy Loss Function. Here, Entropy is
defined on Y-axis and Probability of event is on X-axis.

A. Binary Cross-Entropy

Cross-entropy [2] is defined as a measure of the difference
between two probability distributions for a given random
variable or set of events. It is widely used for classification
objective, and as segmentation is pixel level classification it
works well. Binary Cross-Entropy is defined as:
LBCE(y, ŷ) = −(ylog(ŷ) + (1− y)log(1− (̂y)))

Here, ŷ is the predicted value by the prediction model.

B. Weighted Binary Cross-Entropy

Weighted Binary cross entropy (WCE) [3] is a variant of
binary cross entropy variant. In this the positive examples get
weighted by some coefficient. It is widely used in case of
skewed data [4] as shown in figure 1. Weighted Cross Entropy
can be defined as:
LW−BCE(y, ŷ) = −(yβlog(ŷ) + (1− y)log(1− (̂y)))

Note: β’s value can be used to tune false negatives and
false positives. E.g; If you want to reduce the number of false
negatives then set β > 1, similarly to decrease the number of
false positives, set β < 1.

C. Balanced Cross-Entropy

Balanced cross entropy (BCE) [5] is similar to Weighted
Cross Entropy. The only difference is that in this apart from
just positive examples [6], we also weight also the negative
examples. Balanced Cross-Entropy can be defined as follows:
LBCE(y, ŷ) = −(β∗ylog(ŷ)+(1−β)∗(1−y)log(1− (̂y)))
Here, β is defined as 1− y

H∗W

D. Focal Loss

Focal loss (FL) [7] can also be seen as variation of Bi-
nary Cross-Entropy. It down-weights the contribution of easy
examples and enable model to focus learning more on hard
examples. It works well for highly imbalanced class scenario,
as shown in fig 1. Lets look at how this focal loss is designed.
We will first look at binary cross entropy loss and learn how
Focal loss is derived from cross-entropy.

CE =

{
− log(p), if y = 1

− log(1− p), otherwise
(1)

To make convenient notation, Focal Loss define the estimated
probability of class as:

pt =

{
p, if y = 1

1− p, otherwise
(2)

Therefore, Now Cross-Entropy can be written as,
CE(p, y) = CE(pt) = −log(pt)
Focal Loss propose to down-weight easy examples and

focus training on hard negatives using a modulating factor,
(1− p)t)γ as shown below:
FL(pt) = −αt(1− pt)γ log(pt)
Here, γ > 0 and when γ = 1 Focal Loss works like Cross-

Entropy loss function. Similarly, α generally range from [0,1],
It can be set by inverse class frequency or treated as a hyper-
parameter.

E. Dice Loss

The Dice coefficient is widely used metric in computer
vision community to calculate the similarity between two
images. Later in 2016, it has also been adapted as loss function
known as Dice Loss [8].
DL(y, p̂) = 1− 2yp̂+1

y+p̂+1

Here, 1 is added in numerator and denominator to ensure
that the function is not undefined in edge case scenarios such
as when y = p̂ = 0.

F. Tversky Loss

Tversky index (TI) [9] can also be seen as an generalization
of Dice’s coefficient. It adds a weight to FP (false positives)
and FN (false negatives) with the help of β coefficient.
TI(p, p̂) = pp̂

pp̂+β(1−p)p̂+(1−β)p(1−p̂)
Here, when β = 1/2, It can be solved into regular Dice

coefficient. Similar to Dice Loss, Tversky loss can also be
defined as:
TL(p, p̂) = 1− 1+pp̂

1+pp̂+β(1−p)p̂+(1−β)p(1−p̂)



G. Focal Tversky Loss

Similar to Focal Loss, which focuses on hard example
by down-weighting easy/common ones. Focal Tversky loss
[10] also attempts to learn hard-examples such as with small
ROIs(region of interest) with the help of γ coefficient as shown
below:
FTL =

∑
c(1− TIc)γ

here, TI indicates tversky index, and γ can range from [1,3].

H. Sensitivity Specificity Loss

Similar to Dice Coefficient, Sensitivity and Specificity are
widely used metrics to evaluate the segmentation predictions.
In this loss function, we can tackle class imbalance problem
using w parameter. The loss [11] is defined as:
SSL = w ∗ sensitivity + (1− w) ∗ specificity, where,
sensitivity = TP

TP+FN and sensitivity = TN
TN+FP

I. Shape-aware Loss

Shape-aware loss [12] as the name suggests takes shape
into account. Generally, all loss functions work at pixel
level, Shape-aware loss calculates the average point to curve
Euclidean distance among points around curve of predicted
segmentation to the ground truth and use it as coefficient to
cross-entropy loss function.It is defined as follows:
Ei = D(Ĉ, CGT )

Lshape−aware = −
∑
i CE(y, ŷ)−

∑
iEiCE(y, ŷ)

Using Ei a network learns to produce a prediction masks
similar to the training shapes.

