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Abstract—In this paper, a survey of the literature of the
past fifteen years involving Machine Learning (ML) algorithms
applied to self organizing cellular networks is performed. In
order for future networks to overcome the current limitations
and address the issues of current cellular systems, it is clear that
more intelligence needs to be deployed, so that a fully autonomous
and flexible network can be enabled. This paper focuses on the
learning perspective of Self Organizing Networks (SON) solutions
and provides, not only an overview of the most common ML
techniques encountered in cellular networks, but also manages
to classify each paper in terms of its learning solution, while
also giving some examples. The authors also classify each paper
in terms of its self-organizing use-case and discuss how each
proposed solution performed. In addition, a comparison between
the most commonly found ML algorithms in terms of certain
SON metrics is performed and general guidelines on when to
choose each ML algorithm for each SON function are proposed.
Lastly, this work also provides future research directions and new
paradigms that the use of more robust and intelligent algorithms,
together with data gathered by operators, can bring to the
cellular networks domain and fully enable the concept of SON
in the near future.

Index Terms—Machine Learning, Self Organizing Networks,
Cellular Networks, 5G.

I. INTRODUCTION

BY 2020, it is expected that mobile traffic will grow around

ten thousand times of what it is today and that the number

of devices connected to the network will be around fifty billion

[1]–[3]. Because of the exponential growth that is expected in

both connectivity and density of traffic, primarily due to the

advances in the Internet of Things (IoT) domain, Machine-

to-Machine (M2M) communications, cloud computing and

many other technologies, 5G will need to push the network

performance to a next level. Furthermore, 5G will also have

to address current limitations of Long Term Evolution (LTE)

and LTE-Advanced (LTE-A), such as latency, capacity and

reliability. Some of the requirements that are recurrent in state-

of-the-art literature for 5G networks are [4]–[6]:

• Address the growth required in coverage and capacity;

• Address the growth in traffic;
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• Provide better Quality of Service (QoS) and Quality of

Experience (QoE);

• Support the coexistence of different Radio Access Net-

work (RAN) technologies;

• Support a wide range of applications;

• Provide peak data rates higher than 10 Gbps and a cell-

edge data rate higher than 100 Mbps;

• Support radio latency lower than one millisecond;

• Support ultra high reliability;

• Provide improved security and privacy;

• Provide more flexibility and intelligence in the network;

• Reduction of CAPital and OPerational EXpenditures

(CAPEX and OPEX);

• Provide higher network energy efficiency;

As it can be seen, all of these requirements are very

stringent. Hence, in order to meet these requirements, new

technologies will have to be deployed in all network layers of

the 5G network. Several breakthroughs are being discussed in

the literature in the past couple of years, the most common

ones being: massive MIMO (Multiple-Input Multiple-Output),

millimeter-waves (mmWaves), new physical layer waveforms,

network virtualization, control and data plane separation, net-

work densification (deployment of several small cells) and

implementation of Self Organizing Networks (SON) functions

[5].

Although all of these breakthroughs are very important and

often referred as a necessity for future mobile networks, the

concept of network densification is the one that will require

heavier changes in the network and possibly a change in

paradigm in terms of how network solutions are provided [7].

In addition, the deployment of several small cells would most

likely address the current limitations of coverage, capacity

and traffic demand, while also providing higher data rates and

lower latency to end users [5].

While the densification will result in all these benefits, it

will also generate several new problems to the operators in

terms of coordination, configuration and management of the

network. The dense deployment of several small cells, will

result in an increase in the number of mobile nodes that will

need to be managed by mobile operators. Furthermore, these

types of cells will also collect an immense amount of data

in order to monitor network performance, maintain network

stability and provide better services. This will result in an

increasingly complex task just to configure and maintain the

network in an operable state if current techniques of network

deployment, operation and management are applied [8].

One possible way of solving these issues is by deploying
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more intelligence in the network. The main objectives of SON

are to provide intelligence inside the network in order to facil-

itate the work of operators, provide network resilience, while

also reducing the overall complexity, CAPEX and OPEX, and

to simplify the coordination, optimization and configuration

procedures of the network [9], [10].

A. Overview of Self Organizing Networks

SON can be defined as an adaptive and autonomous network

that is also scalable, stable and agile enough to maintain its

desired objectives [10]. Hence, these networks are not only

able to independently decide when and how certain actions

will be triggered, based on their continuous interaction with

the environment, but are also able to learn and improve

their performance based on previous actions taken by the

system. The concept of SON in mobile networks can also

be divided into three main categories. These categories are:

self-configuration, self-optimization and self-healing and are

commonly denoted jointly as self-x functions [10].

Self-configuration can be defined as all the configuration

procedures necessary in order to make the network operable.

These configuration parameters can come in the form of

individual Base Station (BS) configuration parameters, such

as IP configuration, Neighbor Cell List (NCL) configuration,

radio and cell parameters configuration or configurations that

will be applied to the whole network, such as policies. Self-

configuration is mainly activated whenever a new base station

is deployed in the system, but it can also be activated if there

is a change in the system (for example, a BS failure or change

of service or network policies).

After the system has been correctly configured, the self-

optimization function is triggered. The self-optimization phase

can be defined as the functions which continuously optimize

the BSs and network parameters in order to guarantee a near

optimal performance. Self-optimization can occur in terms

of backhaul optimization, caching, coverage and capacity

optimization, antenna parameters optimization, interference

management, mobility optimization, HandOver (HO) parame-

ters optimization, load balancing, resource optimization, Call

Admission Control (CAC), energy efficiency optimization and

coordination of SON functions. By monitoring the system

continuously, and using reported measurements to gather

information, self-optimization functions can ensure that the

objectives are maintained and that the overall performance of

the network is near optimum.

In parallel to self-optimization, the function of self-healing

can also be triggered. Since no system is perfect, faults and

failures can occur unexpectedly and it is no different with

cellular systems. Whenever a fault or failure occurs, for what-

ever reason (e.g., software or hardware malfunction) the self-

healing function is activated. Its objective is to continuously

monitor the system in order to ensure a fast and seamless

recovery. Self-healing functions should be able not only to

detect the failure events but also to diagnose the failure (i.e.,

determine why it happened) and also trigger the appropriate

compensation mechanisms, so that the network can return to

function properly. Self-healing in cellular systems can occur

in terms of network troubleshooting (fault detection), fault

classification, and cell outage management [10]–[13].

Also, each SON function can be divided into sub-sections,

commonly known as use-cases. Figure 1 shows an outline of

the most common use cases of each SON task. As it can

be seen from Fig. 1, future cellular networks are expected to

address several different use cases and provide many solutions

in domains that either do not exist today or are beginning

to emerge. Current methods today lack the adaptability and

flexibility required to become feasible solutions to 5G net-

works. Although mobile operators collect a huge amount of

data from the network in the form of network measurements,

control and management interactions and even data from their

subscribers, current methods applied to configure and optimize

the network are very rudimentary. Such methods consist of

manual configuration of thousands of BS parameters, periodic

drive tests and analysis of measurement reports in order to op-

erators to continuously optimize the network [9]. Furthermore,

operators also require skilled personnel in order to constantly

observe alarms and use monitoring software at the Operation

and Management Center (OMC) to preform self-healing.

Many of the solutions require expert engineers to analyze

data and adjust system parameters manually in order to opti-

mize or configure the network. Some other solutions also re-

quire expert personnel on site in order to fix certain problems,

when detected. All these solutions are extremely ineffective

and costly to mobile operators and, although operators collect

a huge amount of mobile data daily, it is not being used at its

full potential.

In order to leverage all the information that is already

collected by operators and provide the network with adaptable

and flexible solutions, it is clear that more intelligence needs

to be deployed. With that in mind, several Machine Learning

(ML) solutions are being applied in the context of SON to

explore the different kinds of data collected by operators.

Thus, a SON system, in order to be able to perform all three

functions, needs some sort of intelligence. This paper provides

an extensive literature review of the ML algorithms that are

being applied in mobile cellular SON, in order to achieve its

objectives in each of the self-x functions.

B. Machine Learning in SON

Despite being in its infancy, the concept of SON in mobile

cellular networks is developing really fast. Several research

groups are implementing intelligent solutions to address cer-

tain use cases of mobile networks and also standardize some

methods, as it can be seen from The 3rd Generation Part-

nership Project (3GPP), Next Generation Mobile Networks

(NGMN) Alliance, mobile operators and many other research

initiatives. Current state-of-the-art algorithms go all the way

from basic control loops and threshold comparisons to more

complex ML and data mining techniques [14]. As the field

develops, there is a significant trend of implementing more

robust and advanced techniques which would in turn solve

more complex problems [15]. This paper also provides a basic

overview of the current state-of-the-art ML techniques that are

being developed and applied to cellular networks.
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Fig. 1. Major use cases of each SON function: self-configuration, self-optimization and self-healing.

The main categories that ML algorithms can be fitted

into are supervised, unsupervised and Reinforcement Learning

(RL). Supervised learning, as the name implies, requires a

supervisor in order to train the system. This supervisor tells

the system, for each input, what is the expected output and the

system then learns from this guidance. Unsupervised learning,

on the other hand, does not have the luxury of having a

supervisor. This occurs, mainly when the expected output is

not known and the system will then have to learn by itself.

Lastly, RL works similarly to the unsupervised scenario, where

a system must learn the expected output on its own, but on

top of that, a reward mechanism is applied. If the decision

made by the system was good, a reward is given, otherwise

the system receives a penalty. This reward mechanism enables

the RL system to continuously update itself, while the previous

two techniques provide, in general, a static solution.

However, as it will be seen in the upcoming sessions of the

paper, several other techniques like Markov models, heuristics,

fuzzy controllers and genetic algorithms are also being applied

to provide intelligence to cellular networks. One problem that

arises, however, is that as the techniques get more complex,

more data is required for the algorithm to perform well. That

is why the concept of Big Data is also interlinked with SON,

so that the ML algorithms can work to their full potential [8],

[9], [16]–[18]. With the deployment of SON together with big

data, the huge amount of data gathered by mobile operators

will become more useful and new applications and innovative

solutions, such as participatory sensing, can be enabled [19].

C. Paper Objectives and Contributions

As previously stated, one of the objectives of this survey is

to provide an extensive literature review over the past fifteen

years on efforts to implement intelligent solutions in the realm

of cellular networks, in order to automate and manage an

increasingly more complex and developing network. The paper

covers not only the recent research that is related to SON, but

also previous research carried out that involved ML algorithms

and implementations of automated functions that improved the

overall performance of cellular networks.

In contrast to other surveys in the area, such as [10], which

focused on introducing readers to the concept of SON in

cellular networks, its definitions, applications and use cases,

[20], which focused on basic definitions and concepts of self-

organizing systems and how could self-organization be applied

in the context of wireless sensor networks, or even [21], which

focused on different types of self organizing networks applied

in the domains of wireless sensor networks, mesh networks

and delay tolerant networks, this paper surveys the application

of ML algorithms in cellular networks, and, much like [22],

[23], it provides a more in-depth view of how and why each

intelligent technique is applied.

However, differently from [22], [23], which surveyed the

application of ML algorithms in cognitive radios and wireless

sensor networks, respectively, this survey is applied in the

domain of cellular networks and discusses how each technique

can be applied in terms of each SON function. Based on that,

it is assumed that the reader already is familiar with SON
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concepts and its use cases, otherwise, the reader can refer to

[10].

In addition to that, this work also provides a short tutorial

and explanation of the most popular ML solutions that are

being applied in the realm of cellular networks, so that readers

that are interested in a applying these algorithms can have a

basic knowledge of how they work and when they should be

used. Last but not least, another objective of the paper is to

explore new research directions and propose new solutions to

current SON problems, in order to achieve more automation

and intelligence in the network.

The main contributions of this paper are:

• To provide the readers with an extensive overview of the

literature involving SON applied to cellular networks and

the most popular ML algorithms and techniques involved

when implementing SON functions;

• The paper focus is on the learning perspective of ML

algorithms applied to SON. Instead of providing an

overview of SON functions, this paper contribution is

more related to provide the readers with an understanding

and classification of the state-of-the-art algorithms imple-

mented to achieve these SON functions;

• The paper also tries to categorize each algorithm accord-

ing to their SON function and ML implementation;

• The paper also proposes to classify different algorithms

based on their learning and technique applied, mainly:

supervised, unsupervised, controllers, RL, Markov mod-

els, heuristics, dimension reduction and Transfer Learning

(TL);

• Compare different ML techniques in terms of some SON

requirements;

• Provide general guidelines on when to use each ML

algorithm for each SON function;

The remainder of this paper is structured as follows: Section

II provides a brief tutorial of the most popular learning

techniques used to address SON use cases. Sections III, IV

and V define the learning problem in self-configuration, self-

optimization and self-healing, respectively and each section

explains how learning can be applied within each category.

Section VI analyses the most common ML technique applied

in cellular SON and discusses their strengths, weaknesses and

also discusses which ML algorithm is more suitable for each

SON function. Section VII provides future research directions

and suggestions of new implementations and Section VII

concludes the paper.

II. OVERVIEW OF MACHINE LEARNING ALGORITHMS

The concept of SON in cellular networks was defined in

[10] as a network that not only has adaptive and autonomous

functions, but also is scalable, stable and agile enough in order

to maintain its desired objectives even when changes occur in

the environment. Although learning is not implicitly included

in the SON definition, intelligence is crucial to a SON system

in order to accomplish its objectives.

This section consists of basic tutorials on some of the

most researched and applied intelligent algorithms to cellular

network use cases. Each algorithm is briefly explained with

TABLE I
LIST OF ACRONYMS

Symbol Description

AD Anomaly Detector

AIW-PSO Adaptive Inertia Weight Particle Swarm Optimization

BMU Best Matching Unit

BS Base Station

CAC Call Admission Control

CAPEX CAPital EXpenditures

CAT Cell-Aware Transfer

CDMA Code Division Multiple Access

CF Collaborative Filtering

CRE Cell Range Extension

CSI Channel State Information

D2D Device-to-Device

DM Diffusion Maps

DNS Domain Name System

DT Decision Trees

ELF Evolutionary Learning of Fuzzy

EMD Entropy Minimization Discretization

ESM Energy Saving Mechanism

FLC Fuzzy Logic Controller

FQL Fuzzy Q-Learning

GA Genetic Algorithm

HMM Hidden Markov Model

HO HandOver

HOAP HandOver Aggregate Performance

ICIC Inter-Cell Interference Coordination

IoT Internet of Things

k-NN K-Nearest Neighbors

KPI Key Performance Indicator

LOFAD Local Outlier Factor based Anomaly Detector

LTE Long Term Evolution

LTE-A Long Term Evolution - Advanced

M2M Machine-to-Machine

MC Markov Chains

MCA Minor Component Analysis

MDS MultiDimensional Scaling

MDT Minimization of Drive Test

MIMO Multiple-Input Multiple-Output

ML Machine Learning

MLB Mobility Load Balancing

MRO Mobility Robustness Optimization

NCL Neighbor Cell List

NN Neural Network

OAM Operation, Administration and Maintenance

OCSVMD One Class Support Vector Machine based Detector

OFDMA Orthogonal Frequency Division Multiple Access

OMC Operation and Management Center

OPEX OPerational EXpenditures

PCA Principal Component Analysis

PCI Physical Cell Identity

QL Q-Learning

QoE Quality of Experience

QoS Quality of Service

RACH Random Access CHannel

RAN Radio Access Network

RL Reinforcement Learning

RLF Radio Link Failure

RSRP Reference Signal Received Power

SINR Signal to Interference plus Noise Ratio

SNR Signal to Noise Ratio

SOM Self Organizing Map

SON Self Organizing Networks

SVM Support Vector Machine

TL Transfer Learning

TTT Time-To-Trigger

VHO Vertical HandOver
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some examples and some basic references are also provided for

readers interested in further information about each technique.

However, before starting, let us begin by defining the

main goals of ML and the basic categories of learning that

will be found in this paper. According to [24], ML is the

science of making computers take decisions without being

explicitly programmed to. This is done by programming a

set of algorithms that analyze a given set of data and try

to make predictions about it. Depending on how learning is

performed, these algorithms are classified differently. Figure

2 shows different learning schemes and how they are related

to each other.

A. Supervised Learning

Supervised learning, as the name implies, is a type of learn-

ing that requires a supervisor in order for the algorithms to

learn their parameters. In this type of learning, the algorithms

are given a set of data which contains both input and output

information. Based on the input-output relationship, a model

for the data can be determined, and, after that, a new set of

input data is gathered and fed into the learned model so that

the algorithm can make its predictions [25], [26].

In the context of cellular networks, supervised learning can

be applied in several domains, such as: mobility prediction

[27]–[30], resource allocation [31]–[33], load balancing [34],

HO optimization [35], [36], fault classification [37], [38] and

cell outage management [39]–[42]

Supervised learning is a very broad domain and has several

learning algorithms, each with their own specifications and

applications. In the following, the most common algorithms

applied in the context of cellular networks are presented.

1) Bayes’ Theory: the Bayes’ theorem is an important rule

in probability and statistical analysis to compute conditional

probabilities, i.e., to understand how the probability of a

hypothesis (h) is affected in the light of a new evidence (e).

The Bayes theorem is given by

P (h|e) =
P (e|h)P (h)

P (e)
, (1)

where P(h|e) is the probability of hypothesis h being true,

given the new evidence e, also known as the posterior proba-

bility, P(e|h) is the likelihood of evidence e on the hypothesis

h, P(h) is the probability before the new evidence is taken into

account, known as prior probability and P(e) is the probability

of evidence e [43].

Bayes’ theory provided a new understanding of probabilities

and its applications, hence it is widely used in a lot of different

areas. In the context of cellular networks, Akoush et al. in

[44], for example, used Bayes’ theorem together with neural

networks in order to enhance its learning procedure and try to

predict a mobile user’s position.

Another area where Bayes’ theory can be applied is in the

area of classification. Bayes’ classifiers are simple probabilistic

classifiers based on the application of the Bayes’ theorem.

Also, one assumption that is often made is that the inputs

are independent from one another. This assumption leads to

the creation of Naive Bayes’ Classifiers. Recent research has

applied the concept of Bayes’ classifiers in fault detection [45],

and fault classification [37], [38]. For interested readers, a

more in-depth review of Bayesian classifiers, its advantages

and disadvantages, and its two models, can be found in [46],

[47].

