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Abstract 

Positive selection occurs when an allele is favored by natural selection. The frequency of the favored allele increases 
in the population and due to genetic hitchhiking the neighboring linked variation diminishes, creating so-called 
selective sweeps. Detecting traces of positive selection in genomes is achieved by searching for signatures intro-
duced by selective sweeps, such as regions of reduced variation, a specific shift of the site frequency spectrum, and 
particular LD patterns in the region. A variety of methods and tools can be used for detecting sweeps, ranging from 
simple implementations that compute summary statistics such as Tajima’s D, to more advanced statistical approaches 
that use combinations of statistics, maximum likelihood, machine learning etc. In this survey, we present and discuss 
summary statistics and software tools, and classify them based on the selective sweep signature they detect, i.e., 
SFS-based vs. LD-based, as well as their capacity to analyze whole genomes or just subgenomic regions. Additionally, 
we summarize the results of comparisons among four open-source software releases (SweeD, SweepFinder, Sweep-
Finder2, and OmegaPlus) regarding sensitivity, specificity, and execution times. In equilibrium neutral models or mild 
bottlenecks, both SFS- and LD-based methods are able to detect selective sweeps accurately. Methods and tools 
that rely on LD exhibit higher true positive rates than SFS-based ones under the model of a single sweep or recurrent 
hitchhiking. However, their false positive rate is elevated when a misspecified demographic model is used to repre-
sent the null hypothesis. When the correct (or similar to the correct) demographic model is used instead, the false 
positive rates are considerably reduced. The accuracy of detecting the true target of selection is decreased in bottle-
neck scenarios. In terms of execution time, LD-based methods are typically faster than SFS-based methods, due to the 
nature of required arithmetic.
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Background
Evolution by natural selection is based on a simple princi-

ple: traits that increase the chance of survival and repro-

duction have a higher tendency to be transmitted to the 

next generation. �e beauty of evolution by natural selec-

tion is in the simplicity with which adaptation is achieved 

over time. �e definition is universal since it does not dis-

tinguish between the various forms of natural selection, 

such as positive selection, negative selection, balancing 

selection, and frequency-dependent selection, neither 

does it depend on the fitness landscape nor on the way 

that a population explores it. In addition, it does not 

differentiate between single-locus and multi-loci traits, 

and it does not assume any independence between loci or 

any form of epistasis. �e generality of the natural selec-

tion concept, however, yields the detection of traits that 

have contributed to the adaptation of organisms a rather 

challenging task. �e definition itself is intuitive, clear, 

and well-understood. Yet, it does not provide any means 

on how to detect adaptive traits. �erefore, research has 

predominantly focused on the various forms of natural 

selection (e.g., positive, negative, balancing etc.) in order 

to understand and describe them, as well as to provide 

the means and tools to detect them.

Positive (or directional) selection is among the most 

extensively studied forms of selection, occurring when an 

allele is favored by natural selection. In that case, the fre-

quency of the beneficial/favored allele increases over time, 
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potentially becoming fixed in the population (substituting 

the non-beneficial one) when the effective population size 

(Ne) is large and back mutations occur infrequently. In a 

seminal study, Maynard Smith and Haigh [1] showed that 

when a beneficial allele substitutes a neutral allele, the fre-

quencies of closely linked neutral alleles change as well. 

�ose alleles that were originally linked to the benefical 

allele increase in frequency, whereas the remaining—non-

linked—ones decrease in frequency. Maynard Smith and 

Haigh [1] coined the term ‘hitchhiking’ to describe this 

effect, because a neutral allele can get a lift by a closely 

linked beneficial allele. �ey also showed that heterozygo-

sity at a linked locus is proportional to c/s, where c is the 

fraction of recombination rates between the neutral and 

the beneficial loci, while s is the selection coefficient of 

the beneficial allele. �e fraction of recombination rate c 

delimits the effect of hitchhiking locally in the genome. At 

distant locations, recombination breaks the physical link-

age to the beneficial allele and therefore distant regions 

evolve independently of the selective sweep. Interestingly, 

the motivation of Maynard Smith and Haigh to study the 

hitchhiking effect came from an observation by Lewontin 

[2], that the extent of enzyme polymorphisms is surpris-

ingly constant between species of very different effective 

population sizes (see Box).

E�ective population size

The concept of the Effective Population Size was firstly introduced by 
Sewall Wright in 1931 [3]. Wright introduced N (the symbol Ne is mostly 
employed today instead) to describe the size of a diploid breeding 
population, which is smaller than the total number of individuals of all 
ages. He shows that population size fluctuations brings the effective N 
closer to the smaller actual population size. Also, the unequal numbers 
between males and females reduce the effective N. Finally, variations 
on the offspring numbers also reduce the effective population size. 
The effective population size is almost always smaller than the actual 
population size. A notable exception is the case of seedbanks, where 
the effective population size (hidden in forms of seeds) may be orders 
of magnitudes greater than the actual number of developed organ-
isms [4, 5].

Assuming that the Ne is sufficiently large, Maynard 

Smith and Haigh [1] showed that the hitchhiking effect 

can have a considerable aggregate effect on the reduc-

tion of the polymorphism levels within populations. �is 

result is roughly correct for finite population sizes as well 

[6, 7]. �erefore, the effect of Ne on the polymorphism 

level would be buffered by the hitchhiking effect, and dif-

ferences on the heterozygosity between populations of 

very different effective population sizes will not be as sig-

nificant as predicted by neutrality:

where u is the mutation rate, and H is the amount of 

heterozygosity. Using the wording from Maynard Smith 

(1)H = 4Neu/(1 + 4Neu),

and Haigh: “If H lies between 0.1 and 0.5, then Ne lies 

between 0.028 and 0.25  u−1, and it is not plausible that 

the effective population sizes of all species lie within such 

narrow limits”.

Due to its simplicity, as well as the potential to generate 

testable hypotheses, the hitchhiking effect motivated the 

study of the various signatures that a beneficial allele leaves 

locally on the genome upon fixation. A first prediction is 

the reduction of the polymorphism level locally on the 

genome. Because of this property of the hitchhiking effect 

to sweep the neutral polymorphisms in the neighborhood 

of a beneficial mutation, the term ‘selective sweep’ has 

been coined. In fact, according to the hitchhiking model, 

genomic regions with low recombination rates (per base 

pair and per individual) exhibit less diversity. In Dros-

ophila, studies have confirmed this prediction in regions 

of reduced recombination. In D. melanogaster, Aguade 

et al. [8] studied the yellow-achaete-scute complex located 

in a region of reduced crossing over, close to the telomere, 

and observed that the level of diversity is reduced in rela-

tion to regions of normal crossing over, consistently with 

the hitchhiking effect hypothesis. In D. ananassae, Stephan 

and Langley [9] also reported reduced genetic variability in 

a region of reduced recombination rate. �ey studied the 

vermilion locus in the centromeric region, concluding that 

their results are consistent with the hitchhiking model. A 

second signature that hitchhiking leaves on the genome is 

a particular shift of the Site Frequency Spectrum (SFS) [10, 

11]. Specifically, an increase of high- and low-frequency 

derived variants is expected in the proximity of the benefi-

cial mutation. A third signature is associated with the level 

of Linkage Disequilibrium (LD). As shown by [12, 13], the 

LD levels remain high at each side of the beneficial muta-

tion, and drop dramatically for loci across the beneficial 

mutation. �ese three signatures motivated the design of 

several tests to detect genomic regions subject to genetic 

hitchhiking.

