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Abstract

There is no doubt that big data are now rapidly expanding in all science and engineering domains. While the

potential of these massive data is undoubtedly significant, fully making sense of them requires new ways of

thinking and novel learning techniques to address the various challenges. In this paper, we present a literature

survey of the latest advances in researches on machine learning for big data processing. First, we review the

machine learning techniques and highlight some promising learning methods in recent studies, such as

representation learning, deep learning, distributed and parallel learning, transfer learning, active learning, and

kernel-based learning. Next, we focus on the analysis and discussions about the challenges and possible solutions

of machine learning for big data. Following that, we investigate the close connections of machine learning with

signal processing techniques for big data processing. Finally, we outline several open issues and research trends.
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1 Review

1.1 Introduction

It is obvious that we are living in a data deluge era, evi-

denced by the phenomenon that enormous amount of

data have been being continually generated at unprece-

dented and ever increasing scales. Large-scale data sets

are collected and studied in numerous domains, from

engineering sciences to social networks, commerce,

biomolecular research, and security [1]. Particularly, digital

data, generated from a variety of digital devices, are growing

at astonishing rates. According to [2], in 2011, digital infor-

mation has grown nine times in volume in just 5 years and

its amount in the world will reach 35 trillion gigabytes by

2020 [3]. Therefore, the term “Big Data” was coined to cap-

ture the profound meaning of this data explosion trend.

To clarify what the big data refers to, several good sur-

veys have been presented recently and each of them

views the big data from different perspectives, including

challenges and opportunities [4], background and re-

search status [5], and analytics platforms [6]. Among

these surveys, a comprehensive overview of the big data

from three different angles, i.e., innovation, competition,

and productivity, was presented by the McKinsey Global

Institute (MGI) [7]. Besides describing the fundamental

techniques and technologies of big data, a number of

more recent studies have investigated big data under

particular context. For example, [8, 9] gave a brief review

of the features of big data from Internet of Things (IoT).

Some authors also analyzed the new characteristics of big

data in wireless networks, e.g., in terms of 5G [10]. In [11,

12], the authors proposed various big data processing

models and algorithms from the data mining perspective.

Over the past decade, machine learning techniques

have been widely adopted in a number of massive and

complex data-intensive fields such as medicine, astron-

omy, biology, and so on, for these techniques provide

possible solutions to mine the information hidden in the

data. Nevertheless, as the time for big data is coming,

the collection of data sets is so large and complex that it

is difficult to deal with using traditional learning

methods since the established process of learning from

conventional datasets was not designed to and will not

work well with high volumes of data. For instance, most

traditional machine learning algorithms are designed for

data that would be completely loaded into memory [13],

which does not hold any more in the context of big data.

Therefore, although learning from these numerous data

is expected to bring significant science and engineering* Correspondence: dingguoru@gmail.com
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advances along with improvements in quality of our life

[14], it brings tremendous challenges at the same time.

The goal of this paper is twofold. One is mainly to dis-

cuss several important issues related to learning from

massive amounts of data and highlight current research

efforts and the challenges to big data, as well as the

future trends. The other is to analyze the connections of

machine learning with modern signal processing (SP)

techniques for big data processing from different

perspectives. The main contributions of this paper are

summarized as follows:

� We first give a brief review of the traditional

machine learning techniques, followed by several

advanced learning methods in recent researches that

are either promising or much needed for solving the

big data problems.

� We then present a systematic analysis of the

challenges and possible solutions for learning with

big data, which are in terms of the five big data

characteristics such as volume, variety, velocity,

veracity, and value.

� We next discuss the great ties of machine

learning with SP techniques for the big data

processing.

� We finally provide several open issues and research

trends.

The remainder of the paper, as the roadmap given

in Fig. 1 shows, is organized as follows. In Section 1.2,

we start with a review of some essential and relevant

concepts about machine learning, followed by some

current advanced learning techniques. Section 1.3

provides a comprehensive survey of challenges bring-

ing by big data for machine learning, mainly from five

aspects. The relationships between machine learning

and signal processing techniques for big data process-

ing are presented in Section 1.4. Section 1.5 gives

some open issues and research trends. Conclusions

are drawn in Section 2.

1.2 Brief review of machine learning techniques

In this section, we first present some essential concepts

and classification of machine learning and then highlight

a list of advanced learning techniques.

1.2.1 Definition and classification of machine learning

Machine leaning is a field of research that formally fo-

cuses on the theory, performance, and properties of

learning systems and algorithms. It is a highly interdis-

ciplinary field building upon ideas from many different

kinds of fields such as artificial intelligence, optimization

theory, information theory, statistics, cognitive science,

optimal control, and many other disciplines of science,

engineering, and mathematics [15–18]. Because of its

implementation in a wide range of applications, machine

learning has covered almost every scientific domain,

which has brought great impact on the science and soci-

ety [19]. It has been used on a variety of problems, in-

cluding recommendation engines, recognition systems,

informatics and data mining, and autonomous control

systems [20].

Generally, the field of machine learning is divided into

three subdomains: supervised learning, unsupervised

learning, and reinforcement learning [21]. Briefly, super-

vised learning requires training with labeled data which

has inputs and desired outputs. In contrast with the

supervised learning, unsupervised learning does not re-

quire labeled training data and the environment only

provides inputs without desired targets. Reinforcement

learning enables learning from feedback received

through interactions with an external environment.