2) k-Nearest Neighbor (k-NN): another popular method of

supervised learning is k-NN. This algorithm is applicable

to problems where the underlying joint distribution of the

observation and the result is not known. The algorithm does a

very simple process: it tries to classify a new sample based on

how many neighbors of a certain class that unclassified sample

has [26]. For example, if a certain number of samples, in this

case k, near the unclassified sample belongs to class A, then it

is most probable that the new sample also belongs to class A.

Fig. 3 shows a simple example of how this process is done.

Since the k-NN algorithm main metric is the distance be-

tween the unlabeled sample and its closest neighbors, several

distance metrics can be applied. The most common ones are:

Euclidean, Euclidean squared, City-block and Chebyshev. For

more information on k-NN, please refer to [26], [48].

K-NN can also be applied to solve regression problems,

however, it is mostly used in the classification realm. In the

case of cellular networks, k-NN is generally applied in the

context of self-healing, either by detecting outage or sleeping

cells [42], [49]–[52].

3) Neural Networks (NNs): the concept of Neural Net-

works (NNs), also known as MultiLayer Perceptrons (MLPs),

emerged as an attempt of simulating into computers the same

behavior seen in the human brain. The human brain is a

complex machine that performs highly complex, nonlinear and

parallel computations all the time. However, by dividing these

functions into very basic components, known as neurons, and

by giving these neurons all the same computation function, a

simple algorithm can become a very powerful computational

tool.

The equivalent components of the neurons in a NN are its

nodes. These nodes are responsible for performing nonlinear

computations, by using their activation functions, and are

connected to each other by variable link weights, which

simulates the way neurons are connected in the human brain.

These activation functions can vary depending on the design

of the network, but the most frequent functions used are the

sigmoid or the hyperbolic tangent functions [53].

The most basic design a NN can have is a network of three

layers, consisting of an input layer, a hidden layer and an

output layer. Although all networks must have an input and

an output layer, the number of hidden layers or the number

of nodes is not fixed. A simple NN design of three layers is

shown on Fig. 4. As it can be seen from Fig. 4, the connections

between different layers always go forward and do not form a

cycle, therefore, this type of network is commonly known as

feed forward neural network. There are other types of NNs,

but this paper focuses only on feed forward NNs.

By changing the number of nodes and the number of hidden

layers, NNs can map highly complex functions and achieve

very good performance. Hence, NN’s are used in a wide range

of applications. Another parameter that can be tuned in a

NN is its learning method. Since the objective of the NN
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Fig. 2. Block diagram showing the most common algorithms in the literature of cellular SON and how they are classified.

Fig. 3. Example of k-NN algorithm, for k = 7. In this case, the algorithm
will decide that the unlabeled example should be classified as class A, since
there are more neighbors from class A than class B closer to the unlabeled
example.

is to produce the best values of Θ (link weights) that maps

the inputs to outputs, how the network learn this parameter

can also be configured. The most common method used is

the backpropagation method, but there are many others [53],

such as Bayesian learning [26], [44], RL and random learning

[33], [54]. Although NNs are not restricted to classification

problems and can be used in nonlinear regression problems as

well, most NNs are used as classifiers. For information about

NNs in regression, please see [53].

In the context of cellular systems, NNs are applied spe-

cially in the self-optimization and self-healing scenarios, in

terms of resource optimization [31]–[33], [55]–[58], mobility

management [27], [28], [44], [59]–[63], HO optimization [35],

[36], [64], [65], and cell outage management [41]. For more

information about neural networks, how they work, basic

properties and learning methods readers should go to [26],

[53], [66].

4) Support Vector Machine (SVM): another supervised

learning technique commonly found in SON is the Support

Fig. 4. Most basic design of a neural network, consisting of 3 layers, where
(A) denotes the input layer, (B) the hidden layer and (C) the output layer. The
inputs are denoted as X1,...,m and outputs as Y1,...,n, where m denotes the
total number of input features and n the total number of possible classes an
input can be assigned to. Also, the variable link weights are depicted as Θ(j),
which correspond to the matrix of weights controlling the function mapping
between layer j to layer j+1 and the activation function of each neuron as

a
(j)
i

, where i is the neuron number and j is the layer number.

Vector Machine (SVM). The idea behind a SVM classifier is

to map a set of inputs into a higher dimensional feature space.

This is done through some linear or non-linear mapping and

its objective is to maximize the distance between different

classes. Since the goal of SVM is to find the hyperplane that

produces the largest margin between different classes, SVM

can also be known as a large margin classifier.

As the name implies, the SVM technique uses a subset of

the training data as support vectors and they are crucial to the

correct operation of this algorithm. In theoretical terms, the

support vectors are the training samples that are closest to the

decision surface and hence are the most difficult to classify. By

finding the largest margin between these most difficult points,

the algorithm can maximize the distance between classes and

also guarantee that the decision region obtained for each class

is the best one possible [43]. Figure 5 shows an example of an

SVM classifier using linear mapping. For non-linear mapping,

SVM can use different types of kernels, such as polynomial or
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Fig. 5. An example of an SVM optimal linear hyperplane. The figure shows
two classes, A and B, the green circles denote the support vectors and the
shaded region denote the optimal decision boundary obtained. As it can
be seen, by finding the largest margin between the two classes, the SVM
algorithm determines the best decision region for each class.

Gaussian kernels. For a more thorough review of SVM, please

refer to [26], [43], [53], [67].

In the cellular networks domain, SVM is being applied in

self-optimization and self-healing scenarios, more specifically

in mobility optimization [30], [68], fault detection [69] and

cell outage management [70], [71].

5) Decision Trees: Decision Trees (DT) are constructed by

repeated splits of subsets of the original data into descendant

subsets, however, despite being conceptually simple they are

very powerful. The basic idea behind tree methods is that,

based on the original data, a set of partitions is done so that the

best class (in classification problems) or value (in regression

problems) can be determined. The fundamental idea behind

the partitions is to select each split so that the data contained

on the descendant branches are ”purer” than the data in the

parent nodes [72].

In SON scenarios, tree algorithms are basically used to

perform self-optimization and healing, either by performing

mobility optimization [60], coordinating SON functions [73],

detecting cell outage [40] or by doing classification of Radio

Link Failures (RLFs) [74]. Figure 6 shows an example of

a classification decision tree adapted from [74]. For more

information on decision trees, please refer to [26], [72].

6) Recommender Systems: also known as Collaborative

Filtering (CF) [75], [76], are a class of algorithms with the

objective to provide suggestions for users based on the opin-

ions of other users [77]. A simple example of recommendation

algorithms are the suggestions made by e-commerce or video-

based websites. The objective of a recommender system is to

predict a set of items for the current user based on a database

of other users. There are two general classes of recommender

algorithms: memory-based and model-based algorithms [78].

The memory-based algorithm tries to make predictions for a

particular user based on the preferences of other users which

are currently on the database’s memory. In addition, it also

utilizes some knowledge about the current user, which can be

Fig. 6. An example of a decision tree classification adapted from [74]. In
this problem, after a Radio Link Failure (RLF) occurred, the algorithm will
try to identify the cause of the problem based on other measurements, such
as Reference Signal Received Power (RSRP) and Signal to Interference plus
Noise Ratio (SINR). Based on these measurements and comparing the RSRP
with threshold and measuring its difference, the RLF events are then classified
into one of three possible classes.

of different items that the user has rated in the past. Together

with this previous information, a set of weights is calculated

from the user’s database and a prediction can be made. On

the other hand, the model-based algorithm utilizes the user

database as a reference and tries to build a model based on

it. It then utilizes this model to predict a recommendation for

the active user.

Recommender systems are very powerful and can be used

in a wide range of applications. In cellular networks, most

research is being done applying recommender systems to

self-healing, more specifically to the cell outage management

problem [79]–[81], but it can also be found on optimization

of content caching [82].

B. Unsupervised Learning

In the case of unsupervised learning, an algorithm is given

a set of inputs and its goal is to correctly infer the outputs

without having a supervisor providing the correct answers

or the degree of error for each observation. In other words,

this learning method is given a set of unlabeled input data

and it must correctly learn the outcomes [26]. Examples

of unsupervised learning algorithms consist of clustering al-

gorithms, combinatorial algorithms, Self Organizing Maps

(SOM), density estimation algorithms, Game Theory, etc..

In SON, unsupervised learning is applied in several do-

mains, ranging from configuration of operational parameters

[83], [84], caching [82], [85], [86], resource optimization

[56], [87], [88], HO management [89], [90], mobility [91],

load balancing [92], fault detection [93]–[102], cell outage

management [49], [103]–[106], to sleeping cell management

[50], [107].

Below is a review of the most popular unsupervised learning

algorithms applied in SON.

1) K-Means: one of the most popular unsupervised learning

algorithms found in the literature is K-means. This clustering
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algorithm is very useful in finding clusters and its centers in

a set of unlabeled data. The algorithm is very simple and

only requires two parameters: the initial data set and the

desired number of clusters. The algorithm works as shown in

Algorithm 1. As it can be seen, the algorithm is very easy and

quick to deploy, hence its popularity. For more information on

K-means, please refer to [26].

Algorithm 1: K-means

Data: Initial Data set (D), desired number of clusters

(K)

Initialize K cluster centroids with random data points;

while not converged do

For each center identify the closest data points;

Compute means and assign new center;

end

In SON, K-means can be found in mobility optimization

[60], caching problems [82], resource optimization [56], [88],

fault detection [108], and cell outage management [103].

2) Self Organizing Maps (SOMs): another popular cluster-

ing method is the SOM algorithm. This technique attempts to

vizualise similarity relations in a set of data items. Its main

goal is to transform an incoming signal of any dimension

into a one, or more commonly, two dimension discrete map.

Because of this inherit property of SOM, it can also be viewed

as a dimension reduction technique. Furthermore, since SOM

implements an orderly mapping of a data of high dimension to

a lower dimension, SOM can convert complex, non-linear re-

lationships presents in the original data into simple geometric

relationships in the lower plane [109].

A SOM consists of a grid of neurons, also known as

prototype units, similarly to a NN. However, in SOM not only

each neuron denotes a specific cluster learned during training,

but neurons also have a specific location, so that units that are

close to one another represent clusters with similar properties.

To illustrate this concept, consider a SOM algorithm with a

two-dimensional 4x4 grid, as shown in Fig. 7.

The way that SOM works is by having several units compete

for the current input. Once a sample is fed into the system the

SOM network determines which neuron the current sample

is closest to by measuring the weight between the current

sample and all possible neurons. The neuron that has the

closest weight, usually measured by a distance metric like

the Euclidean distance, then is the winning node, commonly

known as the Best Matching Unit (BMU) and the sample is

then assigned to that cluster.

In cellular networks, SOM can be applied in the configu-

ration of operational parameters [83], coverage and capacity

optimization [110], HO management [89], [90], resource opti-

mization [83], fault detection [93]–[96], [108], [111], and cell

outage management [52].

3) Anomaly Detectors: another group of algorithms that

is quite popular nowadays are the ones involving Anomaly

Detection (AD) techniques. These techniques have as main

goal to identify data points that do not conform to a certain

pattern observed in the data. These points are known as

Fig. 7. An example of a 4x4 SOM network. The input layer, shown in
orange, consisting of a two dimensional vector fully connected to all nodes
of the SOM network. When an input is fed into the system, the weights
between that sample and all possible clusters are measured. The neuron that
has the closest weight is then assigned as the winning neuron (BMU), shown
in yellow, and the input sample is classified as belonging to that cluster.

anomalous and typically mean that something is wrong or,

at least, different than the usual behavior of a system.

There are several types of anomaly detection algorithms,

they can be supervised, semi-supervised and unsupervised, but

by far, the most common type found in SON applications is the

unsupervised version. However, these unsupervised anomaly

detection algorithms can be very different from each other.

Some algorithms rely on the measurement of statistics from

the initial data and measuring how far new data points are from

the initial distribution. Other techniques rely on the density

surrounding a set of points and based on how dense this region

is the new point is then labeled as normal or anomalous. On the

other hand, other algorithms can depend on the measurement

of correlation between new points and the trained data or even

on deviations from a simple set of rules [112], [113].

For readers interested in anomaly detection approaches

focused in wired communication networks, a good resource

is [114]. In cellular systems, anomaly detection algorithms

are used mainly in self-healing to detect abnormal network

behavior [97]–[102], [108], fault classification [98], [99], and

perform cell outage management [9], [49], [50], [52], [70],

[71], [104], [105], [107], [115], [116].

C. Controllers

Although controllers do not belong to the class of intelligent

algorithms, they have been extensively used to perform basic

SON tasks in cellular networks due to their simplicity and

ease of implementation. There are several types of controllers,

but the most commonly used in cellular applications are the

closed-loop controllers, where the output has an influence over

the inputs (feedback controllers), and fuzzy logic controllers.

Below is a description of closed-loop and fuzzy logic con-

trollers together with some examples in the context of cellular

systems.

1) Closed-Loop Controllers: also known as Feedback Con-

trollers, rely on a feedback mechanism between the input and

output in order to constantly adjust its parameters.
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Fig. 8. Block diagram of a Feedback Controller. The controller takes actions,
which affect the system. Then, based on the output response of the system,
a feedback signal is produced and compared with the desired input response.
After this comparison, this error signal is fed back into the controller.

Closed-Loop controllers have as primary objective to main-

tain a prescribed relationship between the input and output.

These systems are able to do that by comparing the input-

output function and measuring the difference between the ideal

relationship (a rule that is embedded in the controller) and

the current function to control the system. Figure 8, shows

a simple diagram of a feedback controller. By measuring this

difference (also called the error), the controller parameters can

be tuned and the desired performance can be achieved. For

more on closed-loop controllers, please see [117].

These controllers can be found in all domains of SON,

and its applications include but are not limited to: NCL con-

figuration [118]–[120], radio parameters configuration [121]–

[123], coverage and capacity optimization [122]–[130], HO

optimization [131]–[144], load balancing [145], [146], re-

source optimization [123], [147]–[149], coordination of SON

functions [150]–[152], fault detection [153] and cell outage

management [154]–[161].

However, since closed-loop controllers change their param-

eters only based on the error measurement between the current

output-input function and the desired one, they are not as

robust as other techniques that apply more sophisticated and

intelligent methods. Nonetheless, this category of algorithm

is the most researched and applied category of all references

cited in this paper, as it can be seen from the previously given

examples.

2) Fuzzy Logic Controllers: another very popular type of

controller in cellular systems applications is the Fuzzy Logic

Controller (FLC). In contrast to normal feedback controllers,

that use classical logic (Boolean logic), these controllers use

fuzzy logic, a type of logic that represents partial truths.

This process is done by applying an interpolation between

the two extremes of binary logic (0 and 1). Since these

controllers have a better granularity than standard binary logic

controllers, generally, more detailed and complex solutions can

be achieved by FLCs than feedback controllers.

A typical fuzzy controller has three main phases: fuzzifier,

inference engine and defuzzifier. The purpose of the fuzzifier

is to translate the current inputs of the system to fuzzy logic

language. Normally these inputs are translated into linguistic

terms, such as: very low, low, normal, high and very high, for

Fig. 9. Block diagram of a RL system. The agent takes actions based on
its current state and the environment it is inserted. The agent also receives a
reward or penalty depending on the outcome of its actions.

example. After that, the inference engine applies a set of rules

that will define the mapping between the input and outputs

of the system. Lastly, the defuzzifier produces a quantifiable

result by aggregating all the rules. For more information on

fuzzy logic and fuzzy controllers, please see [162], [163].

In terms of applications in cellular systems, fuzzy con-

trollers are applied in self-optimization and self-healing prob-

lems, such as backhaul optimization [164], HO optimization

[7], [90], [165]–[173], load balancing [173]–[175], resource

optimization [7], [176]–[182] and fault detection [183].

D. Reinforcement Learning (RL)

Another learning technique quite popular is RL. This learn-

ing method is based on the idea of a system, in this context

named as an agent, that interacts with its surroundings, senses

its current state and the state of the environment and chooses

an action.

However, what differentiates an RL system from others is

the process that comes after the action was taken. Depending

on the action and its consequences, the agent can receive either

a reward if the action taken was good, or a penalty, if the

action was bad [184]. Figure 9 shows a basic diagram of RL.

Typically a RL system is divided into four stages:

1) Policies, which are responsible for mapping states into

actions taken by the agent;

2) Reward function, which provides an evaluation of the

current state and gives a reward or penalty depending

on the results of the action taken previously;

3) Value function, which evaluates the expected reward

from the chosen state in the future, given the possibility

of an agent to evaluate a state in the long-term;

4) Environment model, which determines the states and

possible actions that can be taken by the agent;

Because of this reward mechanism that the RL algorithms

have, there is also this trade-off notion of expectation versus

exploitation, in which the agent must decide if it is better

to explore what result taking another action would have in

the system (exploration), or if it is better to keep the current
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Fig. 10. An example of a Discrete-time Markov Chain, in which states are
represented by circles, and transition probabilities between states are assigned
by ta,b.

knowledge and maximize the rewards of the current known

actions (exploitation).

The most popular RL algorithms are: Q-Learning (QL),

which uses Q-functions to find the best policies of the system

and Q-Learning combined with Fuzzy Logic, also known as

Fuzzy Q-Learning (FQL). For readers interested in Reinforce-

ment Learning, please refer to: [184], [185].

In cellular systems, RL algorithms are quite popular and are

applied mainly in self-optimization. Some of its applications

include: radio parameters configuration (self-configuration)

[186]–[188], caching [189], backhaul optimization [190]–

[193], coverage and capacity optimization [186]–[188], [194],

[195], HO parameters optimization [196]–[198], load balanc-

ing [175], [199]–[201], resource optimization [193], [202]–

[207] and cell outage management (self-healing) [49], [71],

[186]–[188], [208], [209].

E. Markov Models

These stochastic models are mainly used in randomly

changing systems and must obey the Markov property. The

Markov property is a well-known property in statistics and

refers to the memoryless property of a stochastic process. It

states that the conditional probability distribution of future

states depends only on the value of the current state and it

is independent of all previous values [53], [210]. There are

several different Markov models, but the most common ones

applied to cellular networks are Markov Chains (MC) and

Hidden Markov Models (HMM). The main difference between

MC and HMM is the observability of the system states. If

the states are fully visible, then MC are the best option, else,

if the states are partially visible or not visible at all, HMM

is preferred. Figure 10 shows a typical discrete-time Markov

Chain model.

In the context of cellular systems, Markov models are

mainly applied to self-optimization and self-healing. Appli-

cations include: mobility management [211]–[215], resource

optimization [216], [217], fault detection [218] and cell outage

management [219].

