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Abstract

Algorithm configuration (AC) is concerned with the automated search of the most
suitable parameter configuration of a parametrized algorithm. There is currently a wide
variety of AC problem variants and methods proposed in the literature. Existing reviews
do not take into account all derivatives of the AC problem, nor do they offer a complete
classification scheme. To this end, we introduce taxonomies to describe the AC problem and
features of configuration methods, respectively. We review existing AC literature within
the lens of our taxonomies, outline relevant design choices of configuration approaches,
contrast methods and problem variants against each other, and describe the state of AC in
industry. Finally, our review provides researchers and practitioners with a look at future
research directions in the field of AC.

1. Introduction

Difficult computational problems must be regularly solved in many areas of industry and
academia, such as constraint satisfaction problems, Boolean satisfiability problems (SAT),
vehicle routing problems, finding a proper machine learning model for a given dataset,
or computing highly complex simulations. Algorithms that were developed to solve such
problems usually have parameters that strongly influence the behavior of the respective
algorithm and also, for example, the runtime that is required to solve problem instances

©2022 AI Access Foundation. All rights reserved.



Schede, Brandt, Tornede, Wever, Bengs, Hüllermeier & Tierney

or the quality of returned solutions. In particular, different parameter values, also referred
to as configurations in the following, are required for different sets of problem instances to
achieve optimal results with respect to the running time or solution quality. It is, therefore,
crucial to adapt the configuration of an algorithm to the given data or specifics of the set of
problem instances in question. However, the configuration of algorithms, i.e., determining
suitable parameter values, is a nontrivial and complex undertaking, since the algorithm
must be actually executed for different configurations to observe the target metrics (e.g.,
runtime or solution quality).

The research field of algorithm configuration1 (AC) has emerged in response to this
problem. Especially within the last two decades, many approaches and problem variants
have been proposed in this field. Generally speaking, the approaches try to find effective
configurations of algorithms as efficiently as possible and recommend them for new, unseen
problem instances. To this end, the approaches are typically given a training set of problem
instances in an offline phase, which can be used as an input to run the algorithms, observe
their performance, and (hopefully) generalize these observations to make good recommen-
dations in production settings.

To illustrate the benefits of automatically configuring algorithm parameters, we provide
the circuit satisfiability problem as an example. It refers to a classic SAT problem in
which the task is to find an assignment of values such that the output of a Boolean circuit
evaluates to true (Marques-Silva, 2008). In a business application, many such circuits must
be evaluated to check their feasibility in limited time. This requires an efficient SAT solver
such as Glucose (Audemard & Simon, 2009) to provide assignments in a timely manner.
Glucose exposes several parameters that influence the search for assignments and, therefore,
the time needed to evaluate a circuit.

Indeed, configurations of SAT solvers found by ParamILS (Hutter et al., 2007b), one
of the first procedures to search for high-quality parameters in a structured way, achieve
considerable speedups compared to default configurations of solvers. In particular, the con-
figurations found by ParamILS reduce the arithmetic mean runtime for software verification
instances for the SAT solver SPEAR from 787.1s to 1.5 seconds in the best case (Hut-
ter et al., 2007a). More recently, PyDGGA (Ansótegui et al., 2021) reduced the solving
time of the SAT solver SparrowToRiss (Balint & Manthey, 2013) on instances from the
N-Rooks (Lindauer & Hutter, 2018a) dataset from 116 to 6.3 seconds. This shows that a
practitioner will possibly achieve significant performance gains solving circuit assignments
in the long run by only investing a limited amount of time into configuring Glucose for the
specific task upfront. The recommendation of configurations for unseen problem instances
can be seen as a common property of all algorithm configuration problem variants, which
differ in terms of their concrete setting specifications. For example, there might only be a
single (finite) categorical parameter to be configured, also referred to as algorithm selec-
tion (Rice, 1976), ranging from just a handful up to thousands of choices (Tornede et al.,
2020b). In the other extreme, the space of algorithm configurations may take into account
many parameters and could comprise infinitely many possible configurations. Beyond that,
the problem variants differ in several other aspects, such as the objective function to be

1. In some works, the terms parameter tuning and algorithm configuration are used interchangeably (Hoos,
2011), however, we prefer algorithm configuration, following the argumentation of Hutter et al. (2009b)
that this term implies a more general configuration setting.
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optimized (runtime or solution quality), whether multiple objectives are to be considered
simultaneously, whether training is performed offline or on the fly in an online setting, etc.
Depending on the specific properties of an AC problem, algorithm configuration approaches,
also referred to as algorithm configurators, can be more or less suited, or cannot be applied
at all.

In this paper, we provide an overview of different variants of both AC problems and
algorithm configurators. To this end, we propose two classification schemes: one for AC
problems, and one for algorithm configurators. Based on this, we structure and summarize
the available literature and classify existing problem variants as well as approaches to AC.

The remainder of the paper is structured as follows. First, in Section 2, we give a formal
introduction into the setting of algorithm configuration, specify the scope of this survey, and
discuss the relation between AC, AS and HPO. In Section 3, we present the classification
schemes for AC problems and approaches that are used, in turn, to describe and compare
existing algorithm configurators. In Sections 4 and 5, we survey algorithm configuration
methods grouped by the property of whether these methods are model-free or leverage
a model respectively. Section 6 deals with theoretical guarantees that can be obtained.
Different problem variants, such as realtime AC, instance-specific vs. feature-based, multi-
objective, and dynamic AC are discussed in Sections 7 to 10. Eventually, with the help of
our classification schemes, we elaborate on appealing research directions in Section 11 and
conclude this survey in Section 12. A list of abbreviations used in this work can be found in
Table 6. In addition, we provide a list of useful software in Table 7. We note, however, that
this list is by no means exhaustive; it is meant to provide an idea about available software
at the time of publication.

2. Problem Formulation

2.1 Algorithm Configuration

To describe the AC problem more formally, we introduce the following notation that is sim-
ilar to Hutter et al. (2009b). Let I be a space of problem instances over which a probability
distribution P is defined. Optional feature vectors fi ∈ Rd with features fi,1, ..., fi,d can be
computed for problem instances i ∈ I coming from this space. Furthermore, let A denote
a parametrized target algorithm, with parameters p1, ..., pk which may be of categorical or
numerical nature. The (finite or infinite) domain of each parameter pi is denoted by Θi

such that Θ ⊆ Θ1 × ... × Θk is the space of all feasible parameter combinations, i.e., the
so-called configuration or search space. A concrete instantiation of the target algorithm A
with a given configuration θ ∈ Θ is denoted by Aθ. Furthermore, let c : I × Θ → R be
a cost function from the space of cost functions C, which quantifies the cost of running a
given problem instance with a given configuration.2 Depending on the target algorithm,
c may be stochastic and contain noise. Then, ideally, we would like to find the optimal
configuration θ∗ ∈ Θ defined as

θ∗ ∈ arg min
θ∈Θ

∫
I

c(i,θ) dP(i) . (1)

2. C merely limits the possible cost functions, but it is needed for formalizing an aggregation function.
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However, in practice, the distribution P over I is unknown, and thus we must resort
to solving a proxy problem.3 To this end, we are provided both a set of training instances
Itrain ⊆ I and an aggregation function m : C × 2I × Θ → R. The aggregation function is
usually the arithmetic mean or a variation thereof that is computed over the given prob-
lem instances by applying the given configuration to each of them and computing their
cost. Similar to empirical risk minimization in machine learning, we then seek to find the
configuration minimizing the aggregated costs across the training instances, i.e.,

θ̂ ∈ arg min
θ∈Θ

m(c, Itrain ,θ). (2)

Informally, the problem can be expressed as: given a target algorithm with a set of
parameters and a set of problem instances, find a configuration that yields good performance
with respect to the cost measure across the set of problem instances. We will refer to
automated approaches capable of finding such configurations as (algorithm) configurators.

Configuration example To make AC more accessible and to illustrate the associated
challenges, we use the previously mentioned circuit assignment problem with Glucose as
a SAT solver. Glucose in version 4 has 41 parameters (with 13 binary and 28 continuous
parameter domains) that constitute the configuration space Θ. Table 1 shows a subset of
the parameters with their values, bounds and the effect they have on the search. Note that
we have simplified the parameter descriptions. In fact, the complexity of understanding
what the parameters actually do further emphasizes the need for automated AC, as in
many cases practitioners may not fully understand the function of the parameters.

Parameter Type Domain Effect

Random Frequency (RF) Float [0, 1]
Probability of assigning a variable a random value
instead of using a heuristic.

Conflict Factor (CF) Float [0, 1]
Factor for comparing the state of the current restart
to the state of the search as a whole.

Restart Queue (RQ) Int {10, 11, . . .} Moving average window size over clause conflicts
for computing a score of the current state.

Preprocessing (PR) Cat. {on, off} Activate or deactivate preprocessing of problem
instances before the main search.

Table 1: Subset of Glucose parameters.

Suitable configurations are very problem dependent and need to be chosen carefully
for the application at hand. For instance, the Random Frequency parameter of Glucose
influences the exploration/exploitation tradeoff. A setting of pRF = 1 will lead to a random
search. On the contrary, pRF = 0 will let Glucose only assign values based on its heuristic,
which could lead to a local optimum. Depending on the search landscape of the circuits,
the appropriate value for the random frequency, and all others, may vary. In addition to
setting single parameter values, parameter interactions play an important role in algorithm
performance. Consider the parameters Conflict Factor and Restart Queue, which both

3. Formally, c is also required to be integrable
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influence the restart policy (Huang, 2007), in which the search is restarted from the top of
the search tree. To force Glucose to perform restarts more often, both pCF and pRQ need
to be set to reasonable values (Audemard & Simon, 2012). That is, if not set properly, they
may contradict each other and result in unintended or ineffective restart behavior.

While a clever practitioner could use his or her domain knowledge to set these parameters
manually, usually it is not entirely clear exactly what settings (or parameter interactions)
will lead to good performance. Thus, instead of relying on domain knowledge and config-
uring and testing parameter values manually, a configurator as ParamILS may be used. A
practitioner collects problem instances and selects a cost and aggregation function to solve
2. In the context of our example, a specific circuit relates to one problem instance i for which
features fi,d can be computed as proposed by Kroer and Malitsky (2011). The circuit can be
assumed to come from a distribution P that specifies all possible circuits for the application
and how often specific circuits are expected to occur. The practitioner approximates this
distribution by gathering a limited amount of representative circuits from this distribution
over time in a training set Itrain . Since the application at hand requires many circuits to
be evaluated in a short amount of time, the cost function c specifies runtime minimization.
As an aggregation function m, the arithmetic mean over the training instances can be used
for a given configuration. Based on these inputs, the algorithm configurator ParamILS is
then tasked with finding a suitable configuration θ̂ for Glucose that can quickly solve the
example circuits, and should also reduce the runtime for unseen circuits encountered in the
future.

2.2 Review Scope

We select and review stand-alone AC methods that are suitable to solve the problem de-
scribed in Section 2.1. To identify relevant contributions in the literature we use the search
terms {Algorithm Configuration, Parameter Control, Parameter Tuning} combined with
one of {Automated, Automatic, Offline, Online, Realtime, Dynamic, Instance Specific, Per-
Instance, Multiobjective, Feature Based, Optimal} as a prefix. We use Google Scholar as
our search engine. We manually filter the search results to only include methods designed
to automatically configure solvers without user interaction, and are able to handle large
search spaces. Moreover, we omit articles related to algorithm selection (AS) and hyperpa-
rameter optimization (HPO). We define these areas in more detail later. We follow citations
forwards and backwards from all articles that we accept into the review to find articles that
may lack the keywords above. We place such articles into the list of articles and filter them
as previously discussed.

Algorithm Selection (AS) AS is a sub problem of AC, however, we do not consider
it in this work, as it has been considered in several reviews already (Kerschke et al., 2019;
Kotthoff, 2016). Thus, we now define what we mean by AS problems so that they can be
filtered out of the review. AS can be seen as a special case of instance-specific AC (see
Section 8), where the search space contains only one categorical parameter that models the
target algorithm choice. In other words, the AS refers to learning how to configure that
single categorical parameter, i.e. the algorithm choice, depending on the input instance.
Thus it is severely restricted compared to AC. More specifically, the search space in AS is
typically small, discrete and consists of a (static) set of algorithms (although new extensions
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Figure 1: Illustration of the relationship between AC, AS, HPO and CASH.

exist that handle larger spaces (Tornede et al., 2020b)). The search space in AC, in general,
is based on the parameters of one target algorithm, and thus, algorithm configurators need
to be able to handle much larger, if not even infinite, search spaces (Kerschke et al., 2019).

Hyperparameter Optimization (HPO) Our review ignores HPO techniques in addi-
tion to AS, as these have also been considered in a number of reviews already (Yu & Zhu,
2020; Luo, 2016; Yang & Shami, 2020; Bischl et al., 2021). Furthermore, before more clearly
defining HPO, let us clarify the terminology around the words hyperparameter and param-
eter. In HPO, parameters that should be set by a user are referred to as hyperparameters,
while in AC these are referred to as parameters. HPO refers to hyperparameters since ma-
chine learning models usually also contain parameters that are induced from data and are
not considered by a configurator. In fact, it is this difference in terminology that leads us
to one of the key differences between HPO and general AC, namely that AC methods focus
on configuring target algorithms that solve instances of a dataset independently, while HPO
learns hyperparameters for target algorithms that train parameters on multiple instances
of a single dataset in tandem.

As HPO is a subset of the AC setting, HPO techniques can, in theory, be used to search
for configurations in the general AC setting. In reality, this is seldom done because HPO
methods ignore two key functionalities necessary for the general AC setting. First, HPO
does not minimize algorithm runtime, which is often performed in general AC. HPO aims
at optimizing a solution quality metric, such as predictive accuracy. Of course, AC settings
exist where runtime is not a configuration objective, such as when configuring metaheuristics
to find the best possible solution in a given time budget. Second, HPO techniques lack a
problem instance selection mechanism. Specifically, one configuration in HPO is run on
all the instances of one dataset and the result is observed by the configurator. Note that
this set should be seen as a single AC problem instance, i.e., the term “instance” is used
differently between the HPO and general AC communities. In AC, the configuration needs
to be tested on a (sub)set of problem instances before the configurator can infer traits
about its quality. Furthermore, HPO can be paired with algorithm selection, which is
referred to as the combined algorithm selection and hyperparameter optimization problem
(CASH) (Thornton et al., 2013).
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Automated Machine Learning (AutoML, CASH) The HPO problem can be ex-
tended by an algorithm selection component. The task of selecting machine learning algo-
rithms and simultaneously tuning their hyperparameters is formalized by Thornton et al.
(2013) as the combined algorithm selection and hyperparameter optimization (CASH) prob-
lem. Similar to HPO, the CASH problem can be classified as a sub-problem of algorithm
configuration that is restricted to the domain of machine learning. Note that in the set-
ting of AutoML, configurators typically face only a single AC problem instance in the form
of a machine learning dataset. Due to this, we do not cover AutoML/CASH within this
overview but instead refer the interested reader to comprehensive surveys (Elshawi et al.,
2019; Zöller & Huber, 2021; Hutter et al., 2019).