Testing for the effect of genetic hitchhiking, typically 

referred to as selective sweep detection, is achieved by a 

variety of means, ranging from simple summary statistics 

to standalone software tools. �ese tests vary on the sig-

natures they detect, such as SFS- vs. LD-based methods, 

and/or on the applicability of the implementations, such 

as genome-wide vs. subgenomic regions.

Recently, several excellent surveys on detecting selec-

tive sweeps have been published. Malaspinas [14] focused 

on methods that detect selective sweeps in ancient DNA 

(aDNA) samples and time series data. �e author presents 

an extensive table of methods, providing brief guidelines 

about when to use each approach, the inference each 

method is able to perform, their assumptions, as well as 

studies and organisms they have been applied on.
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Crisci et  al. [15] reviewed several widely-used 

approaches to detect recent and strong positive selection, 

such as SweepFinder [16], SweeD [17], OmegaPlus [18], 

and iHS [19]. �e study mostly focuses on the type I and 

II error of the methods, the effect of population param-

eters, such as population substructure and/or population 

size, and the length of the sequenced region. �e authors 

performed simulations to demonstrate the efficiency of 

the different methods, finding that LD-based methods 

outperform other methods in both equilibrium and non-

equilibrium evolutionary scenarios.

Vitti et  al. [20], in an extended review, reported ideas 

and concepts that have been used to detect selection on 

a macroevolutionary or microevolutionary scale. �ey 

go beyond the classical model of selection (complete or 

ongoing selective sweeps) and discuss more complex 

models of natural selection, i.e., soft selective sweeps or 

selection on polygenic traits. Finally, they report a list 

of the most important genes found to be evolved under 

selection.

Pool et al. [21] review the challenges posed by new gen-

eration sequencing data, particularly with respect to data 

quality and missing values. �ey assess the challenges of 

analyzing polymorphisms on the whole-genome scale, 

and the potential analyses that can provide insights into 

the inference of population genetics parameters using 

whole-genome data.

In this review, we survey methods and tools that can 

be used to detect recent and strong positive selection, or 

equivalently, so-called ‘hard’ selective sweeps. We pro-

vide insights into performance issues of the methods, 

as well as their accuracy to detect the target of selection 

in natural populations. �e remaining of this survey is 

organized as follows: in section "Sweep footprints and 

problems caused by demography", we describe the three 

different signatures of a selective sweep, and discuss the 

problems introduced in the detection process by neutral 

demographic events. In "Methods and tools" we present 

summary statistics and stand-alone software tools. We 

classify them based on the signature they detect and the 

applicability on whole genomes or subgenomic regions. 

Evaluation results regarding sensitivity, specificity, and 

execution times are presented in section "Evaluation". 

�e subsequent section "Detection of soft sweeps" pre-

sents methods for detecting soft selective sweeps, while 

the "Discussion" section focuses on interpretation, per-

formance, and efficiency issues.

Sweep footprints and problems caused 
by demography
Detecting sweeps based on diversity reduction

�e most striking effect of genetic hitchhiking is the 

reduction of the polymorphism (diversity) level. Maynard 

Smith and Haigh  [1] predicted the reduction of hete-

rozygosity as a consequence of the hitchhiking effect in 

large (infinite) populations, immediately after the fixa-

tion of the beneficial mutation. After the completion of 

the hitchhiking effect, when the beneficial mutation has 

been fixed, neutral variation will start to accumulate 

again on the genomic region and heterozygosity will 

increase. A prediction of the hitchhiking effect is that in 

genomic regions with reduced recombination rate per 

physical distance, the amount of diversity decreases if 

the hitchhiking effect is recent. Subsequent studies [7–9, 

22–25] confirmed this prediction for D. melanogaster, 

D. simulans, and D. ananassae species. A similar pre-

diction, however, holds for background selection [26] as 

well. More specifically, if neutral variants are linked to a 

strongly deleterious mutation, the level of polymorphism 

also deteriorates, since the deleterious mutation is gradu-

ally removed from the population. �e amount of poly-

morphism reduction depends on the selection coefficient 

of the deleterious mutation  [27]. For example, there is 

no effect when the linked deleterious mutation is lethal, 

since it is being directly removed from the population. 

Even though both evolutionary forces predict the reduc-

tion of the diversity level, it has been demonstrated [28] 

that, in a hitchhiking model, the estimated level of diver-

sity, θ̂, is negatively correlated with θ̂/ρ, where ρ is the 

recombination rate, whereas in a background selection 

model, the estimated level of diversity is positively cor-

related with the same quantity (see also [29] for a review).

Detecting sweeps based on the SFS

�e studies by [10, 11] showed that a selective sweep trig-

gers a shift of the SFS toward high- and low-frequency 

derived variants. �is is attributed to the fact that neu-

tral variants that are initially linked to the beneficial vari-

ant, increase in frequency, whereas those ones that are 

initially not linked to the beneficial variant decrease in 

frequency during the fixation of the beneficial mutation. 

Figure  1 illustrates the shift of the SFS after a selective 

sweep and the corresponding polymorphic table.

A breakthrough on detecting selective sweep 

approaches was the test proposed by [30], known as the 

Kim and Stephan test for selective sweeps. �ey devel-

oped a composite-likelihood-ratio (CLR) test to com-

pare the probability of the observed polymorphism data 

under the standard neutral model with the probability of 

observing the data under a model of selective sweep. For 

the selective sweep model, and for each value of the selec-

tion intensity (a = 4Nes), where s is the selection coef-

ficient, the test calculates the probability to observe the 

data and reports the value of a that maximizes the CLR. 

�us, besides the detection of the location of the selective 

sweep, the Kim and Stephan test is able to estimate the 
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strength of selection as well. �e Kim and Stephan test 

was the first to implement a CLR test on sweep detection, 

and it has been used to detect selection on candidate 

loci  [31, 32]. It adopts, however, several oversimplified 

assumptions. First, the neutral model was derived by an 

equilibrium neutral population, i.e., a population with 

constant population size. Second, the selection model 

was derived by Fay and Wu’s model [11], where only the 

low- and the high-frequency derived classes are assumed. 

Concerning the execution of the Kim and Stephan test, 

run time and memory requirements are extensively large, 

yielding the approach not suitable for genome-scale 

detection of selective sweeps.

Detecting sweeps based on LD

�e third signature of a selective sweep consists of a spe-

cific pattern of LD that emerges between SNPs in the 

neighborhood of the target site for positive selection. 

Upon fixation of the beneficial mutation, elevated levels 

of LD emerge on each side of the selected site, whereas 

a decreased LD level is observed between sites found on 

different sides of the selected site. �e high LD levels on 

the different sides of the selected locus are due to the fact 

that a single recombination event allows existing poly-

morphisms on the same side of the sweep to escape the 

sweep. On the other hand, polymorphisms that reside on 

different sides of the selected locus need a minimum of 

two recombination events in order to escape the sweep. 