F. Heuristic Algorithms

Heuristic algorithms basically consist of simple algorithms

that follow certain guidelines or rules in order to make the

best possible decision for the system at a given time. Normally

these algorithms are applied when there is no known solution

to a specific problem, or the solution is too costly to compute.

By using heuristics, an approximate and sub-optimal solution

can be found.

A simple example of heuristic is brute-force search, which

is used when solutions to problems are impractical to be

calculated. Another class of heuristic methods is the meta-

heuristics. Similarly to basic heuristic methods, metaheuristics

also follow a set of basic rules, but in contrast to the prior

approach, metaheuristics are more complex and more high-

level, which lead to more optimized solutions than simple

heuristics. For more information on heuristics, please follow:

[220].

In the context of cellular systems, heuristics are applied

mainly in self-optimization in coverage and capacity optimiza-

tion [221], [222], and load balancing [223]–[226].

Another commonly found type of heuristics are the Genetic

Algorithms (GA), which were inspired by concepts from

nature, such as evolution and natural selection. As its nature

counterpart, GAs use the mechanism of evolution and survival

of the fittest in order to evolve a family of solutions and find

the best solution after a certain number of generations. Further

reading on GAs can be found on [227]–[229].

Despite being quite simple, GAs can not only find solutions

to complex problems, but also solve non-deterministic prob-

lems. In the context of cellular networks, these algorithms can

be found applied to solve all different kinds of issues, from

radio parameters configuration [230], coverage and capacity

optimization [231]–[233], HO optimization [234], [235], load

balancing [236], resource optimization [57], to cell outage

management [237]–[239].

G. Dimension Reduction

Dimension reduction can take two forms, feature selection

or feature extraction. Feature selection consists of algorithms

that select only the best, or most useful, features from an initial

set of features. On the other hand, feature extraction algorithms

rely on transformations applied to the initial set of features in

order to produce more useful and less redundant attributes.

The main motivation behind dimensionality reduction tech-

niques is to reduce the complexity of classifiers. In addition

to complexity reduction, these techniques are also used to

improve performance of algorithms and provide better gen-

eralization, as it aims to remove redundancy and less useful

data from the initial data set [240].

In SON applications, the most popular dimension reduction

techniques are Principal Component Analysis (PCA) [42],

[107], [183], Minor Component Analysis (MCA) [42], [103],

Diffusion Maps (DM) [39], [241] and MultiDimensional Scal-

ing (MDS) [9], [49], [50], [70], [71].

All of these techniques apply a certain kind of transforma-

tion in the original data set in order to convert it to another

space. PCA and MCA, for example, apply an orthogonal trans-

formation in order to maximize the variance of the variables

in the transformed space. MDS, on the other hand, tries to

reduce the dimension of the original data set such that the
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distance between the items in the transformed space reflects

the proximity in the original data.

Lastly, diffusion maps is a non-linear technique which tries

to reduce the dimension of the data by analyzing geometry

parameters of the data set. In other words, the DM technique

analyzes the position between points in the original data set,

which can be measured by the Euclidean distance, and tries to

produce a reduced version in which the diffusion distance in

the transformed space matches the original Euclidean distance.

For more on dimensionality reduction techniques, please

refer to [242]–[244].

H. Transfer Learning

Basically, Transfer Learning (TL) consists of applying a

known model used in a previously known data set to another

application. Despite seeming quite unintuitive, this knowledge

transfer between different domains can provide significant

improvements in learning performance, as no new model needs

to be trained. TL can be applied in regression, classification

and clustering problems and it has no restriction on the type

of ML technique used. For further reading on TL, please refer

to [245].

In cellular systems, TL can be found in caching [246],

resource optimization [205], and fault classification [247].

III. LEARNING IN SELF-CONFIGURATION

Self-configuration can be defined as the process of auto-

matically configuring all parameters of network equipment,

such as BSs, relay stations and femtocells. In addition, self-

configuration can also be deployed after the network is already

operable. This may happen whenever a new BS is added to

the system or if the network is recovering from a fault and

needs to reconfigure its parameters [10].

In [6], for example, the authors propose a generic framework

in order to tackle the problem of self-configuration, self-

optimization, and self-healing. From the perspective of self-

configuration, the authors provide some basic steps that are

needed to achieve an autonomous deployment of the network.

The steps are as follows: first, the authors assert that a BS

should already have its basic operational parameters config-

ured before being deployed, so that no professional skilled

persons are required to deploy it. After that, the second stage

consists of scanning and determining the BS’s neighbors and

creating a NCL. Lastly, the new deployed BS configures its

remaining parameters and the network adjusts the topology

in order to accommodate it. Other authors, such as in [223],

propose a solution based on an assisted approach, in which

after the deployment of a new BS, it senses and chooses a

neighbor and request it to download all the necessary opera-

tional parameters. After that, the BS configures its remaining

parameters automatically.

Regardless of the approach taken, it can be seen that both

solutions have a few steps in common. These steps can be

divided into:

1) Configuration of operational parameters;

2) Determination of new BS neighbors and creation of

NCL;

3) Configuration of the remaining radio related parameters

and adjustment of network topology;

In order to perform self-configuration, several learning tech-

niques are being applied in order to configure, not only basic

operational parameters, but also to discover BSs neighbors

and perform an initial configuration of radio parameters.

However, due to the increasingly complexity of BSs, which

are expected to have thousands of different parameters that can

be configured (many with dependencies between each other)

and the possibility of new BSs joining the network or existing

ones failing and disappearing from their neighbors’ lists, the

process of self-configuration still provides quite a challenge

for researchers.

Based on these steps, three major use cases of self-

configuration can be defined and are reviewed below, together

with their ML solutions.

A. Operational Parameters Configuration

The first stage of self-configuration consists of the basic

configuration of a BS, in which it learns its parameters so that

it can become operable. These parameters can be IP address,

access GateWay (aGW), Cell IDentity (CID), and Physical

Cell Identity (PCI). In addition to these parameters, other

authors, such as in [248] and [83], also propose to perform

network planning in an autonomous way.

In [248], the authors propose a framework to characterize

the main Key Performance Indicators (KPI) in a LTE cellular

system. After that, the authors’ hybrid approach, which com-

bines holistic planning with a semi-analytic model, is used

in order to formulate a multi-objective optimization problem

and determine the best cell planning parameters, such as: BSs

location, number of sectors, antenna heights, antenna azimuth,

antenna tilts, transmission power and frequency reuse factor.

On the other hand, authors from [83] develop a SOM

solution in order to optimize the network parameters of a Code

Division Multiple Access (CDMA) network. The solution

optimizes not only planning parameters, such as the number

of BSs in a certain area and their location, but also radio

parameters, like an antenna’s maximum transmit power and

its beam pattern.

Regarding the configuration of basic parameters, several

works have been proposed, such as: [6], [84], [223]. In [6],

the authors develop a last-hop backhaul oriented solution,

which offers solutions in all realms of SON, covering self-

configuration, self-optimization and self-healing.

In [223], the authors propose a self-configuring assisted

solution for the deployment of a new BS without a dedicated

backhaul interface for LTE networks. According to the authors,

first, the new BS should get the IP addresses of itself and

the Operation, Administration and Maintenance (OAM) center.

This can be done via Dynamic Host Configuration Protocol

(DHCP), BOOTstrap Protocol (BOOTP) or by multi-cast by

using the Internet Group Management Protocol (IGMP). After

that, the new BS searches nearby neighbors and connect with

one of them in order to request and download the remaining

operational and radio parameters.

In terms of intelligence, the solutions presented in both

[6] and [223] are not very adaptive as they require either a
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pre-configuration of its parameters or the assistance of other

BSs. By its turn, the approach presented in [84] proposes

the self-configuration of PCI and coverage related parameters

in a heterogeneous LTE-A network scenario. In terms of

PCI configuration, a grouping-based algorithm, that divides

PCI resources and BSs into clusters and segments them into

subgroups, is proposed. After that, each site is assigned into

a specific subgroup where the domain BS is assigned with

the first PCI and others BSs with random PCI of the same

subgroup. By monitoring the PCI used by other BSs, the

algorithm allows the network to maximize the PCI reuse

distance and as a result it can avoid multiplexing interference

effectively.

B. Neighbor Cell List (NCL) Configuration

Another important configuration parameter of BSs is the

NCL. Whenever a new BS is added to the system, it must sense

and discover its nearest neighbors in order to connect to them,

so that basic network functions, such as HO, can be enabled.

Two different tasks must be performed by an autonomous NCL

algorithm. First, it must discover the neighbors of a newly

deployed BS and, secondly, it must make the new BS known

to its neighbors so that it can be added to their lists.

However, most of the research in literature focuses on the

former [118]–[120], [144], [249], with the exception of, for

instance, [6], which focuses on the latter. Furthermore, most

of these solutions rely on the use of feedback controllers in

order to perform NCL configuration.

In solutions such as [119], [120], the authors apply an

automatic procedure of NCL configuration and update by

ranking the neighbor cells of the newly deployed BS according

to certain parameters, such as coverage overlap or number of

HO. After this process is done, a list is built based on them

and the neighbors are obtained. Other solutions, like [249],

rely on an even simpler method, the use of a threshold. In

their solution, the authors analyze if the SINR is higher than

a certain threshold and, if that is the case, that neighbor is

added to the NCL, otherwise it is discarded.

Lastly, authors of [118] build three different solutions, of

varying complexity, in order to configure the NCL. The first

solution is a pure distance based approach, which analyzes if

BSs fall inside a circle of a given radius within the newly

deployed BS and, if so, it adds them to the NCL. The second

solution evaluates not only the distance but also antenna

parameters of neighboring BSs and, based on cell overlap,

it determines the NCL. Finally, the third algorithm evaluates

neighbors based on their distance and antenna parameters.

However, differently than the previous solutions, where the

radius was fixed, this time the authors calculate the optimal

distance based on transmission power and using the Okumura-

Hata path loss model.

Another approach that does not involve feedback controllers

is [6], in which authors propose a solution for the new BS to

be added to existing NCL. Their approach requires the existing

BSs to scan the environment periodically using a beaconing

mechanism, in which the BSs would exchange information

between themselves and the new BS could be integrated into

the existing network.

C. Radio Parameters Configuration

After NCL configuration, the BSs must configure its re-

maining radio parameters in order to become fully operable

and provide service. The configuration of these parameters can

involve the adjustment of transmission power, antenna azimuth

and down-tilt angles, pilot transmission power, HO parameters

(like hysteresis and Time To Trigger - TTT), and topology

reconfiguration (backhaul configuration).

In [6], for example, the authors propose a new backhaul

update process, in which, after the newly deployed BS is

configured, the network computes new routing paths and

optimizes its topology in order to accommodate the new

node. By reconfiguring the network backhaul and monitoring

network resource utilization and performance, this solution can

optimize the network’s connections and provide better latency,

reliability and energy saving.

Other tecniques, such as [84], [250], [251] aim to adjust

the radio parameters based on measurements and data gathered

from its neighbors. On [250], for example, the authors propose

a framework for self-configuration of a LTE BS, in which

a subset of BS parameters was assigned dynamically. The

solution proposed, Dynamic Radio Configuration Function

(DRCF), assesses the coverage area of its neighbors in order to

determine the best parameters of the new BS, form cell clusters

and provide Tracking Area Codes (TAC) based on neighboring

cells. Similarly, the authors from [251] build an antenna down-

tilt and transmit power configuration mechanism based on its

neighbors. The authors first state that the new BS should be

deployed with low power and high down-tilt settings and as

the new BS communicates with its neighbors, it would slowly

adjust these values.

Another work that leverages the use of data in order to

optimize its parameters is [84]. In this work, the authors

propose a mechanism to adjust transmit power levels in order

to mitigate interference between neighboring cells.

Another solution that can be encountered in radio parame-

ters configuration is the feedback controller, as it can be seen

from [121]–[123]. In [121], for example, the authors build

an algorithm for self-configuration of HO parameters, mainly

hysteresis and TTT, in a LTE network scenario. To determine

the best HO parameters, the authors define a HandOver

Aggregate Performance (HOAP) metric, which depends on the

RLF Rate, HO rate, and Ping-Pong rate. The algorithm then

searches for an optimal point by adjusting the variables (one

at a time) after a certain period of time and also depending

on the feedback of previous HOAP measurements.

On the other hand, the authors from [122] propose two

algorithms that automatically adjust pilot power of a femtocell.

The first algorithm is purely distance based, in which the

femtocell power is configured so that at its edge, it has

the same power of the strongest macrocell BS. The second

solution uses the same principle as before, but it measures

the received macrocell power instead of estimating it. By

comparing the macrocell power at certain time intervals and

due to the variations in the wireless channel, the power of

femtocells can be constantly adjusted in a feedback loop.

In [123], the authors apply a self-configuration scheme

for femtocells which improves indoor coverage and promotes
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energy efficiency of the network. Similarly to [122], the

algorithm for self-configuration is distance-based and works

by adjusting the transmit power of each femtocell to a value

that is on average equal to the strongest power received from

the strongest macrocell at a radius of 10 meters. By constantly

adjusting this power, the authors are able to achieve a constant

cell range for the femtocell.

Another learning technique that is quite popular is RL,

more specifically, FQL, as it can be seen from [186]–[188].

In [188], for example, the authors propose the configuration

of antenna down-tilt in order to adjust its coverage and

capacity. The authors analyze their distributed algorithm in

a LTE network scenario and present three different learning

strategies, comparing them in terms of learning speed and

convergence properties. The three different strategies are in

terms of how many cells of the network can execute the FQL

algorithm at the same time. In the first case, the authors test

only one cell per time slot, in the second scenario the authors

allow all cells to update at the same time and in the third

scenario a mid-term approach is proposed, in which cells

are divided into clusters and only one cluster is allowed to

update its down-tilt angle per time slot. Results show that all

approaches are able to learn optimal antenna down-tilt angle

settings, but the first and second approach can be either too

slow or too complex, respectively. Hence, the authors conclude

that the best solution, that provides a good trade-off in terms

of speed and complexity, is the third one.

Similarly to [188], authors from [187] propose a distributed

FQL algorithm in order to configure antenna’s down-tilts in

a LTE network scenario. The authors evaluate their algorithm

performance in terms of spectral efficiency and also compare

their algorithm with a related fuzzy algorithm, the Evolu-

tionary Learning of Fuzzy rules (ELF). Another solution that

utilizes the concept of FQL is the work in [186]. In this paper,

the authors attempt to change an antenna’s down-tilt angle

setting in order to achieve self-configuration, self-optimization

and self-healing in LTE networks. The authors compare their

solution with the standard ELF solution and also consider two

sources of noise, thermal and receiver noise.

Another paper that proposes a solution to self-deploying and

self-configuring networks is [230]. In this work, the authors

apply a GA solution to automatically configure BSs pilot

transmit power levels, while also enabling the reconfiguration

of their powers whenever a BS is added or removed from the

network. Upon deployment, the BSs would enter a state in

which they would seek surrounding neighbors and approxi-

mate their distances by adjusting its power levels accordingly.

After this process is done, the BSs keep updating themselves

by using feedback measurements from mobile users in order

to make minor adjustments to cell sizes and fill possible gaps

that might exist in the network.

A summary of the self-configuration use cases and their

respective learning techniques is presented in Table II.

IV. LEARNING IN SELF-OPTIMIZATION

In SON, the concept of self-optimization can be defined

as a function that constantly monitors the network parameters

and its environment and updates its parameters accordingly in

order to guarantee that the network performs as efficiently as

possible [10]. Since the environment in which the network

is inserted is not static, changes might occur and the BSs

might need to adjust its parameters in order to accommodate

the demands of the users. Changes can be in terms of traffic

variations, due to an event happening in a certain part of a

city for example, coverage, due to a network failure, capacity,

because of a change in users mobility patterns, such as a road

block or an accident, and many others.

Due to this fact, some of the initial parameters configured

in the self-configuration phase might not be suitable anymore

and can require a change in order to optimize the network’s

performance. Since there are lots of different optimization

parameters in the network, many ML algorithms can be

applied. In addition, mobile operators also collect lots of data

during network operation, which further enables the applica-

tion of intelligent solutions in order to optimize the network.

However, despite the huge amount of data collected, self-

optimization is still a challenging task, as many parameters

have dependencies between them and a change in one of them

can alter operation of the network as a whole.

Based on the use cases defined by [12] and the literature

reviewed in this paper, SON use cases in terms of self-

optimization can be defined and will be described in the

following.

A. Backhaul

One important aspect of future cellular network systems is

the backhaul connection, or in other terms, the connection

between the BSs and the rest of the network. Current cellular

systems only evaluate the quality of the connection between

the end-user and the BS. In the future, however, as systems will

require to support a wider range of applications and different

types of data, this approach might not be suitable and a more

end-to-end approach, considering the whole link between the

user and the core network might be better. With that in mind,

some researchers developed solutions in order to solve the

backhaul problem in future networks in terms of QoS and

QoE provisioning [190]–[193], congestion management [6],

[252] and also topology management [164].

Solutions such as [6], [252] propose a backhaul solution in-

volving flexible QoS schemes, congestion control mechanisms,

load balancing and management features. In these solutions,

the authors demonstrate a test-bed involving a network con-

sisting of twenty nodes and with separated control and data

plane. Another possible solution for backhaul optimization

is proposed in [164], in which the authors utilize a FLC to

arrange the network topology in response to changes in traffic

demand.

Other backhaul optimization solutions are the works pro-

posed by Jaber et al. in [190]–[193]. In these works the

authors used QL to intelligently associate users with different

requirements, in terms of capacity, latency and resilience, to

small cells depending on the backhaul connection that they

offered. If the backhaul and the user needs match, then the

user would be allocated to that cell, otherwise a new cell
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TABLE II
SELF-CONFIGURATION USE CASES IN TERMS OF MACHINE LEARNING TECHNIQUES

Operational

Parameters
NCL

Radio

Parameters

Unsupervised

Learning

SOM [83] - -

Misc. [84] - -

Controllers Feedback - [6], [118]–[120] [6], [121]–[123]

Reinforcement

Learning
FQL - - [186]–[188]

Heuristics GA - - [230]

Miscellaneous - [6], [223], [248] [249]
[84], [250],

[251]

is searched. Results showed that the proposed solutions were

able to achieve better QoE for all users at the cost of a small

decrease in total throughput.

As it can be seen, the concept of backhaul optimization,

despite being very promising and also considered a necessity

for future networks, is not that popular, hence, future research

directions can point to this area.