3. Classification

We propose a classification scheme that separately covers (1) the algorithm configuration
setting and (2) the configurator itself. More precisely, the problem view describes the
configuration setting a method tries to address. The problem view consists of eight sub-
categories with an emphasis on the properties of the problem and the interaction between
the configurator and target algorithm. The configurator view consists of seven components
that portray important aspects of a configurator. Both of these views are interconnected
and complementary. Moreover, the configurator view can be interpreted as an answer to
a problem setting, where specific features are added to the configurator as a response to
the configuration setting. Existing classification schemes proposed in the literature until
now (Huang et al., 2019; Eiben & Smit, 2011a,b; Stützle & López-Ibáñez, 2019; Eryoldaş
& Durmuşoğlu, 2021) focus solely on the configurator and ignore the problem setting. The
proposed taxonomy allows for a description and characterization of methods by aggregating
information in tuples. The scheme (especially the problem view) can also be used to derive
new problem scenarios that have not been addressed before by combining different aspects
in previously unseen ways.

Figure 2: Illustration of offline AC

3.1 Problem View

The components of the problem view (Table 2) characterize a problem setting a configurator
is meant for and therefore influence the configurator’s design. Figure 2 displays these
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interconnections and the communication between target algorithm and configurator, as
well as the inputs a configurator receives. Note that, except for the objective function
and external runtime setting, all other aspects are mutually exclusive, meaning that an
unambiguous setting for a configurator exists. Furthermore, only the training setting and
configuration scope are independent of the target algorithm. In the following, we elaborate
on the dimensions and discuss their implications.

Problem aspects Options

Training setting Offline Realtime
Configuration scope Set Instance
Search space Small discrete Large discrete Infinite
Target algorithm objective type Single-objective Multi-objective
Objective function∗ Solving time Accuracy Memory Usage
Target algorithm observation time During run Post termination
Configuration adjustment Static Dynamic
External runtime setting∗ Limited Infinite
∗ Options not mutually exclusive

Table 2: The problem view classification scheme.

Training setting Different training modes for configurators are possible: offline and re-
altime training or a combination of the two. In the offline setting, the configurator
receives the set of training instances Itrain as tuning begins, with which it searches for
a suitable configuration. The setting is similar to the classic machine learning training
setting, where multiple passes over the training set can be performed by the configura-
tor and sufficient (possibly unlimited) time is available. Model-free and model-based
offline methods are outlined in Sections 4 and 5. In the realtime setting, the configura-
tor receives a stream of problem instances, and it should solve each problem instance
for the first time with a suitable configuration. While doing so, it can learn from
solving the current problem instance to improve the solution time or quality of future
configurations. In particular, the configurator is not trained up front, but sequentially
during operation, and only one pass over the arriving data is possible. This setting is
similar to the online learning setting in machine learning. Realtime methods can be
found in Section 7.

Configuration scope The configurator can either be required to find a configuration for
all problem instances in a set Itrain or for individual problem instances. The former is
referred to as a one-fits-all approach, i.e., a single configuration is derived that works
well on average over a set of problem instances, whereas the latter requires config-
urations that are specifically derived for a problem instance. Determining instance
specific configurations generally requires the configurator to take into account instance
features. Instance-specific configurators can be found in Section 8.

Search space The problem complexity is highly influenced by the search space Θ spanned
by the target algorithm parameters p1, ..., pk. In particular, target algorithms may
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include a varying number of parameter types, which result in different search space
sizes in which parameter transformations (e.g., logarithmic transformation) are pos-
sible (Franzin et al., 2018).

Target algorithm objective type The configurator may target a single objective or mul-
tiple objectives simultaneously.

Objective function Different optimization goals exist, so designers must choose an ob-
jective function m(c, Itrain ,θ) for which a configurator optimizes. Usually, the config-
urator maximizes a solution quality metric, e.g., predictive accuracy, or minimizes
runtime, but other metrics, such as minimizing memory usage, are also conceiv-
able. Note that to handle target algorithm runs where no solution is found, penalty
terms (Eggensperger et al., 2019) can be used.

Target algorithm observation time The time a configurator observes the cost c(i,θ)
returned by the target algorithm can be either at termination of the target algorithm
or during its execution.

Configuration adjustment Target algorithms provide different opportunities for the con-
figurator to adjust configurations, and this is orthogonal to the target algorithm ob-
servation time. More precisely, the configuration θ can either be adjusted only at
the start of a run, where it then remains fixed, or the target algorithm may allow
for dynamic adjustments of θ during runtime. Configurators that are able to adjust
configurations dynamically can be found in Section 10.

External runtime setting The target algorithm may be influenced by an externally in-
duced runtime cut off κmax. Many AC settings set κmax explicitly, such as allowing a
simulation to only run for a specified amount of time. The configurator can also limit
κmax, for example adaptively to reduce runtime, and we refer to this as the internal
runtime setting as part of the configurator view.

3.2 Configurator View

The configurator view (Table 3) characterizes algorithm configurators. The scheme does
not cover concrete functionalities utilized by configurators such as intensification criteria or
creation, selection and elimination of configurations. These functionalities are very difficult
to characterize and classify, since for a single mechanism many options with only subtle dif-
ferences may exist. In the following, we elaborate on relevant directions of the configurator
view.

Solution quality guarantee Some recent AC methods offer theoretical guarantees re-
garding the quality of the configuration they return. However, most AC methods
are heuristics that offer no proof about configuration quality. Methods that provide
guarantees on the solution quality are discussed in Section 6.

Surrogate models So-called model-based approaches incorporate surrogate models (Hut-
ter & Hamadi, 2005; Hutter et al., 2006, 2014b) that are able to predict the outcome
(e.g., runtime) of a target algorithm run. Such surrogate models (including empirical
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Configurator aspect Setting

Solution quality guarantee Heuristic Proven
Surrogate models Model-free Model-based
Problem instance features Featureless Feature-based
Target algorithm execution Sequential Parallel
Candidate output Single configuration Set configuration Policy
Configurator objective Single-objective Multi-objective
Internal runtime setting Limited Infinite

Table 3: The configurator view classification scheme.

hardness models) are learned during training and can be used by the configurator
to create new configurations, i.e., instead of trying a new configuration directly by
running the target algorithm, the surrogate model is used to give a first estimate
of the configuration quality. Because the surrogate models use the configuration as
input, the models may also be referred to as models over configurations. For the
sake of of consistency we nevertheless will use the term model-based. Model-free and
model-based approaches can be found in Section 4 and Section 5 respectively.

Problem instance features For different problem types, features of problem instances
can be computed and potentially be used by the configurator. In particular, feature-
based approaches use a feature vector fi with problem instance features fi,1, ..., fi,j .
In the case of the SAT problem, an example for such a feature could be the ratio of
the number of variables to the number of clauses (Hutter et al., 2014b). The features
are problem family dependent, meaning, e.g., mixed-integer programming problems
(MILP) need to be described by different features than SAT problems. Features are
commonly used in model-based approaches, e.g., within the surrogate model.

Target algorithm execution A configurator may also be characterized by the way it exe-
cutes and stops configuration runs of the target algorithm. In particular, configurators
can run configurations in parallel on multiple cores or sequentially.

Candidate output Configurators may return one configuration θ̂ or a set of configurations
Θ̂, which can then be used by a decision maker or downstream process. In addition, it
is possible for the configurator to return a policy that maps instances to configurations.

Configurator objective While most configurators aim at optimizing one single objective
m(I, c(i,θ)), some configurators can handle multiple objectives M := (m1, ...,mn).
Note that the objective here refers to a combination of objective functions related
to the configuration itself (e.g., a combination of solution quality and runtime), and
not an output vector returned by the target algorithm (e.g., a target algorithm that
returns a solution vector consisting of cost and environmental impact). Configurators
that are able to handle multiple objective functions are discussed in Section 9.

Internal runtime setting In addition to the external runtime setting, the configurator
may decide to cancel a run of a target algorithm on a given configuration before the
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externally set runtime κmax is reached. We refer to the decision made by the configura-
tor to either limit a run by capping or running it until the target algorithm terminates
as the internal runtime setting. The configurator may cancel runs according to some
fixed cut off value or adaptively in relation to the runtime of other configurations.
Although AC traditionally focused only on runtime capinng, recent work by De Souza
et al. (2022) introduces capping mechanisms that can be used with quality metrics.
Terminating target algorithm runs before they finish results in censored information
for the configurator where only a lower bound for the costs c(i,θ) is observed (Hutter
et al., 2013; Eggensperger et al., 2018, 2020). Previous work has shown that such
right-censored data also needs to be handled properly in similar settings (Tornede
et al., 2020c, 2021a; Hanselle et al., 2021).

A full characterization of methods included in this review can be found in Table 4 and 5.
Based on the classification scheme, existing configurators and ideas are discussed in the
following. Starting with the most basic model-free approaches, methods are grouped by
their most important characteristic or the main novelty they introduce.

4. Model-free Methods

We now describe model-free, offline AC approaches that solve the offline AC problem setting
described in Section 2.1. Figure 3 shows the general search process that is typically employed
by configurators. In this context, there are three design choices that must be addressed by
algorithm designers to solve the offline AC problem: (1) the training instance sampling
strategy, (2) the creation of configurations (initially and during search), and (3) the eval-
uation criteria for comparing configurations. Model-free configurators must run the target
algorithm with a given configuration to observe its runtime or solution quality. Approaches
that estimate the runtime or quality through models are described in Section 5. A variety
of methods can be found in the literature that tackle each of the mentioned design choices
differently, and we discuss them in the following.

Figure 3: Configuration search process of a configurator

Calibra One of the first approaches to systematically search for suitable parameter values
is Calibra (Adenso-Diaz & Laguna, 2006). Calibra is a heuristic configurator that finds
a configuration for a small discrete space of up to five parameters for a set of problem
instances optimizing for solution quality. To do so, Calibra utilizes a combination of factorial
experiments and local search.

Factorial experiments are used to compare configurations, and a subsequent local search
guides Calibra towards promising configurations. Initial configurations are created by a
full factorial experimental design (Fisher, 1937) using the first and third quartile of the
value ranges of the parameters as fixed starting points. This factorial design is the limiting
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Hydra Xu et al. (2010) O Set Pt Sta Si Ld
BNT do Nascimento & Chaves (2020) O Set Pt Sta Si Ld
REVAC Nannen & Eiben (2006) O Set Pt Sta Si I
Sampling F-Race Balaprakash et al. (2007) O Set Pt Sta Si I
Iterated F-Race Balaprakash et al. (2007) O Set Pt Sta Si I
GGA Ansótegui et al. (2009) O Set Pt Sta Si I
PyDGGA Ansótegui et al. (2021) O Set Pt Sta Si I
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SP1 Kleinberg et al. (2017) O Set Pt Sta Si I
LeapsAndBounds Weisz et al. (2018) O Set Pt Sta Si I
WS SMAC2 Lindauer & Hutter (2018b) O Set Pt Sta Si I
CapsAndRuns Weisz et al. (2019) O Set Pt Sta Si I
SP∗ with Confidence Kleinberg et al. (2019) O Set Pt Sta Si I
GPS Pushak & Hoos (2020) O Set Pt Sta Si I
ImpatientCAR3 Weisz et al. (2020) O Set Pt Sta Si I
SMAC+PS Anastacio & Hoos (2020) O Set Pt Sta Si I
S-Race Zhang et al. (2013) O Set Pt Sta Mu Sd
SPRINTRace Zhang et al. (2015b) O Set Pt Sta Mu Sd
MO-ParamILS Blot et al. (2016) O Set Pt Sta Mu Ld
HCRS Ansótegui et al. (2017) O Set Dr Dyn Si I
DAC-RL Biedenkapp et al. (2020) O Set Dr Dyn Si I
MATE Yafrani et al. (2020) O In Pt Sta Si Sd
CluPaTra Lau & Lo (2011) O In Pt Sta Si Ld
FloTra Lindawati et al. (2013c) O In Pt Sta Si Ld
SufTra Lindawati et al. (2013b) O In Pt Sta Si Ld
ISAC Kadioglu et al. (2010) O In Pt Sta Si I
EISAC Malitsky et al. (2013a) O In Pt Sta Si I
ISAC++ Ansótegui et al. (2016) O In Pt Sta Si I
PCIT Liu et al. (2019) O In Pt Sta Si I
ReACT Fitzgerald et al. (2014) Rt In Pt Sta Si I
ReACTR Fitzgerald et al. (2015) Rt In Pt Sta Si I
CPPL El Mesaoudi-Paul et al. (2020b) Rt In Pt Sta Si I

Table 4: Configurators: problem view. 1Structured Procrastination, 2Warmstarting
SMAC, 3CapsAndRuns. O: Offline, Rt: Real-time, In: Instance, Pt: Post ter-
mination, Dr: During run, Sta: Static, Dyn: Dynamic, Si: Single, Mu: Multi, Sd:
Small discrete, Ld: Large discrete, I: Infinite.
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F-Race Birattari et al. (2002) H Mf Fl S Si Si I Racing & F-test
Calibra Adenso-Diaz & Laguna (2006) H Mf Fl S Si Si I Taguchi design & local search
Sampling F-Race Balaprakash et al. (2007) H Mf Fl S Si Si I F-Race & sampling
HORA Barbosa & Senne (2017a) H Mf Fl S Si Si I Racing, DOE & local search.
ParamILS Hutter et al. (2007b) H Mf Fl S Si Si L Iterative local search
ROAR Hutter et al. (2011) H Mf Fl S Si Si L Random sampling & racing
S-Race Zhang et al. (2013) H Mf Fl S Set Mu I Sign test & racing
SPRINTRace Zhang et al. (2015b) H Mf Fl S Set Mu I S probability test & racing
MO-ParamILS Blot et al. (2016) H Mf Fl S Set Mu L Iterative local search
GGA Ansótegui et al. (2009) H Mf Fl Par Si Si L Genetic algorithm (GA) & racing
PyDGGA Ansótegui et al. (2021) H Mf Fl Par Si Si L Genetic Distributed GGA
ReACT Fitzgerald et al. (2014) H Mf Fl Par Si Si L Pool based & racing
ReACTR Fitzgerald et al. (2015) H Mf Fl Par Si Si L ReACT & Trueskill
REVAC Nannen & Eiben (2006) H Mb Fl S Si Si I Distribution estimation & GA
Iterated F-Race Balaprakash et al. (2007) H Mb Fl S Si Si I F-Race & resampling
MBGM Birattari et al. (2011) H Mb Fl S Si Si L Bayesian Networks
BNT do Nascimento & Chaves (2020) H Mb Fl S Si Si L Bayesian Networks
irace López-Ibánez et al. (2016) H Mb Fl Par Si Si I F-Race & elitist racing
irace(cap) Cáceres et al. (2017) H Mb Fl Par Si Si L Irace & capping
GPS Pushak & Hoos (2020) H Mb Fl Par Si Si L Golden section search
CluPaTra Lau & Lo (2011) H Mb Fb S Si Si I Clustering trajectories & tuning
FloTra Lindawati et al. (2013c) H Mb Fb S Si Si I CluPaTra & suffix tree encoding
SufTra Lindawati et al. (2013b) H Mb Fb S Si Si I CluPaTra & graph trajectories
SMAC Hutter et al. (2011) H Mb Fb S Si Si L SMBO
HCRS Ansótegui et al. (2017) H Mb Fb S Si Si L GGA & logistic regression
WS SMAC1 Lindauer & Hutter (2018b) H Mb Fb S Si Si L SMBO & warmstart
DAC-RL Biedenkapp et al. (2020) H Mb Fb S Si Si L Reinforcement learning (RL)
SMAC+PS Anastacio & Hoos (2020) H Mb Fb S Si Si L SMBO & probabilistic sampling
Hydra Xu et al. (2010) H Mb Fb S Set Si L Boosting
D-SMAC Hutter et al. (2012) H Mb Fb Par Si Si L SMBO & configuration queue
ISAC Kadioglu et al. (2010) H Mb Fb Par Si Si L Clustering features & Tuning
EISAC Malitsky et al. (2013a) H Mb Fb Par Si Si L ISAC & retraining
ISAC++ Ansótegui et al. (2016) H Mb Fb Par Si Si L ISAC & AS
PCIT Liu et al. (2019) H Mb Fb Par Si Si L Clustering features & Tuning
GGA++ Ansótegui et al. (2015) H Mb Fb Par Si Si L GGA & RF
CPPL El Mesaoudi-Paul et al. (2020b) H Mb Fb Par Si Si L ReACTR & bandits
MATE Yafrani et al. (2020) H Mb Fb Par Si Si L Genetic programming & regression
SP2 Kleinberg et al. (2017) P Mf Fl S Si Si L Emp. mean runtime queuing
LeapsAndBounds Weisz et al. (2018) P Mf Fl S Si Si L Phase-based Bernstein racing (BR)
CapsAndRuns Weisz et al. (2019) P Mf Fl S Si Si L Timeout estimating & BR
SP∗ with Confidence Kleinberg et al. (2019) P Mf Fl S Si Si L Lower confidence bound SP
ImpatientCAR3 Weisz et al. (2020) P Mf Fl S Si Si L CapsAndRuns with preprocessing