Given that recombination events are independent, the 

level of LD between SNPs that are located on different 

sides of the positively selected mutation decreases. Fig-

ure  2 shows an example of the LD patterns emerging 

after a sweep.

�e LD-based signature of a selective sweep was thor-

oughly investigated by Kim and Nielsen [12]. In this 

study, they introduced a simple statistic, named ω-sta-

tistic, that facilitates the detection of the specific LD pat-

terns that emerge after a sweep. For a window of W SNPs 

that is split into two non-overlapping subregions L and 

R, with l and W − l SNPs, respectively, the ω-statistic is 

computed as follows:

Jensen et  al.  [33] evaluated the performance of the 

ω-statistic in terms of the capacity to separate between 

neutral demographic models and selective sweeps, and 

showed that the ω-statistic accurately detects the targets 

of positive selection for demographic parameters rele-

vant to natural non-equilibrium populations, such as the 

cosmopolitan population of D. melanogaster.

The role of demography in selective sweep detection

Demography introduces severe challenges on the detec-

tion process for positive selection due to its confounding 
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Fig. 1 The SFS signature of a selective sweep compared to the neutral SFS. In the polymorphic table, black cells denote derived alleles, whereas the 
white cells denote ancestral alleles. Each column in the polymorphic table represents a SNP. Monomorphic sites have been excluded. a Neutral SFS 
and its respective polymorphic table. b SFS after a selective sweep and its respective polymorphic table
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nature regarding the signatures of genetic hitchhiking. 

Selective sweep detection becomes feasible mainly due 

to two factors: (a) the fixation of the beneficial muta-

tion, and b) the fact that coalescent events occur at a 

higher rate in the presence of a sweep than they do in its 

absence. It is these two factors, along with recombination 

events, that generate the specific signatures of a selective 

sweep, enabling us to detect traces of positive selection in 

genomes. However, additional factors can also trigger a 

high rate of coalescent events, leading to the generation 

of similar (to a selective sweep) signatures in the genome, 

and thus misleading current selective sweep detection 

approaches. For instance, assume a bottleneck event that 

is characterized by three phases: (a) a recent phase of 

large effective population size, (b) a second phase, prior 

to the first one, of small population size, and (c) an ances-

tral one of large population size. It is due to the decrease 

of the effective population size in the second phase that a 

high rate of coalescent events occur, thus raising the pos-

sibility of observing a large number of coalescent events 

in a relatively short period of time. Furthermore, if the 

second phase is not too severe, lineages can escape the 

bottleneck, passing to the ancestral phase of large effec-

tive population size, and therefore requiring more time 

to coalesce. In a recombining chromosome, genomic 

regions that have witnessed a massive amount of coales-

cent events during the bottleneck phase may alternate 

with genomic regions with lineages that have escaped the 

bottleneck phase (Fig. 3). Such alternations can generate 

SNP patterns that are highly similar to those generated 

by a selective sweep, yielding the detection process very 

challenging, if not unfeasible [34].

It is well known that certain demographic scenarios 

generate spurious SNP patterns that resemble a selec-

tive sweep. Yet, it is generally believed that, unlike the 

localized effect of a selective sweep, neutral demographic 

changes generate genome-wide patterns. �is idea of 

‘local sweep effects’ vs. ‘global demographic effects’ 

has been extensively used to regulate the demography-

induced false positive rates  [16, 17, 35]. In SFS-based 

sweep scans, this idea translates to a two-step computa-

tional approach that entails the initial estimation of an 

average, genome-wide SFS (background SFS) followed 

by a detection step, for those genomic regions that fit the 

selection model but not the background SFS. An issue 

with such an approach, however, is that it does not take 

into account the variation of the SFS in different regions 

of the genome, and it assumes an approximately uni-

form behavior of the SFS along a recombining genome. 

�is is not the case for demographic models, such as 

1

2

3

4
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6

Fig. 2 The LD signature around a selective sweep. Assume a population with neutral segregating variation (1). A beneficial mutation occurs (shown 
as a black allele) in subfigure (2). Since the mutation is beneficial, its frequency will increase in the population. Neutral variants that are linked to 
the beneficial mutation will hitchhike with it (3). Due to recombination, mutations from a neutral background will get linked with the beneficial 
mutation (4, 5). Finally, the selective sweep completes (6). The LD pattern that emerges from such a process is the elevated LD on each side of the 
beneficial mutation and the decreased LD for SNPs that are on different sides of the beneficial mutation
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bottlenecks, which generate great variance along a 

recombining chromosome [34, 36–38]. �erefore, under 

certain bottleneck demographic scenarios, there can be 

neutral-like genomic regions, as well as sweep-resem-

bling ones, regardless of the actual existence of a selective 

sweep. Since both recombination and the alternation of 

genealogies along a recombining chromosome are sto-

chastic, it is highly challenging to determine which gene-

alogies are shaped by the neutral demographic process 

and which genealogies are shaped by the action of posi-

tive selection at a certain location in the genome. Cur-

rent approaches are not able to completely overcome the 

confounding effect of bottlenecks on positive selection 

in recombining chromosomes, therefore users should 

be careful when interpreting results of selective sweep 

scans. It should be noted however, that, several tools, 

such as SweepFinder, SweepFinder2, SweeD, and Omega-

Plus, and/or the deployment of the demographic model 

as the null model, contribute to alleviating the problem 

generated by the confounding effects of demography.

Demography not only affects the False Positive Rate 

(FPR) of the detection methods, or our ability to distin-

guish it from selective sweeps, but additionally repre-

sents an obstacle in the detection process. �is derives 

from the fact that the SNP patterns which emerge from 

the combined action of demography and selection are 

unknown. For instance, the SFS-based tools Sweep-

Finder and SweeD (presented in a following section), 

assume that if a lineage escapes the selective sweep due 

to a recombination event, then, prior to the sweep, its 

frequency is given by the neutral (or background) SFS. 

�is is valid if the selective sweep has occurred in a con-

stant-size population. If, however, the population has 

experienced population size changes (or other demo-

graphic events such as migrations), this assumption does 

not necessarily hold.

Given the difficulties that bottlenecks pose on identify-

ing accurately the footprints of selection, it is unfortunate 

(even though expected) that most natural populations 

have experienced bottlenecks during their evolutionary 

history. For example, the European population of D. mel-

anogaster experienced a severe bottleneck about 15,800 

years ago, when the European population diverged from 

the African population. �e duration of the bottleneck 

was about 340 years and the effective population size 

during the bottleneck was only 2200 individuals [39]. 

Regarding the demography of human populations, the 

proposed models suggest several bottleneck (founder) 

events and interactions (gene flow) between subpopula-

tions [40]. Domesticated animals have also experienced 

a series of bottleneck events during the domestica-

tion process. Using only mtDNA and the Approximate 

Bayesian Computation methodology, Gerbault et al. [41] 

report that goats have experienced severe bottleneck 

events during their domestication. Approximate Bayesian 

Computation was also used to provide insights into the 

demographic history of silkworm [42]. Using 17 loci in 

the domesticated silkworm, they reported that the most 

plausible scenario explaining the demographic history 

of silkworm comprises both bottleneck and gene flow 

events [42].