B. Caching

During the last couple of years, the fast proliferation of

smart-phones and the rising popularity of multimedia and

streaming services led to an exponential growth in multimedia

traffic, which has very stringent requirements in terms of data

rate and latency. In order to address these requirements and

also reduce network load, specially during peak hours, future

cellular networks must be coupled with caching functions.

Some problems that arise, however, are the decision of what,

where and how to cache, in order to maximize the hit-ratio of

the cached content and provide gains to the network.

In [253], Wang et al. provide a good overview of why

caching is necessary in future networks, what might be the

gains of caching at different locations within the network

and also presents some of the current challenges encountered.

In terms of caching solutions, several approaches are being

considered, such as in [17], [82], [85], [86], [189], [246].

In [17], the authors explore various ways of integrating big

data analytic with network resource optimization and caching

deployment. The authors propose a big data-driven framework,

which involves the collection, storage and analysis of the data

and apply it to two different case studies. The paper concludes

that big data can bring several benefits in mobile networks,

despite of some issues and challenges that still need to be

resolved.

Other caching solutions, like in [82], analyze the role of

proactive caching in mobile networks. In this paper, the authors

analyze and propose two solutions. First, the authors develop

a solution to alleviate backhaul congestion. This mechanism

caches files during off-peak periods based on popularity and

correlations among users and file patterns and is based on

the concept of CF. The second solution analyzes a scenario

that explores the social structure of the network and tries to

cache content in the most relevant users, allowing a Device-

to-Device (D2D) communication. These influential users, as

they are called, would then have content cached into their

Fig. 11. An illustration of the solution in [246] based on TL. The system
consists of two domains, on the top, the source domain, composed of a
network based on D2D connections. On the bottom, the target domain, which
considers a normal scenario of a BS (with limited backhaul link capacity)
serving users. After data is gathered from the source domain and a model is
built, it can be transferred to the target domain.

devices and disseminate it to other nearby users. By using

K-means algorithm, this second approach can cluster users

and determine the set of influential users and which users can

connect to them.

Another approach from the same authors as in [82] is shown

in [246]. In this work the authors apply a new mechanism

based on TL in order to overcome the problems of data sparsity

and cold-start problems that can be encountered in CF. In this

new solution, the authors assume that they have gathered data

and built a model for a source domain, composed of a D2D

based network. After that, the proposed TL solution smartly

borrows social behaviors from the source domain to better

learn the target domain and builds a model that can smartly

cache contents into the BSs. A figure showing this process is

shown in Fig. 11.

Other solutions for caching optimization include the work in

[85], [86], where the caching problem is modeled as a game

theory problem. In [85], the authors model the system as a

many-to-many matching game and propose an algorithm that

is capable of storing a set of videos at BSs in order to reduce

delay and backhaul load. On the other hand, Blasco et al.,

in [86], tackle the optimization problem of storing the most

popular contents in order to relieve backhaul resources.
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Another work that researched the impact of caching in

mobile networks is [189]. In this solution the authors propose

the optimization of caching in small cell networks and divide

it into two sub-problems. First, a clustering algorithm (spectral

clustering) was utilized in order to group users with similar

content preferences. After that, RL is applied so that the BSs

can learn which contents to cache and optimize their caching

decisions.

C. Coverage and Capacity

Another challenging issue in future network systems is the

optimization of coverage and capacity, in which the network

tries to optimize itself in order to achieve the best trade-off

between coverage and capacity. Based on this, several authors

are proposing intelligent solutions to tackle this problem.

In [110], for example, the authors apply SOM to optimize

the number of cells inside a cluster and also antenna parame-

ters in order to achieve a better coverage. In this work, the

authors propose two different scenarios. The first scenario

changes only cluster sizes, while the second one changes both

cluster sizes and antenna parameters. On top of that, two

SOMs are considered to perform cluster optimization. It is

shown that the first scenario provides a gain of around 5%,

while the second one achieves a gain in the order of 13%.

Other approaches, such as in [122], [126], [127], utilize

feedback controllers in order to optimize the coverage and

capacity of the network. Claussen, et al., in [122], develop

a coverage adaptation mechanism for femtocell deployments

that utilizes information about mobility events of passing-by

and indoor users to optimize femtocell coverage.

Fagen et al., in [126], propose a method to simultaneously

maximize coverage while minimizing the interference for a

desired level of coverage overlap. This optimization can be

done for individual BS, a cluster of BSs or the whole network.

On the other hand, Engels et al., in [127], develop an algorithm

that tunes transmit power and antenna down-tilt angle in order

to optimize the trade-off between coverage and capacity via a

traffic-light based controller.

Furthermore, the work in [222] considers a novel Multi-

Objective Optimization (MOO) model and proposes a meta-

heuristic approach in order to perform coverage optimization.

The solution simulated a LTE network scenario and aimed

to maximize the performance of users in a given cell in

terms of fairness and throughput. Other solutions, such as in

[232], [233], attempt to optimize the coverage of femtocells

by using GAs. In both solutions, the authors tried to perform

a multi-objective evaluation and the algorithm would try to

satisfy three rules simultaneously: minimize coverage holes,

perform load balancing and minimize pilot channel transmit

power. In the end, the solution returns the best individual

of all populations and changes the pilot power of femtocells

accordingly.

1) Antenna Parameters: another set of parameters that also

have an impact on coverage and capacity of the network are

the antenna parameters, mainly: antenna down-tilt and azimuth

angles, and transmit power. In particular, the optimization

of the antenna parameters often requires tuning after the

initial operator’s configuration and are very delicate, requiring

not only an expert, but also a lot of precision to perform.

Hence, it can be quite costly for the operators to perform

this optimization and that is why several papers are trying

to automatically optimize the antenna’s parameters.

In [124], the authors propose four different methods in order

to optimize traffic offload of macrocells to microcells. The first

two solutions utilize only microcell measurements, while the

third method is based on Minimization of Drive Test (MDT)

measurements and the last method is a hybrid of all three

previous solutions. All methods, however, aim to maximize

capacity offload from macrocells, or in other terms, maximize

microcells’ coverage. By changing the antenna down-tilts and

transmission powers according to the measurements collected

via a feedback loop mechanism this offload is achieved.

In [125], the authors develop an optimization algorithm to

find the best settings for antenna down-tilt angle and common

pilot channel power of BSs. The solution begins by performing

an evaluation of the network and analyzing the obtained

results. After that, an iterative process formed by a control

loop begins. In this process, parameters are changed according

to certain rules and how far the parameters are from optimal

until an accepted level is reached.

Other works, such as in [186]–[188] aim to optimize the

down-tilt angle of the antennas by applying FQL in a LTE

network scenario in order to achieve better coverage. While

in [221], Eckhardt et al., propose an algorithm for antenna

down-tilt angle optimization in order to optimize the spectral

efficiency of users. The approach considered a LTE network

scenario and is based on heuristics to find the best antenna

parameters.

2) Interference Control: interference has always been a

problem affecting the performance of communications systems

and in future networks this will not be different. Hence, several

intelligent approaches are being considered in order to cope

and control this limiting factor.

In [128], for example, the authors propose a distributed

self-organizing femtocell management architecture in order

to mitigate the interference between femtocells and macro-

cells. The solution consists of three feedback controllers, in

which the first loop controls the maximum transmit power of

femtocell users, the second determines each femtocell user’s

target SINR and the third attempts to protect the users uplink

communication.

Another approach that involves the application of feedback

controllers is the work in [129]. In this work a distributed

algorithm applied to LTE networks, which performs Inter-Cell

Interference Coordination (ICIC), is proposed. The algorithm

assigns resources to cells and works similar to a frequency

planning solution. It consists of two phases: in the initial

phase, each cell attempts to assign resources by itself and,

in the second phase, cells optimize themselves by resolving

sub-optimal assignment of the resources. It is shown that the

algorithm is capable of achieving good results and also assign

resources reliably.

Mehta et al., in [130], develop two solutions in order to

address the problem of co-layer interference (interference be-

tween neighbors) in a heterogeneous macrocell and femtocell
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network scenario. The two schemes attempt to mitigate co-

layer interference while also improving the minimum data rate

achieved by femtocell users and ensuring fairness to them.

The first scheme proposes a modification to the technique of

Adaptive Frequency Reuse (AFR) by adding power control

techniques to it, while the second scheme applies a self-

organized resource allocation solution based on a feedback

controller in order to allocate resources and manage the

interference.

In [123], the authors also build a self-configuration and opti-

mization scheme for a network of femtocells overlaid on top of

a macrocell network. The algorithm automatically configures

the femtocells transmit power and promotes self-optimization

via a feedback controller to automatically control when to turn

on or off femtocells in order to reduce interference between

macro and femtocells.

Other approach to interference mitigation is the work in

[194]. In this work, the authors model the coexistence of a

macrocell and femtocell network and develop a distributed

algorithm for femtocells to mitigate their interference towards

the macrocell network. The authors divide the problem into

two sub-problems of carrier and power allocation. The carrier

allocation problem is solved via QL, in which at every time

instant every femto-BS is in a given state. The femto-BSs

then build their local interference map in every carrier, take

an action and receive an immediate reward. While the second

sub-problem, of power allocation, is solved using a gradient

method.

Another solution that utilizes the concept of RL, is the work

in [195]. In this paper Dirani et al. propose a solution to

the problem of ICIC in the downlink of cellular Orthogonal

Frequency-Division Multiple Access (OFDMA) systems. The

problem is posed as a cooperative multi-agent control problem

and its solution consists of a Fuzzy Inference System (FIS),

which later is optimized using QL. The solution is based on the

concept of adaptive soft frequency reuse and the ICIC concept

is presented as a control process that maps system states into

control actions, which can be modeled as a RL system. The

authors consider that the state of the system is defined by

its transmit power, mean spectral efficiency and aggregated

spectral efficiency, the available actions consist of reducing the

transmit power by a certain amount and the reward is defined

as the harmonic mean of the throughput.

Lastly, another solution comes from Aliu et al., in [231]. In

this work the authors adopt a novel Fraction Frequency Reuse

(FFR) based on GA for ICIC in OFDMA systems. The main

difference of this solution is that it not only attempts to use a

new technique, but also considers a non-uniform distribution of

users and characterizes it by determining its center of gravity.

The proposed solution aims to, first, find the center of gravity

of each sector and current state of each sector and then apply

a GA to obtain the global state of all sectors.

D. Mobility Management

Another important aspect of future cellular network systems

is the ability to predict user’s movement in order to better

manage resources and reduce the cost of network functions,

such as HO. Mobility management can be defined as the

process in which the network is able to identify in which cell

the user currently is [59]. Current location techniques involve

databases that store the locations of the users and every time

the user changes position these databases need to be updated

[27]. As it can be seen, this method is not very efficient. If

the network could predict a user’s next cell or even the path it

will traverse, several gains in the network performance could

be observed, hence, different solutions are being developed to

this challenging problem.

Some papers, such as in [27], [28], [44], [59]–[63] use back-

propagation NNs in order to predict the next cell a user can

be. The basic idea behind all these papers is to use the concept

of NN to learn a mobility-based model for every user in the

network and then make predictions of which cell the user is

most likely to be next.

In [60], for example, the authors develop a method consist-

ing of two cascaded ML models. The first model performs

clustering via K-means while the second does classification.

In classification, the authors compare the performance of three

different methods, mainly, NN, DT and naive Bayes. Results

show that the proposed model achieves better accuracy than

performing only classification alone and also that the classifier

that performed the best was the DT classifier. Despite using

NNs as primary intelligent strategies, some papers also use

different learning techniques. Akoush et al., in [44], combine

the concept of NN with Bayesian learning in order to perform

classification tasks and predict a user’s next cell and show that

Bayesian networks outperform standard NN by 8% to 30%.

Another supervised technique that can be found in the mo-

bility use-case is SVM. In [30], for example, Chen et al. build a

model that uses only Channel State Information (CSI) and HO

history to determine a user’s mobility pattern. Their algorithm

defines an user trajectory based on the previous and next cell

it traversed and, given the input data (previous cell and CSI

sequence), the next cell can be predicted. In addition, the

solution considers multiple classifiers, one for each possible

previous cell, and trains several non-linear SVM classifiers

with Gaussian kernels. On the other hand, authors from [68]

consider the problem of estimating not only the location of

mobile nodes in an indoor wireless network, but also channel

noise. The solution uses a Hierarchical SVM model, composed

of four different levels and is able to maintain good accuracy

for speeds up to 10m/s.

Other approaches to mobility prediction are the works

in [211], [212], in which the authors propose a movement

prediction and a resource reservation algorithm, which uses

MC and HMM, respectively. In [211], the authors considered

a discrete-time MC in order to represent cell transitions and

determine a user’s path. This approach does not require any

training and optimization is done online. For each HO that

happened, a transition matrix is updated and next predictions

are made. Results show that the proposed solution is able to

correctly predict a user’s trajectory depending on a confidence

parameter and also to reduce signaling cost of the network. On

the other hand, the solution of [212], models the network as a

state-transition graph and converts the problem into a stochas-

tic problem. HMM is then applied, so that it learns the mobility



17

parameters and, later, makes its predictions. Another solution

that relies on the use of MC is the work in [213], in which

the authors propose a movement prediction and a resource

reservation algorithm. The movement prediction algorithm is

done via distributed MC while bandwidth management is done

in a statistical way.

In another set of solutions, this time from Sas et al., in

[254], [255], the problem of users that have high mobility and

experience frequent HOs is addressed. The algorithm shown

in [254] consists of three major components, a trajectory clas-

sifier, trajectory identifier and a traffic steerer. The objective

of the algorithm is to classify and match current trajectory

of users with previous trajectories stored in a database. After

that, the steerer is activated so it can decide if it is better

to keep the user in the current cell or to perform a HO. The

solution in [255] builds upon that and adds a mobility classifier

module before the steerer makes a decision. By implementing

this classifier, the algorithm becomes more generic and can

determine in which categories users fall into, e.g.: slow,

medium or high mobility, before deciding if they need to be

steered or not.

Yu et al., proposed a novel approach based on activity

patterns for location prediction in [29]. Instead of predicting

directly a user’s next location, the solution attempts to, first,

infer what the user’s next activity is going to be, to, later,

predict the location. The approach consists of three phases.

The first phase tries to infer the current activity that the user

is doing, the second attempts to infer the next activity and

the third predicts the location. The proposed algorithm uses

a supervised model to build an activity transition probability

graph, which also takes into account the variation of time, so

at different times of the day, the activities predicted by the

model might be different, as it should be. To predict a user’s

next activity and location, the paper uses the Google Places

Application Programming Interface (API) which maps places

to activities and determine a set of location candidates. Based

on the result of the model, the location that has the highest

probability is then chosen as the most probable location.

Results show that this model is more robust than others and

is also capable of achieving a higher accuracy on early stages

than others methods.

The work proposed in [91] attempts to use semi-supervised

or unsupervised techniques to reduce the effort of gathering

labeled data to perform location prediction. To perform this,

the authors build a discrete model and assign a Gaussian

distribution to model the signal strengths of received signals by

users for every location. After that, two different approaches

are taken. In the first approach, the authors label only part

of the data, making it a semi-supervised model, while in the

second approach a data set with no label is considered. After

that, the authors learn a model and use it to compute the

estimate of location for each test sample. The authors conclude

that there is significant opportunity to explore semi-supervised

and unsupervised learning techniques since even without any

labeled data, a reasonably accuracy could be obtained.

Recent work by Farooq et al. in [214] propose the use

of a semi-Markov model together with participatory sensing

in order to predict mobility pattern of users in the network.

Another recent work, is the work proposed by Mohamed et al.,

in [215], in which the authors build upon the previous model

presented in [211]. By using an enhanced MC to predict next

cell locations for users of the network, the authors demonstrate

that by predicting a user’s next location HO signaling costs can

be reduced.

E. Handover Parameters Optimization

The process of changing the channel (frequency, time slot,

spreading code or a combination of them) associated with a

connection while a call is in progress is known as HandOver

(HO). HO are of extreme importance in cellular networks due

to the nature of mobility of its users. Without this procedure,

mobility could not be supported as connections would not

survive the process of changing cells. HO can be divided into

two categories, there can be Horizontal HO, in which a user

switches between BSs of the same network or Vertical HO

(VHO), in which a user switches between BSs of different

networks.

The optimization of HO parameters are crucial in many

aspects of the network, as it can affect not only the mobility

aspect, but can also affect coverage, capacity, load balancing,

interference management, and energy consumption to name a

few. Furthermore, the tuning of HO parameters also has an

influence in several other metrics used by operators which

are important to determine if the network is performing well,

such as ping-pong rate, call dropping probability, call blocking

probability, and early or late handovers [142].

Due to its importance, a substantial amount of research

is being done in this area and several ML approaches are

being considered. In [84], for example, the authors discuss

the impact that changing the A3-offset, and Time To Trigger

(TTT) parameters or the application of certain techniques, such

as mobility estimation or Cell Range Extension (CRE) can

have in the HO procedure. The authors also propose a solution

for the Mobility Robustness Optimization (MRO) case and

demonstrate the performance gains of CRE in a heterogeneous

network scenario. Other authors, such as Soldani et al., in

[143], propose a generic framework for self-optimization and

evaluate the impact of pruning NCL in terms of HO.

One possible solution to the optimization of HO parameters,

can be in terms of NN, as seen in [35], [36], [64]. In [35], for

example, the authors develop a new HO algorithm based on

probabilistic NNs and compare it with the current hysteresis

method. Results show that the NN reduces the number of

HOs performed, reducing the cost of signaling of the whole

network. On the other hand, authors from [36], [64], propose

algorithms to optimize the HO procedure and better determine

when an user needs a HO.

Another technique utilized in order to optimize the HO

procedure is SOM. In [89], Sinclair et al. develop a method

to optimize two HO parameters, hysteresis and TTT, and

achieve a balance between unnecessary HOs and call drop

rate. The proposed algorithm has a different view from the

main solutions, as it is more interested in which cell to tune

the parameters, rather than how to tune them. Also, their model

is based on a modified version of SOM, XSOM, which allows
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for a kernel method to replace the distance measurements of

SOM, allowing a non-linear mapping of inputs to a higher

dimensional space. Results show that the XSOM solution is

able to reduce the number of dropped calls and unnecessary

HOs by up to 70%.

