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ABSTRACT Widespread proliferation of wireless coverage has enabled culmination of number of ad-

vanced location-based services (LBS). Continuous tracking of accurate physical location is the foundation of

these services, which is a challenging task especially indoors. Multitude of techniques and algorithms have

been proposed for indoor positioning systems (IPS’s). However, accuracy, reliability, scalability and, adapt-

ability to the environment still remain as challenges for widespread deployment. Especially, unpredictable

radio propagation characteristics in vastly varying indoor environments plus access technology limitations

contribute to these challenges. Machine learning (ML) approaches have been widely attempted recently to

overcome these challenges with reasonable success. In this paper, we aim to provide a comprehensive survey

of ML enabled localization techniques using most common wireless technologies. First, we provide a brief

background on indoor localization techniques. Afterwards, we discuss various ML techniques (supervised

and unsupervised) that could alleviate different challenges in indoor localization including Non-line-of-

sight (NLOS) issue, device heterogeneity and environmental variations with reasonable complexity. The

trade-offs among multitude of issues are discussed using numerous published results. We also discuss how

the ML algorithms can be effectively used for fusing different technologies and algorithms to achieve a

comprehensive IPS. In essence, this survey will serve as a reference material to acquire a detailed knowledge

on recent development of machine learning for accurate indoor positioning.

INDEX TERMS Indoor positioning system (IPS), location-based services (LBS), machine learning (ML),

non-line-of-sight (NLOS), wireless positioning, indoor tracking.

I. INTRODUCTION

Accurate real time positioning is the key to enable location-

based services (LBS). Although the global positioning sys-

tem (GPS) is widely used for localization in outdoors, the

GPS usability is not satisfactory in the confined indoor envi-

ronments. Unlike outdoor, indoor environments are very com-

plex with varying shapes, sizes with the presence/absence

of stationary and moving objects (e.g. furniture and people).

These factors significantly alter both line-of sight (LOS) and

non-line of sight (NLOS) radio signal propagation causing

unpredictable attenuation, scattering, shadowing and blind

spots that significantly degrade the accuracy of indoor posi-

tioning.

However, due to the high demand for LBS, significant atten-

tion has been made on the development of indoor positioning

systems (IPS) recently. Typical ranging techniques based on

received-signal-strength-indicator (RSSI) [1], time-of-arrival

(ToA) [2], time-difference-of-arrival (TDoA) [3], angle-of-

arrival (AoA) [4], and channel-state-information (CSI) [5]

have been proposed using various access technologies such

as Wi-Fi [6], Bluetooth [7], ultra wide band (UWB) [8],

and radio-frequency identification tags (RFID) [9] for indoor

positioning. Most ranging techniques require at least three

known anchor nodes to calculate the location of the unknown

target. Few range free techniques such as Centroid [10]

method and DV hop [11] technique are also studied in the

literature.

All these approaches suffer from multitude of challenges

including poor accuracy, high computational complexity, and

unreliability while, most positioning devices lack strong

processing power. In addition, the ability to maintain big

databases (for large scale IPS) while ensuring security and

privacy, and supporting device heterogeneity at a reasonable

cost are some other challenges in indoor localization [12].

In recent years, artificial intelligence (AI) and machine

learning (ML) algorithms find good success in indoor local-
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TABLE 1. Selected Acronyms and their explanations.

Acronym Explanation

AI Artificial Intelligence
ANN Artificial Neural Network
AoA Angle of Arrival
AP Access Point
BLE Bluetooth Low Energy
BM Boltzmann Machine
CIR Channel Impulse Response
CNN Convolutional Neural Networks
CSI Channel State Information
CTF Channel Transfer Function
DBL Device Based Localization
DBN Deep Belief Network
DL Deep Learning
DNN Deep Neural Network
EKF Extended Kalman Filtering
ELM Extreme Learning Machine
FCF Frequency Coherence Function
KNN K-Nearest Neighbour
KPCA Kernel Principal Components Analysis
LDA Linear Determinant Analysis
LOS Line of Sight
LS Least Squares
LSTM Long Short Term Memory
ML Machine Learning
MLE Maximum Likelihood Estimation
MLP Multi-Layer Perceptron
NLOS Non-Line of Sight
PDR Pedestrian Dead Reckoning
PCA Principal Component Analysis
RBM Restricted Boltzmann Machine
RF Radio Frequency
RFID Radio Frequency Identification Device
RL Reinforcement Learning
RNN Recurrent Neural Network
RSSI Received Signal Strength Indicator
SVM Support Vector Machine
SVR Support Vector Regressor
TDoA Time Difference of Arrival
ToA Time of Arrival
UWB Ultra Wide Band

ization [13]–[16]. The main advantage of AI/ML approaches

is their ability to make decisions effectively using observed

data without accurate mathematical formulation.

For example, the authors in [17]–[20] have applied super-

vised and unsupervised ML techniques for NLOS identifi-

cation and mitigation while deep learning (DL) technique

is applied for NLOS mitigation in [14]. A DL Recurrent

neural network (RNN) has been used to cope with RSSI

signal fluctuation by exploring its time domain correlation

in [13]. Moreover, DL techniques have been used to extract

the hidden features of the RSSI measurement to minimize the

collection of fingerprint data in [21] and explore the unknown

environment during robot navigation in [22]. In addition,

supervised and unsupervised learning-based dimension re-

duction techniques have been used to reduce the complexity

and storage space of fingerprint data in [23] and [24].

ML has also proven as an effective way to fuse multi-

dimensional data collected from multiple positioning sensors,

technologies and methods. For example, both supervised

and unsupervised learning have been applied for fusion

weight generation in [25]–[27]. However, unsupervised ML

fusion technique is superior since it calculates the weights in

real-time without offline training [28]. Furthermore, transfer

learning has been applied in fingerprint-based localization to

enhance system scalability without excessive site surveys and

without sacrificing accuracy when there is a lack of labeled

data [29].

While the literature contains a good number of articles on

the application of ML for indoor localization, to the best of

our knowledge no comprehensive survey has been conducted

on this topic. Therefore, in this paper, we discuss existing

techniques for indoor localization and establish a precedent

for the need of ML techniques in the said domain. Moreover,

our paper follows intuitive flow by pointing out the challenges

and issues in indoor localization, listing the existing solutions,

and afterwards identifying the gaps that lead us to ML- and

DL-based solutions in indoor environments.

The rest of the paper is organized as follows: A basic

discussion on the nuts and bolts of indoor localization is

presented in Section II. A brief overview of ML techniques

is presented in Section III followed by a deeper analysis

of existing ML-based solutions for IPS in Section IV. Few

potential applications are highlighted in Section V and finally

in Section VI, we discuss the limitations in ML approached

and future challenges.

II. REVIEW OF INDOOR LOCALIZATION BASICS

An Indoor Positioning System (IPS) is a GPS free system that

estimates the position of the objects or people in a confined

environment (e.g. buildings, tunnels) in a continuous manner.

Typically, it has two phases: 1) the distance measurement

phase and 2) the position estimation phase [30]. In the distance

measurement phase, an IPS estimates the distance between the

target and anchor nodes whose positions are known apriori

using a suitable ranging technique. Then, the IPS uses these

distance observations to estimate the location of the target by

using different localization/positioning methods.

A. RANGING AND ENHANCED RANGING TECHNIQUES

The most common used localization techniques are given

below:

Received-Signal-Strength-Indicator (RSSI): RSSI in

general is the easiest parameter to measure, however it yields

the most inaccurate distance measurement, especially in

indoors due to fading, shadowing, refraction, scattering, and

reflections. Therefore, the use of different filters, like the

Extended Kalman Filter (EKF) [31] and other ML techniques

have been used to mitigate the RSSI fluctuations.

Time-of-Arrival (ToA): ToA technique uses the signal

propagation time to calculate the range (distance between

the target and the anchor node). ToA is in general much more

accurate than the RSSI approach.

However, processing time and synchronization time affect

the distance measurement in ToA [32]. There are few tech-

niques, such as the symmetric double sided two-way ToA

ranging [33] are proposed to eliminate the time synchroniza-

tion error. This approach averages out the error by considering
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FIGURE 1. Schematic diagram of positioning using RSSI measurements.

many back and forth rounds signal propagation between the

nodes.

Time-Difference-of-Arrival (TDoA): This method uti-

lizes the difference in signal propagation times between the

target node and the number of anchor nodes to determine the

position of the target node [34]. In this technique, at least three

anchor nodes are needed to calculate the location of the target

at the intersection of the hyperboloids.

TDoA can address the issue of synchronization error

to some extent as it accounts for the synchronization of

only the transmitters [35]. However, the NLOS propaga-

tion of the signal significantly degrades the performance

of the ToA/TDoA-based systems. Hence, in the literature

a number of NLOS identification and mitigation methods

were proposed to improve the accuracy of ToA/TDoA-based

localization [36].

Angle-of-Arrival (AoA): AoA technique uses the angle

that signal makes with an antenna array for position estima-

tion [37]. This is an enhanced ranging technique. Since both

the angle and distance measurement are used, ideally two

anchor nodes are enough for the position estimation [38].

However, one drawback of this method is the requirement

of antenna arrays that makes it complex and expensive [39].