J. Combo Loss

Combo loss [13] is defined as a weighted sum of Dice
loss and a modified cross entropy. It attempts to leverage the
flexibility of dice loss of class imbalance and at same time
use cross-entropy for curve smoothing. It’s defined as:
Lm−bce = − 1

N

∑
i β(y− log(ŷ))+(1−β)(1−y)log(1− ŷ)

CL(y, ŷ) = αLm−bce − (1− α)DL(y, ŷ)
Here DL is Dice Loss.

K. Exponential Logarithmic Loss

Exponential Logarithmic Loss [14] function focuses on less
accurately predicted structures using combined formulation
of Dice Loss and Cross Entropy loss. [] propose to make
exponential and logarithmic transforms to both Dice loss an
cross entropy loss, to incorporate benefits of finer decision
boundaries and accurate data distribution. It is defined as:
LExp = wDiceLDice + wcrossLcross, where
LDice = E(−ln(DC)γDice)

Lcross = E(wl(−ln(pl))γcross)).
In this paper wong et. al. [14] have used γcross = γDice

for simplicity.

L. Distance map derived loss penalty term

Distance Maps can be defined as dis-
tance(euclidean,absolute, etc) between the ground truth
and the predicted map. There are 2 ways to incorporate
distance maps, either create neural network architecture,
where there’s a reconstruction head along with segmentation,
or induce it into loss function. Following same theory, [15]
have used distance maps, derived from ground truth masks
and created a custom penalty based loss function. Using
this approach, its easy to guide the network’s focus towards
hard-to-segment boundary regions. The loss function is
defined as:
L(y, p) = 1

N

∑N
i=1(1 + φ)(�)LCE(y, p)

Here, φ are generated distance maps
Note Here, constant 1 is added to avoid vanishing gradient

problem in U-Net and V-Net architectures.

M. Hausdorff Distance Loss

Hausdorff Distance (HD) is a metric used by segmentation
approaches to track the performance of a model. It is defined
as:
d(X,Y ) = maxxεXminyεY ||x− y||2
The objective of any segmentation model is to maximize

the Hausdorff Distance [16], but due to its non-convex nature,
its not widely used as loss function. [17] has proposed 3
variants of Hausdorff Distance based loss functions, which
both incorporate the metric use case as well as ensure that the
loss function is tractable.

N. Correlation Maximized Structural Similarity Loss

A lot of semantic based segmentation loss mainly focus
on classification error at pixel level, while disregarding the
pixel level structural information. Some other loss functions
[18] have attempted to add information using structural priors
such as CRF, GANs, etc. In this loss functions, authors have
introduced a structural similarity loss (SSL) to achieve a
high positive linear correlation between the ground truth map
and the predicted map. Its divided into 3 steps: Structure
Comparison, Cross-Entropy weight coefficient determination,
and mini-batch loss definition.
As part of Structure comparison, authors have calculated e-
coefficient, which can measure the degree of linear correlation
between ground truth and prediction:

e = |y−µy+C4

σy+C4
− p−µp+C4

σp+C4
|

Here, C4 is stability factor set to be 0.01 as an empirical
observed value. µy and σy is local mean and standard
deviation of the ground truth y respectively. y locates at the
center of the local region and p is the predicted probability.
After calculating the degree of correlation, authors have used
it as coefficient for cross entropy loss function, defined as:

Using this formula, the loss function will abandon those
predictions which have e¡somevalue. In simpler terms, Loss
function will automatically abandon those pixel level predic-
tions, which doesn’t show correlation in terms of structure.
fn,c = 1 ∗ en,c > βemax



Using this coefficient function, we can define SSL loss as:
Lossssl(yn,c, pn,c) = en,cfn,cLCE(yn,c, pn,c)
and finally for mini-batch loss calculation, The SSL can be

defined as:
Lssl = 1

M

∑N
n=1

∑C
c=1 Lssl(yn,c, pn,c) where, M is∑N

n=1

∑C
c=1 fn,c

O. Log-Cosh Dice Loss

Dice Coefficient is a widely used metric to evaluate the
segmentation output. It has also been modified to use as
loss function, as it fulfill the mathematical representation of
segmentation objective. But due to its non-convex nature,
various times it fails to achieve the optimal results. Lovász-
softmax loss aimed to tackle the problem of non-convex loss
function by adding the smoothing using Lovász extension.
Log-Cosh approach has been widely used in regression based
problem to smoothen the curve.