Methods and tools
Summary statistics

Summary statistics are inexpensive calculations on the 

data, typically implemented following a sliding window 

approach where the window slides along the genome 

with a fixed step. Simpler statistics such as Tajima’s D or 

the SNP count do not require sequencing, but only SNP 

calling, whereas LD-based ones, like counting the num-

ber of haplotypes or measuring haplotypic heterozygosity 

require sequencing prior to scanning the genomes. Sev-

eral summary statistics serve as neutrality tests due to the 

fact that their distributions differ distinctively between 

neutrality and the presence of strong positive selection.

Relying on Tajima’s D, Braveman et  al.  [10] were able 

to detect genomic regions affected by recent and strong 

positive selection in simulated datasets, as well as to 

demonstrate that regions of low genetic diversity and low 

recombination rate (e.g., around centromeres or at telom-

eres) are not compatible with a simple hitchhiking model. 

Since then, Tajima’s D has been deployed in numerous 

studies as a neutrality test to detect selection [43–49]. 

Fig. 3 Bottleneck demographic scenarios (top panel) may result in 
similar genealogies to a selective sweep (bottom panel). Both models 
may produce very short coalescent trees. As we move from the selec-
tion site, selective sweeps produce genealogies with long internal 
branches. Similarly, bottlenecks may produce genealogies with very 
long internal branches if the ancestral population size is large
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�is summary statistic captures the difference between 

two estimates of the diversity level θ = 4Neµ, where 

µ is the mutation rate. �e first estimate, π, is based on 

the number of pairwise differences between sequences, 

while the second one, Watterson’s θ (θW), is based on the 

number of polymorphic sites. Tajima’s D obtains nega-

tive values in the proximity of a selective sweep, since 

π decreases with both high- and low-frequency derived 

variants, while θW  remains unaffected.

In 2000, Fay and Wu  [11] proposed a new statistic, 

the well-known Fay and Wu’s H, which obtains low val-

ues in regions where high-frequency derived variants 

are overrepresented. To distinguish between high- and 

low-frequency derived variants, Fay and Wu’s H relies 

on information derived from an outgroup species. �e 

ancestral state is considered to be the one that is com-

mon between the ingroup and the outgroup. Addition-

ally, Fay and Wu [11] invented a new unbiased estimator 

for θ, named θH, which assumes high values in regions 

with overrepresented high-frequency derived variants. 

�e H statistic is defined as the difference between π and 

θH, and as such it becomes significantly negative in the 

proximity of a beneficial mutation. Since a backmutation 

will result in the incorrect inference of the derived poly-

morphic state, Fay and Wu’s H requires the probability of 

mis-inference to be incorporated in the construction of 

the null distribution of the statistic. In 2006, Zeng et al. 

[50] improved the H statistic by adding the variance of 

the statistic in the denominator, thus scaling H by the 

variance of the statistic.

Depaulis and Veuille  [51] introduced two neutrality 

tests that rely on haplotypic information. �e first sum-

mary statistic, K, is simply the number of distinct haplo-

types in the sample, assuming low values in the proximity 

of the beneficial mutation. �e second test measures 

haplotype diversity, denoted by H (or DVH, Depaulis 

and Veuille H, to be distinguished from Fay and Wu’s 

H). DVH is calculated as DVH = 1 −

∑K
i=1

p2i , where 

pi is the frequency of the ith haplotype. Both the DVH 

and the K summary statistics are conditioned on the 

number of polymorphic sites, s, which yields the con-

struction of the null (neutral) distribution of the statistic 

rather problematic. Depaulis and Veuille simulated data 

using a fixed number of polymorphic sites s, and without 

conditioning on the coalescent trees. �is approach is 

incorrect because the number of polymorphic sites is a 

random variable that follows a Poisson distribution, and 

it is determined by the total length of the (local) coales-

cent tree and the mutation rate. �us, to construct the 

null distribution of the statistic, a two-step approach 

is required: first, a coalescent tree is generated accord-

ing to the demographic model and mutations are placed 

randomly on its branches (this step can be achieved 

using Hudson’s ms [52]), and second, a rejection process 

is applied in order to condition on the number of poly-

morphic sites s, during which only the simulations that 

produced s segregating sites are kept while the rest are 

discarded.

Typically, summary statistics are applied on whole 

genome data following a sliding-window approach, 

which allows inexpensive computations on large data-

sets for those statistics used as neutrality tests. However, 

two problems exist with the use of summary statistics as 

neutrality tests. �e first problem is that the window size 

is fixed, which, regardless of the way it is measured, i.e., 

either as number of SNPs or as number of base pairs, it 

can be of critical importance for the acceptance or rejec-

tion of the null hypothesis. For example, it is possible to 

not reject neutrality when using Tajima’s D on 1-kb win-

dows, while rejecting neutrality when using the same 

summary statistic on 2-kb windows. More advanced 

tests, such as SweepFinder/SweepFinder2, SweeD, and 

OmegaPlus implement variable-sized windows (see 

below). While evaluating windows of varying sizes does 

not solve the problem completely, due to the inevitable 

existence of lower and upper bounds for the window 

sizes, such tests are more robust to the window size 

parameter. �e second problem, which is common for 

most neutrality tests, is that they are not robust to demo-

graphic changes of the population. For instance, Tajima’s 

D can assume negative values in a population expansion 

scenario as well as locally in genomic regions under a 

bottleneck scenario. It also becomes negative in genomic 

regions that have experienced purifying selection. Fay 

and Wu’s H can become negative in demographic models 

that increase the high-frequency derived variants. Such 

demographic models include gene flow [53] or sampling 

from one deme that is part of a metapopulation [54] 

(Pavlidis, unpublished data).

Detecting sweeps in subgenomic regions

In addition to summary statistics, which due to low com-

putational costs are highly suitable for scanning whole 

genomes, various stand-alone software implementations 

have also been released in the previous years, with initial 

releases focusing mostly on the analysis of subgenomic 

regions with limited number of SNPs, due to increased 

computational requirements.

Kim and Stephan test [30]

�e Kim and Stephan test [30] (known also as CLR test), 

used the results of Fay and Wu [11] to obtain the prob-

ability to observe a mutation of certain frequency p, at 

some distance from the location of the selective sweep. 

Under a selective sweep model, only low and high fre-

quency derived alleles have non-zero probabilities, 
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whereas under a neutral model, the probability to observe 

a mutation of certain frequency is given by the standard 

neutral SFS. �en, a Composite Likelihood Ratio test 

(CLR) is performed. High CLR values denote a candidate 

region for a selective sweep. To obtain a threshold value 

for the CLR, simulations should be performed under a 

reference demographic model (without selection). �e 

Kim and Stephan test can be only applied on subgenomic 

data.

Pavlidis et al. [55]

�e detection approach proposed by Pavlidis et  al.  [55] 

relies on a machine-learning paradigm to detect selective 

sweeps in candidate subgenomic regions. �is approach 

implements a support vector machine (SVM) classifier 

to separate neutral datasets from datasets with selection 

and demography. SVM classifiers, and in general super-

vised machine learning approaches, require a training 

phase, where the algorithm “learns” to separate neutral 

from selection scenarios based on concrete simulated 

examples, either neutral or selected ones. In the train-

ing phase, neutral models incorporate the demographic 

model, whereas selection models incorporate both the 

demographic model and selection. One problem that 

arises from such an approach is that a multitude of 

models might exist for the models with selection (e.g., 

time of the onset of beneficial mutation and selection 

coefficient). Pavlidis et  al.  [55] used a mixture of selec-

tion models with various selection coefficients and vari-

ous onset times of the beneficial mutation. �e method 

evaluation revealed satisfying results, but the required 

training phase of the SVM prevented the application of 

this approach at a full-genome scale, due to prohibitively 

large execution times.