This method may also employ time difference of arrival of the

signal at individual antenna elements but, even more complex

hardware and accurate calibration are required for this.

Channel-State-Information (CSI): This is also an en-

hanced ranging technique. CSI can be used to get an accu-

rate estimate of the received signal over the entire signal

bandwidth. This is much better than RSSI where, only a

single amplitude value for the received signal is obtained. CSI

generally needs multiple antennas and the channel frequency

response seen by each antenna has to be estimated. CSI

can provide both magnitude and the phase of the channel

response and it is suitable for both range-based and range free

localization schemes [5].

The advantages and disadvantages of different distance

measurement techniques are summarized in Table 2.

       (a1,b1)

  (a3,b3)
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     (a2,b2)

FIGURE 2. Schematic diagram of Trilateration-based positioning.

B. LOCALIZATION METHODS

The localization methods which are commonly used for indoor

localization are listed below:

Multilateration and Trilateration: It is a technique for

estimating the position of the unknown node with the help

of the three or more known nodes and the corresponding

associated distances [40]. Trilateration is a special case of

multilateration where only three known nodes are used. In

a two-dimensional space, the position of the target node

is computed by the intersection of three imaginary circles

as shown in Figure 2. However, in the practical indoor

environment, these circles do not meet at a single point due to

NLOS effect that causes huge errors in the positioning. Hence,

there are two major issues in the trilateration algorithms:

1) Target node is not at the common intersecting point of

the circles due to inaccuracy in ranging techniques.

2) The given known anchor nodes may be co-linear.

Different techniques and algorithms have been presented

to address these issues. In [41], a hybrid technique of finger-

printing and trilateration has been used to overcome the first

issue. In [42], authors proposed a least-square method to solve

both the issues stated above. In the same spirit, authors in [43]

propose a weighted least square method to solve the non ideal

case of trilateration.

Triangulation: It can be used for positioning accuracy

when the angle of arrival is available. It is less complex with

moderate precision [44] requiring at least two anchor nodes.

Location accuracy in this technique heavily depends on the

precision of the AoA estimation. Increasing the number of

anchor nodes can enhance the localization performance.

Fingerprinting: It is a widely used indoor positioning

method using various wireless access technology such as Wi-

Fi, BLE, and ZigBee [45]–[47]. Fingerprint-based localization

method involves two phases:

1) Offline phase training.
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TABLE 2. Advantages and disadvantages of different distance measurement techniques.

Technique Advantages Disadvantages

RSSI A simple technique for the distance measurement as
typically there is no need for extra hardware. Cost
effective and less complex.

Provides low precision due to NLOS propagation of
signal. Strong optimization and positioning techniques
are required for accurate results.

CSI This has high granularity over RSSI due to both
amplitude and phase information of channel frequency.

Complexity is higher than that in RSSI-based and most
other IPS techniques.

ToA ToA provides the highest precision of the measure-
ment among most range-based methods with strict
clock synchronization between the transmitter and the
receiver.

Expensive due to extra devices and modules needed to
lower synchronization error.

TDoA TDoA can provide better precision than ToA (espe-
cially when ToA has notable synchronization error
between the clocks).

It is expensive due to extra devices and modules added
to lower synchronization error.

AoA AoA provides more accuracy for the target node loca-
tion estimation for short distance of signal propagation.

Requires antenna arrays and extra hardware. It is often
hard to implement AoA due to multi path effects.

2) Online phase testing.

During the training phase, RSSI or CSI data is collected

at access points (APs) for different known indoor positions

called reference points (RPs) and a radio map is constructed

with the measured data for each recorded position. During

the online phase, the real-time position of the target node is

estimated by comparing measured data at APs for the target

node and the radio map created in the training phase.

This method provides high accuracy if more offline data

is collected accurately to construct the radio map. However,

constructing the radio map for large area deployment requires

tremendous effort (e.g., manpower, time and cost). Moreover,

for dynamic networks, when the positions of the nodes, even

a single node, are changed or deleted unexpectedly, the offline

database should be recreated.

ML algorithms are often used to enhance the accuracy of fin-

gerprinting and help recreating radio maps. K-Nearest Neigh-

bors (K-NN) is the simplest algorithm used for fingerprint-

based localization methods. Here K represents the number

of the nearest neighbors. In this algorithm a distance metric

is calculated that computes the distances between the mea-

surements in the training phase and the measurements of the

target at different APs. The most commonly used distance

metric is Euclidean distance. In this algorithm K nearest

RPs of the target are selected from the radio map which

have the lowest distances. Afterwards, the coordinates of

these RPs are averaged to estimate the location of the target.

However, other distance metrics such as Manhattan distance,

Mahalanobis, and Minkowski distances are also used with

K-NN algorithm [48].

The authors in [48], [49] have compared Mahalanobis,

Manhattan, and Euclidean distances in fingerprint-based

localization and found that Manhattan also known as City

Block distance provides more accurate results than others.

Different improvements to the K-NN algorithms have been

found in the literature. For example, authors in [50] and [51]

have used enhanced weighted K-NN algorithm and clustering-

based K-NN algorithms, respectively for higher accuracy.

Centroid: In this method, a geometric relation is used

to estimate the location of the unknown node rather than

using the distance or angle measurement. The positions of the

anchor nodes are determined when a stable communication

link is established between each anchor node and the unknown

target node. As the position of the anchor nodes connected to

the target node form a definite geometric shape, the centroid

of that geometric shape is considered as the location of the

unknown nodes. Different algorithms have been employed

in the literature that utilized the centroid method. A BLE

beacon RSSI-based indoor positioning system using Weighted

Centroid Localization (WCL) approach has been proposed

in [52].

DV Hop: This method involves estimating the distance-

vector in a multi-hop environment based on the hop count.

The coordinates of the ith node and the minimum hop count

value from the anchor node to the ith node are maintained in

an information table. The anchor node broadcasts the location

information to the neighbor nodes which then rebroadcast

the information to others and so on. The important task for

this method is to find the hop size for a particular hop. After

getting the average hop size h, the distance of the node that

is m hops away from the anchor node is simply calculated as

m× h. Based on the measured distance, target nodes locate

themselves using a position estimation algorithm.

A Voronoi diagram is typically used to scale the DV hop

algorithm so that the scope of the flooding in the DV hop

localization system is limited [52]. Additional anchor nodes

are created by promoting suitable localization nodes [11].

The advantages and disadvantages of different localization

methods are presented in Table 3

C. WIRELESS TECHNOLOGIES USED FOR INDOOR

LOCALIZATION

In this subsection, radio frequency wireless technologies that

are most commonly used in indoor localization are briefly

presented.

Wi-Fi: Wi-Fi is most widely used for IPS because of the

ubiquitous availability of Wi-Fi systems [53]. It can provide

fairly large coverage range however, the power consumption

of WLAN systems are comparatively higher [54]. Typically,

the Wi-Fi based localization methods are trilateration or fin-

gerprint based. AoA, ToA and RSSI-based ranging techniques

are used for trilateration-based methods [55]. RSSI and CSI
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TABLE 3. Advantages and disadvantages of different localization methods.

Technique Advantages Disadvantages

Fingerprinting
and K-NN

Provides higher accuracy and it is fairly easy to
use as no hardware and other devices are needed.

It is time and cost inefficient due to off-line mea-
surement requirements. Also, not robust against
topography changes.

Trilateration Provides very higher accuracy when applied with
other optimization techniques with comparatively
less complex.

Higher location error in case of non-ideal case.
Demands additional positioning algorithms to be
applied.

Triangulation Provides high accuracy if the measured AoA has
good precision. Accuracy increases by increasing
the number of anchor nodes.

Location accuracy highly suffers from even a
small error in the angle calculations.

DV Hop Simple and gives better accuracy with more nodes
deployed.

Provides very low accuracy for less nodes and
used only to estimate some rough localization
measurement.

Centroid Does not need direct measurement values and
position can be estimated using geometric cal-
culations.

Additional algorithms are needed for better accu-
racy.

measurements are usually used to generate the fingerprint-

map. RSSI is more attractive because RSSI information can

be easily collected from a commodity access point (AP)

without extra hardware [56]. However, the fluctuation of

RSSI often leads to severe performance degradation. In the

literature, many machine-learning methods have been found

to mitigate the impact of RSSI fluctuations [47], [57], [58].

For pattern matching in online phase K-Nearest Neighbor

(K-NN), Artificial Neural Network (ANN) [59], Support

Vector Machine (SVM) [60] and K-means [61] and Random

Forest [62] algorithms have been used. Advance network

interface cards (NICs) are required to measure CSI that adds

extra cost. However, CSI-based fingerprinting can obtain

centimeter-level localization accuracy [63].

Radio Frequency Identification Device (RFID): RFID

is a very inexpensive technology [64]. In general, RFID-

based positioning technology is durable against environmental

factors and can be used almost in any application. The

fingerprinting position method based on RSSI measurement

can be used for RFID-based indoor positioning systems [65].

Ni et al. have proposed a scheme named LANDMARC [66]

where active RFIDs are used to track the user location.

