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Abstract

The computation of global invariant manifolds has seen renewed interest in recent

years. We survey different approaches for computing a global stable or unstable mani-

fold of a vector field, where we concentrate on the case of a two-dimensional manifold.

All methods are illustrated with the same example — the two-dimensional stable man-

ifold of the origin in the Lorenz system.
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1 Introduction

Many applications give rise to mathematical models in the form of a system of ordinary
differential equations. Well-known examples are periodically forced oscillators and the
Lorenz system (introduced in Sec. 1.1); see, for example, [Guckenheimer & Holmes, 1986,
Kuznetsov, 1998, Strogatz, 1994] for further references. Such a dynamical system can be
written in the general form

dx

dt
= f(x), (1)

where x ∈ R
n and the map f : R

n 7→ R
n is sufficiently smooth. We remark that, in general,

the function f will depend on parameters. However, we assume that all parameters are fixed
and use (1) as the appropriate setting for the discussion of global manifolds.

The goal is to understand the overall dynamics of system (1). To this end, one needs to
find special invariant sets, namely the equilibria, periodic orbits, and possibly invariant tori.
Furthermore, if these invariant sets are of saddle type then they come with global stable and
unstable manifolds. For example, the stable and unstable manifolds W s(x0) and W u(x0) of
a saddle equilibrium x0 are defined as

W s(x0) := {x ∈ R
n | lim

t→∞
φt(x) = x0}

W u(x0) := {x ∈ R
n | lim

t→∞
φ−t(x) = x0},

respectively, where φt is the flow of (1). Hence, trajectories on the stable (unstable) manifold
converge to x0 in forward (backward) time. Knowing these manifolds is crucial as they
organize the dynamics on a global scale. For example, stable manifolds may form boundaries
of basins of attraction, and it is well known that intersections of stable and unstable manifolds
lead to complicated dynamics and chaos.

Generally, global stable and unstable manifolds cannot be found analytically. Further-
more, they are not implicitly defined, meaning that it is not possible to find them as the
zero-set of some function of the phase space variables. Hence, points on global invariant
manifolds cannot be found ‘locally’. Instead, these manifolds must be ‘grown’ from local
knowledge, for example from linear information near a fixed point x0.

It is the purpose of this paper to review different numerical techniques that have recently
become available to compute these global objects. We review five algorithms in detail and
characterize their properties using a common test-case example, namely, the Lorenz manifold
which is introduced now.

1.1 The Lorenz manifold

The Lorenz system [Lorenz, 1963] is a classic example of a vector field with a chaotic attrac-
tor. It is given as





ẋ = σ(y − x),
ẏ = ̺x − y − xz,
ż = xy − βz,

(2)

2



Figure 1: The unstable manifold W u(0) (red curve) accumulates on the butterfly-shaped
Lorenz attractor. The blue disk is the linear approximation Es(0) of the Lorenz manifold
W s(0). Also shown are the two equilibria at the centres of the ‘wings’ of the butterfly and
their one-dimensional stable manifolds (blue curves).

where we fix the parameters at the standard choice σ = 10, ̺ = 28 and β = 8/3, for which
one finds the famous butterfly-shaped Lorenz attractor. Note that the Lorenz system (2)
has the symmetry (x, y, z) 7→ (−x,−y, z) of rotation by π around the z-axis. In particular,
the z-axis is invariant under the flow.

The origin is a saddle point of (2) with real eigenvalues −β and −σ+1
2
±1

2

√
(σ + 1)2 + 4σ(ρ − 1),

that is, approximately −22.828, −2.667 and 11.828. The origin is contained in the Lorenz
attractor, so that its one-dimensional unstable manifolds W u(0) can be used to approxi-
mate the Lorenz attractor; this is illustrated in Fig. 1 where W u(0) is shown in red. At
the centers of the ‘wings’ of the butterfly are two more equilibria of (2), approximately at
(±8.485,±8.485, 27), which are each other’s image under the symmetry of (2). Each of these
equilibria has one negative real eigenvalue, giving rise to a one-dimensional stable manifold,
and an unstable pair of complex conjugate eigenvalues with positive real part. Figure 1
shows all equilibria of (2) in green, together with their one-dimensional global manifolds. As
mentioned, the red curve is the unstable manifold W u(0) of the origin, whose closure is the
Lorenz attractor. The blue curves are the stable manifolds of the two other equilibria. The
blue disk lies in the linear eigenspace Es(0) of the origin.