Based on these three essential learning paradigms, a lot

of theory mechanisms and application services have

been proposed for dealing with data tasks [22–24]. For

example, in [22], Google applies machine learning algo-

rithms to massive chunks of messy data obtained from

the Internet for Google’s translator, Google’s street view,

Android’s voice recognition, and image search engine. A

simple comparison of these three machine learning tech-

nologies from different perspectives is given in Table 1
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to outline the machine learning technologies for data

processing. The “Data Processing Tasks” column of the

table gives the problems that need to be solved and the

“Learning Algorithms” column describes the methods

that may be used. In summary, from data processing

perspective, supervised learning and unsupervised learn-

ing mainly focus on data analysis while reinforcement

learning is preferred for decision-making problems. An-

other point is that most traditional machine-learning-

based systems are designed with the assumption that all

the collected data would be completely loaded into

memory for centralized processing. However, as the data

keeps getting bigger and bigger, the existing machine

learning techniques encounter great difficulties when

they are required to handle the unprecedented volume

of data. Nowadays, there is a great need to develop effi-

cient and intelligent learning methods to cope with fu-

ture data processing demands.

1.2.2 Advanced learning methods

In this subsection, we introduce a few recent learning

methods that may be either promising or much needed

for solving the big data problems. The outstanding char-

acteristic of these methods is to focus on the idea of

learning, rather than just a single algorithm.

1. Representation Learning: Datasets with high-

dimensional features have become increasingly

common nowadays, which challenge the current

learning algorithms to extract and organize the

discriminative information from the data. Fortunately,

representation learning [25, 26], a promising solution

to learn the meaningful and useful representations

of the data that make it easier to extract useful

information when building classifiers or other

predictors, has been presented and achieved impressive

performance on many dimensionality reduction tasks

[27]. Representation learning aims to achieve that a

reasonably sized learned representation can capture a

huge number of possible input configurations,

which can greatly facilitate improvements in both

computational efficiency and statistical efficiency [25].

There are mainly three subtopics on representation

learning: feature selection, feature extraction, and

distance metric learning [27]. In order to give

impetus to the multidomain learning ability of

representation learning, automatic representation

learning [28], biased representation learning [26],

cross-domain representation learning [27], and some

other related techniques [29] have been proposed in

recent years. The rapid increase in the scientific activity

on representation learning has been accompanied and

nourished by a remarkable string of empirical successes

in real-world applications, such as speech recognition,

natural language processing, and intelligent vehicle

systems [30–32].

2. Deep learning: Nowadays, there is no doubt that

deep learning is one of the hottest research trends in

machine learning field. In contrast to most

traditional learning techniques, which are considered

using shallow-structured learning architectures, deep

learning mainly uses supervised and/or unsupervised

strategies in deep architectures to automatically learn

hierarchical representations [33]. Deep architectures

can often capture more complicated, hierarchically

launched statistical patterns of inputs for achieving to

be adaptive to new areas than traditional learning

methods and often outperform state of the art

achieved by hand-made features [34]. Deep belief

networks (DBNs) [33, 35] and convolutional neural

Table 1 Comparison of machine learning technologies

Learning types Data processing tasks Distinction norm Learning algorithms Representative references

Supervised learning Classification/Regression/Estimation Computational classifiers Support vector machine [120]

Statistical classifiers Naïve Bayes [15]

Hidden Markov model [121]

Bayesian networks [122]

Connectionist classifiers Neural networks [123]

Unsupervised learning Clustering/Prediction Parametric K-means [124]

Gaussian mixture model [125]

Nonparametric Dirichlet process mixture model [125]

X-means [124]

Reinforcement learning Decision-making Model-free Q-learning [126]

R-learning [127]

Model-based TD learning [128]

Sarsa learning [129]
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networks (CNNs) [36, 37] are two mainstream deep

learning approaches and research directions proposed

over the past decade, which have been well established

in the deep learning field and shown great promise for

future work [13].

Due to the state-of-the-art performance of deep

learning, it has attracted much attention from the

academic community in recent years such as speech

recognition, computer vision, language processing,

and information retrieval [33, 38–40]. As the data

keeps getting bigger, deep learning is coming to play a

pivotal role in providing predictive analytics solutions

for large-scale data sets, particularly with the

increased processing power and the advances in

graphics processors [13]. For example, IBM’s

brain-like computer [22] and Microsoft’s real-time

language translation in Bing voice search [41]

have used techniques like deep learning to

leverage big data for competitive advantage.

3. Distributed and parallel learning: There is often

exciting information hidden in the unprecedented

volumes of data. Learning from these massive data is

expected to bring significant science and engineering

advances which can facilitate the development of

more intelligent systems. However, a bottleneck

preventing such a big blessing is the inability of

learning algorithms to use all the data to learn

within a reasonable time. In this context, distributed

learning seems to be a promising research since

allocating the learning process among several

workstations is a natural way of scaling up learning

algorithms [42]. Different from the classical learning

framework, in which one requires the collection of

that data in a database for central processing, in the

framework of distributed learning, the learning is

carried out in a distributed manner [43].

In the past years, several popular distributed

machine learning algorithms have been proposed,

including decision rules [44], stacked generalization

[45], meta-learning [46], and distributed boosting

[47]. With the advantage of distributed computing for

managing big volumes of data, distributed learning

avoids the necessity of gathering data into a single

workstation for central processing, saving time and

energy. It is expected that more widespread

applications of the distributed learning are on the way

[42]. Similar to distributed learning, another popular

learning technique for scaling up traditional learning

algorithms is parallel machine learning [48]. With the

power of multicore processors and cloud computing

platforms, parallel and distributed computing systems

have recently become widely accessible [42]. A more

detailed description about distributed and parallel

learning can be found in [49].

4. Transfer learning: A major assumption in many

traditional machine learning algorithms is that the

training and test data are drawn from the same

feature space and have the same distribution.

However, with the data explosion from variety of

sources, great heterogeneity of the collected data

destroys the hypothesis. To tackle this issue, transfer

learning has been proposed to allow the domains,

tasks, and distributions to be different, which can

extract knowledge from one or more source tasks

and apply the knowledge to a target task [50, 51].

The advantage of transfer learning is that it can

intelligently apply knowledge learned previously to

solve new problems faster.