Although LANDMARC is a comparatively long-range energy

efficient system, it suffers from tracking latency. Huang

et al. [67] have proposed an active RFID-based real-time

RFID indoor positioning system. They use Kalman filters for

drift removal and Heron bilateration for location estimation.

Siachalou et al. [68] have proposed a phased fingerprint-based

positioning system for tracking in warehouses and large retail

stores. Result shows that phase-based fingerprinting is more

immune to multipath fading and coupling effects with the

environment and outperforms the RSSI-based fingerprinting.

ZigBee: ZigBee is a low data rate wireless personal area

network [69], [70]. The authors in [46], have proposed a

fingerprint-based positioning system where the interference

data is first filtered out in the training phase and then the

weighted nearest algorithm and Bayesian algorithm were used

to calculate pedestrian’s location. The reported accuracy in

their work is 81 cm. Gharghan et al. [71] have proposed a

ZigBee-based positioning system where they have used log-

normal shadowing model (LNSM) to estimate the distance

and then applied adaptive neural fuzzy inference system

(ANFIS) to improve the distance estimation accuracy. Sim-

ulation results show that the distance estimation accuracy

has been improved by 84% and 99% for indoor and outdoor

velodromes, respectively. Fang et al. [72] have proposed a

ZigBee-based ensemble learning localization framework for

indoor environments that takes the advantages of various

algorithms, weights the estimation results, and combines them

to improve accuracy.

Ultra Wide Band (UWB): Since UWB is a short-range

radio technology that transmits short pulses (< 1 ns) over

a large bandwidth, it is less sensitive to multipath effects

and offers high precision. Localization systems based on

UWB technology achieve an accuracy of centimeters (<30

cm) that is considerably better than BLE or Wi-Fi. The main

challenge in UWB-based IPS is the NLOS effect. The NLOS

signal significantly reduces the accuracy of localization. ML

techniques have been gaining a lot of research attention in the

literature to distinguish and mitigate the NLOS effect [73].

The authors in [74], have proposed an UWB system for

positioning in harsh environment that does not require any

apriori knowledge. The root mean square (RMS) of absolute

range errors after NLOS mitigation was reduced from the

original 1.3 meter to 0.651 meter in their experiment in a real

office environment.

Bluetooth Low Energy (BLE): Bluetooth has been con-

sidered as a competitor to Wi-Fi due to the wide adaptability

of Bluetooth Low Energy (BLE) by most smart phones [45].

BLE can provide a coverage range of 70-100 meters with

high energy efficiency [75]. In recent years BLE-based RSSI

fingerprinting has gained a lot of attention in research commu-

nity. To improve the accuracy in indoor localization, Yadav et

al. [76] proposed Inertial Measurement Unit (IMU) sensors

and BLE beacon-based positioning system that employs a

probabilistic approach involving the fingerprint-technique and

Pedestrian Dead Reckoning (PDR) [77]. These two methods

are combined through a fuzzy-logic Kalman filter called

Trusted K nearest Bayesian estimation (TKBE) algorithm.

Result shows that the accuracy of their proposed algorithm
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TABLE 4. Comparison of distance measurement techniques and algorithms with appropriate wireless standards.

Measuring Localization Technology Complexity Cost Accuracy Scalability

Techniques Methods &

Algorithms

RSSI [79] Fingerprinting RFID High High High High

RSSI [80] Lateration Wi-Fi Low Medium Medium Medium

RSSI [81] Min-max Bluetooth Medium Medium Low Medium

RSSI [82] K-NN WLAN Medium Low Low High

RSSI [83] SVM, MLP WLAN Medium Low High High

ToA,ToF [84] Fingerprinting Wi-Fi High Medium Medium Medium

ToA,ToF [84] Trilateration UWB Medium Medium Low Medium

TDoA [85] Trilateration UWB Medium Medium High High

TDoA [86] Fingerprinting Bluetooth High High High Low

TDoA [87] Fingerprinting Wi-Fi High High High Medium

TDoA [51] Least Square UWB Medium Medium to
High

High High

TDoA+AoA [88] Least Square UWB Medium Medium to
High

Very High Medium to
High

AoA [87] Triangulation Wi-Fi High High Medium Medium

is less than one meter in most of the experimental cases. The

authors in [78], compared the performance of Wi-Fi, BLE

and ZigBee with simple RSSI-based trilateration method and

found the achieved accuracy of Wi-Fi, BLE and ZigBee are

48.6 cm, 84.4 cm and 91.1 cm respectively.

The localization perspective of different measuring tech-

niques along with different localization algorithms and tech-

nologies with respect to accuracy, cost, complexity, and

scalability is summarized in Table 4.

III. MACHINE LEARNING FOR IPS

Machine Learning algorithms can effectively solve many

of the limitations of the conventional techniques used for

localization in indoor environments. Conventional methods

often lack scalability; therefore, cannot perform well in the

large scale IPS such as airports, shopping malls and multi-

storey buildings with large training data sets.

Furthermore, traditional IPS methods are not very flexible

in adapting well to dynamically changing environments and

in the presence of multi-dimensional and heterogeneous data

applications.

A. MOTIVATION OF USING ML IN INDOOR

LOCALIZATION

Fluctuation in RSSI is the most challenging problem in IPS

and it effects the location accuracy adversely. The most

significant advantage of ML is its ability to learn useful

information from the input data with known or unknown

statistics. For instance, recurrent neural networks could ef-

fectively exploit the sequential correlation of time-varying

RSSI measurements and use the trajectory information to

mitigate RSSI fluctuations [13].

One of the limiting factors in usage and accuracy of

fingerprinting-based localization methods is the presence

of high dimensional data and related computational com-

plexity. Supervised and unsupervised dimension reduction

techniques such as principal components analysis (PCA) [24]

and Gaussian process manifold kernel dimension reduction

(GPMKDR) [23] techniques can be applied to transform the

high dimensional features to low dimension that significantly

reduce the storage space and computational complexity of

fingerprint-based localization.

Reinforcement learning is another promising ML technique,

that can achieve fast network control based on defined learned

policies. It is used in robot navigation that enables the robot

to create an efficient adaptive control system for itself which

learns from its own experience and behavior [89].

Scalability and adaptability of an IPS model to the changing

environments is a desirable feature specially in dynamically

changing indoor applications. In this spirit Transfer learning

plays an important role as it enables machine learning to learn

new things quickly in the new environment by comparing

with the things learnt beforehand. Transfer learning can be

applied in indoor positioning in the scenario when the amount

of data in the source domain is sufficient, whereas the amount

of data in the target domain is small. For instance, transfer

learning mechanism can be applied into fingerprint-based

localization to enhance system scalability without excessive

site surveys and without sacrificing accuracy when there is

lack of labeled data [29]. In addition to transfer learning,

DL techniques have shown great potentials in enhancing

localization, in complex environment scenarios. Specifically,

in situations when it is difficult to extract and model the

nonlinear correlated features [14].

Furthermore, various techniques such as, Bayesian esti-

mation based concept including Kalman filters [90], [91];

unscented Kalman filters [92]; non Bayesian methods such as

Least Squares (LS) [93]–[96]; subsample interpolation [97],

[98] and deconvolution approximations [99] are proposed for

improved localization by mitigating multipath propagation

error. Bayesian methods show better performance than other

conventional algorithms in positioning accuracy.

Amalgamation of sensor data is used for accurate location

estimation in the indoor environment, and which is strongly

dependent on efficient data fusion techniques. Conventional

methods for data fusion include LS [93]–[95] and MMSE [96]
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TABLE 5. Summary of different machine-learning techniques.

Algorithms Description

Supervised Learning: K-
Nearest Neighbor (K-NN)

K-NN is a simple and effective ML algorithm. It classifies data in feature space
according to distance [60]. This model predicts the value of new data points
by comparing the similarity of this value with the training data and finds out K
neighbors which have maximum closeness with the new data.

Supervised Learning:
Support Vector Machine
(SVM)

SVM is a low computational complexity enhanced supervised learning algorithm
that is used for classification as well as regression problem. SVM works on the
principle of margin calculation. It plots data items in n-dimensional space and
draw n − 1 hyper-plane to divide the training data-set into n classes in such a
way that the distance between the class and the hyper-plane is maximized.

Supervised Learning: Deci-
sion Tree

Decision tree forms a learning tree structure to solve the classification or
regression problems. This model split the training data into several labels based
on certain rules. After creating a tree structure it predicts the labels of the new
data by iterating the input data through a learning tree. The information flows
in Decision Tree is very transparent and users can easily relate their hypothesis
without any analytical background.

Supervised Learning: Ran-
dom Forest

Random forest algorithm is a collection of number of Decision Trees and each
tree in the forest gives a classification. The output is the mode of the classes
(classification) of the individual trees or mean prediction (regression) of the
individual trees. This algorithm overcomes the over-fitting problem that is one of
the drawbacks of Decision tree.

Supervised Learning: Ar-
tificial Neural Network
(ANN)

ANN is also known as back propagation learning algorithm. It is built based on
the model of human brain that contains a hundred of billions of neurons. ANN
networks consist of input and output layers, as well as a hidden layer consisting of
units that transform the input into something that the output layer can use. ANN
is used for indoor position for its robustness against noise and interference which
are one of the major factors affecting the accuracy of IPS.

