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Abstract: Software-defined networking (SDN) is a new networking paradigm that provides central-
ized control, programmability, and a global view of topology in the controller. SDN is becoming
more popular due to its high audibility, which also raises security and privacy concerns. SDN must
be outfitted with the best security scheme to counter the evolving security attacks. A Distributed
Denial-of-Service (DDoS) attack is a network attack that floods network links with illegitimate data
using high-rate packet transmission. Illegitimate data traffic can overload network links, causing
legitimate data to be dropped and network services to be unavailable. Low-rate Distributed Denial-
of-Service (LDDoS) is a recent evolution of DDoS attack that has been emerged as one of the most
serious vulnerabilities for the Internet, cloud computing platforms, the Internet of Things (IoT), and
large data centers. Moreover, LDDoS attacks are more challenging to detect because this attack sends
a large amount of illegitimate data that are disguised as legitimate traffic. Thus, traditional security
mechanisms such as symmetric/asymmetric detection schemes that have been proposed to protect
SDN from DDoS attacks may not be suitable or inefficient for detecting LDDoS attacks. Therefore,
more research studies are needed in this domain. There are several survey papers addressing the
detection mechanisms of DDoS attacks in SDN, but these studies have focused mainly on high-rate
DDoS attacks. Alternatively, in this paper, we present an extensive survey of different detection
mechanisms proposed to protect the SDN from LDDoS attacks using machine learning approaches.
Our survey describes vulnerability issues in all layers of the SDN architecture that LDDoS attacks
can exploit. Current challenges and future directions are also discussed. The survey can be used by
researchers to explore and develop innovative and efficient techniques to enhance SDN’s protection
against LDDoS attacks.

Keywords: network security; SDN; OpenFlow; DDoS attacks; low-rate DDoS attacks; machine
learning; detection mechanisms

1. Introduction

Traditional IP networks are too complex and difficult to manage due to the vertical
bonding between the control plane and the data plane. Network resources are underutilized
given the complexity and unpredictability of traditional IP networks [1]. A new concept
of software-defined networking (SDN) technology has been introduced to address this
problem. SDN technology decouples the control plane from the data plane, allowing the
programmability of IP networks [2–5]. The SDN architecture has been adopted by many
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businesses and government sectors [6,7] for its appealing features, including network
programmability, unified control, capabilities, and a global view of the network topology
in the controller. However, similarly to traditional IP networks, SDN confronts various
research challenges such as network failures, security, and privacy threats. As SDN is
expected to be one of the dominant networking technologies in the near future, developing
novel security mechanisms to tackle these security threats has become a necessity.

One of the most common security threats is the distributed denial-of-service (DDoS)
attack that has plagued the Internet for more than 20 years, and it is becoming even more
aggressive with the development of the Internet of Things (IoT) [8–10]. DDoS attacks
have evolved, progressing from basic to high-rate to sensible low-rate traffic [11]. A new
security threat known as low-rate DDoS (LDDoS) has emerged as a result of this timely
transformation of DDoS attacks [12]. LDDoS attacks can take a variety of forms, such
as denying service to servers by sending a very low-rate request to disrupt application
services. Attackers may also use tools such as SlowDroid [13] to launch low-rate attacks
on smartphones with limited processing power and exploit weaknesses in the application
layer using protocols such as Slow Next [14].

LDDoS attacks pose a serious security threat to both traditional IP networks and
SDN [15,16]. Detecting LDDoS attacks is more difficult because the generated traffic is
disguised as legitimate traffic. The attack is launched from a separate source and the
typical rate is low enough that the number of packets delivered is insignificant, making
detection difficult. LDDoS attacks are undetectable using standard DDoS detection
security measures and implementations [17]. It is envisaged that more efforts are needed
to increase the SDN level of protection against LDDoS. A survey on existing detection
mechanisms will be useful for researchers to be aware of current the state-of-the-art
methods and propose more efficient detection mechanisms.

Many relevant surveys on security detection mechanisms for SDN can be found in the
literature, but they are limited only to high-rate DDoS attacks and not LDDoS attacks. In this
paper, we survey various research studies developed for LDDoS detection mechanisms for
SDN using machine learning (ML) methods. The study is motivated by the fact that LDDoS
is a novel and difficult-to-detect type of DDoS attacks, and ML methods are appealing and
effective in detecting DDoS attacks. This paper provides a comprehensive overview of
security solutions proposed for all layers of SDN against LDDoS using ML models. The
various threats and effects of LDDoS attacks on SDN architecture layers are highlighted; a
summary and comparison of LDDoS detection mechanisms for SDN based on ML and deep
learning (DL) methods are provided, and open research problems and future directions
for SDN security researchers working on LDDoS detection are discussed. Therefore, the
contribution of this paper summarized in three points:

• To identify various types of threats and effects of LDDoS attacks on different layers of
SDN architecture;

• To provide a summary and comparison of LDDoS detection mechanisms for SDN
based on machine learning and deep learning approaches;

• To discuss the open research problems and future directions for researchers working
in the domain of SDN security based on LDDoS attack detection.

The remaining sections of this paper are organized as follows: Section 2 describes the
methodology used in our survey. Section 3 presents related work. Section 4 explains the
basic concept of SDN, DDoS attack, and LDDoS attack. Section 5 describes a comprehensive
classification of LDDoS attacks targeting SDN three-layer architectures. Section 6 presents
recent research conducted in the field of LDDoS detection mechanisms based on ML and
DL in SDN. Section 7 discusses the current challenges and future research direction of
LDDoS attack detection methods based on machine learning in SDN. Finally, Section 8
concludes the paper.
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2. Methodology

This section describes the methodology we used to conduct our survey. The search
results show the interest of researchers in developing methods for detecting LDDoS attacks.
We also found a large difference in the publications on LDDoS attack detection methods for
traditional IP networks compared to LDDoS attack detection methods for SDN, as shown
in the diagram in Figure 1.

Figure 1. Publications on LDDoS detection mechanisms: SDN vs. traditional IP networks.

2.1. Search Strategy

In this study, we conducted the search and collection process for relevant studies and
articles until April 2022 on eight different databases and data sources to extract and collect
related studies from the literature. The databases comprise Google Scholar, IEEE Xplore®,
ScienceDirect, Scopus, Springer, Wiley, MDPI, and the PubMed database. The electronic
links for databases and data sources searched are as follows:

• IEEE Xplore https://ieeexplore.ieee.org/Xplore/home.jsp; accessed on 23 April 2022;
• Scopus Database https://www.scopus.com/search/form.uri?display=basic#basic;

accessed on 23 April 2022;
• Science Direct https://www.sciencedirect.com/; accessed on 25 April 2022;
• Springer https://www.springer.com/gp; accessed on 25 April 2022;
• Google Scholar https://scholar.google.com/; accessed on 25 April 2022;
• Wiley Online Library https://onlinelibrary.wiley.com/; accessed on 26 April 2022;
• MDPI https://www.mdpi.com/; accessed on 27 April 2022;
• PubMed https://pubmed.ncbi.nlm.nih.gov/; accessed on 29 April 2022.

This study used both broad and specific keywords to obtain an appropriate number
of studies on the research topic of interest. In particular, broad keywords are used to
represent the domain such as “SDN security”, while specific keywords are used to refer to
specific topics within the search domain such as “LDDoS attack detection techniques”. The
search terms used are: “Software Defined Network”, “SDN”, “DDoS”, “Low-Rate DDoS”,
“LDDoS”, “Machine Learning”, “Deep Learning”, and “OpenFlow”.

In addition, we reviewed the titles and abstracts of the articles using Mendeley [18]
to identify studies relevant to SDN research and to exclude unrelated areas. We then
inspected these research papers to identify studies that fell within the scope of our study.
For example, we only considered studies that used machine learning mechanisms to detect
LDDoS attacks in SDN. Last but not least, we need to exclude studies that are not accessible
due to restricted access to databases.

https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com/search/form.uri?display=basic#basic
https://www.sciencedirect.com/
https://www.springer.com/gp
https://scholar.google.com/
https://onlinelibrary.wiley.com/
https://www.mdpi.com/
https://pubmed.ncbi.nlm.nih.gov/
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2.2. Extraction of Information from the Articles

Information was collected from the target articles as follows:

1. Title of the research paper;
2. Contribution to the research;
3. Category of detection mechanisms;
4. Type of attack detection;
5. The method used;
6. Accuracy and other measures;
7. Dataset;
8. Experimental setup.

2.3. Methodology Used

The main methodological steps used in conducting the survey are as follows:

• Conducting a search for the relevant resources on the Internet;
• Summarize research findings and identify key trends.
• Selecting the most relevant papers;
• Developing a classification of SDN vulnerabilities for LDDoS attacks;
• Summarize and analyze LDDoS detection mechanisms for SDN;
• Identify current limitations and future research directions.