Detecting sweeps in whole genomes

�e advent of Next Generation Sequencing (NGS) paved 

the way for the analysis of whole genomes at different 

geographic locations and environmental conditions, 

and revealed a need for more efficient processing solu-

tions in order to handle the increased computational 

and/or memory requirements generated by large-scale 

NGS data. While typical summary statistics are gener-

ally suitable for NGS data, they are applied on fixed-size 

windows, and as such they do not provide any insight on 

the extent of a selective sweep. More advanced meth-

ods that rely on the CLR test (e.g., SweepFinder  [16], 

SweepFinder2  [56], and SweeD  [17]) or on patterns of 

LD (e.g.,  OmegaPlus  [18, 57]), perform a window-size 

optimization approach that provides information on the 

genomic region affected by a selective sweep at the cost 

of increased execution times. �e aforementioned meth-

ods have been widely used to detect recent and strong 

positive selection in a variety of eukaryotic or prokaryotic 

organisms, such as human [16, 58, 59], D. melanogaster 

[60–63], lizards [64], rice [65], butterflies [66], and bac-

teria [67].

SweepFinder

In 2005, Nielsen et  al.  [16] released SweepFinder, an 

advanced method to detect selective sweeps that relies on 

information directly derived from the SFS. SweepFinder 

implements a composite likelihood ratio (CLR) test, with 

the numerator representing the likelihood of a sweep 

at a given location in the genome, and the denominator 

accounting for the neutral model. An important feature 

of SweepFinder is that neutrality is modeled based on 

the empirical SFS of the entire dataset. All SNPs are con-

sidered independent, therefore allowing the likelihood 

score per region for the sweep model to be computed as 

the product of per-SNP likelihood scores over all SNPs 

in a region. SweepFinder was among the first software 

releases with the capacity to analyze whole genomes via a 

complete and standalone implementation.

SweepFinder can process small and moderate sam-

ple sizes efficiently. However, the source code does 

not include support for a large number of sequences, 

yielding analyses with more than 1027 sequences 

numerically unstable due to unhandled floating-point 

underflows [17]. Additionally, SweepFinder only executes 

sequentially, therefore not exploiting all the computa-

tional resources in modern x 86 processors (e.g., multiple 

cores and intrinsic instructions).

SweeD

Pavlidis et  al.  [17] released SweeD (Sweep Detector), a 

parallel and optimized implementation of the same CLR 

test as SweepFinder. SweeD can parse various input file 

formats (e.g., Hudson’s ms, FASTA, and the Variant Call 

Format) and provides the option to employ a user-speci-

fied demographic model for the theoretical calculation of 

the expected neutral SFS. Pavlidis et al. [17] showed that 

sweep detection accuracy increases with an increasing 

sample size, and altered the mathematical operations for 

the CLR test implementation in SweeD to avoid numeri-

cal instability (floating-point underflows), allowing the 

analysis of datasets with thousands of sequences.

The time-efficient analysis of large-scale datasets 

in SweeD is mainly due to two factors: (a) parallel 

processing using POSIX threads, and (b) temporary 

storage of frequently used values in lookup tables. 

Additionally, SweeD relies on a third-party library for 

checkpointing (Ansel et  al.  [68]) to allow resuming 

long-running analyses that have been abruptly inter-

rupted by external factors, such as a power outage or a 

job queue timeout.
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SweepFinder2

More recently, DeGiorgio et  al.  [56] released Sweep-

Finder2. SweepFinder2 uses the statistical framework 

of SweepFinder, and additionally it takes into account 

local reductions in diversity caused by the action of 

negative selection. �erefore, it provides the opportu-

nity to distinguish between background selection and 

the effect of selective sweeps. �us, it exhibits increased 

sensitivity and robustness to background selection and 

mutation rate variations. Besides the ability to account 

for reductions in the diversity caused by background 

selection, the implementation of SweepFinder2 is very 

similar to SweepFinder. However, there exist code modi-

fications that increase the stability of SweepFinder2 on 

the calculation of likelihood values. Using simulated data 

with constant mutation rate and in the absence of nega-

tive selection, SweepFinder2 results in more similar to 

SweeD than to the initial SweepFinder implementation 

(see Fig. 4).

OmegaPlus

In 2012, Alachiotis et al. [18] released a high-performance 

implementation of the ω-statistic [12] for the detection of 

selective sweeps by searching for a specific pattern of LD 

that emerges in the neighborhood a recently fixed ben-

eficial mutation. �e ω-statistic assumes a high value at a 

specific location in the genome, which can be indicative 

of a potential selective sweep in the region, if extended 

a b c

Fig. 4 False positive rates for the selective sweep detection process under various algorithms and demographic models. Demographic models 
consist of bottlenecks and are characterized by two parameters: t is the time in generations since the recovery of the populations, and psr the 
relative population size reduction during bottleneck. Prior to the bottleneck, the population size equals to the present-day population size. We 
show the results from the study of Crisci et al. [15] (a), our analysis in the current study (b) and the difference between a and b (c). Note that Crisci 
et al. studied SweepFinder (SF), SweeD (SWEED), SweeD with monomorphic (SWEED-Mono) and OmegaPlus (OP). In the current work, we studied 
SweepFinder (SF), SweepFinder with average SFS (SWEEDAV), SweeD (SWEED), SweeD with average SFS (SWEEDAV), SweepFinder2 (SF2), Sweep-
Finder2 with average SFS (SF2AV), and OmegaPlus. Thus, in c we show only results from the common tools (SF, SWEED, OP). In a and b, the darker a 
cell, the lower the false positive rate. In c, yellow denotes that Crisci et al. report higher false positive rate than this study, while blue denotes that the 
reported false positive rate by Crisci et al. is lower
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contiguous genomic regions of high LD are detected on 

both sides of the location under evaluation, while the 

level of LD between the high LD regions remains rela-

tively low.

OmegaPlus evaluates multiple locations along a dataset 

following an exhaustive per-region evaluation algorithm 

which was initially introduced by Pavlidis et al. [55]. �e 

algorithm by Pavlidis et  al.  [55] required large memory 

space for the analysis of many-SNP regions and exhib-

ited increased complexity, yielding the analysis of regions 

with thousands of SNPs computationally unfeasible. 

OmegaPlus introduced a dynamic programming algo-

rithm to reduce the computational and memory require-

ments of the exhaustive evaluation algorithm, enabling 

the efficient analysis of whole-genome datasets with 

millions of SNPs. OmegaPlus exhibits a series of four 

different parallelization alternatives  [57, 69] for the dis-

tribution of computations to multiple cores to overcome 

the load balancing problem in selective sweep detection 

due to the difference in SNP density between regions in 

genomes.