Unsupervised Learning: K-
means

It is a most well-known clustering algorithm in unsupervised ML family [61]. It
partitions the data set according to their features into K number of predefined
non-overlapping distinct clusters or subgroups, where K is a positive integer.

Unsupervised Learning:
Principal Components
Analysis (PCA)

It is a multivariate technique for data compression that uses orthogonal transforma-
tion to identify principal components. Afterwards, the principal components are
arranged in descending order of the variance. It is used to reduce the dimension
of large data to facilitate the computation faster and easier [24] .

Reinforcement Learning
(RL)

RL is based on learning by trial and error. RL is inspired by the learning behavior
of human which uses previous experiences to react in new situations [106]. During
RL, decisions are made on the basis of the obtained reward or punishment. The
algorithm receives rewards by performing correctly and penalties for performing
incorrectly.

Deep Learning (DL) DL is a branch of ML techniques that is based on ANN concept. DL can be
supervised and unsupervised using labeled and unlabeled data. The key aspect of
DL is the iterative weight adjusting among each pair of neurons. DL models
are trained by using large sets of labeled data that learn features directly without
the need for manual feature extractions [107]. Combination of RL and DL is
known as Deep Reinforcement Learning (DRL) and inherits the benefits of both
RL and DL [108], .

Transfer Learning Transfer learning helps the system to learn subjects in new fields by comparing it
to what the system already knows. The advantage of the transfer learning is that
this model can be applied to similar problems and get good results by making
minor adjustments to a trained model. Transfer learning can be applied into
fingerprint-based localization to enhance system scalability without excessive site
survey [29].

are not very promising. It requires the knowledge of probabil-

ity distribution in localization measurements, which is often

unavailable in real applications. Also, LS method is not perfect

as the noise is amplified by squaring and also LS involves

extra variables in the equation. Maximum a Posterior (MAP)

estimator [100]- and MMSE [96]-based hybrid positioning

algorithm show some performance improvement but on

expense of computational complexity. ML algorithms are

particularly good in handling multi-dimensional and multi-

variety data under dynamic, uncertain environments. It can

be effectively trained to fuse results obtained from multiple

positioning sensors, technologies, and methods.

Bayesian methods integrate multi-modal location sensors

and exploit historical data through a recursive tracking pro-

cess [101]. Particularly, Kalman filters have been [102]–[104]

used to estimate the most likely current location based on prior

measurements, assuming Gaussian noise and linear motion

dynamics. However unsupervised ML fusion technique is

more realistic to use in practical scenario because it exploits

the online measurements to calculate the weights typically in

real-time and does not need to be trained during the offline

phase [105].

In the following sections, we will discuss different ML

techniques used in overcoming various indoor localization

VOLUME 4, 2016 7
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challenges, in detail. Also, summary of different ML tech-

niques are presented in Table 5.

B. SPECIFICS OF ML TECHNIQUES IN LOCALIZATION

In localization, classifier algorithms are mainly used to extract

core features of the signals. In fingerprint-method clustering

is performed based on these extracted features. Feature

extraction is also important for NLOS identification and mit-

igation. K-NN [109], Support-Vector Machine(SVM) [110],

Random Forest, Decision Tree, Artificial Neural Networks

(ANN) [111] are widely used classification algorithms.

Data mapping and over-fitting are the big challenges in

fingerprint-based localization systems. K-NN is widely used

for pattern matching in fingerprint-technique. However, K-

NN does not work well with large data sets and with high

dimensional data. In noisy irregular environments (such as

underground mines and subway stations) due to the presence

of time varying attenuation and noise factors, RSSI exhibits

high dimensionality [112]. In such cases, SVM is more

effective since it adopts kernels mechanism to find difference

between two points of the two separate classes and models

linear and nonlinear relations with better generalization

performance [17]. However, SVM-based methods are time-

consuming and require lots of memory when the number of

support vectors (SVs) become large. The Decision Tree based

indoor localization provides better performance in improving

localization accuracy than other classification like K-NN,

and Neural Network [113]. However, there is a possibility

of information missing when the Decision Tree deals with

continuous numerical data and performs categorization.

In practical fingerprinting scenarios, a fingerprint-map

generated in the offline phase contains a large data set. So

it is time consuming to compare the data acquired in the

online phase with each data point of the fingerprint map.

Therefore, the fingerprint-map is divided into a number of

clusters and the data of the target node is compared only with

the data point of the corresponding cluster center. Hence, the

cluster with highest matching is selected. Then, the acquired

data is compared only with the data within the matching

cluster and the location estimation is carried out. If the

number of reference points is still large in each group after

clustering or the number of layers in the decision cannot be

reduced, then the problem of overfitting is likely to occur.

In this case Random Forest can be used to eliminate the

over-fitting problem. A RF model is constructed based on the

fingerprint-information of the reference points in the group

after clustering [114].

Moreover, it is important in fingerprint-localization tech-

niques that each reference point must exhibit at least one

difference from other reference points in terms of extracted

features. However, it is often seen that some features are

not informative or repeat redundant information from other

features. In such a case, dimensionality reduction is important

to reduce the model’s complexity, to shorten the training

period and save the storage space. In case of high dimensional

data, Principal Component Analysis (PCA) is beneficial

as it simplifies the complexity of high dimensional data

while retaining trends and patterns. PCA is mainly used for

dimension reduction and shrinking the radio map for saving

storage space [24].

However, in complex environment scenarios where features

extraction is difficult and data has high dimensionality, DL

is very promising to improve localization accuracy [21]. DL

is well known for its distributed computing capability and

analyzing of a huge volume of unlabeled and un-categorized

data. The biggest advantage of DL algorithms is their ability

to extract features from data directly without manual feature

extraction [107]. This eliminates the need of domain expertise

and extraction of hardcore features. Feature extraction and

classification are carried out by a DL algorithm known as

Convolutional Neural Network (CNN) [115].

Many of the indoor positioning approaches are vulnerable

to global positioning error and kidnapped-robot problems. The

global localization problem occurs when the initial position of

the target is unknown to the IPS during initialization. While

kidnapped-robot problem occurs when a well-located target

moves to an unknown environment. In such a challenging

situation, RL proves to be the best technique to use. As

RL enables the agent to achieve a long-term objective by

interacting with the environment (based on the reward and

penalty process), and are able to solve problems caused by

radio signal instability. Therefore, RL techniques are able to

construct the map and optimize its action continuously [116].

The applications of ML techniques in solving various

challenges in indoor localization are presented in Table 6.

IV. EXISTING ML BASED ENHANCEMENTS TO IPS

In this section, we survey the existing ML based solutions

addressing different challenges in indoor localization.

A. ML FOR NLOS ERROR MINIMIZATION

One of the main challenges in indoor positioning is the

large ranging error caused by NLOS/multipath propagation.

Therefore, it is imperative to mitigate this effect. In the

literature a significant amount of work has been found on

NLOS problems. The existing literature typically deals with

NLOS mitigation in two ways:

1) Identifying NLOS propagation and then suppressing the

NLOS induced range error.

2) Mitigating NLOS effect directly without implementing

NLOS identification.

In NLOS identification, the goal is to distinguish the NLOS

signals and LOS signals between a transmitter and a receiver

by analyzing the channel statistics, range estimates or the

radio map [128].

In the literature different ML approaches have been applied

to extract different features from the received signal/waveform

and classify the NLOS/LOS components. To this end, in [17],

Stefano et al. have developed least-square support vector ma-

chine based techniques for NLOS identification and mitigation

that does not require any explicit statistical model. From
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TABLE 6. Research problems in localization and applied machine-learning techniques.

Research Problems/ Objectives ML Techniques

NLOS Classification & Mitigation

1. Random Forest [18]
2. Support Vector Machine Regressor [117]
3. Relevance Vector Machine (RVM) [118]
4. Least Squares SVM Classifier (LS-SVMC) [17]
5. Deep Learning [21]
6. Convolution Neural Network (CNN) [14]

Feature Extraction

1. Principal Component Analysis (PCA) [24]
2. K-Nearest Neighbor (K-NN) [27]
3. Deep Learning [21]
4. Recurrent Neural Network [13]

Dimension Reduction
1. Linear Discriminant Analysis (LDA) [119]
2. Principal Component Analysis (PCA) [119]

Avoiding RSSI Fluctuation

1. SVM [120]
2. Recurrent Neural Network [13]
3. Deep Auto Encoder [121], [122]
4. Convolutional Neural Network [115]
5. Multi-Layer Perceptron (MLP) [123]

Minimizing Computation
Complexity

1. Gaussian Process Manifold Kernel Dimension Reduction
(GPMKDR) [23]
2. Principal Component Analysis [24]
3. Kernel Principal Component Analysis [124]
4. K-Means [130]

Minimizing Training Time

1. Deep Belief Network (DBN) [21]
2. Online Independent SVM (OISVM) [125]
3. Extreme Learning Machine (ELM) [126]
4. Transfer Learning [29]

Robot Navigation
1. Deep Reinforcement Learning [127]
2. Deep Q-network (DQN) [22]
3. Double Deep Q network (D3QN) [89]

Trajectory Learning
1. Linear Discriminant Analysis (LDA) [119].
2. Principal Component Analysis (PCA) [119]

Weight Learning in Fusion
1. Supervised Learning: K-NN [27]
2. Unsupervised Learning: Online Independent SVM
(OISVM) [125]

the received waveform the authors have extracted different

features such as energy of the received signal, rise time,

maximum amplitude of the received signal, mean excess

delay, root mean square (RMS) delay spread and kurtosis

and constructed different length feature subsets. The authors

have designed three localization strategies:

1) Identification that only considers LOS signals for local-

ization.