Fig. 3. Cosh(x) function is the average of ex and e−x

Hyperbolic functions have been used by deep learning
community in terms of non-linearities such as tanh layer. They
are tractable as well as easily differentiable. Cosh(x) is defined
as:
coshx = ex+e−x

2 , and cosh′x = ex−e−x
2 = sinhx. but, at

present coshx range can go up to infinity. So, to capture it in
range, log space is used, making the log-cosh function to be:
L(x) = log(coshx) and using chain rule and
L′(x) = 1

coshxsinhx Therefore, L′(x) = tanhx

TABLE II
COMPARISON OF SOME ABOVE MENTIONED LOSS FUNCTIONS ON BASIS

OF DICE SCORES, SENSITIVITY AND SPECIFICITY FOR SKULL
SEGMENTATION

Loss Evaluation Metrics
Functions Dice Coefficient Sensitivity Specificity

Binary Cross-Entropy 0.968 0.976 0.998
Focal Loss 0.936 0.952 0.999
Dice Loss 0.970 0.981 0.998

Tversky Loss 0.965 0.979 0.996
Focal Tversky Loss 0.977 0.990 0.997
Log Cosh Dice Loss 0.975 0.975 0.997

Using this proof of concept that our loss will be continuous
and in a defined range. We are proposing Log-Cosh Dice
Loss function for its tractable nature, while encapsulating the
features of dice coefficient. It can defined as:
Llc−dce = log(cosh(DiceLoss))

Fig. 4. Log(x) function with range from (−∞, C)

Fig. 5. Sample CT scan image from NBFS Skull Stripping Dataset

III. EXPERIMENTS

For experiments, we have implemented simple 2D U-Net
model [1] architecture for segmentation with 10 convolution
encoded layers and 8 decoded convolutional transpose layers.
We have used NBFS Skull-stripping dataset, which consists of
125 2-D skull CT scans, and each scan consists of 100 slices
(refer figure 5). For training, we have used batch size of 32
and adam optimizer with learning rate 0.001 and learning rate
reduction up to 10−8. After training the model for different
loss function, we have evaluated them on basis of well known
metrics: Dice Coefficient, Sensitivity, and Specificity (Ref
table II).

IV. CONCLUSION

Loss functions plays an important role in determining the
model performance. For complex objectives such as segmen-
tation, it’s not possible to determine a universal loss function.
Majority of the times, it depends on the properties of data-set
used for training, such as distribution, skewedness, boundaries,
etc. It’s not possible to conclude on a universal use-case
loss function. However, we can say, that highly imbalanced
segmentation works better with focus based loss functions.
Similarly, binary-cross entropy works best with balanced
data-sets, whereas mildly skewed data-sets can work around
smoothed or generalized dice coefficient. In this paper, we
have summarized 14 well known loss functions for semantic



TABLE III
TABULAR SUMMARY OF SEMANTIC SEGMENTATION LOSS FUNCTIONS

Loss Function Use cases
Binary Cross-Entropy Works best in equal data distribution among classes scenarios

Bernoulli distribution based loss function
Weighted Cross-Entropy Widely used with skewed dataset

Weighs positive examples by β coefficient
Balanced Cross-Entropy Similar to weighted-cross entropy, used widely with skewed dataset

weighs both positive as well as negative examples by β and 1− β respectively
Focal Loss works best with highly-imbalanced dataset

down-weight the contribution of easy examples, enabling model to learn hard examples
Distance map derived loss penalty term Variant of Cross-Entropy

Used for hard-to-segment boundaries
Dice Loss Inspired from Dice Coefficient, a metric to evaluate segmentation results.

As Dice Coefficient is non-convex in nature, it has been modified to make it more tractable.
Sensitivity-Specificity Loss Inspired from Sensitivity and Specificity metrics

Used for cases where there is more focus on True Positives.
Tversky Loss Variant of Dice Coefficient

Add weight to False positives and False negatives.
Focal Tversky Loss Variant of Tversky loss with focus on hard examples

Log-Cosh Dice Loss(ours) Variant of Dice Loss and inspired regression log-cosh approach for smoothing
Variations can be used for skewed dataset

Hausdorff Distance loss Inspired by Hausdorff Distance metric used for evaluation of segmentation
Loss tackle the non-convex nature of Distance metric by adding some variations

Shape aware loss Variation of cross-entropy loss by adding a shape based coefficient
used in cases of hard-to-segment boundaries.

Combo Loss Combination of Dice Loss and Binary Cross-Entropy
used for lightly class imbalanced by leveraging benefits of BCE and Dice Loss

Exponential Logarithmic Loss Combined function of Dice Loss and Binary Cross-Entropy
Focuses on less accurately predicted cases

Correlation Maximized Structural Similarity Loss Focuses on Segmentation Structure.
Used in cases of structural importance such as medical images.

segmentation and proposed a tractable variant of dice loss
function for better and accurate optimization. In future, we
will use this work as a baseline implementation for few-shot
segmentation experiments.
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