Based on different situations between the source and

target domains and tasks, transfer learning is

categorized into three subsettings: inductive transfer

learning, transductive transfer learning, and

unsupervised transfer learning [51]. In terms of

inductive transfer learning, the source and target

tasks are different, no matter when the source and

target domains are the same or not. Transductive

transfer learning, in contrast, the target domain is

different from the source domain, while the source

and target tasks are the same. Finally, in the

unsupervised transfer learning setting, the target

task is different from but related to the source task.

Furthermore, approaches to transfer learning in the

above three different settings can be classified into

four contexts based on “What to transfer,” such as

the instance transfer approach, the feature

representation transfer approach, the parameter

transfer approach, and the relational knowledge

transfer approach [51–54]. Recently, transfer

learning techniques have been applied successfully in

many real-world data processing applications, such

as cross-domain text classification, constructing

informative priors, and large-scale document

classification [55–57].

5. Active learning: In many real-world applications, we

have to face such a situation: data may be abundant

but labels are scarce or expensive to obtain. Frequently,

learning from massive amounts of unlabeled data is

difficult and time-consuming. Active learning attempts

to address this issue by selecting a subset of most

critical instances for labeling [58]. In this way, the active

learner aims to achieve high accuracy using as few

labeled instances as possible, thereby minimizing the

cost of obtaining labeled data [59]. It can obtain

satisfactory classification performance with fewer

labeled samples via query strategies than those of

conventional passive learning [60].

There are three main active learning scenarios,

comprising membership query synthesis, stream-based
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selective sampling and pool-based sampling [59].

Popular active learning approaches can be found in

[61]. They have been studied extensively in the field of

machine learning and applied to many data processing

problems such as image classification and biological

DNA identification [61, 62].

6. Kernel-based learning: Over the last decade, kernel-

based learning has established itself as a very powerful

technique to increase the computational capability

based on a breakthrough in the design of efficient

nonlinear learning algorithms [63]. The outstanding

advantage of kernel methods is their elegant property

of implicitly mapping samples from the original space

into a potentially infinite-dimensional feature space, in

which inner products can be calculated directly via a

kernel function [64]. For example, in kernel-based

learning theory, data x in the input space X is projected

onto a potentially much higher dimensional feature

space ℱ via a nonlinear mapping Φ as follows:

Φ : X→ℱ ; x↦Φ xð Þ ð1Þ

In this context, for a given learning problem, one

now works with the mapped data Φ(x)∈ℱ instead

of x∈X [63]. The data in the input space can be

projected onto different feature spaces with different

mappings. The diversity of feature spaces gives us

more choices to gain better performance, while in

practice, the choice itself of a proper mapping for

any given real-world problem may generally be

nontrivial. Fortunately, the kernel trick provides an

elegant mathematical means to construct powerful

nonlinear variants of most well-known statistical

linear techniques, without knowing the mapping

explicitly. Indeed, one only needs to replace the inner

product operator of a linear technique with an

appropriate kernel function k (i.e., a positive

semi-definite symmetric function), which arises as a

similarity measure that can be thought as an inner

product between pairs of data in the feature space.

Here, the original nonlinear problem can be

transformed into a linear formulation in a higher

dimensional space ℱ with an appropriate kernel k [65]:

k x; x′
� �

¼ Φ xð Þ; Φ x′
� �� �

ℱ
; ∀x; x′∈X ð2Þ

The most widely used kernel functions include

Gaussian kernels and Polynomial kernels. These

kernels implicitly map the data onto high-

dimensional spaces, even infinite-dimensional spaces

[63]. Kernel functions provide the nonlinear means to

infuse correlation or side information in big data, which

can obtain significant performance improvement over

their linear counterparts at the price of generally higher

computational complexity. Moreover, for a specific

problem, the selection of the best kernel function is

still an open issue, although ample experimental

evidence in the literature supports that the popular

kernel functions such as Gaussian kernels and

polynomial kernels perform well in most cases.

At the root of the success of kernel-based learning,

the combination of high expressive power with the

possibility to perform the numerous analyses has been

developed in many challenging applications [65], e.g.,

online classification [66], convexly constrained

parameter/function estimation [67], beamforming

problems [68], and adaptive multiregression [69].

One of the most popular surveys about introducing

kernel-based learning algorithms is [70], in which an

introduction of the exciting field of kernel-based

learning methods and applications was given.

1.3 The critical issues of machine learning for big data

In spite of the recent achievement in machine learning

is great as mentioned in Section 1.2, with the emergence

of big data, much more needs to be done to address

many significant challenges posted by big data. In this

section, we present a discussion about the critical issues

of machine learning techniques for big data from five

different perspectives, as described in Fig. 2, including

learning for large scale of data, learning for different

types of data, learning for high speed of streaming data,

learning for uncertain and incomplete data, and learn-

ing for extracting valuable information from massive

amounts of data. Also, corresponding possible remedies

to surmount the obstacles in recent researches are in-

troduced in the discussion.

1.3.1 Critical issue one: learning for large scale of data

1.3.1.1 Critical issue It is obvious that data volume is

the primary attribute of big data, which presents a great

challenge for machine learning. Taking only the digital data

as an instance, every day, Google alone needs to process

about 24 petabytes (petabyte = 210 × 210 × 210 × 210 × 210

bytes) of data [71]. Moreover, if we further take into consid-

eration other data sources, the data scale will become much

bigger. Under current development trends, data stored and

analyzed by big organizations will undoubtedly reach the

petabyte to exabyte (exabyte = 210petabytes) magnitude

soon [6].