2) Identification and mitigation that classifies the NLOS

and LOS signals and then mitigates the range estimates

error of NLOS signals.

3) Hybrid approach that discards mitigated NLOS range

estimates in the presence of sufficient number of LOS

signals.

Results show that the identification strategy classifies the

NLOS/LOS successfully with 91% accuracy using a feature

subset that includes energy of the received signal, rise time,

kurtosis. The identification and mitigation strategy achieves

outage probability (i.e. error is less than 2 m) around 10%

without the presence of any LOS signals, while the hybrid

approach further improves the performance, specially in

presence of significant number of LOS signals. In [18],

Ramadan et al. have proposed a Random Forest based method

for NLOS identification in which Channel Impulse Response

(CIR) is used for features extraction. Authors extracted many

features including mean, standard deviation, skewness, and

kurtosis from the received signal to train the Random Forest

algorithm. In the experiment, the authors estimated CIR by

placing a transmitter and receiver at different positions in

a wide hall at a height of 1.6 m. The authors used two

metrics: identification accuracy and algorithm running time to

evaluate the performance of the Random Forest algorithm with

least squares-support vector machine (LS-SVM) [19], and

other state-of-the-art classification algorithms. Results show

that Random Forest achieves NLOS and LOS identification

accuracy of 97.3% and 95% respectively, with a reasonable

computational complexity.

Henk et al. [117] have proposed two non-parametric

regression techniques for ranging error mitigation on features

extracted directly from the received waveform. The first

technique employs regression with SVM, and the second

technique employs regression with Gaussian Process (GP).

The performances of the proposed techniques were evaluated

in terms of outage. Results show that GP error mitigation has

good performance, with outages remaining below 10% for all

NLOS.

Nguyen et al. [118] have proposed Relevance Vector

Machine (RVM) based method for UWB ToA localization.

In their proposed model an RVM based classifier is used

VOLUME 4, 2016 9
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to identify the LOS and NLOS signals. Afterwards, a RVM

regressor is adopted for ranging error prediction. The authors

have compared the performance of RVM and SVM in NLOS

identification and localization accuracy estimation. Results

show that using three features, the mis-identification prob-

ability of SVM and RVM classifier are 0.1143 and 0.1084,

respectively while the number of used relevance vectors and

support vectors are 50 and 12, respectively. It is observed that

in 63.37% cases, RVM achieves the positioning error less than

1 m while the corresponding percentages of SVM is 58.48%.

The current ongoing research of NLOS identification and

mitigation techniques mainly developed for UWB radio

signals [117], [118]. Due to the large bandwidth of UWB

signals which means short time domain pulses, the LOS com-

ponent can be readily identified. Therefore, these techniques

cannot be readily applied to narrow band communication

technologies such as Wi-Fi. In this spirit, Xiao et al. [129]

proposed two ML and one hypothesis testing algorithms

using RSSI measurements from received signals for NLOS

identification and mitigation in Wi-Fi systems. Their proposed

Least Squares Support Vector Machine Classifier (LS-SVMC),

and Gaussian Processes Classifier (GPC) identify the NLOS

signals while Least Square Support Vector Machine Regres-

sor (LS-SVMR) plus Gaussian Processes Regressor (GPR)

perform NLOS mitigation. Performing extensive experiments

in various indoor environments, it has been found that their

proposed techniques can distinguish between LOS/NLOS

conditions with an accuracy of around 95%. Simulation results

show that the performance of GPR is slightly better than LS-

SVMR when the training data is low. The mean errors are .86

m and .82 m for LS-SVMR and GPR, respectively.

In the aforementioned works [17], [18], [117], [118], the

authors defined and extracted various features by analysing

the signal properties first, and then employed them as the input

vector to the classifier (e.g., SVM, MLP). Kurtosis, peak to

lead delay, mean excess delay, and RMS delay spread are the

most commonly used features for NLOS/LOS identification.

However, in the complex environment, it is hard to define

the features manually. To overcome this problem, Jiang et

al. [14] proposed a DL method for UWB NLOS detection

and classification. The proposed method is based on the

Convolution Neural Network (CNN) and Long-Short Term

Memory Recurrent Neural Networks (LSTM-RNN) where

CNN was used to extract the non-temporal features from

the raw channel impulse response (CIR). Afterwards, the

extracted features in CNN are fed into the LSTM for classify-

ing LOS and NLOS signals. Results show that CNN-LSTM

outperforms the LSTM in NLOS classification compared with

single LSTM. Authors of [73] also used CNN for accurate

location estimation in an UWB IPS with multiple anchor

nodes.

Although supervised ML is widely used in the literature

to identify NLOS signals, it is not quite feasible to use in

the scenario where the environment often changes due to

the movement of the furniture from one location to another

location. To overcome this limitation, Fan et al. [20] proposed

an unsupervised approach called Expectation Maximization

for Gaussian Mixture Models (EM-GMM) that discriminates

the LOS and NLOS components. Specially they applied EM

over GMM to find the maximum likelihood of a received

signal to determine whether it belongs to LOS or NLOS

distribution. Moreover, the authors found that their proposed

algorithm achieves almost the same NLOS detection accuracy

as supervised learning algorithms while it takes only 44%

of running time required by them. The main advantage of

EM-GMM is that it does not require any rigorous and explicit

labeling of the database at a certain location.

The performance of different ML approaches in NLOS

classification and mitigation is shown in Table 7.

Lessons Learned: First, based on [118] and [17], [117],

we observe that the performance of RVM classifier is better

than SVM in NLOS identification and mitigation. Moreover,

RVM uses fewer relevance vectors than the number of support

vectors in the SVM. From these observations, it can be inferred

that RVM [118] is preferred to the SVM in NLOS identifi-

cation and mitigation. Second, according to [14], DL can be

used to directly extract features for NLOS/LOS classification

in a dynamic network environment with time-varying channel

impulse response (CIR). Third, based on [20] unsupervised

ML approaches are useful for classification NLOS and LOS

signal classification in an unknown environment where there

is no labelled data.

B. ML FOR ENHANCED FINGERPRINTING BASED

LOCALIZATION

1) Reducing Computation Complexity and Save Storage

To reduce computation complexity and save storage space

for fingerprint-based localization of a multi storey building,

authors in [130] proposed a K-means based method to each

floor. The observation vector is compared with the cluster

head’s (CH’s) of each floor to decide the correct floor. In the

second stage the comparisons are done with floor wise. In

this model the server transmits only the cluster head info with

their corresponding floor labels to the client that significantly

reduces the complexity.

Mo et al. [124] proposed a Random Forest based space-

division model where the entire radio map is first divided into

multiple sub radio maps. Afterwards, maximum likelihood

estimation (MLE) and Kernel Principal Components Analysis

(KPCA) are applied for estimating the intrinsic dimensionality

and extracting features of each sub radio map respectively.

Results show that their proposed method cuts down radio map

size by 74% along with noise suppression and achieves 98%

coarse location accuracy.

Salamah et al. [24] proposed a Principal Component

Analysis (PCA) method to improve the performance and to

reduce the computational cost of the Wi-Fi indoor localization

systems. Result shows that the proposed method in [24] can

reduce the computational complexity by 70% using RF.

Jia et al. [23] proposed a supervised learning based

Gaussian Process Manifold Kernel Dimension Reduction

(GPMKDR) method. In the proposed method, raw RSSI
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TABLE 7. Machine learning based solutions for NLOS identification/mitigation.

Objective Description Features Results Remarks

NLOS identifi-
cation

Supervised Learning:
RF; UWB [18]

Mean, standard devia-
tion, skewness and kur-
tosis.

NLOS and LOS identi-
fication accuracies are
97.3% and 95%, respec-
tively.

It has less com-
putational com-
plexity than the
LS-SVM [17].

NLOS error mit-
igation

Supervised Learning:
SVM and GP; UWB
[117]

Energy, maximum am-
plitude, rise time, mean
excess delay, RMS de-
lay, kurtosis and esti-
mated distance.

GP outperforms SVM
in NLOS error mitiga-
tion.

Directly
mitigates
the NLOS error
without NLOS
identification.

NLOS identifi-
cation & mitiga-
tion

Supervised Learning:
RVM; UWB [118]

Energy, maximum am-
plitude, rise time, mean
excess delay, RMS de-
lay, kurtosis and esti-
mated distance.

RVM outperforms SVM
in terms of outage.

RVM has lower
computation
complexity than
SVM.

NLOS identifi-
cation and miti-
gation

Supervised: LS-SVM
and GP; Wi-Fi [129]

Mean and standard de-
viation, Kurtosis, Skew-
ness, Rician K-factor,
log mean, and goodness
of mean.