Table 5: Configurators: configurator view. 1Warmstarting SMAC, 2Structured Procrasti-
nation, 3CapsAndRuns. H: Heuristic, P: Proven, Mf: Model-free, Mb: Model-
based, Fl: Featureless, Fb: Feature-based, S: Sequential, Par: Parallel, Si: Single,
Mu: Multi, I: Infinite, L: Limited.
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component of Calibra, as factorial design does not scale. During the local search, Calibra
creates new configurations by narrowing down value ranges from the previously tested con-
figurations, successively focusing the search on promising regions of the parameter space.
Taguchi L9(34) design (Roy, 2010) is used to pairwise compare the resulting configurations.
The value ranges of the parameters are narrowed in each iteration of a loop until an eval-
uation budget is exhausted. If a local optimum is found, the result is stored, and the local
search is reinitialized.

We note that there are, in fact, some earlier AC approaches that use the design of
experiments methodology (DOE). Some of the first approaches for AC based on DOE are
given by Coy et al. (2001); Bartz-Beielstein (2003); Ruiz and Maroto (2005) and Ridge and
Kudenko (2007), which, like Calibra, in practice do not scale to even moderately sized con-
figuration spaces. However, DOE can be used to preprocess parameters to reduce the search
space. Gunawan and Lau (2011) propose using factorial experiments to rank parameters
according to their importance and to set unimportant parameters to default values, while
using a configurator to optimize the remaining, important ones. In later work, Gunawan
et al. (2013) propose to use fractional factorial experiments to decompose parameters into
different categories before using the previous procedure to identify important parameters
for each of the categories. Finally, Fallahi et al. (2014) use DOE and clustering in an expert
system that helps a user derive problem instance specific configurations.

ParamILS ParamILS (Hutter et al., 2007b) employs iterated local search (ILS) (Lourenço
et al., 2003) to find high quality parameter configurations. It can handle discrete search
spaces of large sizes with conditional parameters, and can optimize for either solution quality
or runtime, making it one of the first general-purpose algorithm configurators proposed in
the literature.

ParamILS pairs a local search with two different types of configuration comparison
procedures to determine which configuration to perturb next. More precisely, it uses a
one-exchange neighborhood search in which one parameter is changed in each iteration.
To avoid local optima, the search is restarted at random. The local search in ParamILS
differs from Calibra, where the parameters are changed based on the bounds and mid-
point of a narrowing value range. The resulting configurations are compared based on two
procedures: BasicILS and FocusedILS. BasicILS compares two configurations on an equal
number of problem instance runs, where the same problem instances (and random seeds) are
used. A configuration is deemed superior if it provides a better objective value (e.g., mean
runtime). In contrast, FocusedILS adjusts the number of evaluations for the configurations
in question dynamically, utilizing an approach similar to racing. In particular, it uses a
notion of dominance, in which a configuration is accepted over a competing configuration
if it has been evaluated on more problem instances and has lower cost on those problem
instances.

ParamILS suffers from a few shortcomings that are partly addressed in later work.
The main drawback is the fact that it can only handle discrete parameter domains. In
addition, it spends a significant amount of time running inferior configurations. To address
this, Hutter et al. (2009b) introduce adaptive capping, which terminates configurations as
soon as it becomes clear that they will not be better than the current incumbent. Cáceres
and Stützle (2017) adjust the one-exchange neighborhood principle of ParamILS to employ
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reduced variable neighborhood search (RVNS). This allows for more than one parameter of
a configuration to be changed in each local search iteration.

F-Race Racing configurators run different parameter configurations against each other
and discard inferior configurations based on non-parametric statistical tests. They are in-
spired by racing mechanisms from the machine learning literature (Maron & Moore, 1993;
Moore & Lee, 1994). Birattari et al. (2002) and Birattari (2009) introduce F-Race, the
first racing procedure to address AC. F-Race starts by creating configurations to be raced
through a full factorial design. Races are then performed sequentially, in which all (remain-
ing) parameter configurations are evaluated on a problem instance. After all runs terminate,
F-Race performs a Friedman test to determine whether the results obtained are significantly
different from the results of the previous race. If this is the case, F-Race eliminates inferior
configurations through pairwise tests. The remaining configurations are raced on the next
problem instance until one remains, or a stopping criterion is met.

Extensions to F-Race, such as sampling F-Race, iterated F-Race (I/F-Race) and irace,
improve upon the shortcomings of F-Race. Sampling F-Race (Balaprakash et al., 2007; Bi-
rattari et al., 2010) creates only a fraction of starting configurations by random sampling,
limiting the exponential number of starting configurations. Iterated F-Race (Balaprakash
et al., 2007; Birattari et al., 2010) not only shrinks a population of configurations sequen-
tially, but is also able to replenish the set with new configurations between races. To create
new configurations, a bivariate normal distribution over the parameter space is used, which
in each iteration is parametrized by the previous race winner. irace (López-Ibánez et al.,
2016) is based on iterated F-Race and adds soft-restarts and elitist racing. It replaces the
one winner carried over between races by I/F-Race through an elitist set that is kept and
updated over races. With the elitist set, configurations must prove viable over a sequence
of problem instances, and not win a race just by chance. Soft restarts ensure that con-
figurations in the set do not become too similar over multiple iterations. To this end, a
distance-based diversity measure triggers a restart if the population becomes too similar.
In this case, diversity is increased by sampling new configurations from a reset probability
model. The introduction of adaptive capping (Pérez Cáceres et al., 2017) prevents irace
from spending time on evaluating unpromising configurations and makes it competitive for
scenarios where costs are related to runtime. Similar to Hutter et al. (2011) and Ansótegui
et al. (2015), Cáceres et al. (2017) add a random forest as surrogate to predict the potential
costs of new configurations. However, this only leads to minor improvements. van Dijk
et al. (2014) propose uRace for deterministic target algorithms.

The principles of racing can also be paired with other configuration approaches. Yuan
et al. (2013) combine black box optimizers with a post-selection technique based on racing.
Moreover, the optimizer is given a small computational budget for which it finds a set of
promising configurations. The configurations are then raced to identify the best configura-
tion among the identified set. Another approach that falls into this line of work proposes to
pair evolutionary algorithms (EA) with racing (Yuan & Gallagher, 2005, 2007). The main
shortcoming of using gradient-free optimization techniques for the AC problem is that they
are limited to continuous parameters, and thus require discrete and categorical parameters
to be rounded.
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GGA The gender-based genetic algorithm (GGA) (Ansótegui et al., 2009) is a population-
based approach in which configurations are encoded as individuals in one of two populations:
competitive and non-competitive. It supports discrete and continuous parameters and can
take parameter interactions supplied by the user into account. It is inherently parallel and
optimizes for runtime or solution quality.

GGA combines a strong intensification procedure involving racing individuals from the
competitive pool with diversification from the non-competitive population. In each gener-
ation of GGA, the competitive population is raced on a random subset of instances that
increases linearly with each generation until either a target number of instances is reached
or the entire training set is run in each generation. If the number of competitive members
of the population is less than the number of CPU cores available on the machine, the race
is split into multiple “mini-tournaments” with a number of individuals equal to the number
of cores. When configuring for runtime, mini-tournaments are stopped as soon as a set
number of individuals in the mini-tournament solve all the instances of the subset; usually
one or two individuals. In this way, GGA saves significant runtime without needing to guess
an instance timeout that could result in the instance not being solved at all. In the case
of quality tuning, the mini-tournaments are run completely and the winners are selected
based on the evaluation criteria set by the user.

Once the tournament phase is completed, GGA updates its population using custom
recombination and mutation operators. In each generation, one third of the population is
replaced and removed from the population. This third is replaced with new individuals
that are created by combining a randomly selected winner from the competitive popula-
tion with a randomly selected non-competitive individual. The recombination operator
selects parameters from the competitive and non-competitive individual in a conservative
fashion based on a dependency tree that represents how the parameters interact with each
other. In subsequent work (Ansótegui et al., 2015), the recombination operator is extended
to use a random forest surrogate. A mutation operator is applied to randomly change a
small percentage of the parameters using Gaussian distributions for continuous and discrete
parameters (with a mean equal to the current value of the parameter) and a uniform dis-
tribution for categorical parameters. The new individuals are inserted into the competitive
or non-competitive population at random, and GGA moves to the next generation. GGA
terminates if it runs out of time or a goal generation is reached and the average perfor-
mance of the population stops improving. Ansótegui et al. (2021) present PyDGGA, an
enhanced, distributed version of GGA, that is optimized for high-performance computing
clusters. Further improvements as well as an approach to instance-specific configuration
can be found in Ansótegui et al. (2021).

HORA The heuristic oriented racing algorithm (HORA) (Barbosa & Senne, 2017a,b)
combines elements from racing, DOE and neighborhood search. It can handle small search
spaces and is able to optimize for either solution quality or runtime, however no capping is
performed during races. HORA utilizes a response surface methodology to find an initial
set of good configurations, which are used as seeds to iteratively create and race new config-
urations. More precisely, a few problem instances are selected at the start from the training
set from which initial configurations are found through DOE. The resulting configurations
are used as the basis for the subsequent search, in which they are altered using a search
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method that is similar to the one exchange neighborhood search of ParamILS. To compare
the resulting configurations, races are conducted analogous to F-Race. The Friedman test
is used to discard configurations. The cycle of generating new configurations and racing
them continues until a stopping criterion is reached.

ROAR Hutter et al. (2011) introduce random online aggressive racing (ROAR), an offline
configurator that samples new configurations uniformly at random and compares these to
the current incumbent using an intensification mechanism that is similar to FocusedILS. In
particular, ROAR requires as many target algorithm runs for a new configuration as for the
current incumbent. The difference to FocusedILS is that for different, new configurations,
the order of the problem instances they are tested on is not fixed. Moreover, problem
instances and seeds to test new configurations are sampled at random from the set of
evaluations the current incumbent was tested on. While being evaluated on these samples,
new configurations are rejected as their cost is revealed to be clearly worse than the current
incumbent. A configuration is accepted if its cost is better than the incumbent over all
problem instances and seeds considered so far. This principle of aggressive racing is also
later used by SMAC, with the addition of a predictive model.

GPS Motivated by the belief that parameter landscapes may not be as complex as as-
sumed (see also (Harrison et al., 2019)), Pushak and Hoos (2020) propose Golden Parameter
Search (GPS), an offline procedure that exploits simple structures of parameter spaces by
searching parameter configurations semi-independently in parallel. In particular, it works
based on the assumptions that (1) numeric target algorithm parameters are uni-modal and
(2) that there are no strong interactions between most of the parameters.

GPS combines elements of the golden section search algorithm (Kiefer, 1953) with com-
mon AC methods such as racing, capping and intensification. The search is based on
parameter ranges (so-called brackets) that are believed to contain the best value for the
parameter. The parameter values within the brackets are evaluated in parallel and inde-
pendently of other brackets using a racing procedure with a permutation test to compare
runs. After the target algorithm runs, brackets are expanded and shrunk using the golden
section search algorithm, where ranges are updated by shifting values. In case of a bracket
being updated, the other brackets are informed about the value adjustment of the respective
parameter. In addition, GPS uses a bandit approach based on the relative importance of a
parameter to prioritize target algorithm runs for more important parameters.

To speed up evaluation, GPS incorporates capping and intensification mechanisms while
continuously populating a queue of configurations that should be run in the future. Initial
evaluations are performed only on a small set of problem instances, and this set is gradually
increased by sampling from the training set when parameter updates are performed. In
addition, GPS modifies the bound multiplier of the capping mechanism to be adaptive
itself by introducing a dependence on the size of the current problem instance set, leading
to a less aggressive capping strategy compared to ParamILS or irace. Lastly, a queue is
maintained that dynamically adjusts the amount of instance-configuration combinations
that are run to ensure CPU resources are effectively utilized.
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5. Model-based Offline Methods

In this section, we discuss model-based, offline AC approaches for solving the offline AC
problem setting described in Section 2.1. Model-based methods leverage some form of
learned model, such as a random forest, that captures knowledge about the performance
of configurations as part of the optimization process. In the following, we provide a short
background on sequential model-based optimization (SMBO) approaches, then describe
the various model-based methods, starting with random forest methods and followed by
Bayesian network based methods.

5.1 Sequential Model-based Optimization

SMBO approaches model the AC problem as a black box optimization problem. Formally,
given a function g : Θ → R with input domain Θ ⊂ Rd, the goal is to find the point
optimizing the function g:

θ∗ ..= arg min
θ∈Θ

g(θ) . (3)

The function g is referred to as a black box (function) since very few assumptions
are made about its structure except for the ability to perform evaluations given a point
as input. When defining Θ as the configuration space and g as the performance of the
algorithm to configure, the mapping from AC to black box optimization appears straight
forward, however a key challenge is deciding which instances from I to run with a given
configuration and how to integrate the incomplete information about the cost into the
model.

SMBO approaches iteratively refine a surrogate model ĝ : Θ → R with the goal of
approximating the original g as best possible based on point-wise evaluations of g. To
this end, they are powered by two main concepts, first and foremost the aforementioned
surrogate model used to approximate g and a so-called acquisition function a : Θ × Ĝ →
2Θ, where Ĝ is the space of all possible surrogate models ĝ. In short, SMBO approaches
iteratively leverage the acquisition function a to generate a set of configurations to evaluate
based on the current approximation of g, i.e., the surrogate model ĝ. The evaluations of
the configurations on g are provided to the surrogate model to improve its approximation
quality and, thus, obtain a better idea of the response surface of g.