1.3.1.2 Possible remedies There is no doubt that we are

now swimming in an expanding sea of data that is too volu-

minous to train a machine learning algorithm with a central

processor and storage. Instead, distributed frameworks with

parallel computing are preferred. Alternating direction

method of multipliers (ADMM) [72, 73] serving as a prom-

ising computing framework to develop distributed, scalable,

online convex optimization algorithms is well suited to
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accomplish parallel and distributed large-scale data process-

ing. The key merits of ADMM is its ability to split or de-

couple multiple variables in optimization problems, which

enables one to find a solution to a large-scale global

optimization problem by coordinating solutions to smaller

sub-problems. Generally, ADMM is convergent for convex

optimization, but it is lack of convergence and theoretical

performance guarantees for nonconvex optimization. How-

ever, vast experimental evidence in the literature supports

empirical convergence and good performance of ADMM

[74]. A wide variety of applications of ADMM to machine

learning problems for large-scale datasets have been dis-

cussed in [74].

In addition to distributed theoretical framework for ma-

chine learning to mitigate the challenges related to high

volumes, some practicable parallel programming methods

are also proposed and applied to learning algorithms to

deal with large-scale data sets. MapReduce [75, 76], a

powerful programming framework, enables the automatic

paralleling and distribution of computation applications

on large clusters of commodity machines. What is more,

MapReduce can also provide great fault tolerance ability,

which is important for tackling the large data sets. The

core idea of MapReduce is to divide massive data into

small chunks firstly, then, deal with these chunks in paral-

lel and in a distributed manner to generate intermediate

results. By aggregating all the intermediate results, the

final result is derived. A general means of program-

ming machine learning algorithms on multicore with

the advantage of MapReduce has been investigated in

[77]. Cloud-computing-assisted learning method is an-

other impressive progress which has been made for

data systems to deal with the volume challenge of big

data. Cloud computing [78, 79] has already demon-

strated admirable elasticity that bears the hope of

realizing the needed scalability for machine learning

algorithms. It can enhance computing and storage

capacity through cloud infrastructure. In this context,

distributed GraphLab, a framework for machine

learning in the cloud, has been proposed in [80].

1.3.2 Critical issue two: learning for different types of data

1.3.2.1 Critical issue The enormous variety of data is the

second dimension that makes big data both interesting and

challenging. This is resulted from the phenomenon that

data generally come from various sources and are of differ-

ent types. Structured, semi-structured, and even entirely

unstructured data sources stimulate the generation of het-

erogeneous, high-dimensional, and nonlinear data with dif-

ferent representation forms. Learning with such a dataset,

the great challenge is perceivable and the degree of com-

plexity is not even imaginable before we deeply get there.

1.3.2.2 Possible remedies In terms of heterogeneous data,

data integration [81, 82], which aims to combine data res-

iding at different sources and provide the user with a uni-

fied view of these data, is a key method. An effect solution

to address the data integration problem is to learn good

data representations from each individual data source and

then to integrate the learned features at different levels [13].

Thus, representation learning is preferred in this issue. In

[83], the authors proposed a data fusion theory based on

statistical learning for the two-dimensional spectrum

heterogeneous data. In addition, deep learning methods

have also been shown to be very effective in integrating data

from different sources. For example, Srivastava and

Salakhutdinov [84] developed a novel application of deep

learning algorithms to learn a unified representation by in-

tegrating real-valued dense image data and text data.

Another challenge associated with high variety is that the

data are often high dimensional and nonlinear, such as glo-

bal climate patterns, stellar spectra, and human gene distri-

butions. Clearly, to deal with high-dimensional data,

dimensionality reduction is an effective solution through

finding meaningful low-dimensional structures hidden in

their high-dimensional observations. Common approaches

are to employ feature selection or extraction to reduce the

data dimensions. For example, Sun et al. [85] proposed a

local-learning-based feature selection algorithm for high-

dimensional data analysis. The existing typical machine

learning algorithms for data dimensionality reduction
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include principal component analysis (PCA), linear discrim-

inant analysis (LDA), locally linear embedding(LLE), and

laplacian Eigenmaps [86]. Most recently, low-rank matrix

plays a more and more central role in large-scale data ana-

lysis and dimensionality reduction [8, 87]. The problem of

recovering a low-rank matrix is a fundamental problem

with applications in machine learning [88]. Here, we pro-

vide a simple example of using low-rank matrix recovery al-

gorithms for high-dimensional data processing. Let us

assume that we are given a large data matrix N and know

that it may be decomposed as N =M +Λ, where M has low

rank and Λ is a noise matrix. Due to the low-dimensional

column or row space of M, not even their dimensions are

not known, it is necessary to recover the matrix M from

the data matrix N and the problem can be formulated as

classical PCA [8, 89]:

min
Mf g

Mk k�

s:t: N−Mk kF≤ε

ð3Þ

where ε is a noise related parameter, ‖ ⋅ ‖* and ‖ ⋅ ‖F is de-

fined by the nuclear norm and the Frobenious norm of a

matrix, respectively. The problem formulated in (3) shows

the fundamental task of the research on matrix recovery for

high-dimensional data processing, which can be efficiently

solved by some existing algorithms including augmented La-

grange multipliers (ALM) algorithm and accelerated prox-

imal gradient (APG) algorithm [90]. As for nonlinear

properties of data related to high variety, kernel-based learn-

ing methods can provide commendable solutions which

have been discussed in Section 1.2.2; thus, the repetitious

details will not be given here. Of course, in terms of chal-

lenges brought by different types, transfer learning is also a

very good choice owning to its powerful knowledge transfer

ability which enables multidomain learning to be possible.

1.3.3 Critical issue three: learning for high speed of

streaming data

1.3.3.1 Critical issue For big data, speed or velocity

really matters, which is another emerging challenge for

learning. In many real-world applications, we have to

finish a task within a certain period of time; otherwise,

the processing results become less valuable or even

worthless, such as earthquake prediction, stock market

prediction and agent-based autonomous exchange (buy-

ing/selling) systems, and so on. In these time-sensitive

cases, the potential value of data depends on data fresh-

ness that needs to be processed in a real-time manner.