3. Related Work

There are previous surveys that provide a comprehensive overview of research on
detection mechanisms for DDoS attacks in SDN as stated in [15,19–25]. The authors
of [15,19–25] present several DDoS detection methods in SDN and illustrate some of the
remaining frameworks for improving DDoS detection in SDN. Cui et al. [15] analyzed
and compared some DDoS detection mechanisms based on the characteristics of SDN and
DDoS attacks. The mechanisms are categorized into five types, namely the statistical-based,
machine learning-based, threshold-based, hybrid methods-based, and other method-based
DDoS detection mechanisms. Balarezo et al. [19] presented a classification approach for
existing DoS/DDoS models in different types of networks: SDN, virtual networks, and
traditional IP networks. They provided a thorough survey of existing attack models and
quantified the damage of DoS/DDoS attacks in network recovery speed and network
infection. Dong et al. [20] focused on the analysis DDoS detection mechanisms and attacks
in SDN and cloud computing architecture. Aladaileh et al. [21] presented an overview of
detecting DDoS attacks on SDN controllers. They described DDoS detection techniques and
classified them according to the techniques or methods used. Xu et al. [22] provide some
SDN-based mechanisms against DDoS attacks and machine learning-based DDoS detection
methods in SDN and show the advantages of SDN over DDoS attacks in traditional IP
networks. Rasool et al. [23] presented a systematic survey of link flooding attacks patterns
on SDN architecture as a category of DDoS attacks in SDN. Wang et al. [24] analyzed
SDN security from a data perspective and surveyed some typical network attack detection
methods, including statistical and machine learning methods. Singh and Behal [25] provide
a systematic review of various SDN-based DDoS threats and the existing literature on fast
DDoS detection and defense in SDN. They classified the mechanisms into four categories,
namely: information theory-based methods, machine learning-based methods, artificial
neural network (ANN)-based methods, and other miscellaneous methods.

The surveys in [15,19–25] mainly focus on high-rate DDoS attacks detection mecha-
nism. None of them focus on addressing current detection approaches based on machine
learning for low-rate DDoS attacks in SDN. Table 1 summarizes a comparison of this survey
work with the existing surveys in the security of SDN. The purpose of our survey article is
to provide a complete and up-to-date review of LDDoS detection in SDN by presenting
LDDoS detection mechanisms based on machine learning in SDN and explanations linked
to the SDN layers, which are control layers, application layer, and data layer. Additionally,
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we demonstrate an inclusive classification of LDDoS attacks targeting SDN three-layer
architecture.

Table 1. Coverage of Security Issues in Survey Papers.

Prominent Security Issues Cui et al.
[15]

Balarezo
et al. [19]

Dong
et al. [20]

Aladaileh
et al. [21]

Xu et al.
[22]

Rasool
et al. [23]

Wang
et al. [24]

Singh and
Behal [25]

Our
Survey

Vulnerabilities of all SDN Layers 3 3 3
Control
Layer

Control
Layer 3

Data
Layer

Control &
Data Layer 3

DDoS Attacks 3 3 3 3 3 3 3 3 3

LDDoS Attacks 7 7 7 7 7 7 7 7 3

Detection or Mitigation Schemes
using Machine Learning 3 3 7 3 3 3 3 3 3

Taxonomy of Security Attacks 3 3 3 7 7 7 7 3 3

Categorize Detection Solutions 3 7 3 3 3 3 3 3 3

Limitation of Existing Work 3 3 7 3 7 3 7 3 3

Discussion on Possible Future works 3 7 3 3 7 3 7 3 3

4. Background

This section provides an overview of different machine learning techniques, SDN and
the SDN architecture, DDoS attacks, and LDDoS attacks.

4.1. Machine Learning

In this section, we first introduce machine learning; then, we shed the light on different
machine learning techniques. Machine learning is the field in computer science that focuses
on providing computers with the ability to solve problems through learning, such as in hu-
mans [26]. There are some variations in defining the types of machine learning algorithms.
Still, in general, they can be categorized by their purpose into supervised, unsupervised,
semi-supervised, reinforcement, and deep learning, as discussed and presented in [27–29].
Based on [27–29], machine learning techniques with multiple algorithms that fall under
these types can be summarized as in Figure 2.

Figure 2. Overview of Machine Learning Techniques.

A supervised learning (SL) model or algorithm is mostly used in solving prediction
problems. The model is trained using historical data with labeled inputs to outputs [30].
The training data are analyzed by a supervised learning algorithm, which generates a
reasoning function that could be used to map new inputs that have not been seen before [31].
Supervised learning contains two types of techniques, which include classification and
regression. A classification technique concludes observed values as one or more outcomes
in a definite form. Examples of classification algorithms includes random forest (RF) [32],
support vector machine (SVM) [33], decision tree [34], and logistic regression (LR) [35],
while a regression technique is mainly used to make predictions on numbers, i.e., when
the output is a natural or continuous value. As it falls under supervised learning, it works
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with trained data to predict new test data. There are some Regression algorithms such
as backpropagation neural network (BPNN) [36], K-Nearest Neighbor (KNN) [37], linear
regression [38].

Unsupervised learning (UL) model or algorithm learns from training data that has
not been classified, categorized, or labeled [39]. Rather than reacting to feedback, the
unsupervised learning model discovers similarities in data and reacts depending on the
existence or lack of such commonalities in each new dataset. This is the primary application
of unsupervised learning in statistical density estimation. In contrast to supervised learning,
which classifies the training data into acceptable categories, unsupervised learning models
must understand the connections between the items in the dataset and categorize the raw
data without “assistance” [40]. Clustering is an unsupervised learning technique that
involves classifying data points into specific groups. If we have some objects or data points,
we can apply a clustering algorithm to analyze and group them according to their properties
and features. This method of unsupervised technique is used due to its statistical techniques.
Cluster algorithms make predictions based on training data and create clusters based on
similarity or unfamiliarity. There are several clustering algorithms such as K-means [41],
DBSCAN clustering [42], affinity propagation [43], and mean shift [44].

Semi-supervised learning model or algorithm uses mixed classified and unclassified
data for training [45], usually a small amount of classified data with a large amount of
unclassified data. Semi-supervised learning is in between supervised and unsupervised
learning. There are typically two activities in a semi-supervised learning algorithm: The
general rule in a semi-supervised model is first tested with classified data, and the rule is
then utilized to infer the unclassified data. At the moment, semi-supervised learning perfor-
mance is still unstable and needs improvement [46,47]. There are different semi-supervised
learning algorithms, including self-training techniques [48], graph-based SSL [49], and
low-density separation [50].

Reinforcement learning is a technique that allows a machine to interact with its
surroundings. The machine can eventually learn from its experience by repeating the
process thousands or millions of times. Reinforcement learning differs from supervised
learning in that there is no need to introduce input/output pairs; hence, there is no need
to explicitly correct sub-level actions. Instead, this technique focuses on finding a balance
between exploring uncharted territory and exploiting existing knowledge. There are
different types of Reinforcement learning algorithms, including Deep Deterministic Policy
Gradient, Deep Q Network, and Asynchronous Advantage Actor-Critic Algorithm [51].

Deep learning is a subfield of machine learning that deals with algorithms inspired
by the structure and function of the brain, called artificial neural networks. Recently, deep
learning has proven itself in many applications including network security. Deep learning
can extract elementary features from data without human intervention. Deep learning
provided impressive results with high performance by automatically finding correlations in
raw data. With the advent of deep learning-based models, the accuracy in detecting attacks
has further improved [51]. Deep learning techniques can be divided into two major cate-
gories: discriminative learning and generative learning; discriminative learning technique
is utilized to provide a discriminative function in supervised or classification applications.
Discriminative deep architectures are typically designed to provide discriminative power
for pattern classification by describing the posterior distributions of classes conditioned
on visible data [29]. Discriminative architectures mainly include convolutional neural
networks (CNN) [52], multi-layer perceptron (MLP) [53], and recurrent neural networks
(RNN) [54], along with their variants.

Generative learning technique is typically used to characterize the high-order correla-
tion properties or features for pattern analysis or synthesis, as well as the joint statistical
distributions of the visible data and their associated classes [29]. Commonly used deep
neural network techniques for generative learning are Autoencoder (AE) [55], Deep Belief
Network (DBN) [56], and Self-Organizing Map (SOM) [57].
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4.2. Software Defined Network

SDN is a network architecture that separates control logic from forwarding logic in a
network in order to provide high flexibility and programmability [58]. The control plane is
logically centralized and mainly perform control functionalities of routers in traditional
IP networks, as well as providing Application Programming Interfaces (APIs) to support
different services offered at the application layer [59]. SDN can support new control
functions by creating software-based logic that maps the entire network with various
services and applications running at the control plane [60]. The data plane consists of a
network of passive switches where each switch mainly perform packet forwarding tasks.
Figure 3 depicts the architecture of an SDN. This architecture consists of three main layers
namely, application layer, control layer, and data layer. These layers are interconnected by
the northbound interface and the southbound interface.

Figure 3. Software Defined Network Architecture [9].

The application layer has a number of programs that can perform network opera-
tions. An SDN may consist of more than one controller. The northbound interface allows
communications between different controllers.

In an SDN, the controller is the network’s primary processing unit. It collects and pro-
cesses all network’s state data. The control layer provides services to the data layer through
the southbound interface, which transmits or receives control packets regarding network
events such as topology changes of data plane and addition or deletion of forwarding or
security rules in the switches.

The Open Networking Foundation (ONF) [61] created the first and most well-known
southbound interface, OpenFlow, to describe how the SDN controller should communi-
cate with the data plane. According to OpenFlow [62], rules are called “flows” and are
stored in “flow tables” of switches. Various messages are defined by OpenFlow to enable
communication between the switches and the controller, including connection setup mes-
sages, configuration messages, getting status, lifetime, asynchronous event, and error and
experimenter messages [63].

4.3. Distributed Denial of Service (DDoS) Attacks

DDoS attacks are the most significant cybersecurity threats that affect server platforms
and network nodes [64] of various networks such as IoT, WSN, and SDN [65–67]. Such
attacks transmit a huge volume of malicious traffic to the networks with the purpose of
overloading the network resources including network interface throughput or compu-
tational load such as CPU loading, causing faults and/or congestion [68]. As typical IP
blacklist remedies are based on static regulations, these schemes become ineffective in
blocking these sorts of challenging attacks [69,70].