One of the assumptions to be imposed on g, which is particularly important for the
problem of AC, is whether g is a deterministic or stochastic function. Often, in AC we con-
sider randomized algorithms, meaning that g is stochastic, i.e., the evaluations of g contain
noise. Thus, multiple evaluations at the same point can result in different outcomes. Fur-
thermore, the previously mentioned issue of sampling I leads to a noisy estimation of each
point, as evaluating all instances is usually too expensive until later stages of configuration.

We give a more detailed description of the SMBO framework for AC based on the
pseudocode presented in Algorithm 1 in the following. At the start of the optimization, a
so-called initial design strategy is used to generate a set of initial configurations to perform
an initial training of the surrogate model ĝ. For a further overview of these strategies,
we refer to (Santner et al., 2003). Once the surrogate model is fit on these points, the
main loop starts and the following steps are repeated until a stopping criterion is met.
First, the acquisition function leverages the current surrogate model ĝ to generate a set
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of configurations that g should be evaluated on. The set of configurations returned by
the acquisition function is then passed on to the intensification procedure, which decides
how many evaluations are performed per configuration provided. Lastly, the surrogate
model is updated based on the configurations chosen by the acquisition function and the
corresponding evaluation results provided by the intensification strategy.

Algorithm 1 SMBO(configuration space Θ, initial design, black box function g,
surrogate model ĝ, acquisition function a)

1: θ̂∗ ← random(Θ)
2: Xinit ← initial design()
3: Yinit ← g(Xinit)
4: Fit ĝ to (Xinit , Yinit)
5: while stopping criterion not met do
6: X ← a(Θ, ĝ)
7: Y ← intensification(X, g)

8: update incumbent(θ̂∗, X, Y )
9: Update surrogate model ĝ with (X,Y )

10: end while
11: return θ̂∗

Surrogate models The task of the surrogate model, sometimes also called response
surface or empirical performance model, is to approximate the original though unknown
function g. Several classes of surrogate models have been considered in the literature, most
of which are of a probabilistic nature in order to properly capture uncertainty. The most
common ones are Gaussian processes (GP) (Rasmussen & Williams, 2006), tree Parzen
Estimators (Bergstra et al., 2011) or random forests (Breiman, 2001). Due to their com-
putational complexity, GPs are often rather impractical for AC problems when considering
more than a handful of parameters to optimize.

Acquisition functions The acquisition function handles the exploration-exploitation
dilemma common to optimization techniques. The function must decide to either return
configurations from regions of g that are likely to yield good performance according to ĝ (ex-
ploitation), or to return configurations from regions with larger uncertainty (exploration).
A common criterion powering the acquisition function is expected improvement (Mockus,
1974; Jones et al., 1998) (EI), which in its simplest form4 can be defined as

E[I(θ)] = E
[
max

{
0, g(θ̂∗)− g(θ)

}]
, (4)

where θ̂∗ is the currently best known configuration, i.e., the incumbent. The expectation
is required because g(θ) is unknown at the time of computation and hence, it is a random
variable. Accordingly, to compute the EI, a probabilistic surrogate model is required. For a
detailed overview of different acquisition functions, we refer to (Frazier, 2018).

Non-general AC SMBO approaches Several SMBO approaches exist to perform a
limited form of AC, i.e., on only a single instance. We include these methods due to their
historical importance to the field of AC, as well as because they may inspire new general AC

4. Note that for simplicity we assume that g is deterministic here.
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approaches. Most SMBO based AC approaches are based on the idea of sequential kriging
meta-modelling (Huang et al., 2006) (SKO) and sequential parameter optimization (SPO)
(Bartz-Beielstein et al., 2005), both of which are based on efficient global optimization (Jones
et al., 1998). While the latter is a classical approach to black box function optimization using
BO, both SPO and SKO constitute extensions to noisy black box functions; an assumption
that is much more realistic for AC. However, both of these approaches still have potential
drawbacks. Some of these are fixed by SPO+ (Hutter et al., 2009a), which improves the
intensification scheme, and time-bounded SPO (TB-SPO) (Hutter et al., 2010b), which
generalizes SPO+ to work under (potentially tight) time constraints instead of considering
the number of function evaluations as a stopping criterion.

5.2 General Model-based AC Methods

SMAC Sequential model-based optimization for algorithm configuration (SMAC) (Hutter
et al., 2011; Lindauer et al., 2021) can be seen as one of the first fully-fledged model-
based AC approaches, as it features solutions for many of the limitations of the previously
discussed SMBO techniques. SMAC generalizes TB-SPO to perform configuration over
multiple problem instances so that it can support categorical parameters and handle tight
time constraints.

To support multiple problem instances, SMAC adapts the intensification strategy of
TB-SPO to iteratively evaluate configurations on randomly sampled combinations of seeds
and problem instances. When doing so, it ensures that configurations are compared only
based on a performance estimate computed on the same randomly sampled set of problem
instances. Furthermore, SMAC’s surrogate model can generalize across problem instances
by incorporating problem instance features. To this end, a surrogate model is learned on
the joint problem instance and configuration space to predict the performance of a given
configuration on a given problem instance.

As a means to deal with a mixture of categorical and numerical parameters, SMAC
employs a random (regression) forest as a surrogate model, which can inherently handle
both types of parameters. The probabilistic nature of the surrogate model required for
most acquisition functions is preserved by computing the predicted mean performance and
the variance of a configuration as the corresponding statistics on the predictions of the
individual trees. Moreover, SMAC leverages an adapted acquisition function. In particular,
it uses a special form of the EI criterion and solves the EI maximization problem by a
multi-start local search procedure that is equipped with special neighborhoods to deal with
categorical hyperparameters. In addition to the configurations obtained through the local
search procedure, SMAC evaluates the EI on a set of randomly sampled configurations for
the purpose of exploration.

Anastacio and Hoos (2020) propose SMAC+PS, which integrates the idea of probabilis-
tic sampling known from irace into SMAC. This enhancement yields improvements over
both SMAC and irace in many cases. In particular, Anastacio and Hoos (2020) account for
the problem that many of the completely randomly sampled configurations by SMAC often
exhibit rather bad performance and thus, their evaluation yields only limited information.
To this end, the authors suggest to sample configurations according to a truncated normal
distribution centered around the default configuration.
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In (Lindauer & Hutter, 2018b) the authors suggest two different strategies to warmstart
model-based AC approaches and apply their suggestions to SMAC, leading to significant
speedups from days to hours of configuration time. The idea underlying warmstarting is to
use the evaluations of configurations from previous runs, i.e., on different problem instance
sets, to speed up the configuration process in new runs of the configurator on a new set of
instances.

Distributed SMAC (Hutter et al., 2012) (D-SMAC) is an extension of SMAC leveraging
parallelization to speed up the configuration process. The main idea behind D-SMAC is
to parallelize target algorithm runs onto available workers as much as possible. For this
purpose, it maintains a queue of target algorithm configuration evaluations to be performed,
which is refilled such that the amount k of available workers can always be used to its
maximum. The intensification strategy is thus adapted to only push a set of evaluations to
be performed into the queue instead of actually performing the necessary evaluations. While
the workers are performing evaluations, a master process keeps track of the queue, selects
configurations to be evaluated and updates the surrogate model. Furthermore, the authors
replace EI by a parametrized upper confidence bound (UCB) criterion (Jones, 2001), where
the parameter controls the degree of exploration. To allow for an efficient generation of
solution candidates based on the acquisition function, the master divides the queue into
blocks of k slots, i.e., one for each worker, and generates the corresponding configuration
to be evaluated based on k differently parameterized instantiations of the UCB criterion.

GGA++ Ansótegui et al. (2015) adapt the model-free AC approach GGA to include a
surrogate model. More precisely, the authors use a surrogate model to evaluate the quality
of new configurations. They integrate this within a crossover operator and call it genetic
engineering. Recall that GGA contains both a competitive and non-competitive popula-
tion in which winning configurations from the races between members of the competitive
population are recombined with individuals from the non-competitive population. To this
end, the crossover operator generates individuals according to the parameter tree crossover
of the original GGA method and evaluates them using the surrogate. Note that rather
than predicting the solution quality or runtime directly, the surrogate predicts the rank the
individual would have in a tournament. The individuals with the best ranks are accepted
into the population of the next generation in the same way as in GGA.

While the GGA++ surrogate is based on a random forest model, it differs in a key
way. The premise of a random forest is to equally approximate the underlying function over
the complete input space. In the case of AC, this is undesirable as only the areas of the
input space that correspond to high-quality configurations are of interest. Thus, the authors
present specialized splitting criteria that focuses on only the best configurations to increase
the focus in high-quality regions of the configuration space while sacrificing approximation
quality in other regions.

Graphical models Birattari et al. propose an approach we refer to as model-based
graphical methods (MBGM) (Birattari et al., 2011) leveraging Bayesian networks (BNs)
as a probabilistic surrogate model. Each node in such a network has an associated prior
probability distribution over the parameter values. Here, both the network structure and
the initial probability distributions of the nodes are supposed to be provided in advance.
The approach then works as follows. First, an unseen problem instance from the set of
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training instances is chosen. Second, new configurations are created by sampling a value
for each parameter one after another according to the conditional probability distribution
modeled by the respective part of the BN. The order in which parameters are sampled is
imposed by any of the topological orderings of the BN such that the sampling adheres to
parameter dependencies. Third, the sampled configurations are evaluated on the unseen
problem instance and, based on the performance, a subset of them is chosen to be added to
a training dataset. Fourth, the probability distributions of the nodes are updated according
to the posterior distribution based on the data contained in the training dataset. This
process is repeated until a stopping criterion is reached and the best seen configuration is
returned.

A key aspect of the approach is the update procedure for the probability distributions
of the nodes. This must ensure that the distributions are shifted towards more promising
regions to yield good performance. Correspondingly, Birattari et al. (2011) show how this
update can be performed efficiently for numerical and categorical parameters and even for
networks for parameters of mixed type (categorical and numerical).

BNT do Nascimento & Chaves propose a method called Bayesian network tuning (BNT)
(do Nascimento & Chaves, 2020), which follows the same idea of leveraging BN for algorithm
configuration, but employs a population of configurations. BNT starts by generating and
evaluating an initial population of configurations according to a given initial design, and
then iterates over the following steps. First, a subset of the current population corresponding
to the best performing configurations is selected. Second, on the basis of this subset, a BN
is created leveraging special metrics quantifying parameter interdependence. In contrast to
(Birattari et al., 2011), BNT does not assume a fixed network structure to be given, but
creates it itself in each iteration. Third, new configurations are created by sampling from
the BN as described earlier. Finally, the newly created configurations are evaluated and
replace the worst configurations in the current population. This process is repeated until a
stopping criterion is reached.

REVAC Parameter relevance estimation and value calibration (REVAC) (Nannen &
Eiben, 2006, 2007) is an offline configurator for continuous parameters. It estimates proba-
bility density functions over parameter values, where the distribution can be used to draw
conclusions about parameter relevance and parameter ranges after termination. It does not
incorporate a capping mechanism, and continuous as well as categorical values need to be
discretized.

REVAC is based on the ideas of estimation of distribution algorithms and genetic al-
gorithms. While creating and evaluating configurations, REVAC maintains a probability
density distribution for each parameter. More precisely, REVAC starts with a uniform dis-
tribution, which is iteratively refined as configurations are created and evaluated, giving
higher probabilities to parameter regions that perform well. New configurations are created
by sampling from the estimated distribution, where a population approach is used that
smoothens the distribution. The state of the probability model after termination is used to
estimate the importance of parameters, and the Shannon entropy can be used to estimate
the number of evaluations necessary to reach a defined target cost. Smit and Eiben (2009)
add racing and a mechanism called sharpening to REVAC that, similar to GGA, gradu-
ally increases the number of instances a configuration is tested on. Another approach that
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utilizes evolutionary operators is given by Oltean (2005), in which genetic programming is
used on problem dependent C-programs to find configurations. The main drawback here is
that crossover and mutation are dependent on the problem instance type (e.g., SAT, MILP,
etc.).

6. Theoretical Guarantees

The field of AC began with heuristics that offered no guarantees as to the quality of the
configurations found. Recently, there has been significant progress in providing a theoretical
foundation to AC, offering bounds on the quality of the configurations found. First, we
consider current results regarding the number of training instances and the structure of the
class of cost functions guaranteeing good generalization of algorithm configurators. Then,
we discuss and highlight the recent contributions focusing on the theoretical analysis with
respect to the worst-case runtime of algorithm configurations.

6.1 Generalization Guarantees

Most of the algorithms configurators encountered so far use the empirical mean as the
aggregation function m in (2), which in light of the objective function given by the expected
costs in (1) is a natural choice. This choice of aggregation function raises two urgent
questions:

1. Given some finite overall computational budget for each algorithm configuration at
hand (i.e., a limit on the number of times a configuration can be run in total), how
should this budget be distributed across the set of training instances to obtain the
most accurate estimate via the empirical mean for (1) for some configuration θ?

2. How many training instances are needed so that an arbitrarily small estimation error
of the minimum (1) can be guaranteed with high probability?

Distributing the computational budget Birattari (2004) analyzes the first question
under the assumption of an infinite set of training instances and a computational budget N
for a configuration θ. It is shown that one single run on N many problem instances leads to
the empirical mean estimate with minimal variance. However, the assumption of an infinite
set of training instances is obviously quite restrictive for practical applications.

The latter result of Birattari (2004) has been generalized by Liu et al. (2020) to the
more relevant scenario, in which the number of training instances is finite. They show
that the empirical mean estimate with the minimal variance is obtained by distributing the
available computational budget N of a configuration as evenly as possible across the training
instances. More precisely, if K is the number of training instances, then the number of runs
ni on a problem instance i should be such that ni ∈ {bN/Kc, dN/Ke}. Note that this
distribution scheme is employed by some of the algorithm configurators discussed before,
such as ParamILS, irace, and SMAC.

Probably approximately correct (PAC) learning The estimation error of the empir-
ical mean estimate is usually set to be its absolute deviation from its population counterpart,
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i.e., for any θ ∈ Θ it is given by∣∣∣ 1

|Itrain |
∑

i∈Itrain
c(i,θ)−

∫
I
c(i,θ) dP(i)

∣∣∣. (5)

With this in mind, the general approach to answer the second question is to derive high
probability bounds on the estimation error (5) holding for any configuration θ ∈ Θ, which
are monotonically decreasing with the number of training instances, i.e., |Itrain |. Given a
desired value of the estimation error, say ε > 0, one can obtain an answer to the sec-
ond question by equating the derived bound and the estimation error, and then solve this
equation with respect to the number of training instances.

Needless to say, these bounds will highly depend on the desired high probability level,
the class of cost functions CΘ = {i 7→ c(i,θ) |θ ∈ Θ} or its dual function class C∗Θ =
{θ 7→ c(i,θ) | i ∈ I}, as well as on the distribution of the problem instances P or the set of
training instances Itrain . If the latter dependency is taken into account the high probability
bounds or equivalently the resulting guarantees for the number of training instances are
said to be data-dependent, and otherwise worst case (aka distribution-free) high probability
bounds/guarantees.