1.3.3.2 Possible remedies One promising solution for

learning from such high speed of data is online learning ap-

proaches. Online learning [91–94] is a well-established

learning paradigm whose strategy is learning one instance

at a time, instead of in an offline or batch learning fashion,

which needs to collect the full information of training data.

This sequential learning mechanism works well for big data

as current machines cannot hold the entire dataset in

memory. To speed up learning, recently, a novel learning

algorithm for single hidden-layer feed forward neural net-

works (SLFNs) named extreme learning machine (ELM)

[95] was proposed. Compared with some other traditional

learning algorithms, ELM provides extremely faster learn-

ing speed, better generalization performance, and with least

human intervention [96]. Thus, ELM has strong advantages

in dealing with high velocity of data.

Another challenging issue associated with the high vel-

ocity is that data are often nonstationary [13], i.e., data dis-

tribution is changing over time, which needs the learning

algorithms to learn the data as a stream. To tackle this

problem, the potential superiority of streaming processing

theory and technology [97] have been found out compared

with batch-processing paradigm, as they aim to analyze

data as soon as possible to derive its results. Representative

streaming processing systems include Borealis [98], S4 [99],

Kafka [100], and many other recent architectures proposed

to provide real-time analytics over big data [101, 102]. A

scalable machine learning online service with the power of

streaming processing for big data real-time analysis is intro-

duced in [103]. In addition, the professor G. B. Giannakis

have paid more attention to the real-time processing of

streaming data by using machine learning techniques in re-

cent studies; more details can be referred to in [87, 104].

1.3.4 Critical issue four: learning for uncertain and

incomplete data

1.3.4.1 Critical issue In the past, machine learning algo-

rithms were typically fed with relatively accurate data from

well-known and quite limited sources, so the learning re-

sults tend to be unerring, too; thus, veracity has never

been a serious issue for concern. However, with the sheer

size of data available today, the precision and trust of the

source data quickly become an issue, due to the data

sources are often of many different origins and data qual-

ity is not all verifiable. Therefore, we include veracity as

the fourth critical issue for learning with big data to

emphasize the importance of addressing and managing

the uncertainty and incompleteness on data quality.

1.3.4.2 Possible remedies Uncertain data are a special

type of data reality where data readings and collections

are no longer deterministic but are subject to some ran-

dom or probability distributions. In many applications,

data uncertainty is common. For example, in wireless

networks, some spectrum data are inherently uncertain

resulted from ubiquitous noise, fading, and shadowing

and the technology barrier of the GPS sensor equipment

also limits the accuracy of the data to certain levels. For
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uncertain data, the major challenge is that the data fea-

ture or attribute is captured not by a single point value

but represented as sample distributions [11]. A simple

way to handle data uncertainty is to apply summary statis-

tics such as means and variances to abstract sample distri-

butions. Another approach is to utilize the complete

information carried by the probability distributions to con-

struct a decision tree, which is called distribution-based ap-

proach in [105]. In [105], the authors firstly discussed the

sources of data uncertainty and gave some examples and

then devised an algorithm for building decision trees from

uncertain data using the distribution-based approach. At

last, a theoretical foundation was established on which

pruning techniques were derived which can significantly

improve the computational efficiency of the distribution-

based algorithms for uncertain data.

The incomplete data problem, in which certain data

field values or features are missing, exists in a wide

range of domains with the emerging big data, which may

be caused by different realities, such as data device mal-

function. Learning from these imperfect data is a chal-

lenging task, due to most existing machine learning

algorithms that cannot be directly applied. Taking classi-

fier learning as an example, dealing with incomplete data

is an important issue, since data incompleteness not only

impacts interpretations of the data or the models created

from the data but may also affect the prediction accur-

acy of learned classifiers. To tackle the challenges associ-

ated with data incompleteness, Chen and Lin [13]

investigated to apply the advanced deep learning

methods to handle noisy data and tolerate some messi-

ness. Furthermore, integrating the matrix completion

technologies into machine learning to solve the problem

of incomplete data is also a very promising direction

[106]. In the following, we provide a case of using matrix

completion for incomplete data processing. In this case,

it is assumed that a noise matrix Ỹ is defined by

PΩ
~Y

� �

¼ PΩ AþZð Þ ð4Þ

where A is a sampled set of entries we would like to

know as precisely as possible, Z is a noise term which

may be stochastic or deterministic, Ω is the set of indi-

ces of the acquired entries, and PΩ is the orthogonal

projection onto the linear subspace of matrices sup-

ported on Ω [8]. To recover the unknown matrix, the

problem can be formulated as [8]:

min Mf g Ak k�
s:t: PΩ A−Yð Þk kF≤ε

ð5Þ

To efficiently solve the problem (5), existing algo-

rithms have been explained in [90] in detail. Further-

more, in terms of the abnormal data, the authors in

[107] also investigated to use the statistical learning

theory of sparse matrix with data cleansing for the ro-

bust spectrum sensing.

1.3.5 Critical issue five: learning for data with low value

density and meaning diversity

1.3.5.1 Critical issue In fact, by exploiting a variety of

learning methods to analyze big datasets, the final pur-

pose is to extract valuable information from massive

amounts of data in the form of deep insight or commer-

cial benefits. Therefore, value is also characterized as a

salient feature of big data [2, 6]. However, to derive sig-

nificant value from high volumes of data with a low

value density is not straightforward. For example, the

police often need to look through some surveillance vid-

eos to handle criminal cases. Unfortunately, a few valu-

able data frames are frequently hidden in a large amount

of video sources.

1.3.5.2 Possible remedies To handle this challenge,

knowledge discovery in databases (KDD) and data

mining technologies [9, 11, 108] come into play, for

these technologies provide possible solutions to find

out the required information hidden in the massive

data. In [9], the authors reviewed studies on applying

data mining and KDD technologies to the IoT.