There are several types of DDoS attacks including, SYN flooding, ICMP flooding, UDP
flooding, DNS flooding, ping of death, DRDoS, zero-day, and low-rate DDoS. UDP/TCP/ICMP
packets generated by any of the aforementioned types of attacks not only overload the
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transmission, computation, and storage resources of the attack targets such as servers or
SDN controllers but also impact the transmission capacity of other network elements such
as OpenFlow switches that must handle the excessive traffic generated by the attackers.
Furthermore, a number of DDoS attack tools are accessible for download, thus making
it relatively simple to conduct DDoS attacks such as Slowloris, HULK, Tor’s Hammer,
Xoic, LOIC, PyLoris,DDOSIM, and RUDY. These tools can be used by an inexperienced
attacker 1to launch DDoS attacks that are easy to begin but hard to defend and defeat [71].

DDoS attacks may be categorized into three categories, according to the three-layer
SDN architecture:

• DDoS attacks at the application layer: SDN apps transmit particular packets to all or
most of the switches that support the SDN in an attempt to mislead the application
and cause it to fail.

• DDoS attacks on the controller layer: SDN controller adversaries send a huge number
of new packets to all or most of the switches that cause overloading the controller’s
computing or bandwidth capacities.

• DDoS attacks on the data layer: Network devices with SDN capabilities transmit a
high number of new packets to the target OpenFlow switch, and attackers attempt to
confuse the SDN-enabled switch’s stream table storage resource.

According to [72], three defense techniques are commonly used to mitigate DDoS
attacks, which are classified depending on the detection engine’s location:

- Attacking hosts are used for achieving source-based discovery.
- Victim hosts implement destination-based detection.
- Network-based discovery is implemented in switches and routers that serve as net-

work intermediary nodes.

4.4. Low-Rate Distributed Denial of Service (LDDoS) Attacks

An LDDoS attack is a variant of a DDoS attack. However, the attack traffic launched
by LDDoS is always lower compared to DDoS attack where target network’s links and
nodes are overwhelmed with high traffic. In an LDDoS attack, only 10 to 20 percent of the
traffic toward the target is generated, which is hidden in the normal data flow causing no
obvious anomaly for network monitors [73]. Although the nature of the attack is small,
it will lead to massive destruction at the level of the target network or system. Multiple
individual LDDoS attacks producing bursts of pulses, each consisting of low throughput
rate with a specific duration, are injected into the network. These bursts can overload the
target network nodes or links causing high packet drop, network performance degradation,
or even unavailability of service. In short, although the average throughput of an LDDoS
attack is low, its impact is comparable to that of a DDoS attack [74]. In the following points,
the main characteristics of LDDoS attacks are listed:

• LDDoS is launched to specific target victims. Before attacks are launched, the at-
tacker 1obtains the application service information of the victim or the vulnerability
existing in network protocols.

• An attacker 1transmits attack data packets in a low-density and periodic mode so that
the network resources of the attacker 1are exhausted, and the network and service
performance is reduced.

• LDDoS attack behavior is extremely covert.

Figure 4 illustrates the concept of LDDoS attack targeting two network components:
a network link (Target 1) and a node (Target 2). Target 1 is the link between router 4
and router 6, as well as between router 6 and the server. Target 2 is the server itself.
Servers are considered the most frequently attacked devices, as they are considered the
data repository needed by the users. As shown in the figure, two attackers (Attacker 11
and Attacker 2) launch LDDoS attacks into the network [74]. The traffic of LDDoS attack
generated is indicated by the burst of rectangular pulses. The pulses describe a period of
packet transmission in short duration and are repeated at a given frequency. The square
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pulse amplitude and length define the attack’s energy. In other words, the LDDoS attack
traffic is averaged across time in the square pulse [75].

Figure 4. Low-rate DDoS attack concept.

5. Vulnerabilities of SDN to LDDoS Attacks

In this section, the vulnerabilities of SDN to LDDoS attacks are discussed. We have
observed that papers of existing work discuss LDDoS attack detection mechanisms for spe-
cific SDN layers. For example, References [17,76] discussed LDDoS detection mechanisms
for SDN application layer. References [77–80] discussed LDDoS detection mechanisms for
the SDN’s control layer. References [81–84] discussed LDDoS detection mechanisms for
SDN infrastructure Layer. Based on this observation, we developed a classification of SDN
vulnerabilities for LDDoS attacks, as shown in Figure 5. In the following subsections, we
describe vulnerabilities according to SDN architecture.

Figure 5. SDN vulnerabilities to LDDoS attacks.
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5.1. LDDoS Attack against Application Layer

This section describes the LDDoS attacks corresponding to the specific weaknesses
discovered in SDN software and services in the application layer.

5.1.1. Malicious Applications

The malicious program might allow the attacker 1to gain illegal entry and cause
wreak destruction by sending backflow requests to the SDN controller in an uncontrollable
manner. The attack might cause connection loss between apps and controllers, bringing
the entire network down in the worst-case state. The lack of standardization in security
methods raises the likelihood of LDDoS attacks while also reducing the reliability and
confidence between SDN controllers and the applications [76].

5.1.2. Offensive Tools

The application layer is vulnerable to various attacks carried out by dedicated tools
such as DDoSSim [85], GouldenEye [86], H.U.L.K [87], Slowloris [88], and CloudFlare [89].
The success rate of IDS in detecting LDDoS attack from these tools is not high [17]. The
threat from these tools needs ML algorithms that do not only look for forms to classify
streams as legitimate or illegitimate. Rather, the kind of LDDoS attacks needs to use features
such as connection periods and memory marks to obtain a more accurate classification.

5.1.3. Northbound Interface Saturation

SDN fosters creativity and programmability with northbound APIs that connect the
SDN controller to applications operating across the network. It enables software designers
in creating apps that allow the network to be programmable. This produces northbound
APIs without widely accepted standards [90]. This gap is thought to offer vulnerabilities to
a variety of security risks originating from trust concerns, app authorizations, and illegal
application gain access. Because of these defense concerns, LDDoS attacks directed against
the controller may produce congestion on the northbound interface. For instance, the
LDDoS attack will utilize a bandwidth on the northbound channel; if a traffic inspection
application listens in on Packet-In arriving from the switch in the direction of the controller,
the network over time is overwhelmed [91].

5.2. LDDoS Attack against Control Layer

LDDoS attacks are classified in this section into bandwidth saturation attacks and
resource saturation attacks against the control layer. In this layer, attackers seek to consume
SDN controller resources (e.g., CPU and memory). On the other hand, this consumes the
bandwidth capacity of its channel. It is known to target an SDN architecture’s control
channel, which is the southbound API, data channel, and northbound channel [92].

5.2.1. Saturation of Controller Resources

As mentioned in background section for SDN, the controller is a centralized component
in SDN. Although this offers many advantages of SDN, it represents a single point of
failure [93]. An LDDoS attack can cause significant damage across the SDN by targeting
the controller with a resource overload attack. This attack, similarly to the control channel
bandwidth saturation attack, achieves its goal by taking advantage of a vulnerability in
the standard SDN design. In order to deal with spurious packets, the SDN controller
sends rules and policies packets to network elements such as OpenFlow switches to drop
these packets and track the sources of the sent IP addresses, thus draining the controller’s
resources, such as CPU processing capabilities, RAM, physical memory, etc. [94].

5.2.2. Control Channel Overload

The Control Channel, or Southbound API, connects the SDN controller to OpenFlow
switches using the OpenFlow protocol. The controller provides network switches with
decision-making capabilities for routing and regulating network traffic [95,96]. An LDDoS
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attack can target the control channel by making it always occupied since OpenFlow switches
are dumb devices and rely on the controller for routing decisions and regulating traffic.
Increasing the motivation of the switch to send query messages will lead to an increase in
decision-making messages from the controller to the switch, which causes a control channel
bottleneck [97].

5.2.3. East Westbound Channel Overload

Multiple controllers are used to extending the network when a single central controller
is not sufficient to control network traffic due to the increase in the number of network
adapters. These multiple distributed SDN controllers will connect through East–West APIs
as interfaces. East–West API has no defined interface, and each controller must implement
its policies and routing protocols [98]. As a result of this restriction, the interoperability
area between many SDN controllers is constrained, making them vulnerable to an LDDoS
attack by inducing multiple controllers to send recursive synchronous messages and, thus,
flooding the east–west bound API channel.

5.3. LDDoS Attack against Infrastructure Layer

This section describes the vulnerabilities of OpenFlow switches to LDDoS attacks.
OpenFlow switch has issues such as flow table overfilling, packet buffer overflow, and
flow entries timeout length. Because an LDDoS attack may target and exploit many
vulnerabilities simultaneously, they are all inextricably connected.

5.3.1. Data Channel Capacity

A data channel is a connection that allows transferring the traffic between two or more
OpenFlow switches. The data channel has a larger capacity than the control channel and
has a large bandwidth [99]. Despite this, even though the impact of an LDDoS attack on
data channel performance is currently unknown, an LDDoS attack can target it in several
ways. An LDDoS attack may traverse through many switches before reaching the controller
and entering the victim’s network. Various data channels or links between switches will be
blocked by rogue packets, making them more or less busy as a result.