Liu et al. (2020) derive worst case high probability bounds on the estimation error (5)
for any θ ∈ Θ, if the configuration space Θ is finite and the cost function takes values only
in some compact interval. Assuming that the functions in the dual function class C∗Θ are all
Lipschitz continuous, the authors show high probability bounds on the estimation error if
the configuration space is infinite, but bounded.

Guided by the observation that the shape of the cost functions in CΘ has a piecewise
structure in many domains, i.e., piecewise-constant/linear, etc., Balcan et al. (2019) derive
worst case high probability bounds on the estimation error (5) for any θ ∈ Θ for classes of
cost functions exhibiting this structure. Such piecewise structures of the cost function have
been observed for branch-and-bound AC problems (Balcan et al., 2017) or linkage-based
hierarchical clustering algorithms (Balcan et al., 2018, 2020a). In a subsequent work, Balcan
et al. (2020c) generalize their results by replacing the piecewise-structural assumption on CΘ

by an L∞−norm approximation assumption of C∗Θ. More precisely, it is assumed that any
function in C∗Θ can be approximated uniformly over the configuration space Θ by a function
from a class of functions having small Rademacher complexity5. Unlike the previous worst
case high probability bounds, the authors derive data-dependent high probability bounds
based on the empirical Rademacher complexity of the class of functions approximating CΘ

with respect to the L∞−norm. Roughly speaking, the result takes advantage of the fact
that the Rademacher complexity of C is small if the Rademacher complexity of the class
of functions approximating its dual function class CΘ is small. However, it is shown that
the latter fact relies heavily on the approximation with respect to the L∞−norm, as it
is also shown that it is impossible to derive non-trivial generalization guarantees if the
approximation holds only under the Lp−norm with p < ∞. This is due to the fact that a
small Rademacher complexity of the class of functions approximating CΘ with respect to
the Lp−norm with p <∞ does not imply a small Rademacher complexity of C.

5. Rademacher complexity (Bartlett & Mendelson, 2003) is a commonly used quantity in statistics and
machine learning to measure the complexity of a function class.
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6.2 Runtime Analysis

Initiated by the work of Kleinberg et al. (2017), the AC problem has recently attracted a
great deal of research focusing on theoretically grounded approaches regarding the design
and motivation of a configurator, if the relevant cost function c (see Section 2.1) considered is
the runtime of configuration θ on problem instance i. These approaches take into account,
on the one hand, how close the supposed best algorithm configuration returned by the
configurator is to the actual optimal configuration and, on the other hand, how long it takes
on average to return it in the worst case. For this, a definition of an optimal algorithm
configuration is required, as is a measure of closeness. Assuming that problem instances
are drawn with some distribution P from I, the expected runtime of a configuration θ is
R(θ) = Ei∼P(c(i,θ)). Thus, the configuration with the optimal expected runtime is given
by argminθ∈ΘR(θ) having (optimal) expected runtime

OPT := inf
θ∈Θ

R(θ).

The search for the optimal configuration is generally too ambitious, as the total runtime
required for the configurator must be extraordinarily large (possibly infinite) to guarantee
that the best algorithm configuration returned by the configurator is in fact the optimal
one with high probability.

As a workaround, one can leverage the idea underlying PAC learning (Valiant, 1984) to
the problem at hand. The basic idea is to relax the goal of finding the optimal configuration
itself and, instead, find a configuration that is considered to be “good enough”. As there are
potentially several such “good enough” configurations6, this relaxation of the goal allows
the search to be completed in less (and, thus, feasible) time. In this context, “good enough”
means that the expected runtime is only worse than the optimal expected runtime up to
a multiplicative factor of 1 + ε for some fixed precision parameter ε > 0. Formally, a
configuration is said to be ε-optimal (“good enough”) iff

Ei∼P(c(i,θ)) ≤ (1 + ε)OPT.

However, this relaxation of the target is problematic in the context of AC problems, since the
runtimes of configurations often exhibit a heavy-tailed distribution. Indeed, it is not difficult
to construct an example based on such distributions in which any (sensible) configurator
would, in the worst case, take infinitely long to find an ε-optimal configuration; see for
instance (Vitercik, 2021, Example 11.1.1).

In light of the prevalence of heavy-tailed distributions in the realm of AC problems, the
remedy is to run configurations only up to some timeout κ ≥ 0 chosen by the configurator
that could vary over the runs. In practice, this means that one observes min (c(i,θ), κ)
if configuration θ is run on i with timeout κ, and also whether the configuration runs
into a timeout or solves the problem instance within κ. This gives rise to the κ-capped
expected runtimes of a configuration θ defined by Rκ(θ) = Ei∼P(min (c(i,θ), κ)), which
now take the place of the uncapped runtimes R(θ)7. However, the introduction of timeouts
inevitably means that a certain proportion of problem instances may not be solved by a

6. Of course, the optimal configuration itself is always “good enough”.
7. Technically, R(θ) = R∞(θ).
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configuration within the given timeout. This immediately raises the question of how to
choose the timeouts so that the proportion of unresolved problem instances is tolerable, but
at the same time, the (κ-capped) expected runtime is not too far from the optimal one? The
notion of (ε, δ)-optimality of a configuration is introduced by Kleinberg et al. (2017) and
provides an intuitive answer. A configuration is (ε, δ)-optimal if there is a timeout κ ≥ 0
at least as large as the δ-quantile of the configuration’s runtime distribution, such that the
configuration’s κ-capped expected runtime is at most (1 + ε)OPT. Formally,

θ is (ε, δ)-optimal ⇔ ∃κ ≥ 0 : Rκ(θ) ≤ (1 + ε)OPT ∧ Pi∼P(c(i,θ) > κ) ≤ δ. (6)

This notion of (ε, δ)-optimality has been adopted by subsequent works and slightly modi-
fied in some cases. Nonetheless, the core idea remains the same, namely that one is willing
to leave a fixed share of problem instances unsolved (captured via the δ-quantile) to im-
prove the expected runtime, such that it is close to optimal (captured by the additive term
εOPT). Kleinberg et al. (2017) show that the worst-case expected runtime of any configu-
rator to return an (ε, δ)-optimal configuration (with probability of at least 1/2) is of order

Ω
( |Θ|
δε2

OPT
)
, when the number of configurations is finite.

From finite to infinite number of configurations. To obtain a lower bound result
for the case of a large or even possibly (uncountable) infinite number of configurations,
the notion of (ε, δ)-optimality needs to be modified, as it is the main limiting factor in
this regard. Indeed, due to its definition in (6), any optimal configurator is forced to
explicitly consider each configuration to decide on its (ε, δ)-(sub-)optimality. To this end,
in a scenario with a large number of configurations, the goal is relaxed to find a (ε, δ)-
optimal configuration after excluding the γ ∈ (0, 1) fraction of best configurations from Θ
with respect to the expected runtime. Formally, let OPTγ = infx∈R+{x |Pθ∼Unif(Θ)(R(θ) ≤
x) ≥ γ} be the optimal expected runtime after excluding the γ ∈ (0, 1) fraction of best
configurations, then a configuration θ is (ε, δ, γ)-optimal iff

∃κ ≥ 0 : Rκ(θ) ≤ (1 + ε)OPTγ ∧ Pi∼P(c(i,θ) > κ) ≤ δ. (7)

Kleinberg et al. (2017) provide a result on the worst-case expected runtime of any configura-
tor to return an (ε, δ, γ)-optimal configuration for specific choices of δ and γ, which is quite
similar to the finite case by replacing OPT by OPTγ and |Θ|/δ by a parameter common to
the choices of δ and γ.

Another convenient tool provided by the authors is how to turn a configurator with theo-
retical guarantees for finding (ε, δ)-optimal configurations for a finite configuration space to
finding (ε, δ, γ)-optimal configurations for an infinite configuration space. This can be done
via uniform sampling from Θ as follows. If a configuration is sampled uniformly at random
from Θ, then obviously this configuration belongs with probability γ to the γ proportion of
the best configurations, i.e., the best γ configurations. Thus, if n many configurations are
sampled uniformly at random from Θ, then the probability that at least one among these
n many belongs to the best γ configurations is at least 1 − (1 − γ)n. Now, fixing a failure
probability ζ ∈ (0, 1) for the non-occurrence of the latter event, one can solve the resulting

inequality with respect to n to obtain that d log(ζ)
log(1−γ)e samples are sufficient to guarantee

that at least one configuration within the sample belongs to the best γ configurations with
probability at least 1− ζ.
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Balcan et al. (2020b) provide an alternative way to the uniform sampling approach to ob-
tain a finite set, which includes at least one configuration with “good enough” performance.
Here, “good enough” performance is again in terms of (ε, δ)-optimality of a configuration,
which, however, is defined in a slightly different way as in (6), namely

θ is (ε, δ)-optimal ⇔ Rtθ(δ)(θ) ≤ (1 + ε)OPTαδ, (8)

where OPTαδ = minθ Rtθ(αδ)(θ), tθ(x) is the x-quantile of θ’s runtime distribution and
α ∈ (0, 1) is a slack parameter that is introduced for details outside the scope of this work8.
It is worth noting that the authors allow other cost functions than runtime in their work, as
the notion of (ε, δ)-optimality can also be used for such variants. Moreover, the theoretical
guarantees as well as the design of their approach assume that the cost functions CΘ (cf.
Subsection 6.1) are piecewise constant.

Structured procrastination (SP) Kleinberg et al. (2017) propose an AC technique
in which the idea is to postpone potentially hard problem instances and solve supposedly
easier problem instances first. It thus only spends time on hard instances if it is unable
to solve easy ones, reducing the overall time the technique needs. The authors prove that
SP returns an (ε, δ)-optimal configuration with high probability, and that the runtime is
optimal up to a logarithmic factor.

We briefly describe how SP works for large parameter spaces, as this is the more realistic
case of the approach for practical applications. The approach uses a double-ended queue Qθ
that stores (instance, timeout) pairs for each configuration. A pair is pulled from the front
of the queue and run. Should the configuration not finish the instance within the timeout,
the instance is placed at the back of the configuration’s queue with double the timeout. If
the instance is completed within the timeout, this information is saved and the instance is
not considered again for configuration θ. In each iteration of the approach, the Qθ is chosen
with a θ with minimal average performance observed so far. To avoid requiring the user
to specify δ, SP is implemented as an anytime algorithm that reduces δ over the course of
its execution. Note that SP returns the configuration with the longest total execution time
rather than the best empirical mean due to theoretical reasons.

LeapsAndBounds Weisz et al. (2018) propose a phase-based algorithm configurator
called LeapsAndBounds that tries to guess an appropriate upper bound on the optimal
runtime in each phase by doubling the guess of the bound after each failed phase. The au-
thors provide an upper bound on the worst-case total amount of time their method needs for
finding an (ε, δ)-optimal configuration with high probability, which improves upon the result
of SP. Furthermore, the superiority of LeapsAndBounds over SP is confirmed empirically
on a benchmark of SAT solvers.

In each phase of LeapsAndBounds, each configuration is given a time budget, and a
number of problem instances to be solved within the budget. Instances are chosen depend-
ing on the phases that have already passed, with specific choices of the phase-dependent
quantities being based on empirical Bernstein stopping (Mnih et al., 2008). This mechanism
takes the range and the empirical variance of capped runtime observations into account. If
a configuration exhausts the time budget without having solved all problem instances, its

8. This alternative notion of (ε, δ)-optimality is due to Weisz et al. (2019).
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expected runtime is above the phase-dependent upper bound guess with high probability.
If this happens for all configurations, the phase has failed and the next phase is started. In
the case that some configurations do not manage to use the time budget completely, the
empirical mean of the runtimes is accepted as a suitable estimator for the expected runtime,
and the configuration with the lowest mean is returned as an (ε, δ)-optimal configuration.
Note that even though the time budget is not exhausted, there may still be instances that
hit their timeouts.

Structured procrastination with confidence Kleinberg et al. (2019) revises the SP
configurator and modifies the selection and return criterion used to choose the configuration
to recommend at each step to improve its practical performance while maintaining satisfac-
tory theoretical guarantees. More precisely, the authors derive lower confidence bounds on
the expected mean runtime of a configuration, which then take over the role of the empirical
mean runtimes in the selection process9. Thanks to a careful derivation of these lower con-
fidence bounds, the choice mechanism adapts to the difficulty of the configuration problem
such that poorly performing configurations are excluded quite quickly; a crucial property
that SP, in general, lacks. In addition, the lower confidence bounds, as well as the minimal
length of a configuration’s queue, are chosen such that ε and δ do not need to be specified
a priori, which, however, is required by all methods discussed before. Another change to
SP is that the configuration returned is the one having the highest number of completed
as well as pending tasks in its queue. The rationale behind this modification is that more
promising configurations run faster on average and thus have a larger number of completed
and pending tasks. The resulting modified version of SP is called SP with confidence (SPC)
due to the usage of the (lower) confidence bounds.

The authors show the correctness of SPC and derive an improved runtime bound over
SP. In addition, they show in an experimental study for a simple benchmark set of SAT
solvers that SPC finds reasonable configurations after a smaller amount of computation
time than SP and LeapsAndBounds.

CapsAndRuns As a follow-up to LeapsAndBounds, (Weisz et al., 2019) propose Cap-
sAndRuns, which improves the former both theoretically and practically. It is also based on
Bernstein stopping (Mnih et al., 2008), but extends LeapsAndBounds in how it estimates
timeouts. Furthermore, CapsAndRuns refines the upper bound on the total time needed for
configuration and adjusts the notion of (ε, δ)-optimality as specified in (8). More precisely,
CapsAndRuns first estimates a timeout for each configuration and performs a Bernstein
race over the configurations afterward.

CapsAndRuns works in two phases, but note that these phases are different from the
phases in LeapsAndBounds. First, the method estimates a timeout for each configuration
such that only a δ-quantile of the instances exceed the timeout, followed by a phase using
this estimate to return an expected runtime estimate using the estimated timeout. To
make the search process even more efficient, a global estimator for the optimal expected
runtime (considering timeouts) is used for all configurations across both phases to eliminate
suboptimal configurations as early as possible. This elimination happens either directly
after the first phase, when it turns out that the configuration is too slow, or during the

9. This modified selection rule adopts the optimism in the face of uncertainty principle, which is a popular
paradigm in the realm of reinforcement and bandit learning problems (Lattimore & Szepesvári, 2020)
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second phase, as soon as one is confident enough that the configuration’s empirical mean
runtime is above the optimal one. A further aspect of the approach is that it can be
parallelized across configurations.

In other words, the (sub-)optimality of configurations is measured by means of the
closeness of their expected runtimes capped at their δ-quantile to the optimal expected
αδ-quantile-capped runtime.

ImpatientCapsAndRuns Guided by the observation that heuristic configuration ap-
proaches achieve appealing practical performance by quickly discarding less promising con-
figurations based on only a few observations of their runtimes, Weisz et al. (2020) propose
the ImpatientCapsAndRuns (ICAR) algorithm, which builds on CapAndRuns with a more
aggressive elimination strategy. This is achieved through a preprocessing mechanism for
filtering configurations that are unlikely to be optimal that is run before entering CapsAn-
dRuns. Weisz et al. (2020) prove that ICAR finds an (ε, δ, γ)-optimal configuration with
high probability for specific ranges of ε, δ and γ.