On the other hand, Stoyanova et al., in [90], propose two

different methods to solve VHO optimization. The first method

is based on a FLC and involves measuring certain metrics, like:

signal strength, bit error rate, latency and data rate in order to

vote pro or against the HO for each mobile terminal. While

the second approach involves the use of SOM, in which a

few parameters (same as previous method) are periodically

measured and, each of them, independently, can cause a

HO initiation. Results show that the fuzzy solution performs

really well and allows a simultaneous evaluation of different

HO criteria. Unfortunately, the same cannot be said for the

SOM solution. The authors conclude that SOM might not be

appropriate for HO decision-making.

Another class of algorithm that is widely used in HO

optimization is the class of feedback controllers, as can be

seen from [131]–[142], [144]. All of these solutions aim to

change HO parameters, such as hysteresis, TTT, A3-offset, HO

margins, cell offsets or stability periods based on the measure

of performance metrics and how far they are from optimal.

FLCs are also widely used in the context of HO optimiza-

tion, as it can be seen in the works of [7], [165]–[172]. All of

these algorithms consists of gathering certain network related

metrics, fuzzifying them and making decisions in order to

optimize HO margins, thresholds, hysteresis, TTT, or other

attributes, so that the network can make better HO decisions.

Other solutions proposed for the optimization of HO pa-

rameters are in the context of RL. Mwanje et al., in [196],

develop a distributed QL solution for the MRO use case. The

contribution of the paper lies on the fact that their solution,

QMRO, is able to adjust HO settings (hysteresis and TTT) in

response to mobility changes in the network. Depending on the

mobility observed in each cell, the algorithm applies a certain

action and receives a penalty or reward. The solution in [197]

also relies on QL. This time, however, the authors consider

both MRO and Mobility Load Balancing (MLB) use cases. In

the MRO solution, the primary goal is to determine optimal

HO settings, while in MLB the objective is to redistribute load

between cells.

Another solution to the HO optimization problem is the

work of Quintero et al. in [234]. In this paper, a hybrid

GA solution is considered in order to solve the problem of

assigning BSs to Radio Network Controllers (RNC) in a 3G

network scenario. Another approach that uses GAs, is the work

in [235], in which the authors propose a solution that enables

every cell of a LTE network to adjust its HO parameters (HO

margin, A3-offset and TTT), in order to minimize call drop

and unnecessary HOs.

In [173], Bouali, et al., propose an algorithm based on a

FLC combined with a fuzzy multiple attribute decision making

methodology in order to choose which network should a user

connect to, depending on the the users’ application and its

requirements. Furthermore, results show that the proposed

scheme is also capable of performing load balancing.

Another solution to HO management is proposed in [65], in

which the authors utilize two NNs in order to determine which

cell should an user handover to based on the user’s perceived

QoE in terms of successful downloads and average download

time.

Dhahri et al., in [256], propose a cell selection method for

a femtocell network. In this work three different approaches

for cell selection are considered, first a distributed solution is

proposed, secondly, a statistical solution is presented and the

third solution relies on game theory. By determining which

cell users should connect, the algorithm is able to maximize

the capacity and minimize the number of HOs for every user

of the network.

Another work, [198], also by Dhahri et al., proposes two

different approaches for a cell selection mechanism in dense

femtocell networks. The algorithms rely on QL and FQL and

try to optimize, based on previous data, the best performing

cell in the future for each user in the system. Results show that

the enhanced FQL outperforms conventional QL and that the

algorithms are capable of reducing the number of HOs while

also maximizing capacity.

F. Load Balancing

In order to cope with the unequal distribution of traffic

demand and to build a cost-efficient and flexible network,

future networks are expected to balance its load intelligently.

One solution, proposed in [34], aims to enable a heterogeneous

LTE network to learn and adjust dynamically the CRE offsets

of small cells according to traffic conditions and to balance the

load between macro and femtocells. The algorithm utilizes a

regression method in order to learn its parameters and then

uses its model to adjust the CRE offsets.

Another approach involves the use of feedback controllers,

such as in [145], [146]. In [145], the authors build a mathemat-

ical framework to analyze network parameters and exemplify

it on load balancing use cases. The algorithm attempts to

modify HO thresholds in order to decrease the served area of

overloaded cells and increase the area of underloaded cells and

hence, achieve load balance. Similarly, in [146], the authors

also develop a solution based on the control of HO parameters.

This time, the goal is to find the best HO offset values between

an overloaded cell and a possible target cell. Rodriguez et al.,

on the other hand, propose the use of a fuzzy controller to

achieve load balancing in LTE networks, in [174]. The authors

also implement a FLC in order to auto-tune the HO margins

to balance traffic and reduce the number of calls blocked.

Muñoz et al., also propose the optimization of HO pa-

rameters to achieve load balancing in [199] by combining

the concepts of FLC and QL in a 2G network scenario.

Another similar work, is shown in [175]. This time, how-

ever, the authors investigate the potential of different load

balancing techniques, by tuning either transmission powers

or HO margins, to solve persistent congestion problems in

LTE femtocells. The paper proposes solutions based only

on FLC and also FLC combined with QL. Results show

that the strategy that considered QL performed better and

also performance gains were larger when QL was applied to

optimize transmission power instead of HO margins.



19

Another approach that uses the concept of QL is the work

by Mwanje and Thiel in [200]. Their algorithm adjusts Cell

Individual Offsets (CIO) between a source cell and all its

neighbors by a fixed step and then applies QL in order to

determine the best step value for every situation. The authors

show that the new method performs better than a fixed-step

solution. Another work that explores the QL concept is [201].

In this paper, Kudo and Ohtsuki build a scheme in which every

user learns to which cell to send a service request in order to

reduce the number of outages and also achieve load balancing.

Other solutions, such as in [223]–[225], attempt to solve the

load balancing problem in a heuristic way. In [223], the authors

develop an algorithm to balance unequal traffic load while

also improving the system performance and minimizing the

number of HOs. The algorithm relies in a greedy distributed

solution and considers a LTE network scenario. In [224],

the authors propose a load balancing method by creating

clusters dynamically via two different methods, centralized

and decentralized heuristics. Lastly, the work of Al-Rawi, in

[225], studies the impact of dynamically changing the range

of low power nodes, by applying CRE. The solution aims to

enable femtocells to take users from macrocells by adding a

CRE offset to the received signal power of the users. Results

show that dynamic CRE benefits the majority of users in the

network, but does this by trading-off gains from picocell to

macrocell users.

In [236], the authors propose a dynamic sector tilting control

scheme by using GAs to achieve load balancing. The solution

aims to optimize sector antenna tilting to change both cell

size and shape in order to maximize the system capacity.

Another solution is the work in [226], in which an approach

is considered to balance load among neighboring cells of the

network. The algorithm consists of five different parts in which

it analyzes and determines which BS needs to have its traffic

handled and determines to which neighbor to switch it to.

The proposed method analyzes historical data collected by the

algorithm, if available, and predicts which neighbor should

have its antenna down-tilt angle changed and by how much.

Otherwise, if no data is available, a heuristic search for the

best neighbor is performed.

A recent work proposed by Bassoy et al., in [92], present an

unsupervised clustering algorithm in a control/data separation

plane. Results show that the proposed solution is able to

offload traffic from highly loaded cells to neighbor cells and

that the algorithm can work in a high dense deployment

scenario, making it suitable for future cellular networks.

G. Resource Optimization

Another important aspect of future networks is the opti-

mization and provisioning of resources. One example is the

work in [17], in which the authors explore various ways of

integrating big data in the mobile network. In this paper, the

authors propose a big data-driven framework and analyze use

cases in terms of resource management, caching and QoE.

All solutions are based on the collection and analysis of data

in order to better determine how the network can change its

parameters. The authors conclude by stating that big data can

bring several benefits to future networks, however there are

still significantly challenges that need to be solved.

Some solutions, like the ones proposed in [31]–[33], [55]–

[58] rely on the use of NNs in order to optimize network

resources. In [31], Sandhir and Mitchell develop a scheme that

predicts a cell demand after every 10 measurements taken by

the system. At each prediction interval, the predicted resource

usage in each cell is compared with the number of free

channels available and channels are reallocated between cells,

with the ones having more channels giving to the ones having

less channels.

Another solution, proposed in [32], aims to predict user

mobility by using two NN models in order to reserve resources

in advance. In [33], Adeel et al. build a cognitive engine

that analyzes the throughput of mobile users and suggests the

best radio parameters. The solution relies on the application

of a random NN and three different learning strategies are

investigated, Gradient Descent (GD), Adaptive Inertia Weight

Particle Swarm Optimization (AIW-PSO) and Differential

Evolution (DE). The authors show that AIW-PSO performs

better and also converges faster.

Zang et al., in [56], propose a method based on spatial-

temporal information of traffic flow using K-means clustering,

NN and wavelet decomposition to predict traffic volumes on

a per cell basis and allocate resources accordingly. Another

solution that applies NN, is the work in [55]. This time,

however, the authors use a regression based NN and aim to

predict the path loss of a radio link, in order to optimize the

BSs transmission power. Another solution is shown by Railean

et al. in [57]. In this work, the authors develop an approach for

traffic forecasting by combining stationary wavelet transforms,

NN, and GA. The paper adopts several different approaches

based on similarity between days and also training of the NN

and results show that when GAs were applied the performance

decreased. Similarly, the work in [58], also develops a traffic

forecasting solution and has as primary goal to determine voice

traffic demand in the network.

In [83], Binzer et al. builds a self-configuration mechanism

that determines the number of BSs needed in the network and

also a self-optimization technique in order to optimize BSs

location and antenna parameters. From an optimization point

of view, the algorithm relies in a SOM solution in order to

move BSs accordingly and minimize the total number of under

and oversupplied points in the network. The framework can

also optimize the transmit power of BSs, antenna down-tilt

angles and gains also using SOM.

Kumar et al., in [87], propose a game-theoretic approach

in order to optimize the usage of resource blocks in a LTE

network scenario. The solution uses a harmonized QL concept

and attempts to share resource blocks between BSs. Savazzi

and Favalli, in [88], build two novel approaches for downlink

spatial filtering based on K-means clustering algorithm. The

first method groups users in clusters using K-means algorithm

and then computes beam widths by considering the power

level of edge users. The second method also uses K-means

clustering, but after that, it compares for each user the best

BSs available. Based on this, users might be reassigned to

different BSs and overall system capacity can be increased.
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Another approach is the work in [205]. In this work, an

approach based on QL is investigated. The algorithm aims to

adjust femtocells power, in order to maximize their capacity

while maintaining interference levels within certain limits. In

addition to QL, the paper also develops a TL solution between

macrocells and femtocells, in which macrocells would commu-

nicate their future intended scheduling policies to femtocells.

By doing this, the femtocells can reuse the expert knowledge

already learned for a certain task and apply it to a future task.

In [147], the authors propose a cluster and feedback loop

algorithm to perform bandwidth allocation. This algorithm

explores user and network data in order to increase overall

throughput. Kiran et al., in [176] develop a Fuzzy controller

combined with big data in order to find a solution for band-

width allocation in RAN for LTE-A and 5G networks. On the

other hand, Liakopoulus et al., in [148], build an approach to

improve network management based on distributed monitoring

techniques. Their solution monitors specific parameters in each

network BS and also considers that BSs interact with each

other. Due to this interaction, BSs can take self-optimizing

actions based on feedback controllers and improve network

performance.

In [202], the authors propose a framework for Fractional

Power Control (FPC) for uplink transmission of mobile users

in a LTE network. The solution utilizes a FLC combined with

QL in order to reduce blocking rate and file transfer times.

Another solution that also utilizes QL is the work in [203]. In

this paper, the authors develop a scheme to maximize resource

utilization while constrained by call dropping and call blocking

rates. Their solution can achieve performances comparable to

other classical methods, but has the advantage of not requiring

explicit knowledge of state transition probabilities, like in

Markov solutions.

1) Call Admission Control (CAC): Call Admission Control

(CAC) is a function of network systems that tries to manage

how many calls there can be at a certain time in the system.

Basically, if a new call comes to the network, either by

someone making a new call or by transferring a call from

another cell (via HO), this function determines if that call

can be admitted or not in the system based on how many

resources are available at that current time. Based on this, it

can be said that CAC regulates access to the network and tries

to find a balance between number of calls and the overall QoS

provided, while also trying to minimize the number of dropped

and blocked calls.

Several works have been published covering the optimiza-

tion of CAC, such as: [149], [177]–[182], [206], [216]. In

[149], for example, the authors propose a CAC function that

relies not only on information about the system resources, such

as available bandwidth, but also on predictions made regarding

system utilization and call dropping probability. By constantly

monitoring these parameters and using a feedback controller,

the authors are able to predict if a call should be accepted or

rejected by the system for two different type of traffic classes,

voice traffic and multimedia traffic.

Other authors, such as [177]–[182] rely on the use of

FLCs in order to perform their CAC algorithm. Most of

these solutions rely on estimating a set of parameters, such as

effective bandwidth and mobility information in [177], [181],

cpu load in [178], or queue load in [179], to determine whether

to accept or reject a call. On the other hand, the work in [216],

propose a different approach to solve the CAC problem. In

this work, the authors utilize a generic predictor scheme (in

this case a Markov-based scheme) integrated with a threshold

based statistical bandwidth multiplexing scheme in order to

perform CAC for both active and passive requests. Based on

the predictions given in terms of user mobility and time of

arrival and permanence time, the algorithm then makes its

decision.

Another approach to CAC is developed in [206], in which

a RL solution is built in order to tackle the problem in a

CDMA network. The solution involves four steps in order to

work. First, data is collected and calls are either accepted or

rejected based on any CAC scheme available. After that, the

RL network is trained. The third step consists of applying

the trained network to the simulated scenario and the fourth

step consists of updating the network via a penalty/reward

mechanism. Results show that the proposed method achieves

better performance in terms of Grade of Service (GoS).

2) Energy Efficiency: another problem that arises with

the network densification process is the increase in energy

consumption of the network. To overcome this issue, which

would cut operators costs and also enable a greener network,

several intelligent solutions are being developed.

One possible solution is proposed by Alsedairy et al., in

[7]. In this work, the authors introduce a network densification

framework, however, instead of deploying regular small cells,

the authors exploit the notion of cloud small cells and fuzzy

logic. These cloud cells are smart cells that underlay the

coverage area of macro cells and, instead of being always on,

they communicate with the macrocells to become available

on demand. By optimizing the availability of small cells, the

network can reduce its overall energy consumption.

Zhao and Chen in [123] also propose a mechanism to

promote energy efficiency in the network. Their solution relies

on a feedback controller in order to determine when to turn

on or off a femtocell. This is done by comparing the distance

detected between an user and the femtocell and comparing

its virtual cell size. The authors define the virtual cell size

as a distance between an user and a femtocell, in which the

SINR of the user is equal between macrocell and femtocell.

By comparing this distance, the authors propose to turn the

femtocells off if the distance exceeds the virtual cell size and

to turn it on otherwise.

In [204], the authors build a scheme to dynamically activate

or deactivate modular resources at a BS, depending on the

network conditions, such as traffic or demand. The approach

involves a RL algorithm, based on QL, that continuously adapt

itself to the changes in network traffic and makes decisions

of when to turn on an additional BS module, turn off an

already activated module or to maintain the same condition.

The proposed solution can achieve a very high energy saving,

with gains of about 80% without increasing user blocking

probability.

In [217], Peng and Wang apply an adaptive mechanism to

increase the standardized Energy Saving Mechanism (ESM)
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quality. The framework relies on adjusting sleep intervals of

cells based on network load and traffic. The algorithm relies

on the concepts of MC and can save network power and

also guarantee spectral efficiency. The solution divides the

energy saving process in three scenarios, heavy, medium and

light loads, and, for each scenario, the adaptive solution is

investigated. The authors conclude that the proposed adaptive

solution is better than the standard solution, ESM, specially

in light loads scenarios, while in higher loads, both schemes

achieve similar performances.

Another solution is presented in [257]. In this work, the

authors tackle the problems of improving traffic load and net-

work planning. Their solution first builds supervised prediction

models in order to predict traffic values and then applies the

information gathered from external planned events in order

to improve prediction quality. Based on the traffic demand

prediction, the framework is then able to turn on or off certain

cells in the network, achieving energy efficiency.

Recent work by Jaber et al., in [193], tried to intelligently

associate users with different BSs depending on their backhaul

connections. In the proposed scenario, each BS had multiple

backhaul connections and an energy optimization, in terms of

which backhaul links to turn on and off, was performed.

Another recent solution is the work proposed in [207] by

Miozzo et al., in which QL was used in order to determine

which BSs to turn on or off and to improve the energy usage

of the network.

Lastly, the work in [258] utilizes big data, together with

supervised learning (polynomial regression), in order to opti-

mize the energy of ultra dense cellular networks. The authors

show that the proposed solution can achieve the highest

cell throughput while maintaining energy efficiency, when

compared to conventional approaches.

H. Coordination of SON functions

Another important issue that arises with the advent of SON

is how to coordinate and guarantee that two or more distinct

functions will not interfere with each other and try to optimize

or adjust the same parameters at the same time [73]. One

simple example of this can be a hypothetical scenario where

the network tries to minimize its interference level, but at the

same time it tries to maximize its coverage. To avoid this type

of situation, it is essential that SON functions are coordinated

to ensure conflict-free operation and stability of the network.

Lateef et al., in [73], develop a framework based on DT and

policies in order to avoid conflicts related to the mobility func-

tions of MLB and MRO. Also, another important contribution

of the paper is that it classifies the possible SON conflicts into

five main categories, mainly: KPI conflicts, parameter con-

flicts, network topology mutation, logical dependency conflicts

and measurement conflicts.

Another approach that tries to resolve the SON conflict

management is proposed in [150]. The authors consider a

distributed coordination scenario between SON functions and

analyze the case in a LTE network scenario. Each SON

function can be viewed as a feedback loop and are modeled as

stochastic processes. The authors were able to conclude that

coordination is essential and that it can provide gains to the

system.

Other solutions involving feedback controllers, can be seen

in [151], [152]. In [151], the authors start by presenting a

hybrid classification system of SON conflicts. The authors

state that, since many SON conflicts can fall into more than

one category, this hybrid approach is better and propose a

fuzzy classification to accomplish that. The authors also eval-

uate some use-cases of SON conflicts and present distributed

solutions based on feedback controllers, in which measure-

ments are gathered, evaluated and the parameters changed

accordingly.

Similarly, in [152], Karla also classifies SON parameters,

but his classification is only based on the parameters impact

on the cellular radio system, resulting in only two classes of

parameters. Karla also presents a proof of concept scenario, in

which a simplified LTE-A scenario is simulated and coordi-

nation is evaluated. First, the system performs a set of offline

computations in order to find good configuration parameters

and then the system uses a feedback controller to update itself

in an online manner.