5.3.2. Packet Buffer Overflow

When the switch receives a new packet, it buffers the packet before forwarding only
the header to the controller through a Packet_In message. The SDN controller determines
the best path for evaluating the packets and sends them back to the switch as an output
packet. The OpenFlow agent (OFA) receives the packet and adds new flow rules to the
packet buffer flow and the flow table depending on the controller’s response. OpenFlow
switches contain a low-capacity packet buffer flow [74]. Because of this limitation, LDDoS
attackers may keep sending new packets to induce the OpenFlow switch to send the
Packet_In message, which will consume and fill the packet’s buffer flow.

5.3.3. Flow Entries Timeout Length

In the OpenFlow switch, each flow table has a flow entrance timeout process. A
timeout specifies the lifespan, or period, of a flow account in the switch. Idle and hard
timeouts are the two sorts of timeouts associated with flow entry. The flow entry will expire
if no traffic is collected earlier than the idle timeout rate is reached if the idle timeout value
is not zero [100]. Based on this, LDDoS attackers can exploit the lifetime of flow entries by
analyzing the behavior of the flow table in flood attacks and then execute LDDoS attacks
that continuously send a flow over a long time to mimic the behavior of a regular flow.
Therefore, this malicious flow can pass without being detected by traditional detection
mechanisms. The impact of the attack is limited to the switch because it exploits the timeout
mechanism within the switch [78].
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5.3.4. Flow Table Load

In the OpenFlow switch design, the flow table rules are stored in a high-cost memory
known as TCAM (Three Content Addressable Memory), which is also restricted to holding
only 2000–3000 flow rules in OpenFlow switches [101,102]. This shortcoming in the size
of the flow tables attracts the attention of potential LDDoS attackers and makes them
vulnerable to flooding. The switch sends an Opet_Flow_Mod_Failed error message with
the fault code Ofpfmfc_Table_Full when there is not enough room in the flow table for
more entries [103]. A study in [104] dubbed this vulnerability as a “TCAM exhaustion
attack”. It examines the slow TCAM exhaustion technique, a one-of-a-kind variant of this
method. Once compared to the TCAM over tiredness attack, this attack proceeds with
UDP flow, which is much slower, while still filling the flow table and interrupting essential
client services.

In summary, this section presented SDN vulnerabilities to LDDoS attacks at all SDN
layers, including the application layer, north interface, control layer, south interface, and in-
frastructure layer, in the classification shown in Figure 5. Recent working papers [17,76–84]
discuss SDN vulnerabilities for LDDoS attacks in specific SDN layers, but none of these
papers provides a comprehensive and detailed analysis of all SDN layers. As a result, we
found that SDN layers are vulnerable to LDDoS attacks that can exploit one or more of
these vulnerabilities, including exploiting malicious applications, using offensive tools,
saturating northbound saturation, saturating controller resources, overloading control
channels, and overflowing OpenFlow switches.

6. Machine Learning Based LDDoS Detection Mechanisms

We observed that machine learning is the most effective proposed LDDoS detection
mechanism after investigating numerous LDDoS detection techniques. This part will
discuss machine learning methods for detecting LDDoS attacks. We categorized machine
learning-based LDDoS detection mechanisms into classification-based used algorithms.
Such as (SVM, KNN, FCM, J48, RT, RF, MLP, FM, and NB) and deep learning-based use
algorithms such as (CNN, RNN, and LSTM), as summarized in Table 2.

Table 2. Analysis of LDDoS detection methods used by existing studies.

Reference Year SDN Layer Location Machine
Learning-Based Classifier/Method Detection

Results

Zhijun et al. [81] 2019 Data Layer Classification Based
Detection FM 95.8%

Phan et al. [76] 2019 Application layer,
Northbound

SVM, RF,
Q-Learning 98%

JESÚS et al. [17] 2020 Application Layer, Control
Layer J48, RT, RF, MLP 95%

Cheng et al. [78] 2020 Data Layer, Control Layer SVM, NB, RF 97%

R. Khamkar et al. [77] 2021 Control Layer SVM 99%

Wencheng et al. [79] 2021 Control Layer SVM, NB, LR, DT,
C4, RF, AB 92%

Tang et al. [83] 2021 Control Layer GBDT, GBDT-LR 96%

Sudar et al. [80] 2022 Control Layer, Data Layer SVM, DT, NB 93%

Nugraha et al. [82] 2020 Data Layer Deep learning-based
Detection CNN-LSTM 99%

Sun et al. [84] 2022 Control Layer, Data Layer CNN-GRU 99.5%
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6.1. Classification-Based LDDoS Detection

Classifying algorithms are frequently used as classifiers to identify LDDoS attacks
in SDN for LDDoS detection. According to our findings, SVM, Random Tree, J48, REP
Tree, MLP, SVM, and RF are the most often utilized classification algorithms in SDN for
identifying LDDoS attacks.

An LDDoS Detection framework based on classification may be placed at a crucial
node of an SDN, such as the SDN controller or the OpenFlow switch [105]. The framework
consists of four main stages, as shown in Figure 6: data collection, feature extraction,
classification model, and output. In the first stage, data collection consists of packet
capturing, packet filtering, and dataset preprocessing steps. In the second stage, the feature
selection and selection policy will be generated based on the previous stage; the feature
value can be divided into stateless and stateful. In the third stage, the model is trained
for the classification process to detect an LDDoS attack using several binary classification
methods such as RF, SVM, J48, and test datasets. In the final stage, the user decision is
made based on user-defined feedback, which is continuously taken to support periodic
learning and testing of the model prediction process, correlation, and recognition of LDDoS
attacks from regular traffic.

Figure 6. Architecture of machine learning-based classification for LDDoS attack detection frame-
works for SDN.

In [81], Zhijun et al. presented a protection mechanism based on dynamic flow rule
deletion. They investigate the mechanism of LDDoS attacks on the SDN data layer to
increase detection accuracy and then offer a multi-feature LDDoS attack detection method
based on Factorization Machine (FM). The authors employ AUC (area under the curve) [106]
as the primary metric of recognition performance, with recall rate, accuracy, and precision
as supplementary indicators, to assess the impact of machine learning classification FM.
The samples were separated into two groups: one for anomalous traffic and the other for
regular traffic. The indicators were developed using the number of true/false positive
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and true/false negative groups. The dwell time is gathered and computed when the
window function’s size is set to 20 s; the number of packets, RDMB, and RDPI to save every
flow rule in the flow table by the window function; and the variance of the dwell time
are calculated. To define the difference between attack and regular traffic, the data were
identified based on the attacked port, and a total of 140,000 feature datasets were obtained.
A total of 100,000 feature datasets were chosen as training datasets, with 40,000 feature
datasets chosen as test datasets. The hidden vector dimension and the learning rate are
the two parameters that most influence the machine learning algorithm FM’s performance.
As a result, four different parameter settings with an average attack rate of 2.2 Mbps were
chosen for the experiment.

The testing revealed that the approach could successfully detect LDDoS attacks on the
SDN data layer, with a detection accuracy of 95.80%. The FM approach produces a stable
environment for guarding against LDDoS attacks since it can identify fine-grained LDDoS
attacks. With a 97.85% success rate in forwarding regular packets, it uses experimental
simulation and analysis to demonstrate the defensive strategy’s efficacy. The NSL-KDD,
DARPA98, and CAIDA datasets were used to assess performance in a simulated environment.

In [76], Phan et al. proposed Q-MIND: a machine-learning-based defense framework
in SDN to defeat LDDoS attacks. The authors begin by looking at the adversary model
for LDDoS attacks, as well as critical weaknesses in SDNs and characteristics of LDDoS
attack. They describe Q-MIND, which includes the optimal strategy of the Q-learning
proxy to defend against LDDoS attacks in SDN effectively. Throughout the training phase,
the authors require a collection of labeled traffic data that includes both anomalous and
benign samples. The authors use the Markov Decision Process (MDP) approach [107] to
realize the optimal combination of a given feature set and performance for AI/machine
learning algorithm detection. The MDP architecture allows AOS (Application Operator
and Scheduler) to choose the best action (a mixture of features and AI/ML algorithm)
based on its inputs to extend its immediate incentive in each loop. They have implemented
ten features, including average packet size per stream, stream change percentage, port
extension, etc. These characteristics are calculated for each source IP address using a traffic
dataset with 8000 samples divided 50% for regular traffic and 50% for attack traffic. As a
result, the Q-learning agent must train the detection mechanism and conduct validation
tests. They design an optimization problem to find the best policies in scenarios where the
immediate reward increases in each loop, using Q-learning to solve it. This method allows
AOS to make the best choice without knowing a collection of features or the associated
AI/ML technique beforehand. The Q-MIND framework provides results close to those
obtained during the cross-validation phase with the optimal policy (close to 98%). To assess
attack mitigation performance, the authors look at a fraction of malicious stream rules
rejected in the switch and the web server’s request-response time when the network is
under attack. Q-MIND achieves a high proportion of correctly downed attack streams
because it enforces rules when it recognizes a source IP address emanating from an attacker.

In [17], JESS et al. proposed a modular architecture for detecting and mitigating
LDDoS attack in SDN environments. They used six machine learning models (SVM, J48,
Random Tree, REP Tree, MLP, and RF) to train their design and used the CIC (Canadian
Institute of Cybersecurity) DDoS dataset with implementing ONOS controller running
on the Mininet simulator [108]. Despite the challenges of detecting LDDoS attacks, the
evaluation findings reveal that the approach has a 95% detection rate. The interface-
based classification technique provides a classify object that defines a stream property
with a classifier. The identification API offers a way for trained robots to interact with
process flows. The classifier is a collection of learned machine learning models available in
IDS. A sophisticated stream object gathers stream information from OpenFlow switches to
determine if the traffic is an attack or a normal one. This flow complicated object’s properties
are based on the flow table. IDS obtains a collection of stream parameters from the input
request with traffic flow parameters and the output response with flow classification and
then creates the model provided in the request. If the stream is considered to be anomalous,
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it uses the specified form to classify the input parameters before determining the type of
attack. Finally, it generates an attack-type 1 data response or an attack-type 0 response,
which it transmits to the IPS.