The preprocessing technique in ICAR is essentially a stripped down version of the two
phases of CAR, except that the internal statistics for elimination are chosen differently.
Note that this still depends on the global estimate of the optimal expected runtime (with
timeouts). For this reason, the preprocessing and the subsequent two phases of CAR are exe-
cuted successively one after the other on an ever-increasing pool of configurations (batches),
with configurations that have already been eliminated no longer being taken into account.
This ensures that the global estimator gradually improves, which, in turn, leads to the pre-
elimination by the preprocessing routine becoming more and more precise and aggressive.

As a byproduct of the theoretical analysis of ICAR, the authors improve the CAR algo-
rithm by refining the choice of one of its key internal statistics. Furthermore, experimental
studies show that ICAR has significantly better practical performance for three benchmark
datasets compared to the original CAR and its improved version.

ParamRLS with RLSk Since the ParamILS algorithm (see Section 4) does not provide
any theoretical grounding, Hall et al. (2019) introduce ParamRLS, which is a simplified
version of ParamILS. The main difference is that ParamRLS uses a random local search
excluding restarts instead of an iterated local search. This modification allows the authors
to analyze theoretically the impact of the timeout on the expected number of required con-
figuration evaluations. They prove that at least a timeout of Ω(n log n) is necessary for
a problem of size n while tuning the target algorithm RLSk considering the configuration
time for the OneMax problem function class. Moreover, they show that at least a time-
out of Ω(n2) is needed for the Ridge∗ problem function class. In addition, they identify
k = 1 as optimal for the OneMax function class when optimizing the fitness values of the
configurations.

Specifically, ParamRLS initializes the configurator randomly and then increases or de-
creases a single parameter chosen uniformly at random by 1 or by 2, also uniformly at
random, in each time step. This step is repeated until no parameter change yields an im-
provement anymore. Two different variants are considered. First, ParamRLS-T, in which
the target metric is the optimization time, and second, ParamRLS-F, which identifies the
configuration that yields the best-found fitness value. The local search algorithm RLSk has
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only one parameter k, which gives the number of bits in the configuration that are flipped
in each iteration of the search.

ParamRLS with (1+1)EA After the successful theoretical analysis of the simple random
local search, Hall et al. (2020a) consider a more complex AC scenario by tuning the mutation
rate χ of the target algorithm (1 + 1)χEA with ParamRLS. (1 + 1)χEA works by flipping
each of the n bits of the current configuration independently with probability χ/n. Once
again, the authors analyze the required timeouts for the runtime metric and the best found
fitness value on the two benchmark problem classes Ridge and LeadingOnes. They further
prove that all configurators which are using the runtime as a performance metric require a
timeout at least as large as the expected time to identify the optimal configuration. Thus,
this problem scenario needs larger timeouts than in the case of the best fitness performance
metric.

Harmonic mutation operator Inspired by the insights from the above analyses of
ParamRLS, Hall et al. (2020b) design a harmonic mutation operator for the configurations
that provably leads to faster performance in the case of single parameter target algorithms.
In fact, the authors prove that it tunes single-parameter algorithms in polylogarithmic time
for (approximately) unimodal parameter spaces. Even in the worst case, the harmonic
mutation operator only slows down the algorithm by at most a logarithmic factor. In an
experimental analysis, the harmonic mutation operator is shown to be superior to the l-step
and random mutation operators used for ParamRLS and ParamILS.

To be more precise, the harmonic mutation operator selects a parameter uniformly
at random and samples a step size according to the harmonic distribution. In fact, the
probability for a step size d is 1/(d×HΦ−1) with Hm as the m-th harmonic number Hm =∑m

k=1
1
k and Φ as the range of possible parameter values. Then the best parameter value

at distance ±d is returned.

7. Realtime Methods

Realtime methods relax the assumption made by offline methods that a representative train-
ing set is available since, in reality, such training sets might not always be available or costly
to obtain. Due to possibly changing business models and requirements, they further allow
Pt, and therefore problem instances that are drawn from it, to change over time. This phe-
nomenon is equivalent to concept drift in machine learning (Gama et al., 2014). Ultimately,
this may lead to a growing disparity between θ̂ and θ∗, possibly resulting in diminishing
performance of the offline tuned configuration in production. Realtime algorithm config-
urators have been developed that can provide configurations on an ongoing, per-instance
basis. That is, the training set Itrain is not needed upfront, but problem instances are solved
sequentially as they arrive and are used for configuration adjustments on the fly. In terms
of their design, realtime configurators incorporate the same components discussed for offline
configurators.

For the sake of completeness, we formulate the realtime configuration problem, which
sometimes is also referred to as online tuning or parameter control, more formally. We are
interested in a configurator o : H×I → Θ that for a given time step t and the corresponding
problem instance it ∼ Pt provides a configuration θ based on the history ht. The history ht
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consists of triplets of the form {(ik,θk, ck)}t−1
k=1 containing the problem instances encountered

so far, the configurations used and the resulting cost. The goal is to minimize the (average)
cost, which for a final time horizon is given by: M = 1

T

∑T
t=1 c(it,θt). For a new problem

instance, the optimal configuration in light of the instances encountered so far is then defined
as

θ̂∗ ∈ arg min
θ∈Θ

E[c(it,θ)|ht] . (9)

Figure 4: In realtime AC instances arrive and are solved sequentially

ReACT and ReACTR The first work to tackle the realtime configuration problem is the
method realtime algorithm configuration through tournaments (ReACT) (Fitzgerald et al.,
2014). ReACT is a model-free configurator that leverages tournaments of configurations
run in parallel for each incoming instance. It maintains a population of configurations and
adjusts this in each iteration. It can handle continuous, discrete, and categorical variables.
The extension ReACTR (Fitzgerald et al., 2015) introduces a ranking mechanism based on
TrueSkill (Herbrich et al., 2006) to rank configurations. This allows for a population that
is larger than the number of CPU cores available, leading to more diversity.

While ReACT and ReACTR share tournaments, they differ in population size, config-
uration elimination and generation mechanisms. Similar to GGA (Ansótegui et al., 2009)
both ReACT and ReACTR use parallel tournaments to evaluate individuals and assume
that the configuration objective is runtime minimization. Thus, as soon as one of the target
algorithm runs finishes, the finisher is declared the winner and all other runs are termi-
nated. While ReACT only allows for a population size equal to the number of CPU cores,
ReACTR allows for a bigger population. To avoid having to run multiple tournaments
like GGA, ReACTR only runs the top-ranked configurations on the available cores, limit-
ing the exploration of different configurations. Based on the information obtained through
the tournament, weak configurations are removed from the pool. ReACT removes config-
urations based on domination, where it is ensured that a configuration was given enough
opportunity to prove its worthiness by requiring another configuration to beat it at least m
times. Individuals are then replenished by random sampling. ReACTR, in contrast, uses its
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TrueSkill ranking mechanism to determine which individuals to remove. In addition, it sup-
plements the random sampling of ReACT for making new configurations with a crossover
and mutation procedure between the top-ranked individuals. Thus, it can more effectively
intensify its search for good configurations around those that have worked well in the past,
similarly to I/F-Race or GGA.

CPPL The contextual preselection with Plackett-Luce (CPPL) algorithm introduced by
El Mesaoudi-Paul et al. (2020b) uses preselection bandits (Bengs & Hüllermeier, 2020) to
rank, choose and generate configurations while building on the racing and parallel execution
principles from ReACTR (Fitzgerald et al., 2015). It is a model-based, instance-specific con-
figurator that works under the assumption of a Plackett-Luce model (Plackett, 1975; Luce,
2012). Configurations are interpreted as slot machines (“bandits”) that have arms that can
be “pulled” by running a configuration to observe their quality. Unlike the classical multi-
armed bandit setting (Lattimore & Szepesvári, 2020), where one arm is pulled resulting in
a numerical observation (i.e., what is the quality of the pulled arm?), in the preselection
bandit setting it is allowed to pull more than one arm at a time leading to qualitative
feedback, such as winner feedback (i.e., which of the pulled arms had the highest quality?)
or (partial) ranking feedback. Thus, it is an extension of the dueling bandit setting (Bengs
et al., 2021) where only two arms are pulled (or dueled against each other). The contextual
preselection bandit extension (El Mesaoudi-Paul et al., 2020a) allows CPPL to take problem
instance features as additional information into account. That is, the features of a problem
instance provide CPPL with information on which arm (configuration) possibly performs
best and therefore should be “pulled”.

CPPL builds on ReACTR, but uses the bandit model for key operations. More precisely,
the bandit model selects a set of configurations that are to be raced against each other, re-
placing the TrueSkill ranking mechanism of ReACTR. Based on the obtained (censored)
winner feedback, the model is updated using stochastic gradient descent. While ReACTR
prunes configurations from the pool using TrueSkill, CPPL uses the upper confidence bounds
on the estimated performance of the configurations for pruning. New configurations are cre-
ated by choosing top-ranked configurations from the pool and combining them by means of
a genetic engineering procedure as in GGA++, just with a different surrogate and including
mutation after the crossover procedure.

8. Instance-specific Methods

Offline configurators like ParamILS, irace, GGA, or SMAC employ a one-size-fits-all paradigm,
and while this works well for homogeneous problem instance sets where a single configuration
yields good performance for all problem instances, it may fall short when the instance set
is heterogeneous. For such situations, instance-specific configurators have been developed
that can provide a configuration θ̂i for a specific problem instance i ∼ P.

Instance specific configurators require the same inputs as offline methods with the addi-
tion of a feature vector fi for each problem instance (see Figure 5). By altering Equation (2),
the problem of instance specific configuration can formally be expressed as:

θ̂∗ ∈ arg min
θ∈Θ

E[c(i,θ)] , (10)
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Figure 5: Illustration of Instance Specific Configuration

where E[c(i,θ)] is the expected cost of A on a specific problem instance i for which a
configuration should be found. Configurators achieve this goal by harnessing the instance
features and learning a relationship between the structure of the instances as described by
the features and the performance of various configurations. Thus, the features must provide
a good enough representation of the instances such that a model can be constructed, and
they need to be correlated with the performance of the target algorithm. This is a difficult
task that has itself been the focus of various work (Kroer & Malitsky, 2011; Tierney &
Malitsky, 2015).

There are two main ways of generating instance-specific configurations: (1) incorporate
the problem instance features into the existing prediction models of the configurator for con-
figurations or (2) deploy separate models that only consider the problem instance features
without the configuration characteristics. Both variants can be referred to as model-based,
but this section focuses primarily on methods that do not utilize a surrogate model. In
Section 5 and 7 model-based and realtime configurators that are instance-specific and use
configurations characteristics besides problem instance features in surrogate models are
discussed.

ISAC Instance-specific algorithm configuration (ISAC) (Kadioglu et al., 2010) and its
extensions pair an algorithm configurator with a clustering algorithm. The clustering al-
gorithm partitions the instance space, and the configurator (usually GGA/GGA++) is
applied to each of the clusters to generate a configuration specific to the cluster. In the
test phase, the learned configurations are assigned to the instances needing to be solved.
The assignment mechanism varies depending on the version of ISAC that is used, and is
described below in more detail.

ISAC uses the g-means (Hamerly & Elkan, 2004) clustering algorithm with a mini-
mum cluster size to generate clusters with the Euclidean distance as a metric. Note that
g-means does not require the number of clusters to be specified in advance as in other clus-
tering algorithms. Instead, it assumes that clusters ought to be normally distributed and
splits clusters that are not using k-means with k = 2. Once the clusters are determined,
GGA (Ansótegui et al., 2009) is used to find a representative configuration for each cluster
identified by g-means, although any configurator could be used. In addition, an extra, de-
fault configuration is determined for all instances as a fallback mechanism for instances in
the test phase that are not close to the previously determined clusters. In the testing phase,
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when a new problem instance arrives, ISAC computes its proximity to each cluster based
on the Euclidean distance and uses the configuration of the closest cluster or the default
configuration to solve the problem instance.

Malitsky et al. (2013a) introduce evolving instance-specific algorithm configuration (EI-
SAC), which is a retraining mechanism for the test phase that allows for reassignment of
configurations to clusters as problem instances arrive. EISAC performs a re-clustering uti-
lizing newly seen instances in addition to the previous training instances, where the update
is performed based on the Rand index (Rand, 1971) or when new configurations (solvers)
are added/removed. Clusters are updated through solving an optimization problem that
redistributes the configurations among clusters by minimizing the solving time of prob-
lem instances within a cluster. This means no new configurations are needed. However,
additional target algorithm runs would still be needed for each cluster/configuration com-
bination. To avoid this and to save further time, EISAC uses an empirical hardness model
to predict the runtime of a configuration on new problem instances. Using this model
makes the actual target algorithm runs only necessary when the problem instance would be
assigned to a different cluster based on the cost prediction.

Malitsky and Sellmann (2012) extend ISAC to AS. ISAC is used to select an algorithm
for a problem instance, and also configures the algorithm automatically, on a per cluster
basis. A model-based algorithm selector is added by Ansótegui et al. (2016) in a later
version, resulting in the ISAC++ method, which uses cost-sensitive hierarchical clustering
(CSHC) (Malitsky et al., 2013b) as a selector.

CluPaTra Another offline configurator that, similar to ISAC, derives configurations for
clusters of problem instances is CluPaTra (Lau & Lo, 2011; Lindawati et al., 2013a). It
is specifically designed for target algorithms that provide search trajectories. It utilizes
AGNES (Kaufman & Rousseeuw, 2009) for clustering and ParamILS as a configurator. In-
stead of using precomputed problem instance features like ISAC, CluPaTra uses the search
trajectories derived through runs of the target algorithm encoded as directed sequences.
The search trajectory tracks the history of solutions found by the target algorithm through
the search space, meaning CluPaTra pierces the black box assumed by most other configu-
rators. A sequence alignment method computes the similarity between trajectories for the
clustering. A major drawback of CluPaTra, and its extension, is that it is not fully clear
how to utilize it in production. Determining the cluster membership of a new instance is a
chicken-and-egg problem, as one must solve the instance to determine the search trajectory
that is used for clustering.

The SufTra and FloTra methods extend CluPaTra. The main focus for these approaches
lies in different ways of integrating the search trajectories into the clustering. SufTra (Lin-
dawati et al., 2013b) replaces the directed sequence encoding and sequence alignment with a
suffix tree encoding from which features are extracted through frequent substring alignment.
The similarity between trajectories is computed using frequent substrings and the cosine
similarity. In addition, easy problem instances that are similar to hard problem instances
are used as surrogates during configuration by finding configurations on easy instances and
using them on similar hard instances. This mechanism, however, again struggles from the
previously mentioned chicken-and-egg problem, since the runtime needs to be known be-
fore being able to partition instances into easy and hard ones. In FloTra (Lindawati et al.,
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2013c), the use of the search trajectories is altered by creating graphs out of the trajectories,
to which pattern mining is applied to derive features that are used for clustering.