MFDM test

In 2011, Li et  al.  [70] presented a neutrality test that 

detects selective sweep regions using the Maximum Fre-

quency of Derived Mutations (MFDM), which is a para-

mount signature of a selective sweep. According to [70], 

the MFDM test is robust to processes that occur in a sin-

gle and isolated population. �is is because there is no 

demographic scenario in single and isolated populations 

that generates a non-monotonic SFS and increases the 

amount of high-frequency derived variants. �us, at least 

in theory, the test is robust to demographic models, such 

as bottlenecks, when they occur in isolated populations.

�ere are, however, four severe problems regarding 

the robustness of the test, which broadly apply to other 

tests of neutrality as well: (a) although bottlenecks gen-

erate monotonic average SFSs, certain genomic regions 

may locally exhibit increased amounts of high-frequency 

derived variants, even in the absence of positive selec-

tion, (b) high-frequency derived variants are a signa-

ture of selective sweeps in constant populations but it 

is not known whether and how they will be affected by 

the combined action of selection and demography, (c) in 

populations that exchange migrants with other demes 

(non-isolated), the frequency of high-frequency derived 

variants may increase (e.g. [53]), and (d) backmutations 

(in general, the violation of the infinite site model) may 

also increase the amount of high-frequency derived vari-

ants (Pavlidis, unpublished data).

Evaluation
�e aforementioned software tools (SweepFinder, Sweep-

Finder2, SweeD, and OmegaPlus, see Table 1) have been 

independently evaluated by two studies: Crisci et al. [15] 

studied the effect of demographic model misspecification 

on selective sweep detection, while Alachiotis and Pav-

lidis [69] conducted a performance comparison in terms 

of execution time for various dataset sizes and number 

of processing cores. We summarize these results in the 

following subsections and partially reproduce the FPR 

evaluation analysis by Crisci et al. [15], including Sweep-

Finder2. Besides demography, we also demonstrate how 

the number of polymorphic sites affects the outcome of 

SFS-based and LD-based neutrality tests. Note that, the 

iHS software [19] is also considered in both studies, but is 

not included in the following comparison summary due 

to its different scope: iHS detects ongoing sweeps relying 

on extended haplotypes, and not complete sweeps.

Detection accuracy

Crisci et al. [15] calculate the FPR for the neutrality tests 

using the following pipeline: (1) simulations from equi-

librium models using Hudson’s ms [52] and constant 

number of SNPs. �is set of simulations is used only 

for the determination of the thresholds for the tools; (2) 

simulations using sfscode [71] (constant or bottlenecked 

population). �ese data are called empirical datasets, 

and are used for the estimation of the FPR; (3) execu-

tion of the neutrality tests on the empirical datasets. �e 

FPR is estimated by assigning each empirical dataset to 

a threshold value from an equilibrium model with simi-

lar number of SNPs. Note that, such an approach differs 

from the approach that has been followed by other stud-

ies (e.g. [72, 73]), where the null model is specified by the 

inferred neutral demographic model. Specifying the null 

model by the inferred neutral demographic model con-

trols efficiently for the FPR. �us, Crisci et al. effectively 

Table 1 List of software tools for selective sweep detection

Method Implementation Availability (source code, web service)

SweepFinder (2005) SFS Sequential http://people.binf.ku.dk/rasmus/webpage/sf.html, –

OmegaPlus (2012) LD Parallel https://github.com/alachins/omegaplus , http://pop-gen.eu

SweeD (2013) SFS Parallel https://github.com/alachins/sweed , http://pop-gen.eu

SweepFinder2 (2016) SFS Sequential http://www.personal.psu.edu/mxd60/sf2.html, –

http://people.binf.ku.dk/rasmus/webpage/sf.html
https://github.com/alachins/omegaplus
http://pop-gen.eu
https://github.com/alachins/sweed
http://pop-gen.eu
http://www.personal.psu.edu/mxd60/sf2.html
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studied how demographic model misspecification affects 

the FPR. Another major difference between the approach 

followed by Crisci et al. and other studies is that, for the 

SFS-based methods (SweepFinder, SweeD), Crisci et  al. 

calculate the neutral (or prior-to-sweep) SFS using the 

candidate region itself (here 50 kb), instead of the aver-

age SFS on a chromosome-wide scale. Even though the 

first approach might have a lower FPR, the later is more 

powerful to detect selective sweeps: when the neutral 

SFS is calculated by a small genetic region that poten-

tially includes a sweep, the affected (by the sweep) SFS is 

assumed to represent neutrality. �us, the CLR test will 

assume lower values. For neutral equilibrium models, 

i.e., constant population size, they find that the FPR for 

SweepFinder ranges from 0.01 to 0.18, depending on the 

mutation and recombination rate: the lower the mutation 

and recombination rates the higher the FPR of Sweep-

Finder. �e FPR for SweeD ranges between 0.04 and 0.07. 

For OmegaPlus, the FPR ranges between 0.05 and 0.07. 

In general, the FPR for all tools is low when the demo-

graphic model is at equilibrium.

When the assumption of an equilibrium population 

is violated and the empirical datasets are derived from 

bottlenecked populations, the FPR increases. Such an 

increase of the FPR is more striking when the average 

SFS of the empirical dataset is used to represent the SFS 

of the null model. �e reason for such an increase is that 

bottlenecked datasets show great variance of the SFS 

from a region to another. �us, even though, on aver-

age, a bottlenecked population will have a monotonically 

decreasing SFS [74], there might be regions that show an 

excess of high-frequency and low-frequency derived vari-

ants, and thus they mimic the SFS of a selective sweep.

Interestingly, Crisci et  al. report low FPR for Sweep-

Finder and SweeD. For OmegaPlus, the FPR they report 

is high for the very severe bottleneck scenario, where the 

population size has been reduced by 99%. For Sweep-

Finder and SweeD, the FPR ranges between 0 and 0.08, 

and 0 and 0.13, respectively. For OmegaPlus, they report 

FPR between 0.05 and 0.91. We repeated the analysis 

of Crisci et  al. for SweeD, SweepFinder, and Omega-

Plus, including also SweepFinder2. Furthermore, we 

have included execution results of SweepFinder, SweeD 

and SweepFinder2 using the average SFS instead of the 

regional SFS. We used Hudson’s ms for all simulations, 

whereas Crisci et al. have used sfs_code for the empirical 

simulated data. In general, our results are comparable to 

Crisci et al., but we report higher FPR than Crisci et al. A 

notable exception is the case of OmegaPlus in the severe 

bottleneck case, where our FPR are considerably lower. 

Perhaps this is due to the simulation software, as we used 

Hudson’s ms (coalescent) simulator, and Crisci et al. used 

sfs_code (forward). FPR results are shown in Fig. 4.

Since FPR is considerably increasing when a false 

model (e.g., equilibrium) is used to construct the null 

hypothesis, we repeated the aforementioned analysis 

using a bottleneck demographic model. Using a bottle-

neck demographic model for the construction of the null 

hypothesis reduces the FPR to very low values  (Fig.  5). 

Here, we have used the bottleneck model characterized 

by a population size reduction of 0.99, a recovery time of 

1000 generations, and bottleneck duration of 4000 gen-

erations, even though empirical datasets were composed 

by additional models. �e ancestral population size was 

equal to the present day population size.