In [78], Cheng et al. proposed a learning-based technique for detecting LDDoS attacks
on SDN control and OpenFlow switches in an IoT network context. The suggested approach
is based on two characteristics derived from the OpenFlow package (stateless and stateless
features). Learning techniques are used in the detection system to construct classifiers that
distinguish between normal and attack flows. The approach trial’s evaluation architecture
includes an LDDoS attack module, data flow collection, and feature extraction model. They
put several learning algorithms to the test and distributed each feature in the raw data
based on the platform. Two sets of stateless vectors and stateless features are created.
A training set and test set are created from the produced feature vector dataset. The
learning and detection phases of classification-based learning are then separated. Part of
the dataset created in the preceding phase is used in each of these work steps. There is no
intersection between the two datasets. The typical quantitative ratio for test datasets and
the training dataset is 20% for the test and 80% for the training. The procedure employs
binary classification methods such as SVM, NB, and RF. The experimental results showed
that the model accuracy of detecting LDDoS attacks is 97% from the controller view of the
network traffic.

In [77], Khamkar et al. proposed a framework to identify and defend against LDDoS
attacks based on machine learning for the campus network. The framework consists of
two phases: the network traffic acquisition module and the LDDoS attack identification
module. The traffic acquisition module extracts network traffic features to prepare traffic
identification for SDN network. They used the SVM algorithm and traffic features obtained
from statistical flow table data to identify the attack traffic, demonstrating how LDDoS
attacks may deplete controller sources and providing a way out to detect attacks with the
changing of the target IP address. Traffic data were obtained from entries in the traffic flow
tables. The traffic dataset includes traffic that denotes a TCP connection with eight features.
These features are divided into two categories: Host-based and Time-based network traffic.
The SVM model is built using LKF (Linear Kernel Function) and a decision function is
obtained in order to determine how the packets should be sent. It is an LDDoS attack
packet if the output of the function is −1; otherwise, it is a normal packet. The experiment
yielded an accuracy of 0.998, indicating the effectiveness of the model. The model has
a high detection rate for recognizing LDDoS attacks and is implemented as an LDDoS
detection module in a simulated SDN context of a campus network. The controller drops
packets that match the configured rule when an attack flow is selected.

In [79], Wencheng et al. proposed DIAMOND as a structured coevolution method to
optimize features for LDDoS attack detection in SDN-enabled IoT networks. The method
aims to find the optimal features to improve the detection performance of LDDoS attack
detection methods. DIAMOND consists of a clustering algorithm to sort the achievable
number, a commutation strategy, a group structuring method, and a co-crossover strategy.
By analyzing the information about SDN-enabled IoT network features in the solution
space, the relationship between various SDN-enabled IoT network features and the optimal
solution is investigated in DIAMOND. Then, the individuals with the related SDN-IoT
network features are divided into different subpopulations, resulting in a structure tree.
Moreover, multiple structure trees evolve in coordination with each other. The evaluation
results show that DIAMOND can effectively select optimal low-dimensional feature sets
and improve the performance of the LDDoS detection method in terms of detection accuracy
and response time.

DIAMOND is implemented on the SDN controller and collects network traffic by
sending aggregated traffic instructions to the OpenFlow switches. It works as follows: Once
the SDN controller receives the instructions, it sends OFPT_STATS_ REQUEST messages
to the switches to obtain flow entry statistics. The switches respond to the SDN controller
with OFPT_STATS_ REPLY messages. These messages contain stream data in the flow
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entries for the switches. After the controller receives OFPT_STATS_ REPLY messages, it
deletes them and sends the collected statistical data to DIAMOND. The statistical data of
the stream entries collected from the switches are used to calculate the initial SDN-enabled
IoT network features. Then, these features are encoded using the binary coding method
to generate the initial community, which consists of some individuals. The population is
divided into several subpopulations by BONNET. The structuring factor is calculated based
on the fitness and membership factors, which assemble the individuals in the subpopulation
into a skeleton tree. Multiple skeletal trees evolve cooperatively with each other through
mutation. After evaluation and selection, the dominant individuals are retained in the next
generation. After several iterations, the individual with maximum fitness is identified as
the best individual. Then the best individual in the corresponding feature set is decoded.
Furthermore, to verify the detection ability of the optimized feature subset, eight different
classifiers have been applied to evaluate the feature optimization methods (SVM, NB,
LR, DT, C4.5, RF, and AB). The experimental results showed that DIAMOND has 92%
accuracy in detecting LDDoS attacks from the controller view of network traffic and can
effectively identify low-dimensional feature groups to improve the performance of the
LDDoS detection method.

In [83], Tang et al. proposed a lightweight real-time Performance and Features frame-
work to detect and mitigate LDoS attacks in an SDN environment. They implemented
LDoS attacks in SDN, extracted traffic features using OpenFlow, divided all extracted
traffic features into attack performance and attack features, and classified them into two
categories. By analyzing the performance of normal traffic in the attack state, performance-
based detection determines whether LDoS attacks will be effective by building machine
learning models with normal and abnormal network state traffic features. Feature-based
detection attempts to figure out the LDoS attack flow based on time-frequency analysis.
Potential attack flows can be found by analyzing the morphological characteristics of LDoS
attack flows with OpenFlow messages and flow table queries. Once the performance and
features model ensures that the attack will take effect while the performance and features
model detects the LDoS attack flow, the mitigation method is activated. The Performance
and Features model locates the attackers’ source IP and the victims’ ports. Then it sends a
defense rule according to the location result to filter the LDoS attack traffic. The authors
conduct online and offline experiments to mitigate attacks on the SDN controller. The
experimental results show that the proposed method achieves 96% accuracy in detecting
LDoS attacks. The proposed framework can also mitigate LDoS attacks in real-time in an
average time of 9.39 s with 0.02 to 0.04 CPU and low memory consumption.

In [80], Sudar et al. proposed a flow-based detection and mitigation framework using
machine learning as a classifier to detect LDDoS attacks. The authors extracted the basic
attack detection features such as flow duration, number of packets, the relative distribution
of packet interval, and relative distribution of matched bytes using a flow management
module. The mitigation phase is then performed, where the attack flow information is
processed and mitigation rules are checked to avoid an LDDoS attack from the same source.
To detect LDDoS attacks by examining the features extracted from the stream management
module, the authors applied a machine learning model with SVM, Naïve Bayes, and a
Decision Tree. They used the Scikit-Learn 0.23 library to classify the malicious traffic by
using the output of the flow management module as input to the model. The mitigation
phase is alerted to further process the attack packets when attacks are detected. After
analyzing the traffic characteristics, the machine learning models return a value of 0 for
regular traffic and 1 for attack traffic. The model forwards the corresponding source IP
address to the blocklist table via the detection module as soon as the traffic is identified
as malicious, i.e., when it is assumed that it might be an attacker. The mitigation module
then alerts the OpenFlow switch to prevent the given stream by immediately creating a
port blocking rule. In this manner, the authors hope to match the source IP address of each
data stream with the entries in the blocking list table before redirecting them for further
operation so that the installed traffic control rules remove them from the flow table after
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seven days. This process should help to analyze and update the data flow on a regular
basis. Since data flow management and analysis are already part of the SDN architectural
design, this model is unlikely to increase network traffic complexity. The accuracy of
the performance evaluation was 93% for the classification of the traffic by the proposed
machine learning model.

6.1.1. Implementation and Traffic Analysis of Classification-Based Methods for LDDoS
Attack Detection

This section presents the implementation and deployment of classification-based
LDDoS attack detection methods as well as the analysis of traffic and datasets used.
Table 3 shows a summary of the simulation environment analysis and traffic/datasets
used by existing methods.

Table 3. Implementation and traffic analysis of existing methods.

Reference Experiments Dataset Controller Scale

Zhijun et al.
[81]

Simulation
using Mininet

NSL-KDD,
DARPA98, CAIDA RYU Medium (4 switches, 9 hostes)

Phan et al.
[76]

Simulation
using MaxiNet CAIDA ONOS Small (1 switche, 8 hosts)

JESÚS et al.
[17]

Simulation
using Mininet CIC ONOS Small (3 switches, 5 hosts)

Cheng et al.
[78] IoT hybrid Network Custom Floodlight Medium (4 switches, 9 hostes)

R Khamkar
et al. [77]

Simulation
using Mininet KDD99 Ryu Small ( 2 switches, 6 hostes,

and 1 webserver)

Wencheng
et al. [79]

Simulation using
Mininet-WiFi Custom Ryu Medium (4 switche, 80 hosts)

Tang et al.
[83]

Simulation
using Mininet Custom Ryu Small (2 switches, 6 hosts)

Sudar et al.
[80]

Simulation
using Mininet CIC POX Medium (4 switches, 9 hostes)

Nugraha
et al. [82]

Simulation
using Mininet Custom ONOS Small (2 switches, 10 hosts)

Sun et al.
[84]

Simulation
using Mininet CIC Ryu Medium (6 switches, 21 hostes)