NLOS identification
and distance estimation
accuracies are 95% and
60%, respectively.

Robust to dy-
namic environ-
mental changes.

NLOS identifi-
cation

Unsupervised: Gaussian
mixture model;
UWB [20]

Mean access delay,
RMS delay.

LOS and NLOS signals
can be classified with
86.50% accuracy.

It takes only
44% of running
time required
by LS-SVM.

NLOS classifi-
cation

Deep Learning: CNN
and LSTM; UWB [14]

CNN extracts the non
temporal features from
the CIR.

CNN+LSTM
outperforms the
LSTM and obtained
NLOS classification
accuracy is 81.56% .

High computa-
tion load and
training time.

measurements and their location labels are first processed

by GPMKDR in the offline phase. GPMKDR is used to

train a nonlinear mapping that transforms any high dimen-

sional RSSI vector to a low dimensional feature. Results

show that GPMKDR significantly improves the localization

performance in comparison with the PCA-based method.

2) Minimizing Training Time

Le et al. [21] proposed a machine-learning based indoor

position model to reduce the workload of fingerprinting

by applying Deep Belief Network (DBN) on the unlabeled

RSSI measurements. DBN extracts the hidden features of

the fingerprints, and thereby minimizes the collection of

fingerprints. In this paper, a pre-training phase is employed to

train an unsupervised deep feature learning model. Afterwards,

the model is used to extract the deep features of the labeled

fingerprints for localization estimation. The extracted features

are used as inputs for conventional regression and classifica-

tion techniques such as SVM and K-NN. Results show that

the proposed method improves the localization accuracy by

1.9 m by using only 10% of labeled fingerprints while the

baseline approach uses 100% of the labeled fingerprints.

Wu et al. [125] proposed an Online Independent Support

Vector Machine (OISVM) classification-based localization

method using RSSI from Wi-Fi signals. Compared to tradi-

tional SVM, OISVM is capable of learning online and works

seamlessly with crowdsourcing. Moreover, the model size in

OISVM is smaller than SVM and it can control the trade-

off between accuracy and model size. These features make

OISVM attractive to use in commercial mobile applications.

In the offline phase, the proposed method develops a new

kernel selection parameter to reduce the time cost. Therefore,

the training time of the proposed method could be much faster

than the traditional methods. In the online phase, location

estimation is conducted for new RSSI samples, and meanwhile

online learning is performed as new training data arrives,

which can be collected via crowdsourcing. Results show

that the proposed method in [125] significantly reduces the

prediction time and training time and achieves the localization

accuracy error by 0.8 m.

3) Minimizing Signal Fluctuation

In fingerprint-based localization RSSI is widely used. How-

ever RSSI measurement value is very unstable due to the

channel NLOS/multipath propagation, and device heterogene-

ity.

To mitigate RSSI fluctuations and enhance the accuracy

of the localization, authors in [120] proposed a normalized

rank based SVM that achieves room level accuracy. In the

same spirit, Hoang at el. [13] proposed a Recurrent Neural

Network (RNN) based solutions for Wi-Fi fingerprinting that

exploits the correlation of RSSI measurements from time-

varying RSSI and the trajectory information. The authors used

different types of RNN, including Vanilla RNN, LSTM, Gated

Recurrent Unit (GRU), Bidirectional RNN (BiRNN), Bidi-

rectional LSTM (BiLSTM), and Bidirectional GRU (BiGRU)
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and evaluated the performances of these algorithms. Result

shows that LSTM structure achieves an average localization

error of 0.75 m that outperforms feed-forward neural network,

K-NN, Kalman filter, and other probabilistic methods.

To overcome the negative effect of RSSI fluctuations

in fingerprint-based localization, researchers have proposed

fingerprint based on channel-state-information (CSI) where

the CSI level at different reference points are recorded in

the offline phase. Authors in [121], [122] developed a deep

learning based method called DeepFi to improve the accuracy

of fingerprint-based localization that uses CSI amplitudes

from all the sub-carriers. The DeepFi system architecture

includes an offline training phase and an online localization

phase. In the offline training phase, DL is utilized to train all

the weights of a deep network as fingerprints. In the offline

training phase, DeepFi adopted a greedy learning algorithm

using a stack of Restricted Boltzmann Machines (RBMs) to

train the deep network in a layer-by-layer manner. In the

online localization phase, a probabilistic data fusion method

based on the radial basis function (RBF) was developed

to obtain the estimated location. Result shows that DeepFi

outperforms several existing RSSI and CSI-based schemes in

different network scenarios.

In [115], the authors propose CiFi based on Deep Con-

volutional Neural Network (DCNN) with commodity 5GHz

Wi-Fi. CIFi collects CSI data and scans the phase information

that is later used to estimate AoA. The estimated AoA are

transformed to CSI images. These images are used to train

DCNN in the offline phase. In the online phase, the location

of the target is predicted based on the trained DCNN and new

AoA. Using CSI and RSSI, Hsieh et al. [123] proposed a DL

based method based on multi-layer perceptron (MLP) and

one-dimensional Convolutional Neural Network(1D-CNN) to

estimate the location of the object. Result shows that the 1-D

CNN network achieves excellent localization performance

with low network complexity. We summarize the solutions

mentioned in this subsection in Table 8.

Lesson Learned First, based on [130], applying K-means

algorithm in floor wise in fingerprint-based localization of a

multi storey building, significantly reduces the computation

complexity. Second according to [24], PCA and KPCA

significantly reduce the size of radio map as well as the

computational complexity. Third, based on [23] we can

conclude, in the presence of labelled location-data, Gaussian

Process Manifold Kernel Dimension Reduction (GPMKDR) is

preferred to PCA for dimension reduction. Fourth, from [21],

deep belief network (DBN) can be applied to extract hidden

features of unlabelled data from crowdsourcing fingerprinting

that eliminates the need of excessive collection of radio-

map in fingerprint-based localization. It is also useful in the

scenario where environment changes very frequently. Fifth,

following [125], training time can be reduced significantly

when the system works with crowdsourcing seamlessly and

dynamically updates the training data. At last, according

to [121], [122], autoencoder is able to extract useful and robust

information from RSS data or CSI data, and improves the

localization accuracy.

C. ML FOR TRAJECTORY LEARNING

Fingerprint-based indoor positioning approaches require a

prior radio map. Therefore, when a prior map is not available,

trajectory learning based localization approaches such as

SLAM [131]–[133] and crowdsourcing [134], [135] have

been devised. In trajectory learning based localization ap-

proaches, spatial context such as maps and landmarks are

used for calibrating the localization error without additional

hardware [119], [136].

In order to deal with the scenarios when radio maps are

not available, Yoo et al. [119] proposed a ML-based map-

less indoor localization model for Wi-Fi based systems where

smartphones are used to collect RSSI. The proposed model

combines Particle filter and Gaussian Process (GP) for the

position estimation and works in two phases. In the first phase,

the algorithm analyses the pattern of the Wi-Fi signals col-

lected from crowds and detects the start and end points of any

landmark. Afterwards, it applies Linear Discriminant Analysis

(LDA) and PCA for dimension reduction and clustering data

points obtained from different landmarks. In the second phase,

authors applied dynamic wrapping with Kalman smoothing

to match different lengths and to time synchronization of the

samples. Finally, authors applied GP and Particle filters for

position estimation. Result shows that the model achieves

accurate localization results and the posture of the participants

does not influence the performance. Afterwards, the authors

also extended their work in [135] for landmark and floor

detection.

D. ML FOR ROBOT NAVIGATION

Autonomous navigation of mobile robots in a complex en-

vironment is a daunting task. Recognition of obstacles and

their locations information are required for safe and robust

navigation of the intelligent robot system [138]. In practical

scenarios, this information is not available beforehand. High-

level perception capabilities are required to acquire this

information. DL, RL and their combination called Deep

Reinforcement learning (DRL) manifest great potential in

solving many challenges in robotics [137].

To explore an unknown environment during robot naviga-

tion, Tai et al. [22] proposed a Deep Q-Network (DQN) based

learning model where Convolutional Network was used to

extract features from an RGB-D sensor. After training a certain

number of times, the robot can travel in new environments

autonomously. Wang et al. [127] proposed a DRL architecture

using a two-stream Q-network for the navigation tasks in

dynamic environments. The proposed architecture divides

the main task into two sub-tasks: local obstacle avoidance

and global navigation. It processes spatial and temporal

information separately for obstacle avoidance and generates

action values. The global navigation sub task is resolved by

a conventional Q-network framework. An online learning

network and an action scheduler are introduced to combine
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TABLE 8. ML solutions for enhanced fingerprinting.

Objective Ref. ML Mechanism Contribution Evaluation

Reducing size of the
radio map

[124] Unsupervised:
RF+MLE+KPCA

RF is used for space division then
MLE and KPCA are applied for
estimating intrinsic dimensionality
and feature extraction to reduce the
radio map.

Size of the radio map
is reduced by 74% and
positioning accuracy is
2 m.

[24] Unsupervised:
PCA+K-NN+RF

PCA is used for feature extraction
from the pre-defined radio map
which reduces the multivariate data
matrix without losing important in-
formation.