Regarding the True Positive Rate (TPR), Crisci et  al. 

report that under strong selection in an equilibrium pop-

ulation (2Nes = 1000, where s is the selection coefficient), 

TPR for SweepFinder and SweeD is moderate and ranges 

between 0.32 and 0.34. For OmegaPlus, TPR is higher and 

equals to 0.46. For weaker selection (2Nes = 100), Omeg-

aPlus also remains the most powerful tool to detect selec-

tive sweeps. For selective sweep models in bottlenecked 

populations, OmegaPlus outperforms SFS-based methods 

and it is the only test studied by Crisci et al. able to detect 

selective sweeps. Finally, regarding recurrent hitchhiking 

event (RHH), OmegaPlus reports higher values of TPR.

Execution time

�e performance comparisons conducted by [69] aimed 

at evaluating the effect of the number of sequences and 

SNPs on execution time, as well as the capacity of each 

code to employ multiple cores effectively to achieve faster 

execution. Table  2 shows execution times on a single 

processing core for different dataset sizes, ranging from 

100 sequences to 1000 sequences, and from 10,000 SNPs 

up to 100,000 SNPs. Additionally, the table provides 

(in parentheses) how many times faster are SweeD and 

OmegaPlus than SweepFinder.

�e comparison between SweepFinder and SweeD is 

the most meaningful one since both tools implement the 

same floating-point-intensive CLR test based on the SFS, 

thus requiring the same type and amount of arithmetic 

operations. �e significantly faster execution of Omega-

Plus on the other hand, which relies on LD, is attributed 

to the fact that a limited number of computationally 

intensive floating-point operations are required, with the 

majority of operations being performed on integers, such 

as the enumeration of ancestral and derived alleles.

�e execution times in Table 2 refer to sequential exe-

cution. Multiple cores can be employed by SweeD and 

OmegaPlus, achieving speedups that vary depending 

on the number of sequences and SNPs. �e parallel effi-

ciency of SweeD decreases with an increasing sample size, 

whereas the respective parallel efficiency of OmegaPlus 

increases. As the number of SNPs increases, both SweeD 
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and OmegaPlus exhibit poorer parallel efficiency, which 

is attributed to load balancing issues that arise with an 

increasing variance in the SNP density along the datasets.

Detection of soft sweeps
�e methods and approaches reviewed in this manu-

script are appropriate for the detection of complete selec-

tive sweeps that originate from a new beneficial variant. 

Such selective sweeps are called ‘hard’ selective sweeps. 

If positive selection acts, however, on variation already 

segregating in the population, or if multiple beneficial 

alleles arise independently, the models of ‘hard’ selective 

sweeps do not apply. Hermisson and Pennings  [75–77] 

coined the term ‘soft’ selective sweeps to describe such 

alternative models of positive selection. Soft sweeps have 

been documented in sticklebacks [78] and beach mice 

[79]. In humans, several cases of selection from stand-

ing genomic variation have been reported [80–82]. �e 

detection of soft sweeps is notably more challenging than 

the detection of ‘hard’ selective sweeps, because soft 

selective sweeps do not affect linked neutral polymor-

phism to the same extent as hard selective sweeps.

Ferrer-Admetlla et  al.  [83] described a haplotype-

based statistic, called nSL: number of Segregating sites by 

Length, designed to detect both soft and hard selective 

sweeps. nSL uses phased data and it calculates the ratio 

Fig. 5 False positive rates for the selective sweep detection process under various algorithms and demographic models when the demographic 
model used for the construction of the threshold value is a bottleneck model instead of an equilibrium model. To compute all threshold values, we 
have used the bottleneck model characterized by a population recovery at time t = 1000 generations, and bottleneck population size reduction by 
0.90. The duration of the bottleneck was 4000 generations. FPR values have been reduced considerably compared to the case that the equilibrium 
model was used for the calculation of the threshold values (Fig. 4)

Table 2 Comparison of  execution times  (in seconds) 

for di�erent dataset sizes (Fomat: D-number of sequences-

number of SNPs) on a single processing core [69]

D-102–104 D-102–105 D-103–104 D-103–104

SweepFinder 540 (1×) 4138 (1×) 132,938 (1×) 135,996 (1×)

SweeD 125 (4.3×) 1169 (3.5×) 283 (469×) 1345 (101×)

OmegaPlus 6 (90×) 652 (6.4×) 7 (18,991×) 753 (180×)
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of haplotype homozygosity for the derived and ancestral 

state alleles. Such an approach is also taken by the iHS 

statistic  [19]. In contrast to iHS, however, nSL meas-

ures the length of a segment of haplotype homozygosity 

between a pair of haplotypes in terms of number of muta-

tions in the remaining haplotypes, in the same region. 

�erefore, a genetic map is not required and nSL is more 

robust to recombination and mutation rate fluctuations.

Garud et al. [84] developed several haplotype homozy-

gosity statistics to capture the increase of haplotype 

homozygosity observed in both hard and soft sweeps. 

According to [84], haplotype homozygosity is defined as 

H1 =

∑n
1
p2i , for n distinct haplotypes. �e H1 statistic 

is equivalent to the haplotype heterozygosity statistic of 

Depaulis and Veuille [51] (see above), and assumes high 

values in a hard sweep case because heterozygosity in a 

region affected by a hard selective sweep is dramatically 

decreased. However, for soft selective sweeps, the power 

of H1 is expected to decrease because additional haplo-

types are present. Two additional statistics were devel-

oped by Garud et  al.  [84], which mainly facilitate the 

detection of soft sweeps: (a) the H12 statistic, defined as: 

H12 = (p1 + p2)
2
+

∑n
i>2

p2i = H1 + 2p1p2, in which 

the frequencies of the first and the second most common 

haplotypes are combined into a single frequency, and (b) 

the H123 statistic, in which the frequencies of the three 

most common haplotypes are combined into a single 

measurement. Since the frequencies of the most abun-

dant haplotypes are separated into an additional value, 

the values of H12 and H123 are considerably increased in 

the proximity of a soft sweep.

Soft selective sweeps have attracted attention in recent 

literature mainly because they are not restricted by the 

limited amount of new beneficial mutations (in con-

trast to hard selective sweeps), and because of the lim-

ited amount of hard selective sweep patterns found 

in natural populations (especially human  [85] and 

D.  melanogaster  [84]). It has been pointed recently by 

Jensen  [86], however, that such an enthusiasm for soft 

selective sweeps may be unfounded, based on both the-

oretical and experimental insights. Jensen  [86] stresses 

as a potential reason for the limited amount of selec-

tive sweeps detected in natural populations the reduced 

power of existing tests to detect hard selective sweeps in 

the presence of complex demographic models. As argued 

above, such a lack of power may spring from the fact 

that under certain demographic models we are forced to 

increase the detection threshold in order to control the 

FPR. �erefore, several true targets are also discarded. 

Additionally, selective sweep models are designed assum-

ing a constant, equilibrium population. Different demo-

graphic models combined with positive selection may 

however generate different patterns of selective sweeps, 

though have remained unexplored until now. �erefore, 

it becomes clear that under non-equilibrium demo-

graphic models and/or violations of the hard selective 

sweep model, our ability to detect selection decreases. 

�is, however, does not mean that selection is absent: 

absence of evidence does not necessarily imply evidence 

of absence.