Hydra Xu et al. (2010) and Xu et al. (2011) introduce Hydra, which essentially adapts
the boosting paradigm (Schapire, 2003) to algorithm configuration. Hydra iteratively con-
figures a solver and adds the configuration to a portfolio that improves upon the weakness
of the current portfolio. Hydra utilizes ParamILS (Hutter et al., 2009b) to propose configu-
rations to SATzilla (Xu et al., 2008) which in turn constructs the portfolio. In general, any
configurator and any AS technique can be used. The cost function of ParamILS scores con-
figurations by their real value if they perform better than the current portfolio, and by the
costs of the portfolio if not. This adjustment effectively penalizes configurations that yield
a bad objective value on problem instances the portfolio also performs badly, while not pe-
nalizing bad objective values on problem instances on which the portfolio already performs
well on. Hydra excels at specifically targeting areas of the feature space in need of custom
configurations. However, this comes at a high computational cost as the configurations
must be computed sequentially, unlike in ISAC, where they can be parallelized.

MATE Genetic programming forms the basis for the model-based algorithm tuning en-
gine (MATE) (Yafrani et al., 2020). The approach takes problem instance features into ac-
count and provides human-understandable relations between features and target algorithm
parameters. In particular, MATE uses symbolic regression (Augusto & Barbosa, 2000) and
tree-based genetic programming. Configurations are encoded as trees, which are compared
to each other using a score function that is used to aggregate results over algorithm runs.
New trees are generated using genetic operators and replace old trees based on a Wilcoxon
test using the measured score and tree complexity. According to the authors, this method
should be understood as proof of concept and has not yet been used to configure target
algorithms with more than one parameter.

PCIT Similar to ISAC, parallel configuration with instance transfer (PCIT) (Liu et al.,
2019) partitions problem instances into clusters and finds a configuration for each cluster.
While ISAC produces clusters once, and only afterwards finds a configuration for each
cluster, PCIT adjusts clusters and assigns configurations sequentially. This allows PCIT
to adjust its clusters according to the configurations for each cluster. This comes at the
expense of additional configuration costs.

PCIT employs an instance transfer mechanism to shift around instances between groups
as new runtime data becomes available. In particular, this mechanism is used in case it
becomes clear that a configurator can not find a configuration that is suitable for all instances
within a cluster. The transfer mechanism of PCIT has to (i) identify the instances to
transfer and (ii) choose a cluster to transfer the instances to. Instances are selected to be
transferred when their runtime using the configuration in the respective cluster is higher
than the median runtime of all instances over all clusters. If the instance is to be transferred,
a surrgoate is used to predict the runtime of the instance for the configurations of the other
clusters. An instance is assigned to the cluster with the lowest predicted runtime. After the
transfer, a configurator is run for every cluster. This loop continues until the computational
budget is exhausted. The algorithm configurator SMAC is used to find configurations for
each cluster, however any offline configurator can be used.
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Figure 6: Multi-objective AC

9. Multi-objective Methods

We now extend our survey to AC methods that can tune multiple objectives at the same
time, such as runtime and quality, or runtime and memory usage (Thanh & Causmaecker,
2014). That is, instead of a single objective, m(c, Itrain ,θ), multiple objectives M :=
(m1, ...,mn) may be present and competing with each other. The goal of the configurator
is then to find a set of configurations Θ̂ ⊆ Θ such that no θ ∈ Θ̂ is dominated by another θ′

with respect to some dominance relation ≺ over the objective functions (Blot et al., 2016).
If given preferences from the decision maker, the multiple objectives can be weighted and
a single “best” configuration θ̂ ⊆ Θ̂ can be provided to the decision maker. Note that
this AC setting should not be confused with the task of automatically configuring multi-
objective target algorithms. The key difference is that the former is concerned with the
objective function of the configurator while the latter is interested in the objective function
of the target algorithm (Bezerra et al., 2020). Consider that, for example, essentially any
single-objective metaheuristic could be configured in a multi-objective way, as quality and
runtime present a tradeoff in most of these approaches. The adjustments necessary for
single objective configurators to handle multiple configurations are not trivial.

Nevertheless, the multi-objective AC scenario is clearly linked to multi-objective opti-
mization (Coello Coello, 2006). Multi-objective target algorithms can either be configured
by means of multi-objective configurators or by choosing a single objective target metric
to be optimized by the configurator, such as the hypervolume or epsilon measure (Bezerra
et al., 2012; Lopez-Ibanez & Stutzle, 2012; Blot et al., 2017). In the first case, it is not
fully clear how the objective values obtained by running the target algorithm translate into
configurator objectives. That is, multi-objective target algorithms usually return a set of
solutions that produce different values for the different objectives, which in turn would have
to be considered by the configurator.

MO-ParamILS MO-ParamILS (Blot et al., 2016) is an offline configurator that consid-
ers multiple objectives and returns a set of non-dominated configurations for the target
algorithm. It is based on the ParamILS framework and, like its predecessor, provides two
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evaluation techniques while also utilizing the one exchange neighborhood search. In addi-
tion, it can run in parallel and can handle large discrete search spaces.

To handle multiple objectives, MO-ParamILS introduces an archive of configurations
and utilizes Pareto dominance to compare configurations. More precisely, it replaces the
single configuration that is used during the local search and as incumbent through an
archive of non-dominated configurations. In addition, the evaluation mechanism to compare
configurations is adjusted to operate on Pareto dominance. In particular, the notion of
dominance is used to compare two configurations during local search and also to discard
configurations from the archive as new configurations are added.

Multi-objective racing Racing procedures can be adjusted to take multiple objectives
into account. S-Race (Zhang et al., 2013, 2015a) and SPRINT-Race (Zhang et al., 2015b)
are multi-objective configurators similar to F-Race (Birattari et al., 2002; Birattari, 2009),
which utilize races and statistical testing to find a set of Pareto optimal configurations for
discrete parameter spaces.

S-Race and SPRINT-Race differ from F-Race in terms of the test they apply to discard
configurations. Both start with a full factorial design, from which they iteratively eliminate
configurations based on the race results. S-Race uses a sign test (Wackerly et al., 2014) to
perform a pairwise comparison and eliminate configurations, and Holm’s step-down proce-
dure (Holm, 1979) is applied to account for errors. Utilizing the sign test can lead S-Race to
unnecessarily often race and compare two configurations between which no dominance rela-
tion exists. To save evaluation time, SPRINT-Race (Zhang et al., 2015b) replaces the sign
test with a sequential probability ratio test with indifference zones (Wald, 1947), enabling
it to stop running new races when already enough evidence is gathered that a dominance
relation is unlikely. Like F-Race, both methods face the drawback of only being able to
handle small, discrete configuration spaces. In addition, studies on the competitiveness of
the described approaches are limited in scope.

10. Dynamic Methods

Dynamic algorithm configuration (Biedenkapp et al., 2020) (DAC) adjusts the configuration
at runtime instead of committing to a single configuration for solving an entire problem
instance. Thus, rather than recommending a single configuration, DAC approaches generate
a policy to adapt the configuration dynamically. Note that even realtime AC commits to a
single configuration when running a given instance, while DAC has the freedom to adjust
the configuration according to target algorithm behavior during execution. Similar to offline
AC, DAC can either focus on finding a policy for a set of problem instances or a policy that
is tailored towards a single problem instance (i.e., per-instance algorithm configuration).

Two requirements must be met to implement DAC: (1) the algorithm in question needs
to support dynamic changes in its configuration and (2) runtime information must be pro-
vided to describe the current state of the target algorithm.

DAC approaches consider two different types of features: instance features I, which do
not change during target algorithm execution, and features encoding the internal state Q
of the algorithm. Examples of state features include the current iteration of a local search
algorithm, the current restart number of a SAT method, or the current solution quality for
optimization techniques.
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Figure 7: Illustration of dynamic AC as presented in (Biedenkapp et al., 2020)

Biedenkapp et al. (2020) provide the first formal definition of the DAC setting, however,
there is a significant amount of earlier work for learning dynamic configuration policies
(Lagoudakis & Littman, 2000, 2001; Pettinger & Everson, 2002). Such earlier works use
the labels parameter control (Karafotias et al., 2015), online algorithm selection (Vermetten
et al., 2019), adaptive selection/configuration (Fialho et al., 2010; van Rijn et al., 2018), Self-
Adaptive Monte Carlo Tree Search (Sironi et al., 2018) or hyper-reactive search (Ansótegui
et al., 2017, 2018a). For a comprehensive overview of parameter control with respect to
parameters of evolutionary algorithms, we refer the interested reader to Karafotias et al.
(2015).

van Rijn et al. (2018) and Vermetten et al. (2019) identify potential performance gains
through DAC versus static configurations. Based on this insight and data, it is demonstrated
in Ye et al. (2021) that performance gains can already be achieved when the algorithm
configuration is adapted only once. Furthermore, the hyper-reactive approach of Ansótegui
et al. (2017) won several categories at the MaxSAT Evaluation 2016 (Argelich et al., 2016).
Thus, DAC offers significant potential for improving algorithms, however, it does require
algorithm designers to more deeply integrate their techniques with AC methods than was
performed in the past. In the following, we discuss the most frequently used approach to
DAC, reinforcement learning (RL). While it is the most popular choice, there also exist
other approaches such as policy portfolios, autoconstructive evolution, and multi-armed
bandits.

Reinforcement learning A challenge in DAC is to evaluate the quality of individual
parameter adjustments since feedback is obtained only at the end of processing a problem
instance. Due to this, it is natural to consider DAC within the realm of reinforcement
learning (we refer to this as DAC-RL). To this end, the DAC problem is modeled in terms of
a Markov decision process (MDP) (Puterman, 1994) based on which a policy π : I×Q → Θ
is learned from data (Biedenkapp et al., 2020). As a reward signal, typically, the eventually
obtained performance value is propagated back to the agent. Using RL allows a wide variety
of researched mechanisms to be directly applied to DAC.

The roots of DAC extend to a variety of methods that use RL to control parameters of
optimization approaches online. For example, in genetic algorithms (Sakurai et al., 2010;
Karafotias et al., 2014), planning algorithms (Pageau et al., 2019; Speck et al., 2021; Bhatia
et al., 2021), hyper-heuristics (Özcan et al., 2010), physics simulations (Armstrong et al.,
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2006), and evolutionary strategies (Shala et al., 2020). The work of Sakurai et al. (2010),
Karafotias et al. (2014) and Özcan et al. (2010) in particular can be widely applied to
optimization problems, whereas other works are more application focused.

Hyper-configurable reactive search Under the label hyper-configurable reactive search
(HCRS), Ansótegui et al. (2017), Ansótegui et al. (2018a) and Sellmann and Tierney (2020)
propose an approach to DAC by using standard, offline AC techniques to train a dynamic
policy. More specifically, instead of tuning the parameters of an algorithm directly, each
parameter is determined by a logistic regression that accepts runtime features from the
target algorithm. The parameters of the logistic regressions are exposed to the offline AC
technique, GGA++. The target algorithm can thus cheaply query the values it needs, when
it needs them, according to the current search state. In Ansótegui et al. (2017), the problem
instances are further grouped via the CSHC algorithm (Malitsky et al., 2013b) and for each
of the resulting clusters, such a policy encoded via logistic regression models is configured
according to the ISAC method (Kadioglu et al., 2010).

Autoconstructive evolution In autoconstructive evolution, the aim is to not only evolve
a solution to an optimization problem, but also to evolve the genetic operators that are
used for recombination, selection, and diversification (Spector & Robinson, 2002; Harring-
ton et al., 2012; Spector & Moscovici, 2017). To this end, each individual represents a
tuple of a solution encoding and the encoding of the programs for the genetic operators,
respectively. Typically, genetic programming is applied to this problem setting since it can
represent programs naturally in terms of abstract syntax trees. In contrast to other algo-
rithm configuration approaches, considering only Boolean, numeric, or nominal parameters
of algorithms, the configuration of such genetic operators is even more challenging. Addi-
tionally, autoconstructive evolution goes beyond what is usually done in DAC. It adapts the
genetic operators for each individual of the population so that the mating behavior changes
over time and is thus specific for each individual. Another difference is that for adapting
the genetic operators of the evolutionary algorithms, there is no need to engineer and moni-
tor any features representing the algorithm’s state. Although Spector and Moscovici (2017)
obtain promising initial results, the combined evolution of solutions and their genetic opera-
tors is comparatively challenging, and it remains an open question whether autoconstructive
evolution is indeed superior to non-autoconstructive evolution.

Multi-armed bandits DAC can be cast as a multi-armed bandit problem, where each
configuration represents an arm with an associated reward distribution. The agent is then
tasked to maximize the cumulative reward, i.e., “pull the arm“ that maximizes the reward.
Put differently, the agent aims to select a configuration that works well for the current time
step. This setting of the bandit problem is particularly challenging because the reward
distributions associated with the respective arms change over time. In Fialho et al. (2010),
various multi-armed bandit approaches are compared with an approach that only considers
rewards obtained within a certain time frame (i.e., a sliding window) to allow for smoother
transitions between configurations. Note that in this work, the authors assume rewards to
be retrievable during an algorithm run. While this assumption holds for many optimization
approaches, it does not necessarily hold for all of them (e.g., the pre-processing/root node
phase of solving mixed-integer programs), and also often does not hold for simulations.

463



Schede, Brandt, Tornede, Wever, Bengs, Hüllermeier & Tierney

11. Research Directions

Many fruitful avenues of research remain in the area of AC. We formulate research directions
with three themes in mind. First, we consider what is required for AC techniques to be
more widely adopted in industry. Second, we investigate algorithm configuration settings
that have not yet been considered. Third, we consider what methodological advances could
move the field forward.

11.1 Industry Adoption

Compared to AC, HPO has begun to be adopted in both industry and academia (Van der
Blom et al., 2021). Furthermore, HPO is the focus of a number of start-ups, such as
SigOpt (which was acquired by Intel (Intel Corporation, 2019)), MindsDB, pecan.ai, and
dotData, among many more. AC, however, has received comparatively little fanfare or
adoption. While some well-known AC tools have public releases, such as SMAC (Lindauer
et al., 2021), irace (López-Ibánez et al., 2016), and GGA (Ansótegui et al., 2009), we are
unaware of widespread use of these in industry. The company Optano GmbH released a
version of the GGA configurator (OPTANO GmbH, 2021)10, making it perhaps the first
commercially developed, general-purpose AC software. The mixed-integer programming
solvers Gurobi and CPLEX both contain tools to adjust their parameters. However, to
the best of our knowledge, these tools are both outperformed by publicly available research
tools. Furthermore, we do not know how either of these tools work.

We speculate that there are several reasons these tools are not frequently used in in-
dustry. First, the target algorithm must be carefully designed with its parameters ex-
posed through a command-line interface as proposed by the programming by optimization
paradigm (Hoos, 2012). Second, in some cases, users may not think they have sufficient
data available to properly configure their approach. This is related to the cold-start problem
in ML, in that users of AC systems may not have gathered enough instances to properly
train their parameterized algorithm to solve their problem effectively. While some work has
been performed in this direction in terms of automatically generating instances Malitsky
et al. (2016); Smith-Miles and Bowly (2015); Akgün et al. (2019); Tang et al. (2021); Liu
et al. (2022), there are still many real-world problems that cannot be modeled with these
techniques.

Third, the runtimes of some target algorithms are too high for AC. In these cases,
transfer learning from a dataset of similar, but easier, problem instances may be a way
forward. Alternatively, the AC algorithms could try to guess the quality of the target
algorithm before it is finished, or at least guess a ranking over the different configurations.