Computational
complexity is reduced
by 70% in static mode
and by 33% in the
dynamic mode.

[23] Supervised:
GPMKDR.

GPMKDR is used to train a non-
linear mapping that transforms any
high dimensional RSSI vector to a
low dimensional feature.

Achieved mean error is
1.13 m.

Minimizing training
time

[125] Unsupervised:
OISVM

OISVM is smaller than SVM and
it can control the trade-off between
accuracy and model size that makes
it attractive to use in commercial
mobile applications.

Using online learning,
the estimation error is
decreased by 80cm.

[21] Unsupervised
Learning: Deep
Belief Network
(DBN)

DBN is used to extract the hid-
den features of the unlabeled fin-
gerprints from crowdsourcing that
reduces the time for fingerprint col-
lection.

Localization accuracy is
1.9 m by using only 10%
of labeled fingerprints.

Avoiding RSSI
instability

[13] Deep Learning:
RNN, LSTM, GRU,
BiRNN, BiLSTM,
BiGRU

Utilize the correlation of RSSI mea-
surements and the trajectory infor-
mation to mitigate RSSI fluctua-
tions.

Average localization er-
ror is 75 cm.

[121] Deep Learning: Re-
stricted Boltzmann
Machines

Uses a stack of RBMs to train the
deep autoencoder in a layer by layer
manner to reduce complexity.

Reported mean error is
94.25 cm.

[115] Deep Learning:
CNN

This scheme transforms the AoA
data into CSI image and utilizes
2-D CNN to improve localization
performance as well.

Reported mean error is
2.3863 m.

two pre-trained policies and then continue exploring and

optimizing until a stable policy is obtained.

E. ML FOR FUSING TECHNOLOGIES, FEATURES AND

ALGORITHMS

Innovation and satisfying consumer expectations rely a lot

on correct matching of the technology with the appropriate

application. Two points need to be considered before choosing

to design a suitable IPS platform: a) the most suitable

technology for the IPS; b) compromising IPS metrics (i.e.,

Accuracy, precision, complexity, scalability, robustness, and

cost) to achieve desired level of outcome. It is worth noting

that IPS platform is application dependent and might require

different technologies and performance metrics. For example,

some applications may require moderate levels of accuracy

while some applications such as industrial process tracking

and indoor navigation systems for blind require high accuracy.

Each positioning technique and technology has certain

advantages than others. Sometimes multiple technologies and

techniques are combined together to achieve a satisfactory

solution in a specific application [139], [140]. Fusing the

information of different technologies, techniques and algo-

rithms can improve the accuracy and robustness of the overall

system. ML techniques can be applied to amalgamate this

information in an effective way to improve the positioning

accuracy, system robustness, and reduce the overall investment

in LBS system solutions. The question is how the information

obtained from different technologies and techniques are to be

used and how to weight the results obtained from different

algorithms to make a final decision.

In the literature, we found that the weight can be generated

by averaging the output of multiple algorithms [25] or taking

the weight of the best algorithm [25], [141]. The former

approach of weight selection is often negatively biased by

the output of the worst algorithm. And the latter one can be

adopted only when trained data is available. Without training

the algorithm in the offline phase, it may not be possible

to determine the best algorithm. Therefore, there are two

strategies to acquire weights: supervised weight learning and

unsupervised weight learning. Supervised learning attempts

to learn the weights by using the labeled data in the offline

phase [25]. On the other hand, unsupervised learning learns

the weights by using online data directly [26].

To improve the localization accuracy, authors in [27],
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proposed a cascaded two stage ML approach for precise

localization in indoor environment that adaptively combined

different radio frequency (RF) features such as Received

Signal Strength Indicator (RSSI), Channel Transfer Function

(CTF), and Frequency Coherence Function (FCF). In the first

stage the proposed method used ML to identify the type of the

surrounding indoor environment. Afterwards, authors applied

the K-NN algorithm to identify the most appropriate selection

and combination of RF features. Result demonstrates that the

localization error, RMSE in the laboratory environment using

this proposed framework is 39.68 cm.

A single fingerprint-based on RSSI or CIR cannot achieve

the desired performance under dynamic environment changes.

Therefore a group of fingerprints are used to improve the

accuracy. To this end, Gu et al. [141] have proposed a Wi-Fi

based localization method called Wi-Fi-FAGOT by developing

Global Fusion Profile (GFP). In the offline phase, Wi-Fi-

FAGOT first constructs a group of fingerprints called GOOF

which consists of RSSI, Signal Strength Difference (SSD), and

Hyperbolic Location Fingerprint (HLF). The GFP has been

constructed by minimizing the average positioning error over

the space of all GOOF classifiers. Therefore, the constructed

GFP is available to fully exploit the complementarity among

different kinds of fingerprints. GFP improves the accuracy

of localization by fully leveraging all fingerprints without

modifying any hardware, and thus very promising for indoor

localization in the Wi-Fi environment. Result shows that WiFi-

FAGOT performs better than other systems in real complex

indoor environments.

In [142], the authors have constructed GOOF based on

RSS Fingerprints (RSSFs), Covariance Matrix Fingerprints

(CMFs), Fourth-order Cumulant Fingerprints (FoCFs), Frac-

tional Low Order Moment Fingerprints (FLOMFs), and Signal

Subspace Fingerprints (SSFs), which can be obtained by

different transformations of the received signals at multiple

antennas. Afterwards, the authors designed a parallel GOOF

multiple classifier based on AdaBoost (GOOF-AdaBoost) to

train multiple strong classifiers and proposed an efficient fu-

sion algorithm called MUCUS (Multiple Classifiers Multiple

Samples) to improve the accuracy of localization. MUCUS

combines the predictions of multiple classifiers with different

samples. Result shows that the localization error of MUCUS

is 31.64 cm.

Later on, by using GFP, the authors in [25] proposed a

supervised weight learning based Knowledge Aided Adaptive

Localization (KAAL) approach. The authors developed two

KAAL algorithms, GFP based Multiple Function Averaging

(GFS-MFA) and GFP based Optimal Function Selection

(GFS+OFS) to achieve highly accurate localization results.

GFS-MFA chooses the weights according to the average of

the outputs of multiple fingerprint functions, while GFS+OFS

tries to obtain weights based on the output of the best

fingerprint function in the offline phase. They test the per-

formance of these algorithms using four typical fingerprint-

fusions: neural-network (NN), K-NN, ELM and Random

Forest. Result shows that GFS+OFS performs better than

GFP+MFA and other conventional algorithms.

The above mentioned supervised fusion approaches cannot

perform well in multipath and changing environments [25].

To overcome this drawback Guo et al. [28] proposed an

unsupervised fusion localization method based on extended

candidate location set (UFL-ECLS). In this method, in the

offline phase multiple classifiers are trained using RSSI

fingerprints. Afterwards, an extended candidate location set is

constructed in the online phase by finding the location with

prediction probability greater than a certain threshold from

each classifier. UFL-ECLS iteratively updates the weights and

location of the target by minimizing the positioning errors.

Experimental results showed that UFL-ECLS can reduce

67th percentile RMSE(root mean square error) by 16.5% as

compared with KAAL [25].

To minimize the high energy consumption of Wi-Fi enabled

devices due to frequent AP scanning Niu et al. proposed

ZIL [143], an energy-efficient indoor localization system

where ZigBee interfaces are used to collect Wi-Fi signals.

To identify Wi-Fi APs from ZigBee interfaces they developed

RSSI Quantification and RSSI Normalization. To improve

the localization accuracy, three K-NN based localization

approaches adopting different distance metrics are evaluated

including weighted Euclidean distance, weighted Manhattan

distance and relative entropy. Result shows that ZIL can

achieve the localization accuracy of 87%, which is com-

petitive compared to state-of-the-art Wi-Fi fingerprint-based

approaches, and it can save energy by 68% on average

compared to the approach based purely on Wi-Fi interface.

Utilizing Wi-Fi signals and motion sensors comprehen-

sively is an effective way to improve position estimates. To

improve the positioning accuracy authors in [126] proposed

a fusion location framework where an Extreme Learning

Machine (ELM) regression algorithm is used to predict the po-

sition based on motion sensors. Afterwards, Wi-Fi fingerprint-

location result is used to solve the error accumulation of

motion sensors with Particle filter. We summarize the solutions

mentioned in this subsection in Table 9.

Lesson Learned Fusing the information from different

technologies and techniques with appropriate weights is

another area we looked into. Here, the overall fused weights

can be the average of the weights obtained from multiple

algorithms or, they can be the weights of the best algorithm.

However, the average weights could be severely impacted

by the worst algorithm and it is not easy to find out the best

algorithm to select the best weights. Also, it is generally im-

possible to obtain labeled data in advance. In addition, weights

need periodic updates to handle environmental changes.

Therefore, unsupervised learning approaches [28] are more

attractive than the supervised learning approaches [25] to

obtain the optimum fused weights in indoor localization.

V. APPLICATIONS OF INDOOR LOCALIZATION

The advancement of indoor localization and the proliferation

of smart portable devices in recent years have facilitated a

wide range of location based services (LBS).
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TABLE 9. ML based solutions for fusion based localization.