Table III shows a summary of the reviewed papers for the

self-optimization use cases and how they are distributed in

terms of ML techniques.

V. LEARNING IN SELF-HEALING

Current healing methods not only rely on manually interven-

tions and inspection of cells, but also on reactive approaches,

that is, the healing procedures are triggered only after a fault

has occurred in the network, which degrades the network’s

overall performance and also results in a loss of revenue to

operators.

The self-healing function in SON is expected not only to

solve eventual failures that might occur, but also to perform

fault detection, diagnosis and trigger automatically the corre-

sponding compensation mechanisms. In addition, it is expected

that future cellular systems also move from a reactive to

a proactive scenario, in which faults and anomalies can be

predicted and the necessary measures taken before something

actually happens. Due to this change in paradigm in current

cellular networks, self-healing solutions are extremely chal-

lenging and rely heavily on previous gathered data in order to

build models and try to predict whenever a fault might occur

in the network.

From a learning perspective, several ML algorithms can be

applied, depending on the data that operators have and its

nature. In some scenarios, it is easy to label certain types of

data, such as in fault classification, in others, however, such

as in outage cases, in which outage measurements appear to

be normal or only deviate a slight amount from normal, it

might be more suitable to not label the data and work with

unsupervised algorithms.

In [259], for example, the authors present a survey on

state-of-the-art self-healing techniques and also propose a

unified framework themselves. The paper defines a self-healing

reference model, which would be composed of five core

functions: information collection, fault detection, diagnosis,

fault recovery and fault compensation, as shown in Fig. 12.
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TABLE III
SELF-OPTIMIZATION USE CASES IN TERMS OF MACHINE LEARNING TECHNIQUES

Backhaul Caching

Coverage

and

Capacity

Mobility Handover
Load

Balancing

Resource

Optim.
Coordination

Supervised

Learning

Bayes - - - [44], [60] - - - -

NN - - -
[27], [28],

[44],
[59]–[63]

[35], [36],
[64], [65]

-
[31]–[33],
[55]–[58]

-

SVM - - - [30], [68] - - - -

DT - - - [60] - - - [73]

CF - [82] - - - - -

Misc. - - - [29] - [34] [257], [258] -

Unsupervised

Learning

K-Means - [82] - [60] - - [56], [88] -

SOM - - [110] - [89], [90] - [83] -

Game

Theory
- [85], [86] - - [256] - [87] -

Misc. - - - [91] - [92] - -

Controllers

Feedback - - [122]–[130] - [131]–[144] [145], [146]
[123],

[147]–[149] [150]–[152]

FLC [164] - - -
[7], [90],

[165]–[173]
[173]–[175]

[7],
[176]–[182]

-

Reinforcement

Learning

QL
[190]–
[193]

[189] [194], [195] - [196]–[198] [200], [201]
[193],

[203]–[205],
[207]

-

FQL - - [186]–[188] - [198] [175], [199] [202] -

Misc. - - - - - - [206] -

Markov

MC - - -
[211],

[213], [215]
[256] - [216], [217] -

HMM - - - [212] - - - -

Misc - - - [214] - - - -

Heuristics
Heuristics - - [221], [222] - - [223]–[226] - -

GAs - - [231]–[233] - [234], [235] [236] [57] -

TL - - [246] - - - - [205] -

Miscellaneous - [6], [252] [17] - [254], [255] - - [17] -

Fig. 12. Proposed self-healing reference framework. Adapted from [259].

Another example of a self-healing framework can be seen in

[6]. In this paper, the authors show a reactive backhaul solution

for 5G networks, which involves aspects of self-configuration,

self-optimization and self-healing. From the self-healing point

of view, the authors develop an event-based fault detection, in

which a fault would always trigger a link state update message

broadcasted from the point of failure. By combining a fast

failure detection algorithm with offline computed paths, the

authors show that the backhaul link can be recovered very

quickly.

Based on the collected references and also from [11], which

defines the major use cases for self-healing, the following use-

cases for self-healing could be defined.

A. Fault Detection

The first and foremost thing a self-healing function must be

able to do is to automatically detect when and where a fault

occurred in the network. This can be done either by measuring

certain KPI, estimating its values in the future, or even by

trying to predict when a fault will occur in the network.

Coluccia et al., in [45], propose a solution based on Bayes’

estimators in order to estimate the values of certain KPI and

forecast when a failure might occur in a 3G network scenario.

On the other hand, in [69], the authors build an adaptive

ensemble method to model and determine the performance

status of cells in the network. The framework uses certain

KPI to determine the state of a cell and uses a combination

of different SVM classifiers in order to classify new observed

data points.

Other papers, such as in [93]–[95], utilize a SOM algorithm

in order to cluster and analyze cellular data. In [93], [94], the

authors show two classification methods based on SOM in

order to monitor cell states and their performances in a 3G

network scenario. Cells are clustered based on their perfor-
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mance levels and after that, each cell is classified according to

certain categories, determining if its performance is acceptable

or if it is degraded due to some fault. On the other hand, in

[95], the authors model a solution that analyzes and identifies

possible problematic cells in a 2G network. Another approach

that involves the application of SOM is the work in [96]. In this

paper, the authors build a mechanism to detect anomalies in

the core network of cellular networks. First, the authors choose

certain KPI to be monitored. After that, SOM is applied and

anomalies are detected in terms of the distance between the

weight vector of the BMU and the new state vector.

Other approaches, such as in [97]–[101], make use of

statistical analysis and similarity-based methods in order to

detect anomalies in the network. In [97], for example, the

authors build a framework to detect and diagnose anomalies

via Domain Name System (DNS) traffic analysis. The algo-

rithm monitors certain DNS features and as soon as one or

more of them show a significant change, a flag is activated.

Furthermore, the paper analyzes two different approaches, one

relies on the entropy of the measured features, while the other

is based on the statistical distribution of traffic. By comparing

the two methods, the authors were able to determine that both

solutions were able to detect short and long lived anomalies,

but only the probabilistic solution captured the entirety of

the long lived anomalies, while the entropy based approach

detected only a slight deviation on the beginning of the event.

In [98], the authors develop an integrated framework for

detection and diagnosis of anomalies in cellular networks.

The detection is based on monitoring radio measurements and

other KPIs and comparing them to their usual behavior while

the diagnosis is based on reports of previous fault cases and

learning their impact on different KPIs. Similarly, in [99],

Novczki builds a model, which improves the work presented

before in [98]. The new framework has the same objectives

of performing detection and diagnosis of anomalies, this time,

however, the authors build a new profile learning technique

to classify the anomalies, which will be presented in the next

section.

D’Alconzo et al., in [100], propose a statistical-based

anomaly detection algorithm for 3G cellular networks. The

algorithm collects traffic data and identifies deviations in its

distribution. By measuring the similarity between the mea-

sured distribution and the stored values it can detect and

recognize when a fault happens in the network. Bae and

Olariu, in [101], also utilize a similarity-based approach to

detect anomalies. In their solution, a normal profile is built

from normal mobility patterns of users in the network and then

a dissimilarity metric is computed and evaluated to determine

anomalies. Bouillar et al., in [102], on the other hand, develop

an online algorithm that uses the notion of constraint curves

from Calculus and applies it to anomaly detection.

In [153], the authors approach the detection problem from

a different point of view, from the operator’s perspective. This

work proposes considerations on how operational personnel

can control automatic fault-management feedback loops and

criteria that should be used for estimating whether a fault

in the network should be reported to the operator or not.

Liao et al., in [183], develop a novel framework based

on dimension reduction and fuzzy classification in order to

determine anomalies in the network. The proposed solution

uses PCA to reduce the input’s dimension and a kernel-

based semi-supervised fuzzy clustering is employed to perform

classification. By assigning samples to different classes and

analyzing the trajectory of a sequence of samples, anomalies

are predicted. Results show that the solution performs well

in a LTE network scenario and is able to proactively detect

anomalies associated with various fault classes.

Another work that tries to predict when a fault will occur

in the network is the work in [218]. In this solution, a

continuous time MC is utilized, together with exponential

distributions, to model the reliability behavior of BSs in future

cellular networks. The MC model is built with three states in

mind: healthy, sub-optimal and outage cells and failures could

be classified as trivial or critical. The paper analyzes three

different case studies and, for each study, it tries to predict

the occurrence of faults based upon past database values.

In [108]. Hashmi et al., compare five different unsupervised

learning algorithms (K-means, Fuzzy C-means, SOM, local

outlier factor, and local outlier probabilities) in order to detect

faults in the network. Results show that SOM outperforms

K-means and Fuzzy C-means.

Lastly, in [111] the authors propose to combine MDT

measurements with SOM in order to detect whenever a fault

happens in the network. The proposed solution was evaluated

in two different LTE networks and demonstrated that it was

able to diagnose and also locate (up to a certain degree) faults

within the networks.

B. Fault Classification

Another important task that needs to be done whenever a

fault occurs is its classification. This involves the determina-

tion of the causes of the problem, so that the correct solution

can be triggered. Nowadays, most methods rely on manual

processes and are done by experts that need to diagnose and

classify the problems. However, this is not optimal and can

lead to misclassifications, leading to incorrect solutions and

wasting operators time and money.

In [37], for example, the authors present a system based on

simple naive Bayesian classifiers in order to perform fault clas-

sification. The proposed framework focuses on troubleshooting

RAN problems in 2G networks, but also addresses the issue of

how the problems can be solved. The authors propose a three

step approach. The first step identifies poor performing cells

based on alarms and performance indicators. The second step

finds the cause of the problem and the third step attempts to

solve the problem by executing specific actions.

Another work that relies on the use of Bayesian techniques,

is [38]. In this paper the authors build an automated diagnosis

mechanism for 3G networks. The diagnostics system involves

two components, a model and an inference method. The

model is based on a naive Bayes classifier and, regarding

inference methods, two were investigated: Percentile-Based

Discretization (PBD) and Entropy Minimization Discretization

(EMD). The authors compare both methods and determine that

EMD performs better, so in the use-case proposed they just
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analyzed the system involving the naive Bayes and the EMD

inference technique.

Puttonen et al., in [74], apply a classification of RLF reports

based on previously gathered information to identify coverage,

HO or interference related problems. The classification is done

using a DT and two use-cases are analyzed. The first use case

considers a network with medium load, while the second case

considers a high load scenario. The solution is efficient in

terms of revealing the types of problems each cell can have

and, thus, helping operators detect individual cell problems.

Other approach that performs fault classification is the work

in [98], [99], which uses anomaly detectors based on statistical

analysis in order to diagnose faults in the network. In [98], the

authors perform classification by comparing measured KPI

values with reports of previous fault cases. While on [99],

a new profile learning technique is proposed. This technique

examines historical KPI data and identify its normal opera-

tional states. After that, it takes the current KPI values and

analyzes its symptom patterns. By seeking the most similar

pattern with the stored data a match can be done and the fault

can be classified.

Another approach is presented in [247] by Wang et al..

In this work the authors build a framework that relies on

TL to diagnose problems in femtocells. The authors state

that traditional diagnosis approaches are not applicable to

femtocell networks because of the challenge of data scarcity.

To overcome this issue, the authors utilize TL, so that historical

data from other femtocells can be leveraged and used in order

to troubleshoot problems. The authors also state that general

TL techniques are not accurate, so they propose a new model,

Cell-Aware Transfer (CAT). In this new scheme, two classifiers

are trained and, after that, each classifier is treated as a voter

in the diagnostic model. The final diagnosis is the result that

gets the most votes. The authors compare their solution with

methods based on SVM and TL-SVM and show that CAT

achieves higher accuracy than the other approaches.

C. Cell Outage Management

One of the SON use cases that has attracted a lot of

attention recently is the automated detection of cells in outage

condition. Self-healing solutions have to perform compensa-

tion mechanisms in order to overcome the outage scenario

and minimize the disruption caused in the network. Current

methods, however, involve manual detection of cell outages,

which might take days, or even weeks, in order to be detected.

With the increase in scale and complexity of future cellular

networks, manual procedures will not be good enough and

autonomous management, which involves detection and com-

pensation, must be provided in SON.

Several researchers are trying to address the outage issue

and provide intelligent solutions to this problem. One possible

approach is shown in [40], in which the authors propose a cell

outage detection algorithm based on NCL reports of mobile

terminals. The algorithm attempts to use the NCL reports

to create a graph of visibility relations between cells and,

by monitoring the changes in this visibility graph, outage

detection is performed. The authors also analyze three differ-

ent classification techniques, involving a manually designed

system, DT and linear discriminant analysis and show that the

outage detection quality is largely based on the performance

of the classification algorithm.

In [41], the authors attempt to classify cells into four

different states, depending on the level of degradation in its

performance: healthy, degraded, damaged and outage. The

authors designed a back propagation NN with three layers

and used a differential GA in order to train the model. Results

show that the improved NN outperformed standard BP NN.

In [49], the authors consider a network scenario which

has distinct control and data planes and present a framework

which is capable of detecting outages in both planes. In order

to do that, the authors design two algorithms that monitor

control and data cells. To perform cell outage detection, two

approaches are taken. For control cells, two distinct algorithms

are tested, K-NN and Local Outlier Factor based Anomaly

Detector (LOFAD), while for data cells a heuristic approach

was considered. On top of that, the authors also use MDS to

perform dimension reduction in order to cope with the order of

the input data. To perform compensation, the authors consider

a RL approach, to adjust gains of antennas and transmit power

in order to compensate the coverage and capacity degradation

caused by the outaged cell. Results show that both control and

data detection schemes are able to detect outages and that the

K-NN algorithm outperforms LOFAD.

Xue et al., in [51], also build a detection mechanism based

on K-NN and a heterogeneous network scenario, consisting

of macrocells and picocells. The model detects outage through

cooperation between outaged cells (which were modeled as

cells that had their performance degraded and were not

completely out of service) and neighbor cells. The problem

is then modeled as a binary classification problem and K-

NN is implemented to classify the data. On the other hand,

Zoha et al., in [70], present and evaluate an outage detection

framework based on MDT reports. The framework aims to

compare and evaluate the performance of two different al-

gorithms: LOFAD and One Class Support Vector Machine

based Detector (OCSVMD). The system is divided into two

phases, profiling and detection. In the profiling phase, after

collecting the MDT measurements and reducing the dimension

of data, by applying MDS, the system builds a reference

database based on the normal, fault-free, network scenario.

After that, the two different models are applied in order to

classify network measurements and determine cell outages.

Wang et al., in [79]–[81], show a solution to outage manage-

ment in femtocell networks. This time, however, it involves the

application of CF. In [79], [81], the authors develop a detection

mechanism involving two stages: triggering and cooperative

stage. The triggering stage involves the application of CF,

while the cooperative stage involves all femto-BS reporting to

the macrocell BS to make a final decision. While in [80], the

authors analyze three different architectures for self-healing,

mainly: centralized, decentralized and local cooperation and

investigate their advantages, disadvantages and limitations.

Also, under the local cooperation architecture, the paper builds

an outage detection and compensation mechanism, similar to

the previous discussed solution.

Another group of solutions for outage management consist
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Fig. 13. An example of cell outage management. In (a), the network detects
that the central site has suffered outage and triggers the appropriate self-
healing mechanisms. Each neighbor cell, by triggering these mechanisms,
adjusts their coverage area and, in turn, compensate for the outaged cell,
providing service in the affected area, as seen in (b).

on the analysis of statistics. In [104], for example, the authors

propose to detect outage via the analysis of HO statistics. In

[105], Muñoz et al., apply a solution that detects degraded cells

through the analysis of time evolution metrics. The solution

compares the measured metric with a generated hypothetical

degraded pattern and, if they are sufficiently correlated, outage

is detected. Lastly, Liao et al., in [115], show an algorithm

based in a weighted combination of three hypothesis tests to

perform outage detection.

Another class of algorithms that is very popular in outage

management are the feedback controllers. Most of the pro-

posed approaches, such as in [154]–[159], [161], aim to solve

the problem of outage compensation by triggering certain

mechanisms that will adjust coverage of neighbor cells and

try to minimize the impact of the outaged cell in the system.

Most solutions rely on the adjustment of transmission power,

and antenna down-tilt angles. Other solutions, such as in [160]

focused on the problem of outage detection in networks with

separated control and data plane. Its goal is to detect outage

in data cells and involves monitoring certain metrics and

signaling outages whenever irregularities occurred. Figure 13,

shows an example of outage management.

In [186]–[188], the authors aim to change the down-tilt of

the antennas by applying FQL. Despite their solutions being

primarily focused on self-configuration and self-optimization,

the authors argue that, since the process of changing antenna

parameters can be used in order to mitigate the effects of

outage cells, their solutions could work from a self-healing

point of view. Another paper that uses FQL is the work

from Zoha et al., in [71]. In this paper the authors develop a

framework to address cell outage detection and compensation

by using MDT measurement reports. Outage detection is done

by first gathering the MDT measurements and reducing their

dimension using MDS. After that, the paper analyzes two

different anomaly detection algorithms in order to detect the

outage, LOFAD and OCSVMD. The compensation mechanism

is based in a Fuzzy controller combined with RL in order to

adjust antenna down-tilts and transmit powers and minimize

the effects of the outaged cell.

Saeed et al., in [208], also build a fuzzy controller combined

with RL in order to perform cell outage compensation. The

solution investigates three different methods, by adjusting

only antenna down-tilt angle, only transmit power or both.

On the other hand, Moysen et al., in [209], model a RL

approach for cell outage compensation in LTE networks. Their

solution aims to automatically adjust the transmit power and

antenna down-tilt angles to provide coverage and capacity

where needed.

Another possible solution for outage detection is [219]. In

this work, the authors develop a solution based on HMM

in order to classify BSs into four possible states: healthy,

degraded, crippled or catatonic. In order for the system to

estimate the BSs states, a set of measures reported by the users

are collected and a state probability is produced accordingly.

Results show that the proposed solution is able to predict a

BS state with around 80% accuracy.

Other solutions, such as in [237]–[239], rely on the use of

GAs in order to achieve outage management. In [237], the

authors propose a method based on immune algorithms in

order to adjust the uplink target received power in surrounding

cells so that both coverage and quality of the whole network

can be maintained.