Particularly, utilizing clustering, classification, and fre-

quent patterns technologies to mine value from

massive data in IoT, from the perspective of infra-

structures and from the perspective of services were

discussed in detail. In [11], Wu et al. characterized

the features of the big data revolution and proposed

big data processing methods with machine learning

and data mining algorithms.

Another challenging problem associated with the value

of big data is the diversity of data meaning, i.e., the eco-

nomic value of different data varies significantly, even

the same data have different value if considering from

different perspectives or contexts. Therefore, some new

cognition-assisted learning technologies should be devel-

oped to make current learning systems more flexible

and intelligent. The most dramatic example of such de-

vices is IBM’s “Watson” [109], constructed with several

subsystems that use different machine learning strategies

with the great power of cognitive technologies to analyze

the questions and arrive at the most likely answer. With

the scientists’ ingenuity, it is possible for this system to

excel at a game which requires both encyclopedic

knowledge and lightning-quick recall. Some humanlike

characteristics—learning, adapting, interacting, and un-

derstanding enable Watson to be smarter and gain more

computing power to deal with complexity and big data.

It is expected that the era of cognitive computing will

come [109].
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1.3.6 Discussions

In summary, the five aspects mentioned above reflect the

primary characteristics of big data, which refers to volume,

variety, velocity, veracity, and value [2, 4–6, 13]. The five

salient features bring different challenges for machine

learning techniques, respectively. To surmount these ob-

stacles, machine learning in the context of big data is sig-

nificantly different from the traditional learning methods,

as discussed above, some scalable, multidomain, parallel,

flexible, and intelligent learning methods are preferred.

What is more, several enabling technologies are needed to

be integrated into the learning progress to improve the ef-

fectiveness of learning. A hierarchical framework is de-

scribed in Fig. 3 to summarize the efficient machine

learning for big data processing.

In fact, for big data processing, most machine learning

techniques are not universal, that is to say, we often need

to use specific learning methods according to different

data. For example, in terms of high-dimensional datasets,

representation learning seems to be a promising solution,

which can learn the meaningful representations of the

data that make it easier to extract useful information for

achieving impressive performance on many dimensional-

ity reduction tasks. While for large volumes of data, dis-

tributed and parallel learning methods have stronger

advantages. If the data needed to be processed are drawn

from different feature spaces and have different distribu-

tions, transfer learning will be a good choice which can in-

telligently apply knowledge learned previously to solve

new problems faster. Frequently, in the context of big

data, we have to face such a situation: data may be abun-

dant but labels are scarce or expensive to obtain. To tackle

this issue, active learning can achieve high accuracy using

as few labeled instances as possible. In addition, nonlinear

data processing is also another thorny problem, at this

moment, kernel-based learning will be here with its

powerful computational capability. Of course, if we want

to deal with some data in a timely or (nearly) real-time

manner, online learning and extreme learning machine

can give us more help.

Therefore, such a context is needed to be clear, in

other words, what are the data tasks, data analysis or
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Fig. 3 Hierarchical framework of efficient machine learning for big data processing
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decision making?; what are the data types, video data or

text data?; what are the data characteristics, high volume

or high velocity?; and so on. In terms of different data

tasks, types, and characteristics, the required learning

techniques are different, even a machine learning

methods base is needed for big data processing. The

learning systems can fast refer to the algorithm base to

handle data. What is more, in order to improve the ef-

fectiveness of data processing, the combination of

machine learning with some other techniques have been

proposed in recent years. For example, in [80], the au-

thors presented a cloud-assisted learning framework to

enhance store and computing abilities. A general means

of programming machine learning algorithms on multi-

core with the advantage of MapReduce were investigated

to enable the parallel and distributed processing to be

possible [77]. IBM’s brain-like computer, Watson, ap-

plied cognition techniques to machine learning field to

make learning systems more intelligent [109]. Such en-

abling technologies have brought great benefits for ma-

chine learning, especially for large data processing,

which are more worthy of study.

1.4 Connection of machine learning with SP techniques

for big data

There is no doubt that SP is of uttermost relevance to

timely big data applications such as real-time medical

imaging, sentiment analysis from online social media,

smart cities, and so on [110]. The interest in big-data-

related research from the SP community is evident from

the increasing number of papers submitted on this topic

to SP-oriented journals, workshops, and conferences. In

this section, we mainly discuss the close connections of

machine learning with SP techniques for big data pro-

cessing. Specifically, in Section 1.4.1, we analyze the

existing studies on SP for big data from four different

perspectives. Several representative literatures are pre-

sented. In Section 1.4.2, we provide a review of the latest

research progress which is based on these typical works.

1.4.1 An overview of representative work

In this section, we analyze the relationships between ma-

chine learning and SP techniques for big data processing

from four perspectives: (1) statistical learning for big

data analysis, (2) convex optimization for big data ana-

lytics, (3) stochastic approximation for big data analytics,

and (4) outlying sequence detection for big data. The

diagram is summarized in Fig. 4. Several typical research

papers are presented, which delineate the theoretical and

algorithmic underpinnings together with the relevance

of SP tools to the big data and also show the challenges

and opportunities for SP research on large-scale data

analytics.

� Statistical learning for big data analysis: There is no

doubt this is an era of data deluge where learning

from these large volumes of data by central

processors and storage units seems infeasible.

Therefore, the SP and statistical learning tools have to

be re-examined. It is preferable to perform learning in

real time for the advent of streaming data sources,

typically without a chance to revisit past entries. In

[14], the authors mainly focused on the modeling and

optimization for big data analysis by using statistical

learning tools. We can conclude from [14] that, from

the SP and learning perspective, big data themes in

terms of tasks, challenges, models, and optimization

can be revealed as follows. SP-relevant big data tasks

mainly comprise massive scale, outliers and missing

values, real-time constraints, and cloud storage. There

are great big data challenges we have to face, such as

prediction and forecasting, cleansing and imputation,

dimensionality reduction, regression, classification,

and clustering. In terms of these tasks and challenges,

outstanding models and optimization with the SP and

learning techniques for big data include parallel and

decentralized, time or data adaptive, robust, succinct,

and sparse technologies.