The Lorenz attractor, that is, the red curve in Fig. 1 conveys the chaotic nature of the
system, but does not give any information on the overall organization of the phase space of
(2). This role is played by the two-dimensional stable manifold W s(0) of the origin — which
we refer to as the Lorenz manifold from now on. The Lorenz manifold W s(0) is tangent at 0
to the eigenspace Es(0) spanned by the eigenvectors associated with the eigenvalues −22.828
and −2.667. This is a generic property of stable and unstable manifolds; see Sec. 1.2. Note
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the large difference in magnitude between the two stable eigenvalues, leading to a dominance
of the strong stable manifold, which is tangent to the eigenspace of the the eigenvalue
−22.828.

The Lorenz manifold has a number of astonishing properties. Imagine that the little blue
disk in Fig. 1 ‘grows’ to become the Lorenz manifold W s(0), but without ever intersecting
the red unstable manifold W u(0). In other words, the Lorenz manifold stays ‘in between’
trajectories on the Lorenz attractor, but ‘spirals’ simultaneously into both wings of the
butterfly. Now imagine how trajectories on this manifold must be able to pass from one
wing to the other. Any finitely grown part of W s(0) is topologically still a two-dimensional
disk, but one with a particularily intriguing embedding into R

3. The geometry of W s(0) can
only truly be appreciated if one can draw an image of it.

Some early work on the geometry of the Lorenz manifold can be found in by [Perelló, 1979].
Using ‘a desktop computer with a plotter’ Perello studied the embedding of the stable man-
ifold of the origin as a function of the parameter ρ and, in particular, provides a sketch for ρ
close to 24.74. Pioneering efforts to visualize the Lorenz system are due to Stewart. Trajec-
tories that illustrate the (local) stable manifold can be found in [Thompson & Stewart, 1986,
Fig. 11.6], while [Stewart, 1986] is an extended abstract of a movie that visualizes the dynam-
ics and global bifurcations (as a function of R) of the Lorenz system with computer graphics
in the three-dimensional phase space. The first, hand-drawn image of (the structure of) the
Lorenz manifold (that is, for the standard parameter values also used here) appeared in the
book [Abraham & Shaw, 1985]. The first published computer-generated image of the Lorenz
manifold is that in [Guckenheimer & Worfolk, 1993].

Not in the least due to its intriguing nature, the Lorenz manifold has become a much-
used test-case example for evaluating algorithms that compute two-dimensional (un)stable
manifolds of vector fields. For each of the methods discussed in this paper we present an
image of the computed Lorenz manifold that is always taken from a viewpoint along the line
spanned by the vector (

√
3, 1, 0) in the (x, y)-plane.

1.2 Stable and unstable manifolds

In order to explain the different methods for computing two-dimensional (un)stable mani-
folds, we need to introduce some notation. To keep the exposition simple, we consider here
the case of a global (un)stable manifold of a hyperbolic saddle point x0 ∈ R

n of (1). Further-
more, we present all theory and the different methods for the case of an unstable manifold.
This is not a restriction, because a stable manifold can be computed as an unstable manifold
when time is reversed in system (1).

Suppose now that f(x0) = 0 and for some 1 < k < n the Jacobian Df(x0) of f
at x0 has k eigenvalues with positive real parts and (n − k) eigenvalues with negative
real parts (counted with multiplicity). The Stable and Unstable Manifold Theorem (see,
e.g., [Guckenheimer & Holmes, 1986, Kuznetsov, 1998]) states that a local unstable mani-
fold W u

loc(x0) exists in a neighborhood of x0. Furthermore, W u
loc(x0) is as smooth as f and

tangent to the unstable (generalized) eigenspace Eu(x0) of Df(x0) at x0. This means that
we may define the global unstable manifold W u(x0) as

W u(x0) = {x ∈ R
n | lim

t→−∞
φt(x) = x0} =

⋃

t>0

φt(W u
loc(x0)) . (3)

4



Hence, W u(x0) is a k-dimensional (immersed) manifold, defined as the globalization of
W u

loc(x0) under the flow φt. Note that the local stable manifold W s
loc(x0) and the stable

manifold W s(x0) are similarly related with respect to the reversed direction of time, namely

W s(x0) = {x ∈ R
n | lim

t→∞
φt(x) = x0} =

⋃

t<0

φt(W s
loc(x0)) . (4)

This indeed shows that it is sufficient to consider only the case of an unstable manifold,
possibly after reversing time.

Definition (3) already suggests a method for computing W u(x0): take a small (k − 1)-
sphere (or other ‘outflow boundary’ such as an ellipsoid) Sδ ⊂ W u

loc(x0) with radius δ around
x0 and ‘grow’ the manifold W u(x0) by evolving Sδ under the flow φt. As starting data, one
can take Sδ ⊂ Eu(x0) or a higher-order approximation of W u

loc(x0).
In the special case k = 1 of computing a one-dimensional manifold, this method works

well, because it boils down to evolving two points at distance δ from x0 under the flow. This
can be done reliably by numerical integration of (1), so that computing one-dimensional un-
stable manifolds is straightforward. The one-dimensional manifolds in Fig. 1 were computed
in this way.