In [81], the authors carried out the experiment using a Mininet simulator and Ryu
controller to set up an SDN network simulation platform. Under the simulation stage,
the server targets the data layer with LDDoS attacks. Two actual hosts are utilized in
this experiment. One of the hosts is in charge of operating Mininet. The other host is in
charge of running the Ryu controller. The OpenFlow protocol, version 1.3, was employed
as the southbound interface protocol in the experiment. The topology of the experimental
simulation network uses a tree network design with 4 OpenFlow switches and nine hosts.
The link bandwidth is set to 10 Mbps for all hosts linked with a delay of 5 ms, link loss is
0, and the maximum queue size is 1000. The experiment employs the D-ITG (distributed
Internet traffic generator) to produce traffic in the background using The ITGSend, and
ITGRecv commands on each host node to send and accept traffic. The authors used the
CAIDA dataset and injected 100 flows into the network topology as a background flow.
Among the 100 background flows, TCP streams account for 80%, ICMP 15%, and UDP 5%,
with an average background traffic rate of roughly 1.3 Mbps.
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In [76], the experiment uses MaxiNet [109] as a simulation platform and ONOS as
the SDN controller. The authors established a simple SDN-based network with a web
server and eight hosts. There are four malicious hosts and four benign hosts. All hosts and
the webserver run in Linux containers connected by an OpenFlow switch. The authors
consider three machine learning-based classifiers (SVM, RF-, and SOM). The feature used
is created from 10 convenient features. These features are extracted from a traffic dataset
containing 4000 normal traffic samples and 4000 attack samples for each source IP address.
The dataset was generated from the conducting simulation experiment for stealthy DoS
attacks and the CAIDA dataset. Accordingly, the Q-Learning agent is instructed to train
the detection engine and perform cross-validation tests.

In [17], the authors implemented their scenario with one ONOS controller [110], three
OpenFlow switches, five hosts, and one web server as a victim. The scenario implies that
the attacker 1hosts have been infiltrated and are now part of the botnet, with each attacking
computer capable of generating malicious traffic using the SlowHTPTest tool [111]. Legiti-
mate hosts generate regular traffic with a pseudo-random function using curl targeting the
webserver. The authors used the CIC DoS dataset, including regular traffic and eight low
rate attack variations. They used the Flowtbag function to convert the packet data as traffic
to adapt the dataset for SDN environments. It takes 44 features as input set and 44 features
as output flows.

In [78], the experiment is conducted in a heterogeneous IoT network deployed on a
Mininet simulator. The network topology consists of one physical switch, three OpenFlow
virtual switches, and forty virtual nodes. All switches are connected to the Floodlight
controller, and the nodes are connected to the switches; 10 nodes are normal nodes, and
30 nodes are attacking nodes. The link bandwidth between the nodes and the switches
is 100 Mb/s. The dataset is generated in real-time during the experimental simulation
collected on the Floodlight controller and the OpenFlow switches. The classifier was
trained with 80% of the combined dataset of regular and attacking traffic, and classification
accuracy was tested with a test set from the remaining dataset. The regular traffic includes
HTTPS, HTTP, MQTT, ping messages, etc., while the attacking traffic includes a large
number of TCP-syn and TCP-retransmission messages in addition to those included in the
regular traffic.

In [77], the authors simulated the SDN environment to develop the detection model
running on the Ryu controller and network topology with two OpenFlow switches and a
web server used as a website. The KDD99 [112] dataset was used in the experiment. The
dataset is divided into five key categories, regular, attack, Probe, U2R, and R2L, and utilizes
41 features to describe a connection. The authors’ primary focus is on HTTP flood attacks.
As a result, data are represented using attack and regular traffic. As a data collection, TCP
network connections are employed. The raw dataset is divided into a training dataset
and a test dataset. Then the training dataset is used to build the attack detection model.
Moreover, the best parameters are determined by repeated testing. The decision function
is used to decide how to forward packets. If the output of the process is -1, it is an attack
packet. Otherwise, it is a regular packet.

In [79], the authors used Mininet-Wifi to verify DIAMOND (the logic of the program)
and evaluate its performance by implementing it on the Ryu controller. Mininet-Wifi is
used to simulate an SDN-enabled IoT network consisting of eighty IoT endpoints, eight
access points, and eight links. They simulated the background traffic of the IoT network,
which includes 10% HTTP, 40% HTTPS, 10% TCP, 5% DNS, 10% SSDP, and 5% NTP. Attack
traffic consists of traffic generated by 20 IoT endpoints to launch LDDoS attacks against IoT
servers and accounts for 20% of regular traffic.

In [83], the authors set up the experimental topology on the Mininet simulator and built
a topology with one Ryu controller connected to two OpenFlow switches (OpenvSwitch)
and six hosts. The authors create a 10 Mbps bottleneck link between switch S1 and S2.
For comparison, the bandwidth of the rest of the links is 100 Mbps with a delay of 20 ms.
They used a Python socket to create five long TCP connections for a regular user group
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and used the Iperf tool to measure the bandwidth of the bottleneck link created by a short
connection. They used two hosts as attackers and a UDP background generator. They
considered LDoS attacks initiated by both TCP and UDP as a dataset. In a TCP-based
attack, the attacker 1uses the TCP raw socket to create sudden congestion in the network.
In a UDP-based attack, the attacker 1initiates UDP pulses and uses this protocol without
congestion control to affect TCP directly. The duration of each set of experiments is 720 s,
including LDoS attacks based on TCP and UDP for 3 min each. The default detection
window is set to 10 s, and the sampling interval is 0.5 s. The construction of the detection
window overlaps, and the subsequent detection window is created from a temporary
sampling interval behind the previous detection window. Each set of data contains about
1440 detection windows. The training set includes two-thirds of the detection windows,
and the rest are used as a test set.

In [80], the authors use Mininet to simulate the network topology with nine hosts
and four OpenFlow switches. The hosts are configured as legitimate devices and offensive
devices. All hosts are connected to the switches with a bandwidth of 10 Mbps. All switches
are connected to the POX Python controller to simulate the control plane. To construct
LDDoS attacks, they used the Scapy program [113,114] to generate a low rate attack by
spoofing packet fields and a transmission rate of 1.6 to 2.2 Mbps. The CIC DOS 2019 dataset
was used to train the machine learning model, with 80 features that provide statistical
information about the streams. The Flowtbag method [17] is used in this work to convert
traditional traffic states to flow states with the same set of features.

6.1.2. Limitations of Classification-Based Methods for Detecting LDDoS Attacks

This section will present some of the challenges and limitations in classification-based
LDDoS attack detection methods. Table 4 represents a summary of analysis methods used
by existing work and their shortcomings or disadvantages. In [81], the authors presented
a protection mechanism based on the dynamic deletion of flow rules. They applied the
mechanism of LDDoS attacks to the SDN data layer to increase the detection accuracy and
provide multiple functions based on FM. Although the proposed mechanism has acceptable
accuracy (95%) in detecting an LDDoS attack, it was derived from a small network simulation
(four switches and nine hosts). Although the model targets the data layer, it does not consider
the synchronization process at the data layer and the scenario of connecting to more than one
SDN controller. Therefore, the proposed model may fail in large-scale networks where more
than one SDN controller is deployed in the absence of a mechanism based on synchronization
between SDN controllers and data layer devices. In [76], the authors proposed Q-MIND
to detect LDDoS attacks using a reinforcement learning technique based on Q-learning.
Throughout the training phase, the authors require a collection of labeled traffic data that
includes both anomalous and benign samples. These characteristics are calculated for each
source IP address using a traffic dataset with 4000 regular traffic samples and 4000 attack
samples. As a result, the Q-learning agent must train the detection engine and conduct
validation tests. They design an optimization problem to find the best policies in scenarios
where the immediate reward increases in each loop, using Q-learning to solve it. However,
compared to similar models, the cost of this method for implementation and training is very
high. In [17,78], the authors have used various machine learning techniques to detect and
identify LDDoS attacks and have indeed achieved high accuracy.

Nevertheless, these methods can increase controller overhead and decrease response
efficiency when used on an extensive network. Analyzing the work [77], where the authors
developed an SDN framework based on machine learning to identify and mitigate LDDoS
attacks. They utilized two aspects of the system (traffic collecting and flow table delivery).
They used the SVM algorithm and traffic characteristics obtained from statistical flow table
data to identify the attack traffic. However, the method identification process of determining
the feature obtained from the flow table allows the SDN controller to write effective new
rules to prevent LDDoS attacks is not addressed, which is essential for efficiency and
network connectivity. In [79], the authors proposed DIAMOND as a structured coevolution
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feature optimization method to detect LDDoS for SDN enabled IoT networks. They used
the group structuring method, counting strategy, and the intersection strategy to sort
the count. The authors presented the method’s shortcomings, as it does not provide a
solution for forming sub-populations that build the individuals into a hierarchical tree.
Moreover, the excessive load on OpenFlow switches by querying statistical data from
flow entries increases switching overhead and decreases responsiveness to regular traffic.
In [83], the authors proposed a detection and mitigation framework for LDoS attacks in
SDN. The performance and features framework considers both attack performance and
attacks flow features for LDoS attack detection decision. They performed a joint detection
approach based on two aspects and implemented a real-time mitigation system to defend
against LDoS attacks based on an SDN controller. However, the authors testify that feature
classification and selection still need improvement. In addition, the framework forces the
controller not to install new rules for the upcoming traffic during LDoS attacks, which
results in the legitimate user experiencing more delays when the network is attacked.
In [80] the authors proposed their detection mechanism uses four features (duration of the
flow, number of packets, relative distribution of matched bytes, and relative distribution
of the packet interval) of the network flow. Once the module detects the LDDoS attack,
it adds specific details of the attack flow to the blocklist table. It warns the controller to
remove a particular flow from the flow table by entering mitigation rules. Although this
model reduces resource consumption, it has a high false-positive rate for traffic flows such
as ICMP.