In [238], the authors model a distributed architecture for

cell outage management. This architecture consists of five

phases and aims to solve quality and coverage problems

caused by outages in LTE networks. In order to perform

outage compensation, the algorithm increases the power of

the reference signal with the objective of maximizing the

coverage region while minimizing coverage overlap. In order

to determine the best parameters, a particle swarm, which is

a type of GA, was implemented.

In [106], Ma et al. propose an unsupervised clustering

algorithm in order to tackle the problem of outage detection. In

this work, the authors simulate two different outage scenarios,

by reducing the antenna gains of two antennas by different

amounts. Results show that the solution is able to classify

differently the two outage scenarios and, hence, can enable

mobile operators to choose appropriate compensation methods

depending on the outage degree.

Lastly, a recent work by Bandera et al., in [116], proposes

a method to analyze data and perform outage compensation

based on either correlation or delta detection (threshold based).

1) Sleeping Cells Management: a particular type of prob-

lem that can occur in the network is the sleeping cell scenario.

A sleeping cell is a special case of outage, which makes

mobile service unavailable for users, but from an operator’s

perspective the cell still appears to be fully operable. Sleeping

cells can roughly be classified into three groups: impaired, in

which a cell is still able to carry traffic, but certain performance

metrics are slightly lower than expected; crippled, in which a

cell has severe degradation in its capacity and catatonic, in

which a cell is completely out of service [42], [107].
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In [9], the authors propose a case study in which the

objective is to perform the detection of sleeping cells. Through

network monitoring and observation, the authors create a

model and use it to predict sleeping cells behavior. The model

was based on K-NN-based anomaly detectors and also used

MDS to perform dimension reduction.

Turkka et al., in [39], build a data-mining framework

that is able to detect sleeping cells, network outage and

change of dominance areas. The main idea consists of finding

similarities between periodical network measurements and

previously known outage data. The solution, first gathers a

set of MDT data and builds a reference database. After that,

a new test database is created in order to classify the newly

obtained samples. After this process, both sets go through a

nonlinear DM process, which reduces their dimension and

then data classification is performed via Nearest Neighbor

Search (NNS), a supervised learning method similar to K-NN.

Results show that because MDT data is used together with

RLF events, a more reliable and faster detection is achieved.

Chernov et al., in [42], also presents a data mining frame-

work, but this work is focused in the detection of sleeping

cells caused by Random Access CHannel (RACH) failure.

Their algorithm collects user data, processes it and performs

dimension reduction via PCA and MCA. After this process is

done, the algorithm then performs two steps: first, it extracts

outlier sub-calls from the data set by applying a K-NN

anomaly detection algorithm. Then, the algorithm assigns

sleeping cell scores to each cell, in which the higher the score,

the higher the chance of a cell being in the sleeping state.

In [50], Zoha et al. propose a solution in order to au-

tomatically detect sleeping cells. The model gathers MDT

measurements from a normal network scenario, applies MDS

to reduce the data’s dimension and then learns its basic profile.

After that, the authors propose two different solutions in order

to detect sleeping cells, one is based on K-NN Anomaly

Detection, while the other is based on LOFAD. After the

models predictions, the authors also perform sleeping cell

localization, in order to classify which cell triggered the

sleeping cell scenario. Results show that cells can be correctly

localized and that K-NN outperforms LOFAD.

Another work regarding sleeping cell detection is the work

of Chernov et al., in [52], in which the authors analyze the

detection of a sleeping cell due to a RACH failure, similar

to [42]. In this paper, different anomaly detection algorithms

are compared, such as K-NN, SOM, Local Sensitive Hashing

(LSH) and Probabilistic Anomaly Detection (PAD). Results

show that despite all algorithms being able to determine the

sleeping cell condition correctly, the proposed solution has the

best performance.

On the other hand, in [103], the authors develop a solution

based on MDT reports and data mining techniques in order

to detect sleeping cell conditions. In addition, the paper also

considers that there are positioning errors associated with

the MDT measurements. The authors first build a model

based on a normal network scenario and then apply a certain

anomaly detection algorithm to classify samples as anomalous

or not. This time, the solution relies first in, reducing the

data’s dimension by applying MCA, and then applying the

unsupervised technique of K-means to perform classification.

Furthermore, since the authors also considered positioning

error, the determination of which cell caused the sleeping cell

condition is not trivial and three different methods to determine

which cell is the sleeping cell are proposed. Another sleeping

cell solution is shown in [107], in which the authors used

PCA in order to perform dimension reduction and a Cluster

Based Local Outlier Factor (CBLOF) to perform sleeping cell

classification.

Lastly, another solution is proposed by Chernogorov et al.,

in [241]. In this paper, the authors use DM, not as a dimension

reduction technique, but rather as a classification tool in order

to detect anomalies. The authors argue that DMs are able to

convert non-linear data sets to linear in the new embedded

space, so it could be used as a classification tool as well. After

detecting the anomalies, the paper also develops a method to

determine their locations, by determining the dominance map

of every cell. Then, anomalies are mapped according to the

dominance maps produced and the problematic cells can be

identified.

Table IV presents a summary of the literature covered in the

self-healing section in terms of the ML techniques utilized.

VI. ANALYSIS OF MACHINE LEARNING APPLIED IN SON

Intelligence in future networks is a promising concept, how-

ever, because each SON function has its own requirements,

certain algorithms tend to work better for specific functions.

In this section, the most common ML algorithms found in

SON are compared in terms of certain metrics. These metrics

relate not only to the performance of ML solutions, such

as accuracy, amount of training data or convergence time,

but also relate to the performance required for each self-x

function, such as: scalability, complexity, and response time,

for example. It is important to note that the classifications

provided in this section are only general guidelines and based

on overall performance of the considered ML methods.

A. Scalability

One important concept in ML algorithms is the notion

of scalability. The scalability concept can be defined as an

algorithm being able to handle an increase in its scale, such

as feeding more data to the system, adding more features to the

input data or adding more layers in a NN, without it limitlessly

increasing its complexity [10].

In order to cope with future networks, which are expected to

be much more dense and generate much more data, scalability

is a highly desirable feature so that algorithms can be deployed

easily and quickly in the network. Furthermore, the notion of

scalability can also help in determining if certain types of

algorithms can be mass deployed in decentralized solutions or

if centralized solutions are preferred.

Examples of SON functions that require scalability can be

in algorithms trying to predict mobility pattern of users in the

network, as predicting the mobility pattern of a single user is

very different than trying to predict pattern for all users of the

network. Another example can be in the self-healing domain,

in which the whole network might be required to be monitored

in order to detect and manage faults.
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TABLE IV
SUMMARY OF SELF-HEALING USE CASES IN TERMS OF MACHINE LEARNING TECHNIQUES

Fault

Detection

Fault

Classification

Outage

Management

Supervised

Learning

Bayes [45] [37], [38] -

K-NN - - [42], [49]–[52]

NN - - [41]

SVM [69] - [70], [71]

DT - [74] [40]

CF - - [79]–[81]

Misc. - - [39]

Unsupervised

Learning

K-Means [108] - [103]

SOM
[93]–[96],

[108], [111]
- [52]

Anomaly

Detectors

[97]–[102],
[108]

[98], [99]

[9], [49], [50],
[52], [70], [71],

[104], [105],
[107], [115],

[116]

Misc. [108] - [106]

Controllers
Feedback [153] - [154]–[161]

FLC [183] - -

Reinforcement

Learning

FQL - -
[71],

[186]–[188],
[208]

Misc. - - [49], [209]

Markov
MC [218] - -

HMM - - [219]

Heuristics GAs - - [237]–[239]

Dimension

Reduction

PCA/MCA [183] -
[42], [103],

[107]

DM - - [39], [241]

MDS - -
[9], [49], [50],

[70], [71]

TL - - [247] -

Misc. - - - [40]

B. Training Time

Another important concept is the training time of each

algorithm. This metric represents the amount of time that each

algorithm takes to be fully trained and for it to be able to make

its predictions.

Training of ML algorithms can be done either offline or

online. Depending on the training that is carried out certain

types of algorithms might be more suitable for certain SON

functions. For example, functions that are heavily dependent

on time, such as mobility management, HO optimization,

coordination of SON functions or self-healing, would not be

able to cope with algorithms that require high training times

and perform online training, as they would not be able to

generate a model, and consequently its predictions, in time

for these applications. However, if the same algorithms can

be applied with an offline training methodology, algorithms

that were not suitable before can now fit into these more time

restrict SON functions.

Examples can be the application of offline trained NNs to

predict user mobility patterns, or the application of CF in order

to perform outage management.

C. Response Time

Also related to the agility of a system is the response time of

an algorithm. This metric represents the time that an algorithm

takes, after it has been trained, to make a prediction for the

desired SON function.

Contrary to the previous metric, in which algorithms that

have high training times can still be applied to time sensitive

SON functions if an offline training is performed, algorithms

that have a high response time are not desirable for these SON

functions, as predictions would not be generated in time.

SON functions, such as self-configuration do not require a

fast response time, as most of the configuration parameters

of a network can be determined in an offline manner, hence,

algorithms that have a low response time can be adequate for

these applications. Other types of functions, however, such as

mobility management, HO optimization, CAC, coordination of

SON functions and self-healing might require faster response

times, leading to the application of faster algorithms.

D. Training Data

Also related to the parameters of ML algorithms is the

amount and type of training data an algorithm needs. Algo-

rithms that require lots of training data, usually have better ac-
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curacy, but they also take more time to be trained. Furthermore,

as discussed before, certain types of algorithms only work with

labeled or unlabeled data, which might fit best certain types

of SON functions.

Algorithms that rely on high amounts of data to perform

well, will also need more memory in order to accommodate

the data and use it to train their models. This might not

be compatible with certain SON functions, such as caching,

or functions that need to be deployed at user terminals,

such as mobility prediction, or HO optimization, as memory

capabilities are limited. On the other hand, the huge amount

of data collected by operators can also enable more complex

and demanding solutions to be deployed in BSs, leading to an

easier integration between SON and Big Data.

In the case of self-healing functions, for example, operators

tend to gather lots of unlabeled data while the network is mon-

itored. In this scenario the application of unsupervised or RL

techniques might be more suitable to address these functions,

while supervised techniques would not be applicable.

E. Complexity

Complexity of a system can be defined as the amount of

mathematical operations that it performs in order to achieve

a desired solution. Complexity also relates to the power con-

sumption of a system, as a system that needs to perform more

operations will, consequently, need more power to operate.

Hence, this concept can determine if certain algorithms are

more suitable to be deployed at the user or operator’s side,

for example. Furthermore, more complex systems also take

longer to produce their results, however, when they do, these

results tend to be better than other simpler approaches.

An example of highly complex algorithms are the GAs.

By exploring all possible solutions, GAs are able to find

near optimal solutions to a problem, but, usually, take lots of

time (generations) in order to reach these solutions. Simpler

algorithms, such as Bayes classifiers or K-NN also have

their merits, as being extremely simple facilitates the mass

deployment of these algorithms and enable operators to have

fairly decent results.

In terms of SON functions, usually, simpler solutions are

preferred, however, sometimes simple solutions are not capa-

ble of providing sufficient results. In self-configuration, for

example, as future networks are expected to be much more

dense and BSs are expected to have thousands of parameters,

simple solutions will not suffice and more complex solutions

will need to be deployed. On the other hand, simpler solutions

might fit self-healing functions, enabling future networks to

become proactive and much quicker in detecting and mitigat-

ing faults.

F. Accuracy

Another important parameter of ML algorithms is their

accuracy. Future networks are expected to be much more

intelligent and quicker, enabling highly different types of

applications and user requirements. Deploying algorithms that

have high accuracy is critical to guarantee a good operability of

certain SON functions. In caching optimization, for example,

caching the right content, at the right place, at the right time is

crucial in order to reduce the delay experienced by end users.

Another example is in terms of fault detection, as correctly

detecting faults in the network can lead to a quicker response

by other SON functions and mitigate the impacts of faults in

the network.

On the other hand, other types of functions might not require

extremely high accuracy and can be more lenient regarding

it. One example can be in the estimation of coverage area

of a cell, in which the exact coverage area might not need

to be determined, and an estimate can be enough. Another

example can be in terms of load balancing, in which perfectly

load balancing of the whole network might not be required,

or even possible. Managing the load of the network up to a

certain extend might be enough and more relaxed algorithms

can be more suitable for these kind of applications.

G. Convergence Time

Another important parameter in which algorithms can be

evaluated is their convergence time. Differently than the re-

sponse time, which relates to the time an algorithm takes

to make a prediction, the convergence time of an algorithm

relates to how fast an algorithm agrees that the solution found

for that particular problem is the optimal solution at that time.

Certain algorithms, such as controllers, or RL need an extra

time to guarantee that their solution has converged and will not

change abruptly in the next time slot. Since the convergence

time adds an extra time in addition to the response time of a

system, solutions that have this additional parameter might not

perform well in time sensitive functions, such as mobility or

HO optimization. However, by guaranteeing that their solution

has converged and is the best solution possible for that time,

this kind of algorithms can provide near optimal solutions to

the system.

SON functions that can benefit from this kind of algorithms

can be, for example, functions in self-configuration, which are

not time sensitive and need to carefully tune the initial param-

eters of a BS, caching optimization, and resource optimization.

H. Convergence Reliability

Another important parameter of learning algorithms is the

initial conditions that they are set in and their convergence

reliability. In this sense, this metric represents the suscepti-

bility of an algorithm to be stuck at local minima and how

can initial conditions affect its performance. Although related

to accuracy, since algorithms that are able to minimize the

impacts of being stuck at local minima can achieve more

optimal solutions, this metric represents the susceptibility that

an algorithm has in being stuck or not at local minima.

The majority of learning algorithms are susceptible to the

local minimum problem, but by taking some actions this

problem can be minimized. One possible action that can be

taken is to initialize the algorithms with random small values,

in order to break the symmetry and to reduce the chances of

the algorithm being stuck at a local minima. Other types of

actions that can be taken combined with this approach is to
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average the performance of the algorithm for different starting

conditions or to provide a varying learning rate.

However, certain types of algorithms are able to produce

solutions closer to the optimal, by exploring the whole search-

space, like in CF or GAs, which might be more suitable

for functions that need reliability, such as self-configuration,

caching and coordination of SON functions. Others algo-

rithms, such as K-means or RL, can find different solutions

to the same problem, which can be applicable to functions

that do not require the best or a static solution to its problem,

applications could be in the area of backhaul optimization,

load balancing and resource optimization.

A more detailed view of how each of the most common

ML algorithms found in the literature performs in terms of

the aforementioned SON metrics is depicted in Table V.

Furthermore, Table VI shows guidelines on when to utilize

each ML algorithm for each SON use-case. Based on the

requirements of each self-x functions, the performance of each

algorithm for each SON metric, and the amount of references

that utilize certain algorithm in that function, the authors were

able to build Table VI, which provides general guidelines on

when to use certain ML algorithms. It is important to note

that Table VI serves only as a guidance and should not be

strictly followed, as depending on the application and type of

data available, different algorithms can be applied to different

SON functions.

VII. FUTURE RESEARCH DIRECTIONS

In order for 5G to overcome the current limitations of LTE

and LTE-A, it is clear that a shift in paradigms is needed and

that different solutions to common problems need to be found.

However, despite current work being done in the area of SON,

with an increase of maturity and robustness in the area, with

more and more different ML algorithms being explored and

applied in different contexts, there are still open issues and

challenges that need to be addressed in order to enable a fully

intelligent network in the near future. In the next sections,

future research directions and open issues are explored and

the role of ML algorithms in future cellular networks is also

discussed.

A. Self-Configuration

This is the area with the least amount of research being done

up to this moment. Nonetheless, interesting solutions can be

found in the literature, which can lay down the foundation for

future researchers in this area.

1) Dense Environments: one possible direction is the con-

figuration of future networks in dense environments. As net-

work densification is a critical component of future networks,

it is essential to enable configuration in these kinds of net-

works. In the future, it is expected that several BSs will be

deployed not only by operators, but by regular users, making

it difficult for operators to track all BSs and to configure them

manually. Hence, intelligent solutions need to be deployed

and ML algorithms can create models that can enable the

configuration of extremely dense and complex networks.

One example can be the application of GAs in order to

configure a network and its topology. GAs, by exploring a

large family of solutions, can perform these computations

offline and generate an optimal network model, prior to the

deployment of the network.

2) Non-dense Environments: other currently unexplored

scenario is the self-configuration of networks in rural or

nomadic environments. Most of the reviewed papers focus on

the self-configuration of networks deployed in dense urban

environments. The deployment of cells in rural and not so

dense environments could lead to different self-configuration

solutions, since BSs do not need to be as densely deployed

and capacity and coverage requirements are less stringent.

One possible enabler for this scenario is the application of a

scaled-down version of ML algorithms. For example, let’s say

that operators have trained their models in a dense network

environment and what to apply the same model to a more

sparse network. In this scenario, a scaled down version of the

algorithm applied in the dense scenario can be deployed.

3) NCL Configuration: as it was demonstrated in the NCL

section, most of the reviewed papers focused on the devel-

opment of solutions that would enable the newly deployed

BS to discover its neighbors. However, one aspect that is not

that much explored is the fact that the new BS must make

itself known to the other BSs in the network, so that their

NCL can be updated as well. The development of solutions in

this area would further enable the functionality of plug-n-play

that is expected from future cellular networks as well as an

autonomous reconfiguration of the network topology as new

BSs are added into the system.

In order for BSs to learn their neighbors in a scenario where

operators have no control of when new BSs are deployed,

intelligent solutions need to be applied. In this regard, one

example can be the usage of clustering algorithms, in order to

cluster nearby BSs, so that BSs that are within a cluster are

all in each other NCLs, while BSs outside that cluster are not.

Then, when a new BS is deployed, ML algorithms can then

determine to which cluster the new BS belongs to and update

all NCLs accordingly.

4) Emergency Communication Networks: another area that

is not very well covered in current literature is the reconfig-

uration of a network after a natural disaster occurs, in which

the network is severely disrupted. Recent work by Wang et

al. [261] surveys how big data analytic can be integrated to

communication networks in order to understand disastrous

scenarios and how data mining and analysis can enhance

emergency communication networks.