Discussion
Overinterpretation of results and storytelling

Identifying genomic regions that have undergone recent 

and strong positive selection is an important challenge of 

modern evolutionary biology. Neutral evolutionary pro-

cesses, such as random genetic drift enhanced by popula-

tion size changes and/or gene flow, increase the rate of 

false positives and make it more challenging to detect 

genomic regions which have been targeted by positive 

selection. Frequently, additional validity of results is pro-

vided by the fact that loci identified by selective sweep 

scans ‘make sense’. Pavlidis et  al.  [87] showed that such 

an approach of perceiving an increased validity of results, 

simply because they make sense can be dramatically 

misleading. �ey designed a simple simulation experi-

ment, in which a neutrally evolved X-chromosome of D. 

melanogaster is scanned for selective sweeps. �en, they 

performed a literature mining for the (by definition false 

positive) identified selective sweep targets. �ey showed 

that by means of gene ontology it would make perfect 

sense to identify such targets even though they are false 

positives. �e study by Pavlidis et  al.  [87] showed that 

interpretation of the results should be treated very care-

fully and overinterpretation should be avoided.

Combining methods to decrease the false positive rate

To increase the validity of selective sweep scans, analy-

ses typically consist of a multitude of neutrality tests. �e 

rationale is that ‘the more tests agree on an outcome, e.g., 

selection, the more plausible this outcome is’. �e prob-

lem with this, however, is that the outcome of different 

neutrality tests are usually correlated, since they depend 

profoundly on the underlying coalescent tree. Consider a 

neutrally evolved genomic region that is characterized by 

an exceptional ‘sweep-like’ collection of coalescent trees. 

Several neutrality tests will give a good signal for a selec-

tive sweep in this region. For instance, assume a set of 

unbalanced trees, such as those shown in Fig. 6, where all 

lineages except for one coalesce relatively fast on one side 

of the tree. Tajima’s D assumes extreme values because 

of the skewed SFS. �e same is true for SweeD and 

SweepFinder. Furthermore, since the tree is unbalanced 

with long internal branches, LD is increased locally. �e 

number of polymorphic sites might be reduced since 

the total tree length is reduced. �us, independently 
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applying several neutrality tests and then showing that 

several of them reject neutrality (or showing only those 

that reject neutrality) should be avoided. A better prac-

tice is to combine the tests in a unified framework and 

not independently. For example, [55, 88, 89] used super-

vised learning algorithms and several neutrality tests 

(variables) to classify genomic regions as either neutral or 

selected. Any correlation between the variables is incor-

porated implicitly in the learning algorithms and does 

not affect the accuracy of the classifier. Since, however, a 

large number of simulations is typically required for the 

execution of the learning algorithms, the running time of 

such approaches increases considerably.

The need for high performance

Driven by the advent of DNA sequencing, several pro-

jects have focused on sequencing whole genomes from 

various species in the past years. �is has led to the dis-

covery of thousands of new SNPs and the availability of 

a plethora of datasets that are suitable for population 

genetics analyses. As more genomes are being sequenced, 

contributing to the increasing dataset sizes, the compu-

tational demands for the respective analyses increase as 

well. �is poses a challenge to existing and future soft-

ware tools as High Performance Computing (HPC) 

techniques are becoming a prerequisite for conducting 

large-scale analyses.

Reducing execution times and enabling processing of 

large-scale datasets on limited hardware resources, such 

as off-the-shelf workstations, requires source codes to 

abide by several basic HPC principles. For instance, 

understanding how memory accesses affect performance, 

or which scheduling/communication strategy among 

multiple cores is the most efficient for a particular task, 

can substantially reduce execution times by allowing the 

software to utilize the hardware resources in current x 86 

processors in the most effective way. With Moore’s law 

being continued in the form of an increasing number of 

cores per processor and an increasing width for vector 

registers1, not employing multithreading2 and/or vector 

intrinsic instructions in newly developed tools can lead 

to significant underutilization of processors.

However, although optimization techniques such as 

kernel vectorization have the potential to accelerate pro-

cessing, the nature of operations and the computational 

demands of the target task for performance improvement 

need to be carefully examined. For instance, a recent 

study [90] revealed that in order to achieve high-perfor-

mance for large-scale LD computations that comprise 

thousands of sequences and SNPs, vector intrinsics must 

be avoided. �is is due to the fact that the computational 

bottleneck in LD-based analyses for large sample sizes is 

the enumeration of ancestral and derived alleles in SNPs. 

�is operation is efficiently implemented via the use of 

an intrinsic population count command, which how-

ever operates only on regular registers, i.e., 32- or 64-bit 

words. Deploying vector intrinsics for LD leads to poorer 

performance due to increased data preparation times 

(storing and retrieving words in vector registers).

In addition to software-level optimizations for faster 

completion of bioinformatics analyses, a variety of hard-

ware-accelerated solutions have also been proposed in 

the previous years. Hardware platforms, such as Graphics 

Processing Units (GPUs) and Field Programmable Gate 

Arrays (FPGAs), have been widely targeted for the accel-

eration of large-scale analyses, and a variety of bioinfor-

matics algorithms have been successfully ported on these 

architectures, from sequence alignment kernels [91] and 

phylogenetic tree scoring functions [92, 93] to large-scale 

LD computations [90] and epistasis detection in Genome 

Wide Association Studies [94].

1 Most commodity processors support vector processing, i.e., single 
instructions that operate on one-dimensional arrays of data that are stored 
in vector registers.
2 Multithreading is a coding technique that enables the software to deploy 
multiple cores per processor for parallel processing.

Fig. 6 An unbalanced genealogy with several short external 
branches can generate extreme values for a multitude of neutrality 
tests
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Conclusions
Detecting recent and strong positive selection is a 

fascinating challenge of modern population genet-

ics. In this manuscript, we conducted a survey of 

approaches, methods, and software packages that can 

be used to pinpoint the genomic regions where posi-

tive selection has operated recently. A multitude of 

approaches can be used for such a purpose, aiming at 

capturing genomic selective sweep signatures. Regard-

ing computational efficiency, selective sweep detec-

tion methods range from computationally inexpensive 

summary statistics to complete software releases with 

higher computational and memory demands, that offer 

greater flexibility (variable window size) and are able 

to estimate selection-related parameters (e.g. selection 

strength, size of the genomic region affected by the 

selective sweep). Despite the progress in the develop-

ment of approaches to detect selective sweep, scanning 

for selective sweeps remains a challenging task mainly 

because of the confounding effect of demography. �us, 

even though demography affects the whole genome, its 

effect is not homogeneous. In contrast, demography, 

especially bottlenecks, can generate local SNP patterns 

in the genome that are similar to those patterns gener-

ated by positive selection. In a whole-genome analysis 

it is extremely challenging, if not unfeasible, to sepa-

rate such pseudo-selective sweep signatures from real 

selective sweeps. We emphasize that further research 

is needed to successfully detect selective sweeps within 

a non-equilibrium population (e.g., when the popula-

tion size changes) because the respective sweep pat-

terns may differ from the expected signatures that are 

detected by existing software tools. Moreover, over-

interpretation of the results, in terms of Gene Ontol-

ogy, should be avoided. Understanding the strengths 

and limitations of the methods and tools is crucial to 

avoid unnecessarily long execution times and/or misled 

conclusions.
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