However, the above method of evolving a (k − 1)-sphere Sδ with k ≥ 2 under the flow
φt generally gives very poor results. This is so because Sδ will typically deform very rapidly
under φt. In particular, it will stretch out along the strong unstable directions (if present).
Furthermore, Sδ is a continuous object that will have to be discretized by some mesh.
Any mesh on Sδ will deteriorate rapidly under the flow φt, so that it will not be a good
representation of W u(x0) as a k-dimensional manifold.

1.3 Different approaches to computing W
u(x0)

It is quite a challenge to compute a global unstable manifold W u(x0) of dimension at least
two. Indeed simple numerical integration of the flow is not sufficient (except in very special
cases) — dedicated algorithms are needed for this task. Before we describe some recent
methods in more detail, we first explain the underlying approaches in general terms. It is
useful to consider for this purpose different parametrizations of W u(x0).

We concentrate in this survey on the first nontrivial case k = 2 of a two-dimensional un-
stable manifold. While all methods could be used in principle to compute higher-dimensional
manifolds, almost all implementations are for k = 2. Furthermore, visualizing higher-
dimensional manifolds remains a serious challenge. The different methods use the idea
of growing W u(x0) from a local neighborhood of x0. They differ in how they ensure that a
good mesh representing W u(x0) is computed during this growth process.

Consider as starting data a small smooth closed curve Sδ ⊂ W u
loc(x0), also referred to as

a (topological) circle in what follows, of points that all lie within a distance δ from x0. (As
was mentioned, one can take Sδ ⊂ Eu(x0) if δ is small enough.) The goal is to find a ‘nice’
parametrization of W u(x0) in terms of the starting data Sδ.

As we have seen above, the parametrization

W u(x0) = {φt(Sδ)}t∈
� (5)
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Figure 2: The Lorenz manifold computed with the method of
[Guckenheimer & Worfolk, 1993] up to geodesic distance 180; the computed approxi-
mate geodesic level sets are at increasing radial distances from the origin with steps of 5.0
in between, which is indicated by a color change from magenta (small) to blue (large).

is not practical. While the φt(Sδ) are smooth closed curves for all t, they are typically not
‘nice’ and ‘round’. Indeed the curvature along these curves typically varies dramatically, and
they soon tend to look like very elongated ellipses.

In order to define the parametrization of W u(x0) as a family of the nicest topological
circles possible, recall that the geodesic distance dg(x, y) is defined as the arclength of the
shortest path in W u(x0) connecting x and y, called a geodesic. Consider now the geodesic
parametrization of W u(x0) given by

W u(x0) = {Sη}η>0 where Sη := {x ∈ W u(x0) | dg(x,x0) = η} . (6)

The geodesic parametrization (6) is entirely in terms of the geometry of W u(x0), and not in
terms of the dynamics on the manifold. Since W u(x0) is a smooth manifold tangent to Eu(x0)
at x0, there must be some ηmax > 0 so that the geodesic level sets Sη for 0 < η ≤ ηmax are all
smooth closed curves without self-intersection, that is, topological circles; see, for example,
[Spivak, 1979]. We also refer to geodesic level sets for η ≤ ηmax as geodesic circles. Up until
ηmax, the geodesic parametrization (6) is geometrically the nicest parametrization, because
its elements, the geodesic circles, are the nicest possible topological circles on W u(x0). (This
means here exactly that the metric is the identity.) For the Lorenz manifold, apparently
ηmax = ∞. However, the case of a finite ηmax is possible and it typically involves a non-
smooth geodesic circle; see [Krauskopf & Osinga, 2003] for details.

The idea of computing W u(x0) as a sequence of geodesic circles goes back to
[Guckenheimer & Worfolk, 1993]. Starting with a small geodesic circle (or ellipse) Sδ around
x0, they modify the vector field so that the component tangential to the last computed
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geodesic level set is practically zero, retaining only the radial part. Then the flow of the
rescaled radial vector field is used to evolve (a sufficient number of points on) this geodesic
circle by integration over a suitably small and fixed integration time (now corresponding to
geodesic distance up to a rescaling of the radial part of the vector field). Figure 2 shows
36 approximate geodesic circles of the Lorenz manifold computed with this method up to
geodesic distance 180. The output was produced in the DsTool [Back et al., 1992] software
environment; the manifold could be rendered as a two-dimensional surface by post-processing
the data. When the vector field f is largely tangential to the geodesic circles, the computa-
tion of that vector field’s radial component becomes unstable unless the integration time τ is
sufficiently small (see the ripples on the last few geodesic circles near the helix at the middle
top of Fig. 2). This CFL-type stability condition becomes increasingly restrictive as the
angle between the trajectories and geodesic circles decreases. More generally, the method
from [Guckenheimer & Worfolk, 1993] can approximate stably only a part of the manifold,
on which the vector field remains transverse to each geodesic circle.