In this regard, the application of ML solutions is essential

to reestablish communications as fast as possible and to

reconfigure the network with the remaining BSs. Since the net-

work was already configured, the configuration of operational

parameters of each BS is not needed, but a reconfiguration of

its neighbors and radio parameters is necessary. ML solutions

can help the remaining BSs to reconfigure themselves by

automatically learning the new environment conditions and

generating new models on the fly in order to reconfigure

certain parameters, such as transmit power of each BS or
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TABLE V
ANALYSIS OF MOST COMMON ML TECHNIQUES IN TERMS OF SON REQUIREMENTS

Scalability
Training

Time

Response

Time

Training

Data
Complexity Accuracy

Convergence

Time

Convergence

Reliability

Supervised

Learning

Bayes Low Low Low Low Low Fair - Fair

K-NN Low Low Low Low Low Fair - Fair

NN Fair High Low High High High - Fair

[53], [260]–[262]

SVM Fair Fair Low High High High - Fair

DT High Low Low Low Low Low - Fair

CF High Fair Low High High High - High

Unsupervised

Learning

K-Means High High Low Low Low Fair - Low

SOM High Fair Low High Low High - Fair

[53], [263]
Game Theory Fair - Fair - Fair Fair - Fair

AD Fair Fair Fair High Fair Fair - Fair

Controllers
Feedback High - Fair - Low Low Fair Low

[117], [162] FLC Low - Fair - Fair Fair Fair Low

Reinforcement

Learning
QL Fair High Fair Low Low Fair High Fair

[184], [264], [265] FQL Low High Fair Fair Fair Fair High Fair

Markov
MC High Fair Low Fair Low Fair - Fair

[266], [267] HMM Fair Fair Low Fair Fair Fair - Fair

Heuristics Heuristics Low - Fair - Fair Fair - Fair

[227], [229] GAs Low High High High High High - High

antenna down-tilt, so that service can be restored as soon as

possible.

B. Self-Optimization

Self-optimization together with self-healing are the areas

that attract most researchers. Although several promising so-

lutions have already been proposed in certain functions, such

as in mobility management, HO optimization, load balancing,

and resource optimization, there are still open issues that need

to be addressed.

1) Backhaul: the optimization of backhaul connections

between BSs and the core network is essential in future

networks, however, as it can be seen, there is not much

work covering the backhaul optimization process. Since in

the future a huge amount of users is expected to access the

mobile network with different types of applications at the same

time, the management of backhaul resources is of extreme

importance. In this sense, ML algorithms can be deployed

in order to learn individual user patterns and requirements,

based on the applications that each user is using and learn to

which backhaul should users connect to. Furthermore, another

possible research area can be in the investigation of cells with

different backhaul solutions. In this scenario, ML algorithms

can determine which and how much each backhaul should

be utilized in order to optimize energy consumption of the

network while also attending user needs.

2) Caching: caching is essential in future cellular networks

in order to enable low latency to end-users and to provide a

better QoE. However, several issues regarding how, what and

when to cache are still persistent and need to be investigated

[253]. In order to address these issues, the analysis of user

behaviors, such as which contents are more popular, and at

what time of the day, can be a key enabler in caching solutions.

By analyzing different user behaviors, ML algorithms can then

be applied and different models can be created in order to

decide which contents to cache and at which BS.

3) Coordination between SON functions: another interest-

ing area of research could be on the management and the

interoperability of different SON solutions. Since SON func-

tions rely on the autonomous change of network parameters

in order to adjust its settings, coordination between these

functions is of extreme importance, as one function could

change the parameters from other functions and disrupt the

whole configuration of the network [151].

ML algorithms can be applied individually at each SON

function in order to learn which parameters each function

changes and by how much. Then, by integrating these different

models, coordination can be achieved.

4) Green Networks: another key concept of future cellular

networks is energy efficiency. Current networks are dimen-

sioned for the worst case scenario, which leads to huge

amounts of power being wasted. In the future, it is expected
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TABLE VI
GENERAL GUIDELINES ON THE APPLICATION OF ML ALGORITHMS IN SON FUNCTIONS

Self-Configuration Self-Optimization Self-Healing

Operational

Parameters
NCL

Radio

Parameters
Backhaul Caching

Coverage

and

Capacity
Mobility Handover

Load

Balancing

Resource

Optim.
Coordination

Fault

Detection

Fault

Classification

Outage

Management

Supervised

Learning

Bayes ✓ ✓ ✓ ✓ ✓ ✓

K-NN ✓ ✓ ✓ ✓ ✓ ✓ ✓

NN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SVM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Unsupervised

Learning

K-Means ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SOM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Game

Theory
✓ ✓ ✓ ✓ ✓ ✓ ✓

AD ✓ ✓

Controllers
Feedback ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FLC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Reinforcement

Learning

QL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FQL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Markov
MC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

HMM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Heuristics
Heuristics ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GAs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

that cellular networks can dynamically adjust their power

based on its current needs. In this sense, ML algorithms can

be applied, for example, in order to learn traffic patterns

of individual cells and determine when is the best moment

to switch the BSs on or off depending on current traffic

conditions.

Another ML application can be in terms of estimating a user

next position via mobility management. By learning individual

user patterns and being able to predict their movement to next

cells, ML algorithms can help the network to reserve resources

in advance and minimize signaling between different BSs,

reducing the energy consumption of the network as a whole.

C. Self-Healing

Self-healing performs a critical role in SON cellular sys-

tems, as it is responsible for detecting and mitigating the

impacts that faults can have in a network. However, despite

being one of the most researched areas, together with self-

optimization, there is still room for improvement.

One hot topic in this area is the change of paradigms in self-

healing from reactive to proactive. In order for self-healing

solutions to become proactive it is essential the deployment

of intelligent solutions that are able to analyze historic data

and predict the behavior of the network in the future, hence,

ML can play a huge role in self-healing.

By creating models from past and normal network scenarios,

ML solutions can learn what are the regular network behavior

and the parameters of each BS. Based on current and previous

data, then predictions can be made of when and where a fault

is most likely to occur in the network.

D. Data Analysis

Another key enabler in SON in future cellular networks is

the concept of data analysis. As previously shown by Blondel

et al., in [268], the study of mobile phone data sets is an

on-going trend and enabler of several new applications, such

as social networks, determining network usage of different

areas of a country, predicting the mobility of different users,

and even more robust ones, such as, urban sensing, traffic

jam prevention or even detecting health and stress levels of

individual users.

1) Dark Data: in the context of the usage of data gathered

by operators, many papers have shown that despite the fact

that most operators collect huge amounts of data from their

subscribers on a daily basis, most of the data is still not used.

In order to leverage the full-potential of SON solutions in

the future, it is clear that more data need to be utilized (not

collected). This data collected by operators, also known as

dark data, can then be leveraged in order to create more

robust network models and fully enable intelligence in cellular

systems [8], [9].

2) Model Identification: also regarding the usage of data,

lies the topic of model identification. It is of extreme impor-

tance in the future to explore models inside the gathered data in

order to determine patterns and explore them in order to fully

configure, optimize and heal future networks. It is known that
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human behavior is not random, as shown by [268], and patterns

such as in mobility or in traffic demand per day can already be

identified in user’s data. Hence, ML algorithms together with

data analysis techniques can be deployed in order to learn both

users and network behaviors in order to provide better QoS

and QoE while also minimizing costs.

3) Concept Drift: another important topic that needs to be

considered for SON solutions is the idea of concept drift, or

in other words, to consider the changes that occur in network

behavior. Most of the papers presented in this survey consider

one set of data for their ML algorithm and assume that the

data is static. However, as it is already known, there are several

patterns that can be observed in the network and in order to

fully enable SON in the future, these changes that occur in the

input data set must be considered in order not to misclassify

or misinterpret certain situations.

For example, it is known that network traffic levels are

much higher during the day than during night time. Hence,

algorithms that can cope with these changes in the data, such

as ML algorithms, can be deployed in order to create robust

models of the network.

E. Machine Learning in 5G

5G is expected to enable whole new services and applica-

tions. In the following topics some applications of ML in 5G

are discussed and a brief analysis on how ML can be applied

to solve these issues is presented.

1) Separation between Control and Data Planes: as fu-

ture networks are expected to be more and more complex

and dense, an on-going trend in current research is towards

separating the control and data planes of the network. Despite

this fact bringing several benefits, an additional complexity

is also introduced in the system. Despite this separation, ML

solutions can still be applied in both planes independently and

even more robust models can be created. One example is the

application of ML algorithms in the control plane, and, by

learning from the control signals of the network, decisions

such as CAC, mobility management or load balancing can be

achieved.

From the perspective of the data plane, by learning only

from the data requested by users, more robust models in terms

of backhaul management, caching and resource optimization

can also be achieved. Another possible application of ML

regarding the split of both control and data planes is the

development of ML solutions to achieve self-healing in both

planes. By learning independently from data of both planes, a

more general overview of the network can be achieved.

2) Cloud Computing and Cloud RAN: another key enabler

of future networks is the concept of cloud computing. Since

some ML algorithms require lots of data and are extremely

complex, one possible solution can be to use cloud computing

in order to enable on-demand resources, such as computing

power or even data stored in remote servers, whenever an

algorithm needs such.

Another key enabler of 5G, specially of centralized solu-

tions, is the concept of cloud RAN, in which some processing

functions of BSs can be done in a centralized way by a local

controller. One possible realm in which ML algorithms can be

applied is directly in these controllers. Since these controllers

will process information from different BSs, models can be

created in a much more optimal way, by deploying them

directly to these controllers instead of each BS, and an

improved performance, together with better coordination and

cost reduction can be achieved.

3) Network Function Virtualization: another hot topic in

future networks is the concept of network function virtualiza-

tion, in which its main goal is to decouple network functions

from their specific hardware components, enabling a much

more flexible network. By decoupling functions from their

hardware, ML models can directly learn network parameters

independently from hardware and provide much more generic

and robust solutions.

4) Physical Layer Management: another topic that is being

discussed in order to enable 5G is the application of different

waveforms for different application at the physical layer level.

Depending on the user and applications requirements, as well

as channel conditions, the network could automatically choose

which are the best parameters, such as modulation and coding

to transmit at that specific time slot.

In this regard, ML algorithms can be used in order to learn

network and user behavior, as well as more generic aspects of

the wireless channel, such as shadowing and generate models

and auto-select which waveforms and coding schemes are

better for a particular application and environment.

5) Automatic RAT Selection: in the future, it is also ex-

pected that 5G will co-exist with different technologies in a

multiple Radio Access Technology (multi-RAT) environment.

Since each technology has different capabilities and provide

different QoS and QoE to its end-users, one can imagine the

application of ML algorithms in order to match users with

different needs and requirements to the most suitable RAT. In

this sense, ML solutions can learn individual user behaviors

and their requirements and determine to which RAT should a

user be allocated to.

6) End-to-End Connectivity: current networks analyze mo-

bile connections in terms of RAN, in which a mobile user

decides which cell to connect to based on connectivity param-

eters from the BS. In the future, however, as networks will

become much more complex and will have to deal with several

different applications at a time, this RAN vision of the network

might not be sufficient and end-to-end solutions will have to

be provided. One possible solution relies on the analysis of

the whole mobile connection, in which not only the RAN is

considered in order to determine a cell selection, but also the

backhaul, so that other requirements can be considered, such

as latency and capacity, for example.

In order to enable this change in paradigm, ML algorithms

can be applied in order to match different users with different

needs to backhaul connections that better suit them, instead of

just analyzing RAN parameters.

7) Hybrid Architecture: another area that SON also enables

is the hybrid ad-hoc and cellular architectures. In current

cellular systems, everything is done in a centralized way,

while in ad-hoc solutions, decentralized approaches are more

common. In the future, several concepts like M2M and D2D
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communication might transform current cellular networks in

hybrid networks, requiring hybrid approaches in order to solve

their issues.

One possible future research area is the application of TL

in order to optimize the parameters of a hybrid network. By

modeling current, centralized networks, ML algorithms can

learn and build their models and then, in the future, these

models can be transferred to hybrid networks, saving the

operators both time and money.

8) Learning from Machines: speaking of D2D and M2M

communication, another aspect that can be investigated in the

future is the concept of learning from machine behavior. As

already stated, it is known that humans have their own patterns

and are fairly predictable, but how about the machines? With

the advents of IoT and the requirements of each application,

it might be easier in order for ML algorithms to learn pat-

terns and to model the communication behavior of machines,

bringing bigger gains to the whole network.

Consider the case of a network of remote sensors that send

collected data every week. It might be easier for ML algo-

rithms to learn from this domain and achieve high accuracy

in its predictions. With that in mind, the concept of TL can

also be applied here, in which patterns learned either from

humans or from other machines with different applications,

can be used in order to model other machine behaviors.

F. Other Machine Learning Solutions

1) Further Exploration of Machine Learning Algorithms:

as it could be seen from Tables II, III, IV, there are still lots

of ML algorithms that have not been applied to certain SON

functions. Although not every algorithm is recommended to

be applied to every self-x function, as seen from Table VI,

further exploration of ML solutions still need to be done in

order to investigate their performance and determine if these

methods can really work or not.

2) Deep Learning: one area that has seen a lot of growth

in recent years and is very promising is the realm of deep

learning, in which algorithms are fed with raw data and are

able to learn by themselves the representations needed in order

to perform detection or classification [269]. Deep learning has

already proved themselves to be really powerful algorithms

which were able to improve state-of-the-art solutions in speech

recognition, object detection and genomics, for example [269].

VIII. CONCLUSION

A survey of current ML techniques applied to SON in

cellular systems was provided. In addition, not only the

most popular ML techniques found in SON applications were

presented and explained, but also examples from the context

of cellular networks for some algorithms were given.

On top of that, this work also focused on the learning

perspective of the ML algorithms and their solutions. Thus,

by classifying the reviewed literature in terms of both its

ML application as well as its SON function, the authors

managed to develop a foundation that enables other researchers

to understand the basics of the most popular ML algorithms

and how they are applied in the realm of SON. Furthermore,

the authors also believe that this work also enables future

researchers to identify possible open issues and areas that are,

currently, not well explored in terms of SON functions. The

authors also present and discuss some suggestions for future

research areas and outline some solutions that can be used in

the future in order to enable certain SON functions.

There is a trend now in order to enable a fully autonomous

and intelligent future, not only in the realm of cellular systems.

The advents of smart vehicles, smart personal assistants in mo-

bile phones, smart search algorithms, smart recommendations,

all of this will require a shift and change in paradigms in future

applications, and with cellular networks it is not different. In

order for future networks to keep updated and on par with

state-of-the-art intelligent systems a change in paradigm needs

to be developed and this will most likely require the use of

intelligent solutions, mainly ML algorithms.

Future networks will also require a change in the way the

network is perceived. In the future, thousands of parameters

will need to be configured, thousands of cells will need to be

monitored and optimized at the same time and a huge amount

of data will be collected, not only from humans, but also from

machines. Since it is impossible for humans to deal with this

amount of tasks and data, ML solutions will need to be applied

in order to learn models in a relative short amount of time and

to enable an autonomous and intelligent network.
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- Paraná, Brazil in 2014, and in 2015 the MSc.
degree (Hons.) from the University of Surrey, Guild-
ford, U.K., in Mobile Communications Systems,
both with distinction. In 2016 he spent the first
year of his PhD working in 5G Innovation Centre
at the University of Surrey, and currently he is a
PhD student in the School of Engineering at the
University of Glasgow. His main interests include

self organizing cellular networks and the application of machine learning
algorithms in wireless networks.



40

Muhammad Ali Imran is the Vice Dean Glasgow
College UESTC and Professor of Communication
Systems in the School of Engineering at the Uni-
versity of Glasgow. He was awarded his M.Sc.
(Distinction) and Ph.D. degrees from Imperial Col-
lege London, U.K., in 2002 and 2007, respectively.
He is an Affiliate Professor at the University of
Oklahoma, USA and a visiting Professor at 5G
Innovation Centre, University of Surrey, UK. He has
over 18 years of combined academic and industry
experience, working primarily in the research areas

of cellular communication systems. He has been awarded 15 patents, has
authored/co-authored over 300 journal and conference publications, and has
been principal/co-principal investigator on over 6 million in sponsored re-
search grants and contracts. He has supervised 30+ successful PhD graduates.
He has an award of excellence in recognition of his academic achievements,
conferred by the President of Pakistan. He was also awarded IEEE Comsocs
Fred Ellersick award 2014, FEPS Learning and Teaching award 2014, Sentinel
of Science Award 2016. He was twice nominated for Tony Jeans Inspirational
Teaching award. He is a shortlisted finalist for The Wharton-QS Stars Awards
2014, QS Stars Reimagine Education Award 2016 for innovative teaching
and VCs learning and teaching award in University of Surrey. He is a
senior member of IEEE and a Senior Fellow of Higher Education Academy
(SFHEA), UK.

Oluwakayode Onireti (S’11-M’13) received the
B.Eng. degree (Hons.) in electrical engineering from
the University of Ilorin, Ilorin, Nigeria, in 2005,
and the M.Sc. degree (Hons.) in mobile and satellite
communications, and the Ph.D. degree in electronics
engineering from the University of Surrey, Guild-
ford, U.K., in 2009 and 2012, respectively. From
2013 to 2016, he was a Research Fellow with
ICS/5GIC, the University of Surrey. He is currently a
Research Associate with the School of Engineering,
University of Glasgow. He has been actively in-

volved in projects such as ROCKET, EARTH, Greencom, QSON and, Energy
proportional EnodeB for LTE-Advanced and Beyond. He is currently involved
in the DARE project, a ESPRC funded project on distributed autonomous and
resilient emergency management systems. His main research interests include
self-organizing cellular networks, energy efficiency, multiple-input multiple-
output, and cooperative communications.

Richard Demo Souza was born in Florianpolis-
SC, Brazil. He received the B.Sc. and the D.Sc.
degrees in Electrical Engineering from the Federal
University of Santa Catarina (UFSC), Brazil, in 1999
and 2003, respectively. In 2003 he was a Visiting
Researcher in the Department of Electrical and Com-
puter Engineering at the University of Delaware,
USA. From 2004 to 2016 has was with the Federal
University of Technology - Paran (UTFPR), Brazil.
Since 2017 he has been with the Federal University
of Santa Catarina (UFSC), Brazil, where he is an

Associate Professor. His research interests are in the areas of wireless
communications and signal processing. He is a Senior Member of the IEEE
and of the Brazilian Telecommunications Society (SBrT), and has served as
Associate Editor for the IEEE Communications Letters, the EURASIP Journal
on Wireless Communications and Networking, and the IEEE Transactions on
Vehicular Technology. He is a co-recipient of the 2014 IEEE/IFIP Wireless
Days Conference Best Paper Award, the supervisor of the awarded Best PhD
Thesis in Electrical Engineering in Brazil in 2014, and a co-recipient of the
2016 Research Award from the Cuban Academy of Sciences.