Ref. Learning Mech. Fused Localization Ac-
curacy

Remarks

Tech. Features Algorithm

[25] Supervised Learn-
ing

Wi-Fi RSSI K-NN, RF 2.6 m. Works only when
training data is
available.

[141] Supervised Learn-
ing

Wi-Fi RSSI, SSD, HLF K-NN 3.4 m. Sensitive to signal
fluctuations.

[27] Supervised Learn-
ing

- RSSI, CTF, FCF K-NN 39.68 cm. Computation burden
is heavy.

[143] Supervised Learn-
ing

Wi-Fi,
ZigBee

RSSI K-NN 87%. Intrinsic meaning of
the data cannot be
given.

[142] Unsupervised
Learning

Wi-Fi RSSI, RSSIF,
CMF, FoCF,
FLOMF, SSF

Multiple
Classifiers
Multiple
Samples
(MUCUS)
fusion
algorithm

31.64 cm. Algorithms are tested
only on the present of
Gaussian and impul-
sive noise.

[28] Unsupervised
Learning

Wi-Fi RSSI K-NN, SVM,
logistic
regression

2.6 m. Works well without
labelled data.

Contextual-aware Location based Marketing:

Contextual-aware location based marketing is a revolution-

ary idea in e-commerce, that has the potential to improve sales

and profits. This type of marketing helps the seller to reach

consumers in real time and enhance their shopping experience.

This is relevant especially at this time of technological

advances, when nearly everyone owns smart mobile devices.

Widespread access to personalized mobile devices allow

customized marketing approaches based on the location, social

profile, spending pattern, navigation history, online behavior,

browsing patterns and inclination (subjects they ‘like’ and

‘follow’ on social media). The aim of this marketing strategy is

to draw an inference from the personal interests, past shopping

history, requested feedback, email reminders, and then send

them relevant advertisements and coupons from stores close

to the location of the consumer.

Indoor positioning systems are an integral component of

location-based marketing as well as other LBS. Positioning

systems allow geographically localizing the mobile device

both outdoor and indoor. The most commonly used tech-

nologies in location based marketing applications include

geofencing with GPS positioning, Bluetooth beacon RFID,

and Wi-Fi.

Tracking Mining Workers: Due to large number of

disasters with many fatalities in underground mines, currently

there is a legal requirement to continuously track all the coal

miners. This is mandated by the Mine Improvement and New

Emergency Response (MINER) act of 2006. Therefore, the

mining industry is actively pursuing developing various solu-

tions to track miners in underground mines [144]. Although

zone based RFID localization [145] is prevalent in mines,

several new technologies including directional antennas [146],

beam forming leaky feeders [147] and ML algorithms [112]

are researched to improve the reliability and accuracy.

Inventory Tracking: LBS is not just about people. There

are cases when automatic tracking of numerous items in huge

warehouses and factories are needed [148]. In this case, not

only localization and identification but also managing the

localities of these items in real time is needed. Therefore, in

addition to localization techniques and data base management,

new Medium Access Control layer protocols also needed

to ensure all these items are properly identified without

collisions and blockage [149]. Often deep learning techniques

are needed here to handle the huge data [73].

Ambient Assisted Living: Accurate indoor positioning is

the ground of ambient assisted living platforms. These systems

provide assistance to elderly, infirm or disabled individuals to

live comfortably in their homes, neighborhood and public

places. The elderly people affected by neurodegenerative

conditions need behavioral tracking including monitoring

daily activities, detection of daily movement patterns, record-

ing vital signs and detection of endangering events (fall,

injury) etc. [150]. Many IPS technologies including Wi-Fi

and Bluetooth can be used in this application.

Disaster Recovery: In cases of indoor trapping of individ-

uals in the wake of fire and earthquake, indoor localization

techniques could identify the specific location of individuals

in danger and rescue them from the building within the

shortest possible time. Since the indoor environment is usually

unknown to the rescuer, accounting for the exact number of

people that are trapped and rescuing them safely could be

difficult. A positioning system free from prior measurement,

calibration, configuration and deployment could be the best

tool for a rescue force. In extreme cases the in-built com-

munication facility might also collapse due to the disaster.

Context-aware positioning can be a game-changer in this type

of scenario [151].

Public Safety and Law Enforcement: Efficient indoor

positioning could pinpoint the location and origin of the

danger within a building/facility [152], so that a disaster can
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be mitigated and managed at inception. For example, the

police have been using indoor positioning technology based

on Bluetooth Beacon installed throughout campus buildings

and open places to help pinpoint emergencies, so that police

can respond timely avoiding unnecessary hindrance and delay.

Indoor positioning technology could be taken to the next level

by developing applications that detect location of explosives,

stolen items inside buildings in order to assist trained police

dogs, bomb squad or for an endangered individual to locate

the nearest emergency exit in a smoky environment.

Health Services: Indoor localization has huge potential to

improve the service quality in the health care sector in multiple

ways. IPS can help front end workers to find the patient in

time in a crowded hospital [153]. Patients can also find therapy

rooms on their own with indoor navigation. Doctors could

track the mobility and safety of patients. Visitors could find

their patients in the medical facility without hassle. Even

wheelchairs and specialized surgery equipment can be found

inside surgery rooms easily.

VI. FUTURE CHALLENGES AND LIMITATION OF ML

Numerous ML based indoor positioning methods have been

proposed in the past few years [154]. However, adaptation of

ML-based solutions in indoor localization is still in its infancy.

A number of issues need further investigation.

Mainly, ML based models are very much application

specific. For example, a well-trained DL model developed

on RSSI based fingerprinting can provide excellent results for

the same, but it cannot be applied for CSI based fingerprinting.

Availability and Standardization of Training Data: The

success of ML is data dependent. Most DL algorithms need

adequate data. Even in reinforcement learning, the agent learns

an action based on the reward/penalty feedback which can also

be considered as the training data. The amount and quality of

the available data significantly influences the performances

of ML algorithms and determining the appropriate amount of

the data is a tough task. That means, a realistic estimate of the

required data-set size is needed for setting the performance

bounds of different learning algorithms.

Both in supervised and unsupervised learning the training

data sets are collected using different techniques and the

collected data may vastly vary due to many factors including

device heterogeneity [120]. For example, in radio fingerprint-

ing, if the devices used to construct the radio map and the one

used during the positioning phase are different, a significant

pattern mismatch will occur. To solve this problem, it is crucial

to develop a standard framework for training and predicting

data that is independent on the hardware of the devices.

Cost of Training and Estimation Time: Two time met-

rics, training time and response time, are indispensable parts

of a ML model. During the training timing, the algorithm

trains itself to predict the output of future test data. During

the response timing, the model predicts the output for a given

input. Few approaches such as the RL based approaches can

take a long training time since, RL learns through interacting

with the environment by trial-and-error process. Also many

deep learning algorithms can take a long time for training.

Therefore, selecting the most appropriate model for a given

IPS environment is crucial to get the required accuracy while

having minimal training and response times. Unnecessarily

complex ML models shall not be used although, they might

give us slightly better accuracy. This is essentially an opti-

mization problem among complexity, timings (or delay) and

accuracy.

Challenges of Deep Learning: Most indoor localization

systems are device based where, the user devices, with limited

storage capacity and computational capability, perform the

location estimation [12]. Therefore, although, it is well known

deep learning models are very promising, it is challenging

to implement DL model in devised based IPS [21]. This is

because, DL based models need computational and storage

overhead for extracting complex features automatically from

large volumes of unlabelled data.

In addition, DL models are very much application specific.

A model can accurately predict the outcome when the model is

trained well on that specific problem. Sufficient amount of data

and time are required for training a DL model. A well-trained

model may require retraining when the definition, state and

the nature of the problem have been changed. Therefore, for

real-time localization in complex environments, it is difficult

to retrain the DL model timely for the frequently changing

input information.

Lack of Variability: Machine-learning approach lacks

variability, in cases where historical data is unavailable.

Therefore, it is difficult to ascertain that predictions made

by ML systems are suitable in all scenarios. For instance, even

versatile ML algorithms like Transfer learning, that enables

transferring the knowledge learned from one task to another

similar task may not reliably transfer knowledge from a known

domain to a new target domain with satisfactory level of

accuracy.

However, the world is moving towards being a huge

cyber physical system. The exponential growth in edge and

distributed computing systems and omnipresent wireless

access and cloud facilities have been the backbone of this

transformation. Upcoming 5G (and beyond) wireless networks

that integrate multitude of access technologies with seamless

truly broadband coverage and ultra low-latency communica-

tion fuel this transformation.

Hence, due to the availability of advanced communication

and computing infrastructure, the above mentioned challenges

in indoor localization are expected to be handled successfully

in future, providing numerous location based services both

indoors and outdoors.

VII. CONCLUSIONS

This paper discusses various challenges in indoor localization,

along with research efforts in this regard. We found machine-

learning approaches have great potential to overcome these

challenges effectively while conventional localization algo-

rithms have limited success. We have surveyed the state-of-the-
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art ML based research efforts in solving various challenges

associated with indoor localization. Furthermore, we have

identified challenges related to successful deployment of ML-

based localization techniques and have listed future research

directions in this regard.
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