� Convex optimization for big data analytics: While

the importance of convex formulations and

optimization has increased dramatically in the last

decade and these formulations have been employed

in a wide variety of signal processing applications,

due to the data size of optimization problems that

are too large to process locally in the context of big

data, thus convex optimization needs reinvent itself.

Cevher et al. [111] reviewed recent advances in

convex optimization algorithms tailored for big data,

having as ultimate goal to markedly reduce the

computational, storage, and communication

bottlenecks. For example, given a big data

optimization problem formulated as

F� ¼ min
x

F xð Þ ¼ f xð Þ þ g xð Þ; x ∈ℝpf g ð6Þ

where f and g are convex functions. To obtain an

optimal solution x* of (6) and the required

assumptions on f and g, in this article, the authors

presented three efficient big data approximation

techniques, including first-order methods,

randomization and parallel and distributed computa-

tion. They mainly referred to the scalable, random-

ized, and parallel algorithms for big data analytics. In

addition, for the optimization problem in (6),

ADMM can provide a simple distributed algorithm

to solve its composite form, by leveraging powerful

augmented Lagrangian and dual decomposition

techniques. Although there are two caveats for
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ADMM, i.e., one is that closed-form solutions do not

always exist and the other is that no convergence

guarantees for more than two optimization objective

terms, there are several recent solutions to address

the two drawbacks, such as proximal gradient

methods and parallel computing [111]. Specifically,

from machine learning perspective, those bright

techniques like scalable, parallel, and distributed

mechanisms are also necessitated, and some

applications of employing the recent convex

optimization algorithms in learning methods such as

support vector machines and graph learning have

been appeared in recent years.

� Stochastic approximation for big data analytics:

Although many of online learning approaches were

developed within the machine-learning discipline,

they had strong connections with workhorse SP

techniques. Reference [110] is a lecture note which

presented recent advances in online learning for big

data analytics, where the authors highlighted the

relations and differences between online learning

methods and some prominent statistical SP tools such

as stochastic approximation (SA) and stochastic

gradient (SG) algorithms. Through perusing [110], we

can know that, on the one hand, the seminal works on

SA, such as by Robbins–Monro and Widrow

algorithms, and the workhorse behind several classical

SP tools, such as LMS and RLS algorithms, carried rich

potential in modern learning tasks for big data

analytics. On the other hand, it was also demonstrated

that online learning schemes together with random

sampling or data sketching methods were expected to

play instrumental roles in solving large-scale

optimization tasks. In summary, the recent advances in

online learning methods and several SP techniques

mentioned in this lecture note have the unique and

complementary strengths with each other.

� Outlying sequence detection for big data: As the data

scale grows, so does the chance to involve outlying

observations, which in turn motivates the demand

for outlier-resilient learning algorithms scaling to

large-scale application settings. In this context,

data-driven outlying sequence detection algorithms

have been proposed by some researchers. In [112],

the authors investigated the robust sequential

detection schemes for big data. In contrast to the

aforementioned three articles [14, 110, 111] that

mostly focus on big data analysis, this article paid

more attention to the decision mechanisms. Outlier

detection has immediate application in a broad

range of contexts, particularly, for machine learning

techniques, effective decision on the observations with

categorizing them as normal or outlying are important

for the improvement of learning performance. As

mentioned in [112], the class of supervised outlier

detection had been studied extensively under neural

networks, naïve Bayes, and support vector machines.

1.4.2 The latest research progress

These representative literatures discussed in Section 1.4.1

provide us a lot of heuristic analysis on both machine

learning and SP techniques for big data. Based on the

ideas proposed in these works, many new studies are in-

creasing continuously. In this section, we provide a re-

view of the latest research progress which is based on

these typical works mentioned above.
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Fig. 4 Connection of machine learning with SP techniques for big data from different perspectives
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� The latest progress based on [14]: Based on the

statistical learning tools for big data analysis

proposed by Slavakis et al. in [14], a lot of new study

work has emerged. For example, in [113], two

distributed learning algorithms for training random

vector functional-link (RVFL) networks through

interconnected nodes were presented, where

training data were distributed under a decentralized

information structure. To tackle the huge-scale convex

and nonconvex big data optimization problems, a novel

parallel, hybrid random/deterministic decomposition

scheme with the power of dictionary learning was

investigated in [114]. In [87], the authors developed a

low-complexity, real-time online algorithm for

decomposing low-rank tensors with missing entries to

deal with the incomplete streaming data, and the

performance of the proposed subspace learning was

also validated. All these new work presents the

application of machine learning and SP technologies in

processing big data well.

� The latest progress based on [111]: A broad class of

machine learning and SP problems can be formally

stated as optimization problem. Based on the idea of

convex optimization for big data analytics in [111], a

randomized primal-dual algorithm was proposed in

[115] for composite optimization, which could be

used in the framework of large-scale machine

learning applications. In addition, a consensus-based

decentralized algorithm for a class of nonconvex

optimization problems was investigated in [116],

with the application to dictionary learning.

� The latest progress based on [110]: Several classical

SP tools such as the stochastic approximation

methods, have carried rich potential for solving

large-scale learning tasks under low computational

expense. The SP and online learning techniques for

big data analytics described in [110] provides a good

research direction for future work. Based on this, in

[117], the authors developed online algorithms for

large-scale regressions with application to streaming

big data. In addition, Slavakis and Giannakis further

used accelerated stochastic approximation method

with online and modular learning algorithms to deal

with a large class of nonconvex data models [118].

� The latest progress based on [112]: The outlying

sequence detection approach proposed in [112]

provides a desirable solution to some big data

application problems. In [119], the authors mainly

investigated the big data analytics over the

communication system with discussions about

statistical analysis and machine learning techniques.