Table 4. Analysis methods used by existing work and their shortcomings or disadvantages.

Ref. Model Type

Objectives

Accuracy Shortcoming/DisadvantagesTo Increase the Detection Rate by
Extracting Features

To Make More Rapidly
Classification by Fully

Utilizing the GPU

To Improve Detection
Rate by Collecting Flow
Statistics from Wwitches

[81] A multi-feature method based
on the FM algorithm 3 95.8%

Not provide a mechanism based on
synchronization between SDN

controllers and data layer devices.

[76] Learning-based approach using
the QMIND framework 3 98% A complex training process and

high cost of implementation.

[17] Modular architecture based
on SDN. 3 95% Increase the controller overhead

and decrease response efficiency.

[78] Learning-based detection using
stateful and stateless features 3 3 97% Excess load on the controller, which

reduces the efficiency of its work.

[77] Traffic summation framework
based on SDN 3 3 99% Not identifying the feature obtained from

the flow table to detect LDDoS attacks.

[79] A structured coevolution feature
optimization method 3 3 92% Overloads OpenFlow switches and

reduces responsiveness to the regular traffic.

[83] Performance and Features
framework 3 96% A legitimate user experiences more delays

when the network is attacked.

[80] Flow-based detection
framework using ML classifiers 3 3 93% High false-positive rate for legal traffic

flows such as ICMP packets.

[82] CNN-LSTM Model for
SDN-based networks 3 99% Requires a long time to train and is

limited to traffic types.

[84] CNN-GRU Model for
SDN-based networks 3 99.5%

Resource intensive from a training
perspective and not designed to detect

online attacks in the contextof live SDNs.

Although the discussed methods show high accuracy in detecting LDDoS attacks,
no work indicates the implementation steps and the feature selection process. Therefore,
there is still a need to exploit the characteristics of the SDN against LDDoS attacks and to
develop detection models based on machine learning with a high true-positive rate and
a low false-positive rate for all traffic features. In addition, an effective extracting feature
model must be provided for SDN traffic and dynamically updated to improve LDDoS
detection mechanisms.

6.2. Deep Learning-Based LDDoS Detection

CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), LSTM
(Long Term Memory), and other deep learning models have been applied to increase SDN
protection against LDDoS threats [82,84]. Feature extraction is automatic in deep learning
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models [115]. The general structure framework for deep learning-based LDDoS attack
detection mechanisms is similar to the machine learning classification-based framework, as
shown in Figure 6. However, in the case of a deep learning-based model, selecting features
is performed automatically. Table 2 summarizes deep-learning-based LDDoS detection
mechanisms along with classification-based mechanisms.

In [82], B. Nugraha et al. present an ensemble convolutional neural network solution
for LDDoS attack based on deep learning. To detect LDDoS attack in SDN-based networks,
the authors suggest CNN-LSTM, a hybrid Convolutional Neural Network-Long-Short
Term Memory model. Custom datasets are utilized to evaluate the strategy’s effectiveness.
The results are impressive; all of the studied performance metrics have a value greater than
99%. The hybrid model CNN-LSTM outperforms traditional deep learning approaches
comparable to MLP (MultiLayer Perceptron) [116] or 1-class SVM [117]. The detector unit
in this deep learning-based model evaluates the extractor unit’s output and determines
whether the entries are classed as harmful or harmless traffic. As a result, it functions as a
binary classifier, classifying malicious traffic as “1” and non-malicious traffic as “0”. The
labels are connected with the original IP address since a single host might be authentic or
fraudulent. In depicting the hybrid CNNLSTM model used in the detector module, the
pointers ×1, ×2 .., ×n relate to the features associated with each entry.

In [84], W. Sun et al. developed a technique for detecting LDoS attacks based on the
hybrid CNN-GRU model: Convolutional Neural Network (CNN) and Gated Recurrent
Unit (GRU). This work is based on the three main stages of the LDoS attack detection
process. The values of variables such as n packets and n bytes are retrieved from the base
traffic flow in the first stage, and the average number of packets and bytes is gathered as
input data for the combined model. The model enhances detection performance in the
second phase by refining the Sailfish method to automatically adjust the CNN and GRU
hyperparameters throughout the training process. In the last step, the model employs the
CNN hyperparameters and the improved GRU to extract the input data’s deeper spatial and
temporal aspects to identify LDoS attacks accurately. These stages gradually improve the
manual setup approach to automatically identify the CNN and GRU metaparameters before
introducing the Sailfish optimization algorithm to optimize CNN-GRU metaparameters. In
addition to the nine field values collected from the flow rule. Given that LDoS data have
the property of integrating Spatio-temporal features, the authors employ CNN and GRU to
extract the spatio-temporal aspects of the data in order to detect attack flows.

The feature selection technology of the CNN-GRU model-based LDoS attack detection
method is divided into three stages: feature selection, structure and parameter optimization,
and attack detection. Feature selection is performed by requesting flow table information
from the switch; the controller sends a flow status request to the switch and selects and
develops input features for LDoS attack detection. In the second stage, the syntax is opti-
mized using the ASFO method to optimize the CNN-GRU hyperparameters automatically.
The individual population mode of the CNN-GRU model is a form of combining hyper-
parameters. In the final stage, the optimized CNN-GRU hyperparameter model is used
to detect the attacks. Suppose the result of detection is an attack. In that case, the model
sends instructions to the controller to change the flow table to the switch and change the
configuration of matching elements in the flow table that discards the attack data packet
to avoid risks. The most significant value of this model’s accuracy detection findings was
99.5%, with a false positive rate of 0.07%.

6.2.1. Implementation and Traffic Analysis of Deep Learning Methods Based on LDDoS
Attack Tetection

This section presents the implementation and deployment of LDDoS detection mecha-
nisms based on deep learning as well as the analysis of traffic and datasets used.
Table 3 shows a summary of the simulation environment analysis and traffic/datasets
used by existing methods.
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In [82], the authors experimented with Minnet in a simulated environment where they
created a small SDN topology and generated regular traffic and an LDDoS attack. They
build a network topology scenario with one ONOS controller, two OpenFlow switches, a
web server victim, six regular hosts and four malicious hosts. The authors used the Flow
Collector module to generate regular traffic flows (which is responsible for requesting the
flow statistics periodically through the REST API from the SDN controller). For generating
LDDoS attacks traffic, they used an open-source tool Slowloris-HTTP [118]. In total, they
generated 468,002,403 traffic flows, consisting of 355,758,086 regular flows and 112,244,317
LDDoS attack flows. The collected data are divided into 20% test data and 80% training
data. The training datasets are then split into 20% validation data and 80% training data.

In [84], the authors used Mininet to design and simulate the network. The network
topology contains 1 Python-based Ryu controller, 6 OpenFlow switches, and 21 hosts.
They performed experiments using two datasets. The first dataset was collected from the
network topology traffic, and the second dataset is CAIDA. Each data collection contains
both the training and test sets. The Hping3 tool creates the attack traffic in the first dataset.
The idle timeout is set to 10 s, and the attack period is set to 9 s. The data from the network
traffic dataset are used to construct the regular flow. The second dataset comprises normal
traffic and LDoS attack traffic, with a total of 79 parameters and an 80% to 20% training set
to test set ratio.

6.2.2. Limitation of Deep Learning Based LDDoS Attack Detection

This section provides an overview of the limitations of LDDoS detection mechanisms
based on deep learning. According to our findings, the number of LDDoS detection
mechanisms based on deep learning is lower than those based on classification. This could
be due to the fact that classification-based LDDoS detection mechanisms have reasonable
detection accuracy with lower computational complexity. Table 4 represents a summary of
analysis methods used by existing work and their shortcomings.

In any case, LDDoS detection mechanisms based on deep learning perform better than
classification-based LDDoS. This is because learning-based LDDoS detection approaches
have a more profound ability to extract traffic than classification-based techniques. There-
fore, it can improve detection accuracy in identifying LDDoS attacks and obfuscation.

Various drawbacks or limits must be addressed when utilizing deep Learning to iden-
tify LDDoS. The first is that a deep learning model’s training period might be exceedingly
long. As a result of the lengthy training period, the deep learning unit may have signifi-
cant hardware needs. The second barrier is that several parameters must be given when
developing a deep learning module. Using CNN as an example, the user should pick the
optimal or sub-optimal parameters, such as the number of layers, neurons, filters, epochs,
learning rate, objective function, and the weight configuration.

Analyzing the work in [82], we note that it has an apparent shortcoming in the use
of test parameters since the evaluation of the detection framework was performed with
offline datasets in a small SDN topology. There is also a limitation in traffic diversity as
the regular traffic flows are limited to UDP and HTTP, and LDDoS attack traffic flows are
HTTP only. Moreover, since the work uses CNN-LSTM based on deep learning, the training
performance requires a long time when we compare it with classification-based methods.
This is because the hybrid CNN-LSTM model requires a 3D data format as input [119], so
the dataset needs to be transformed accordingly.

In [84], the authors improved the LDoS attack detection method by developing a
sailfish algorithm to enhance the parameters of the CNN-GRU characteristic. Although the
model performed well compared to traditional machine learning algorithms, It requires a
lot of training time and lacks real-world implementation. Furthermore, it is not intended
for online attack detection in live SDNs since it must identify traffic flows that can be split
across different capture time frames. Despite the limitations of the deep learning-based
LDDoS detection approaches, we nevertheless recommend employing deep learning to
construct an LDDoS attack detection mechanism.
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7. Current Challenges and Future Research Directions

This section summarizes the current challenges for all research articles that propose
approaches to detect LDDoS attacks based on machine learning and deep learning. Thus, re-
searchers interested in this area can point out the challenges and propose efficient solutions
for LDDoS attack detection.