A fourth reason for a lack of adoption in industry is likely the inability of current al-
gorithm configuration tools to integrate into existing systems. Target algorithms may not
be easily accessible over the command line or accept data in a simple “problem instance”
format as required by existing configurators. For example, if an algorithm is tightly inte-
grated with a database or SAP system, AC may require significant extra work. The solution
here is likely not a new research concept or method, but rather raising awareness that de-

10. The configurator from Optano GmbH is the result of a joint research project between Optano GmbH
and Kevin Tierney, but we note that it is freely available and there is no commercial interest on the part
of Kevin Tierney.
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coupling solvers from production environments will enable configuration of the algorithm’s
parameters.

A final, fifth reason is the expert knowledge required to set up an AC environment. AC is
not a topic that is widely taught in data science or computer science curriculums, although
at least HPO is beginning to be adopted. Nonetheless, a deep familiarity with the various
components of AC is necessary to successfully implement AC in practice. Furthermore, we
are not aware of many consultants offering AC services to fill this knowledge gap.

11.2 Novel AC Settings

We identify several AC settings according to our problem view that have not yet been re-
alized in the literature. In particular, settings considering multiple objectives, especially in
terms of the target algorithm, during run target algorithm observations, dynamic configu-
ration adjustment, and parameter transfer learning have not been significantly considered
in the literature. It is easy to imagine real-world applications for all the situations listed,
thus there remain ample research opportunities available in AC.

Multiple objectives In Section 9, we identify several approaches for multi-objective AC,
but note that these are rather limited in how they incorporate multiple objectives into their
configuration. Especially in regard to runtime objectives, multi-objective AC methods are
still lacking adaptive mechanisms for capping runs or generating configurations that target
specific areas of the Pareto front. While we expect multi-objective target algorithms to
integrate into these multi-objective AC techniques, extra heuristics or care could be taken
to consider the Pareto front of the target algorithm in addition to (or instead of) a Pareto
front over configurations. Furthermore, multiple objectives have only been included in
offline configuration.

Since realtime AC is tasked with returning solutions directly to users, providing multiple
solutions in a multi-objective context could be valuable. Realtime configurators only get one
shot at solving a problem instance (or, in this case, generating multiple solutions). Thus,
the research focus would be on generating an interesting set of solutions for the user. This
set ought to adequately represent the Pareto front while providing the solutions quickly if
runtime is one of the considered objectives.

Incorporating runtime information & DAC While adjusting algorithm configura-
tions dynamically is not a new concept, learning policies with AC techniques is, and as
pointed out in Section 10, has shown considerable promise. These techniques use infor-
mation from the target algorithm about its current state to help create an effective policy
for setting parameters. Many algorithms offer indications as to how good (or bad) their
solution procedure is progressing, especially when compared to the output of other con-
figurations solving the same instance. However, little work has been done on using this
information in the AC approach itself, e.g., to stop unpromising configurations early or to
assist in comparing configurations with censored runtime data. This line of work has the
potential to reduce the overall computation time of AC.

Meta-AC AC methods themselves contain many parameters that require tuning, but, in
a twist of irony, the computational cost of configuring a configurator makes this a daunt-
ing task. The AS problem has been similarly investigated on a meta-level by Tornede
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et al. (2020a, 2021b) for learning ensembles of algorithm selectors. Moreover, this sort of
“meta configuration” has been performed by Ansótegui et al. (2018b) to configure algo-
rithm selection portfolios with GGA and Lindauer et al. (2017). Given that considering the
“hyper”-hyperparameters in HPO has seen also some success (Feurer & Hutter, 2018), we
see potential for the general AC setting as well.

Transfer learning Consider a target algorithm for which a new version is released with
several new parameters, and perhaps some existing parameters have different domains or
are removed. From a practical standpoint, there are ways of handling this in modern AC
software, such as inserting the previously tuned parameters along with some default values
for the rest as a starting point of the search. Of course, this involves starting a brand-new
configuration process that “forgets” everything that was previously learned about how the
previous parameters behaved on a set of instances. Maintaining this state and transferring
knowledge to the new or modified parameters could result in better configurations and less
computation time used on AC. A first step towards this was recently proposed by Franzin
and Stützle (2020).

Generalization Configurations found by offline configurators (see Section 4 and 5) might
not always perform as well in production as one might expect based on the achieved training
performance. That is, the configurations found may not generalize well to new instances or
performance may degrade over time due to concept drift. To address this, the community
has shifted focus towards methods that allow for an active control of the configuration during
production based on the new instance, e.g., in the realtime and dynamic configuration
settings. Nonetheless, more attention is needed to ensuring that configurations remain
effective in production settings.

11.3 Novel Benchmarks

To accelerate future research and to provide reproducible results, benchmarks for new prob-
lem settings are needed. AClib (Hutter et al., 2014a), the currently most widely used bench-
mark library in the context of AC, covers the offline configuration case and provides a set of
different problems (SAT, MIP, ASP, etc.) of varying complexity (number of variables and
problem instances) for tasks of runtime or quality configuration. For DAC, the DACBench
has been proposed (Eimer et al., 2021), although this does not support DAC settings en-
visioned, e.g., by hyper-reactive search. As an alternative to such libraries, AC methods
can also be benchmarked by using surrogate models that are trained on test instances in
advance, resulting in cheaper evaluations when testing (Eggensperger et al., 2018). The ex-
isting benchmarks fail to cover other configurations settings like the realtime configuration
setting or the configuration of multi-objective target algorithms.

11.4 Novel AC Methodologies

AC methods have become extremely sophisticated and cover a wide range of methodologies
including evolutionary algorithms, statistical tests, and learned surrogate models. There
nonetheless remain opportunities to improve current methods and create better AC algo-
rithms. We note that our goal in this section is not necessarily to specify the methodologies
of the future, but rather to identify the key challenges that remain in the hopes that engaged
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readers will fill these gaps with their ideas. To this end, we discuss several challenges faced
by AC approaches: comparing/ranking configurations, generating new configurations, and
selecting instances.

Comparing/ranking configurations This challenge can be summarized as follows:
given two or more configurations, determine which one(s) is(are) the best performing with-
out needing to run the configurations on the entire training set of instances. In offline
configuration, the ranking can be used to generate new configurations (part of the next
challenge), whereas in realtime configuration the rankings can be critical to deciding which
configurations are allowed to try to solve the current instance. Methods for ranking and
comparing include using empirical hardness models Leyton-Brown et al. (2009) or more
general surrogates as in GGA++ (Ansótegui et al., 2015) or SMAC (Hutter et al., 2011),
statistics (López-Ibánez et al., 2016), the TrueSkill mechanism (Fitzgerald et al., 2015),
bandits (El Mesaoudi-Paul et al., 2020b). Nonetheless, there is undoubtedly still room for
improvement, using perhaps new preference learning techniques (as have been used for AS
in Hanselle et al. (2020)) or deep learning models.

Generating new configurations Every AC algorithm must have a mechanism for gen-
erating new configurations. The question, of course, is how to generate configurations that
are high quality with respect to the configuration objective. This research question is closely
related to comparing and ranking configurations, as mechanisms like the one in GGA++
compare configurations that are generated according to some rules. Creating new configu-
rations, especially in an instance-specific capacity, offers a clear path to higher quality AC
mechanisms that can be used across a wide range of AC problem settings.

Instance selection This review begins by identifying instance handling mechanisms as
one of the key differences between HPO and general AC. The strategies used in the literature
are fairly basic. Most algorithms either select random subsets of the instances or expand a
subset. It might be worthwhile to adapt methods related to the concept of dataset distilla-
tion (Wang et al., 2018) to generate small instance sets that are nonetheless representative
of the complete instance set to speed up configuration. Instance-specific approaches usually
find some way to partition the instances before tuning multiple configurations. However,
much remains unknown about how certain orders of considering instances could change or
improve the configurations found. It is possible that the order in which instances are ex-
amined does not matter, but given that this is a core competency of general AC methods,
the potential for performance improvements is present.

Surrogate model features Learning suitable features for surrogate models automat-
ically is closely related to instance selection. Even though there are good features for
particular problem classes such as SAT or MILP problems Hutter et al. (2014b), other not
so well studied problems lack well-defined features and require domain experts to manually
derive them for a specific use case. Previous works (Kroer & Malitsky, 2011; Tierney &
Malitsky, 2015) have begun to address this problem in the realm of AS. Adopting this for
AC, however, remains an open challenge.

Bounded rationality and rational metareasoning Hüllermeier et al. (2021) elabo-
rate on automated machine learning (as well as related problems of automated algorithm
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design, such as hyperparameter optimization and algorithm selection) from the perspective
of bounded rationality. The authors propose to view methods for automated algorithm
design as intelligent agents, which need to take decisions under bounded resources (e.g.,
configuration time in the case of AC) and thus apply reasoning on a meta-level to decide
how to optimally allocate the available resources. The motivation for adopting this perspec-
tive is twofold: first, to shed light on existing AutoML methods, and second, to inspire new
approaches based on established (decision-theoretic) principles of rational metareasoning
and bounded optimality (Russell & Wefald, 1991; Russell, 1997; Zilberstein, 2011; Russell,
2016).

11.5 Theoretical Results

Although the field of AC has seen significant progress recently in terms of answering theo-
retical questions, there are still a number of critical challenges that remain. In the following,
we address some of these challenges.

Generalization guarantees The recent work by Pushak and Hoos (2018) shows em-
pirically that the configuration landscape, i.e., the class of cost functions, exhibits an ap-
proximately uni-modal or convex structure for a couple of NP-hard problem classes and
sophisticated target algorithms. In light of this, it seems reasonable to extend the current
results regarding generalization guarantees to the scenario, where the functions in the class
of cost functions are (approximately) uni-modal or convex. Such an assumption will likely
lead to better theoretical generalization guarantees as the current ones reviewed in Sec-
tion 6.1, as uni-modalities and/or convexity of target functions are known to accelerate the
learning process in general.

Theoretical analysis of state-of-the-art configurators Although the work of Hall
et al. (2019) provides valuable insights into the theoretical properties of ParamILS, it still
does not cover all its theoretical properties. Even less is known about the theoretical
properties of other state-of-the-art algorithm configurators, such as SMAC, irace, or GGA,
besides that SMAC will find the optimal configuration if the configuration space is finite
and sufficient time for running SMAC is available (see Theorem 4 in Hutter et al. (2010a)).
A deeper theoretical analysis of these algorithms is likely to be helpful to understand the
reasons for the practically appealing behavior of these configurators. Furthermore, this
analysis could reveal on which classes of problems the configurators are likely to perform
effectively, and on which they are not.

Instance specific theoretical analyses So far, the existing theoretical approaches do
not take additional side information in the form of feature vectors of the problem instances
into account, i.e., they all employ a one-fits-all paradigm. However, as several of the reviewed
works in Section 8 have shown, there might be a benefit regarding the performance of an
algorithm configurator in practical applications if these features are incorporated. In light
of this, it would be interesting to investigate theoretically the potential improvement of an
instance-specific (i.e., feature-based) configurator over a one-fits-all paradigm (i.e., feature-
free) configurator for specific problem scenarios.
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12. Conclusion

Parameters are ubiquitous in modern optimization approaches and beyond, with all of the
significant solvers for, e.g., MILP, SAT, or TSP problems containing parameters that influ-
ence their performance and need to be set by the user. AC frees the user from this tedious
and error-prone task by automating the search for high-quality configurations. This survey
presented an overview of the current state of AC research by outlining relevant methods,
their design features, and problem settings. In particular, we provided two taxonomies
for organizing AC approaches, reviewed and contrasted different approaches in the light of
the problem setting they were designed for, and highlight underlying principles and ideas.
Overall, we find that the AC literature is in a mature state, including powerful empiri-
cal approaches available to handle a variety of large-scale, real-world challenges, as well
as theoretical approaches providing quality guarantees and an understanding of the AC
domain.

We identify that the methodological trend is towards incorporating learned models into
AC methods and that this has improved performance in every AC setting where it has been
attempted. Nonetheless, the AC literature shows a surprising amount of hybridization of
local search, evolutionary and model-based methods. We hypothesize that there is still sig-
nificant progress that can be made in the area of AC, despite the sophistication of current
methods, and are encouraged by the significant increase in attention the field has received,
in particular through the spread of HPO techniques. Finally, we especially encourage re-
searchers to address the real-world usability of AC techniques to ensure that the promising
performance gains the AC community is seeing can benefit the world at large.
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13. Appendix

To help the reader navigate though the jungle of AC, we provide additional resources.
Table 6 contains a list of abbreviations with terms related to AC used within this work. In
addtion, we provide a list of software resources (Table 7) that contains currently available
tools for AC. We only include software that is widely used.
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General

AC Algorithm configuration
AS Algorithm selection
BN Bayesian networks
BO Bayesian optimization
CASH Combined algorithm selection and hyperparameter optimization
DAC Model-based algorithm tuning engine
DOE Design of experiments methodology
EA Evolutionary algorithm
EI Expected improvement
GP Gaussian processe
HPO Hyperparameter optimization
HCRS Hyper-configurable reactive search
ILS Iterated local search
MILP Mixed-integer programming
RVNS Reduced variable neighborhood search
SAT Boolean satisfiability problems
SMBO Sequential model-based optimization
UCB Upper confidence bound

Method related

BNT Bayesian network tuning
CAR CapsAndRuns
CPPL Contextual preselection with Plackett-Luce
D-SMAC Distributed SMAC
EISAC Evolving instance-specific algorithm configuration
GGA Gender-based genetic algorithm
GPS Golden Parameter Search
HORA Heuristic oriented racing algorithm
ICAR ImpatientCapsAndRuns
I/F-Race Iterated F-Race
ISAC Instance-specific algorithm configuration
MATE Model-based algorithm tuning engine
MBGM Model-based graphical methods
ReACT Realtime algorithm configuration through tournaments
REVAC Parameter relevance estimation and value calibration
ROAR Random online aggressive racing
SKO sequential kriging meta-modelling
SMAC+PS Sequential model-based optimization for algorithm configuration
SMAC SMAC and probabilistic sampling
SPO Sequential parameter optimization
SP Structured procrastination
TB-SPO Time-bounded SPO

Table 6: Glossary of acronyms used in this work
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General AC systems

D-SMAC https://github.com/tqichun/distributed-SMAC3
GPS https://github.com/YashaPushak/GPS
irace https://github.com/MLopez-Ibanez/irace
OAT (GGA) https://docs.optano.com/algorithm.tuner/current/
ParamILS https://www.cs.ubc.ca/labs/algorithms/Projects/ParamILS/
PyDGGA http://ulog.udl.cat/software/
REVAC https://github.com/ChrisTimperley/RubyREVAC
SMAC 3 https://github.com/automl/SMAC3

Benchmarks

AClib https://bitbucket.org/mlindauer/aclib2/src/master/
DAC https://github.com/automl/DAC

Table 7: List of available software in the realm of AC.
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Pool-based realtime algorithm configuration: A preselection bandit approach. In Inter-
national Conference on Learning and Intelligent Optimization, pages 216–232. Springer,
2020b.

475



Schede, Brandt, Tornede, Wever, Bengs, Hüllermeier & Tierney
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Gellért Weisz, András György, & Csaba Szepesvári. CapsAndRuns: An improved method
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