The authors pointed out that one of the critically

associated challenges ahead was how to detect

outliers in the context of big data. It so happened

that the theoretic methodology described in [112]

gave the answers.

To sum up, it can be seen from the above presented

articles in Section 1.4.1 and Section 1.4.2 that the con-

nection of machine learning with modern SP techniques

is very strong. SP techniques are originally developed to

analyze and handle discrete and continuous signals

through using a set of methods from electrical engineer-

ing and applied mathematics. In contrast, machine

learning research mainly focuses on the design and de-

velopment of algorithms which allow computers to

evolve behavior based on empirical data, whose major

concern is to recognize complex patterns and make in-

telligent decisions based on data by automatically learn-

ing. Both the machine learning and SP techniques have

the unique and complementary strengths for big data

processing. Furthermore, combining SP and machine

learning techniques to explore the emerging field of big

data are expected to have a bright future. Quoting a sen-

tence from [110], “Consequently, ample opportunities

arise for the SP community to contribute in this growing

and inherently cross-disciplinary field, spanning multiple

areas across science and engineering”.

1.5 Research trends and open issues

While significant progress has been made in the last dec-

ade toward achieving the ultimate goal of making sense of

big data by machine learning techniques, the consensus is

that we are still not quite there. The efficient preprocess-

ing mechanisms to make the learning system capable of

dealing with big data and effective learning technologies

to find out the rules to describe the data are still of urgent

need. Therefore, some of the open issues and possible re-

search trends are given in Fig. 5.

1. Data meaning perspective: Due to the fact that,

nowadays, most data are dispersed to different

regions, systems, or applications, the “meaning” of

the collected data from various sources may not be

exactly the same, which may significantly impact the

quality of the machine learning results. Although the

previous mentioned techniques such as transfer

learning with the power of knowledge transfer and

the cognition-assisted learning methods provide

some possible solutions to this problem, it is obvious

that they are absolutely not catholicons owing to the

limitations of these techniques for achieving

context-aware. Ontology, semantic web, and other

related technologies seem to be preferred on this

issue. Based on ontology modeling and semantic

derivation, some valuable patterns or rules can be

discovered as knowledge as well, which is a necessity

for learning systems to be, or appear to be intelligent.
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But the problem that arises now is, although the

ontology and semantic web technologies can

benefit the big data analysis, these two technologies are

not mature enough, thus how to employ them in

machine learning methods to process big data will be a

meaningful research.

2. Pattern training perspective: In general, for most

machine learning techniques, the more the training

patterns are, the higher the accuracy rate of learning

results is. However, a dilemma we have to face is

that, on the one hand, the labeled patterns play a

pivotal role for the learning algorithms; but on the

other hand, labeling patterns is often expensive in

terms of the computation time or cost, particularly for

the large-scale streaming data, which is intractable.

How many patterns are needed to train the classifier

depends to a large extent on the desire to achieve a

balance between cost and accuracy. Therefore, the

so-called overfitting is another critical open issue.

3. Technique integration perspective: Once mentioning

big data processing, we always like to put data mining,

KDD, SP, cloud computing, and machine learning

techniques together, partially because these issues and

their products may play principal roles for extracting

valuable information from massive data, and partially

because they have strong ties with each other. It is

important to note that each approach has its own

merits and faults. That is to say, to get more values

out of the big data, a composite model is more

needed. As a result, how to integrate several

related techniques with machine learning will also

become a further research trend.

4. Privacy and security perspective: The concern of

data privacy has become extremely serious with

using data mining and machine learning

technologies to analyze personal information in

order to produce relevant or accurate results. For

example, in order to increase the volume and

revenue of sales, some companies today try to

collect as many personal data of consumers as

possible from various kinds of sources or devices

and then use data mining and machine learning

methods to find highly interconnected

information which is conducive to make

marketing tactics. However, if all pieces of the

information about a person were dug out through

the mining and learning technologies and put

together, any privacy about that individual

instantly would disappear, which will make most

people uncomfortable, and even frightened. Thus,

an efficient and effective method needs to preserve

the performance of mining and learning while

protecting the personal information. Hence, how to

make use of data mining and machine learning

techniques for big data processing with guaranties of

privacy and security is very worthy of study.

5. Realization and application perspective: The

ultimate goal of groping for various learning

methods to handle big data is to provide better

environment for people; thus, more attention should

be focused on building the bridge from theory to

practice. For instance, how and where might the

theoretical studies in big data machine learning

research actually be applied?

Research

trends and

open issues

Data Meaning

Perspective

How to avoid the overfitting during the process of

training patterns?

Pattern Training

Perspective

Technique Integration

Perspective

Privacy and Security

Perspective

Realization and Application

Perspective

How to integrate other related techniques with machine

learning for big data processing?

How to make machine learning more intelligent to

achieve context-aware?

How to make use of machine learning techniques for big

data processing with guaranties of privacy and security?

How and where might the theoretical studies in big data

machine learning research actually be applied?

Fig. 5 Research trends and open issues
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2 Conclusions

Big data are now rapidly expanding in all science and

engineering domains. Learning from these massive data

is expected to bring significant opportunities and trans-

formative potential for various sectors. However, most

traditional machine learning techniques are not inher-

ently efficient or scalable enough to handle the data with

the characteristics of large volume, different types, high

speed, uncertainty and incompleteness, and low value

density. In response, machine learning needs to reinvent

itself for big data processing. This paper began with a

brief review of conventional machine learning algo-

rithms, followed by several current advanced learning

methods. Then, a discussion about the challenges of

learning with big data and the corresponding possible

solutions in recent researches was given. In addition, the

connection of machine learning with modern signal pro-

cessing technologies was analyzed through studying sev-

eral latest representative research papers. To stimulate

more interests for the audience of the paper, at last,

open issues and research trends were presented.
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