The recent attacks, such as the one on AWS (Amazon Web Services) [120], show that
the nature of the DDoS attacks is changing from the typical high-volume flooding attacks
to more stealthy low-rate attacks. Since the launch of the Shrew attack [121] categorized as
performing an LDDoS attack, several variants of LDDoS attacks have been proposed and
analyzed. An LDDoS attack is more difficult to detect since its average traffic volume is
not significantly different from that of normal traffic. However, it cannot be ignored as it
impacts legitimate traffic over time.

Despite the fact that there has been a little study in the field of LDDoS attacks in SDN,
the effectiveness of machine learning methods is more likely to classify and detect LDDoS
attacks. This is why machine learning algorithms have outperformed manual checking
methodologies when data amounts are large. Because threshold detection methods have
usually depended on only a few measurements, it is simple to confuse a normal random
burst in a real network for an attack. Furthermore, the outcomes of these approaches are
susceptible to the detection threshold, which must be altered according to the network
scene, or the correct detection probability will suffer. Several LDDoS attack detection using
machine learning approaches [17,76–84] have been investigated in this paper. They bring
several recent results on LDDoS attack detection. These results can summarize as follows:

7.1. Specific Datasets

There are a few publicly available datasets for traditional DDoS attacks that are not
designed for SDN architecture, such as the NSL-KDD, DARPA98, CAIDA, and CIC DoS
2019 datasets. Few of the datasets that capture LDDoS attacks are available, such as CIC
DoS, which is also not intended for SDN architecture. There is an urgent need to find a
dataset for LDDoS attacks in the SDN architecture to adapt to the programmability of SDN
controllers and the flow tables in OpenFlow switches.

7.2. Real Evaluation Instead of Simulation

In the previous analysis of methods to defend against LDDoS attacks in SDN, most
methods were implemented in a simulation environment. There is a need to implement and
test these methods in a realistic SDN architecture to more accurately evaluate performance
and adjust network traffic depending on the topology and size of the network. Although
the results obtained in simulation are acceptable for research. In certain cases, researchers
use a simplified simulated SDN environment with a single controller and two hosts with
limited resources. Therefore, a great effort is needed to design up-to-date and large-scale
test rules that enable SDN to validate and minimize LDDoS detection in real network
hardware environment as available in traditional IP networks.

7.3. Unauthenticated Application

Many applications at the application layer can access network resources for better
management. Furthermore, many unauthorized applications obtain this access through
instances of approved applications. An attacker 1might take advantage of this vulnerability
and utilize these programs to launch LDDoS attacks, reducing network performance. As
a result, there is a need to identify a reliable application authenticator to validate the
application before authorizing access to network resources.

7.4. LDDoS Attacks in the Industrial Domain

Incorporating the SDN concept into the industrial environment introduces new secu-
rity issues that must be addressed. The inclusion of SDN opens the door for cyberattacks on
the network. LDDoS attacks are one type of potential cyberattack. The destructive impact
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of an LDDoS attack on a real industrial environment and the entire manufacturing process
must be demonstrated.

7.5. Controller Overhead

Due to the lack of a secure and stable SDN controller, implementing an LDDoS attack
detection method based on machine learning using a single controller may overwhelm
the controller, reducing its working efficiency. However, this single controller can be a
point of failure for the entire network. On the other hand, the implementation of multiple
controllers and distributed defense solutions can be a better choice for future defense plans
as it can distribute the load between different devices and load balancing can be achieved
according to the requirements. There is an urgent need from the research community to
provide a light machine based on machine learning that can be implemented in multiple
controller scenarios while keeping synchronization and communication to a minimum.

7.6. Large-Scale Network with More than One Controller

The increasing expansion of network capacity and controller scalability owing to
computation limit is another significant difficulty. The stability and scalability of a multi-
controller platform must be prioritized. The controllers in a distributed controllers scenario
are conceptually central. The main controller is a root with a global view of the network, and
the others are local controllers with network information only in their domain. However,
synchronizing these controllers is another issue that must be addressed. Proposing an
LDDoS attack method based on machine learning effective in large-scale networks with
more than one controller is a challenge for the SDN community.

7.7. OpenFlow Switch Overload

In OpenFlow switches, the flow table rules are stored in TCAM. This type of memory
is restricted to a limited number of flows and is expensive, which attracts the attention of
LDDoS attackers. LDDoS use less resources to load the flow table than it takes to exhaust
the network controller. The attacker 1attempts to load and run through its restricted
capacity, causing the switch to stop working and potentially terminating network services.
Although applying a detection method in the OpenFlow switches can reduce the controller’s
computing burden and communication between the data plane and the control plane, it
increases the complexity of the hardware and incurs an additional expense. Therefore,
effective deployment of security modules in switches while reducing the complexity of
communication between devices is an open problem.

7.8. High Cost of Implementation

Machine learning-based LDDoS detection methods used multiple traffic engineering
parameters for the current state of the network. These methods are implemented at the
control level of the SDN architecture. A central controller responsible for policy-making can
serve a limited number of new flow requests to manage OpenFlow switches. As a result,
the controller must put forth a lot of effort to handle network traffic efficiently. However,
this extra overhead by the detection methods for computation for multiple parameters
can harm the controller’s performance. Therefore, researchers must apply an appropriate
approach to reduce the number of parameters used in LDDoS detection methods.

7.9. Feature Selection

One obvious drawback of traditional machine learning techniques is that they rely
heavily on feature engineering. LDDoS attacks can disguise themselves with regular
traffic, making them difficult to detect. The first problem with the current solution is that
the feature selection is not straightforward. Since most of the current detection methods
are associated with an LDDoS attack of the SDN controller and OpenFlow switches, the
features are sampled using the entire flow table as a sample. There is an urgent need to
find apparent features of LDDoS attacks disguised with flow traffic in SDN architecture.
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Feature selection is quite tricky. Thus, we expect deep learning models to be proposed in
the future as the feature selections can be automatic in deep learning models.

7.10. Exploiting SDN Capabilities for LDDoS Detection

SDN adds new qualities that did not exist in traditional IP networks, resulting in
a distinct network design from traditional IP networks. SDN-based networks employ
OpenFlow as southbound interfaces, and messages such as packet-in, packet-out, flow-
mod, echo-reply, echo-request, error messages, and hello messages have the capacity to
reverse network state. In other words, these messages and the features of the packets may
be utilized by machine learning in the SDN to identify LDDoS attacks. However, based on
a review of the relevant literature, implementing these messages features is a shortcoming
in leveraging the SDN’s potential for LDDoS detection.

8. Conclusions

LDDoS attack is a recent evolution of DDoS attack that is more challenging and difficult
to detect. As traditional security schemes proposed for defending against DDoS are not
efficient in detecting LDDoS attacks, novel security mechanisms developed for LDDoS
are needed. In this paper, we presented an extensive review of several existing LDDoS
detection methods for SDN. In particular, we have proposed a taxonomy of LDDoS attacks
in all layers of the SDN architecture. Furthermore, integrated analysis and identification
of shortcomings or disadvantages of all LDDoS detection approaches were discussed and
summarized. Classification-based and deep learning mechanisms for LDDoS detection
have received growing attention from researchers because of the nature of security attacks
that are dynamically changing and evolving. Our survey shows that mechanisms based
on deep learning and incorporating a hybrid model such as CNN-LSTM and CNN-GRU
perform better than classification-based mechanisms that rely on only ML classification
algorithms. CNN-LSTM and CNN-GRU provided a high detection rate, up to 99.5%, with
a lower false rate than other methods. We have also demonstrated a brief survey about
LDDoS attacks in IoT networks based on SDN architecture for the industrial domain. As
part of future work, we will provide a more detailed issues on IoT networks based on SDN
and propose detection mechanisms to protect IoT networks from LDDoS attacks using
machine learning approaches. In addition, open issues are also discussed and analyzed
which suggest future developments and pave the way for young researchers to develop
novel approaches for detecting and defending the SDN against LDDoS attacks.
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Abbreviations
The following abbreviations are used in this manuscript:

AOS Application Operator and Schedule;
AUC Area Under the Curve;
BPNN Backpropagation Neural Network;
CNN Convolutional Neural Network;
CIC Canadian Institute of Cybersecurity;
SDN Software Defined Networking;
DoS Denial of Services;
DDoS Distributed Denial of Services;
LDDoS Low-rate Distributed Denial of Services;
IoT Internet of Things;
ML Machine Learning;
DL Deep Learning;
SL Supervised Learning;
LR Logistic Regression;
SVM Support Vector Machine;
KNN K-Nearest Neighbor;
UL Unsupervised Learning;
LSTM Long Short-Term Memory;
HTTP Hypertext Transfer Protocol;
DNS Distributed Denial of Service;
RNN Recurrent Neural Network;
PCA Principal Component Analysis;
ONF Open Networking Foundation;
OFA OpenFlow Agent;
TCAM Three Content Addressable Memory;
OFMF Open Flow Mod Failed;
IDS Intrusion Detection System;
MDP Markov Decision Process;
GRU Gated Recurrent Unit;
CPU Central Processing Unit;
ICMP Internet Control Message Protocol;
UDP User Datagram Protocol;
DNS Domain Name System;
RNN Recurrent Neural Network;
WSN Wireless Sensor Networks.
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