The method by [Krauskopf & Osinga, 1999, Krauskopf & Osinga, 2003], discussed in de-
tail in Sec. 2, also computes W u(x0) as a sequence of geodesic circles, but does not rescale
the vector field. Instead, the idea is to find the next geodesic circle in a local (and chang-
ing) coordinate system given by hyperplanes perpendicular to the present geodesic circle.
Determined by certain accuracy parameters, a suitable number of mesh points on the next
geodesic circle is computed by solving appropriate boundary value problems. During the
computation the interpolation error stays bounded, so that the overall quality of the mesh
is guaranteed.

A different approach is to reparametrize time so that the flow with respect to the new
time progresses with the same speed along all trajectories through Sδ, meaning that the
same arclength is covered per unit time along all trajectories. One also speaks of arclength
integration. We then have the new parametrization of W u(x0) given by

W u(x0) = {Aη}η>0 with Aη := {x ∈ W u(x0) | da(x,x0) = η} , (7)

where da(x, y) denotes the arclength distance between two points x and y on the same tra-
jectory; we set da(x, y) = ∞ if x and y are not on the same trajectory. This parametrization
can be considered as the best in terms of dynamically defined topological circles on W u(x0).

[Johnson et al., 1997] use essentially this parametrization by trajectory arclength, but
consider integration in the product of time and phase space. They start with a uniform
mesh on a first small circle Aδ ∈ Eu(x0) and then integrate at each step the present mesh
points up to a specified arclength. This leads to a new circle, on which a uniform mesh is
then constructed by interpolation between the integration points. Figure 3 shows the Lorenz
manifold computed with this method up to an approximate arclength distance of 200. The
method is quite fast since it involves only direct integration and redistribution of points by
interpolation. On the other hand, it is difficult to control the interpolation error, which is
determined by the (unknown) dynamics on W u(x0).

An altogether different parametrization of W u(x0) is the dual parametrization to (5) and
(7) that consists of the individual trajectories through a fixed Sδ ⊂ Eu(x0). It is formally
given as

W u(x0) = {Bp}p∈Sδ
where Bp := {φt(p) | t ∈ R} . (8)

7



Figure 3: The Lorenz manifold computed with the method of [Johnson et al., 1997] up to a
total trajectory arclength of about 200.

Notice that, in the case of a two-dimensional manifold W u(x0) considered here, parametriza-
tion (8) is a one-parameter family of trajectories, while (5) and (7) are one-parameter families
of closed curves.

The method by Doedel, discussed in detail in Sec. 3, computes two-dimensional (un)stable
manifolds by following trajectories Bp as a boundary value problem where the initial con-
dition p ∈ Sδ is parametrized with one of the free continuation parameters. This method
is very accurate and flexible by allowing for different boundary conditions at the other end
point of the trajectory Bp, which includes specifying a fixed arclength L of the trajectory.
During a computation, mesh points are distributed along the trajectories to maintain the
accuracy of the computation.
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The method of [Henderson, 2003], discussed in detail in Sec. 4, also considers parametriza-
tion (8) of W u(x0) by orbits. However, the manifold is constructed directly as a two-
dimensional object by computing fat trajectories. A fat trajectory is a string of polyhedral
patches along a trajectory, where the size of each patch is given by local curvature informa-
tion. When a fat trajectory reaches the prescribed total arclength L, the boundary of the
computed part of the manifold is determined. Then a suitable starting point for the next fat
trajectory is found and the computation continues. When no more possible starting points
exist, the computation stops.

The method of [Guckenheimer & Vladimirsky, 2004], discussed in detail in Sec. 5, locally
models W u(x0) as the graph of a function g that satisfies a quasi-linear partial differential
equation (PDE) expressing the tangency of the vector field f to the graph of g. The PDE
is discretized in an Eulerian framework and the manifold is approximated by a triangulated
mesh. At each step one new point is added to the mesh, leading to a new simplex whose
other vertices are previously known mesh points. An Ordered Upwind Method determines
where the next point/simplex is added and the ordering of new simplices is based on the
arclength of the trajectories.

The method by [Dellnitz & Hohmann, 1996, Dellnitz & Hohmann, 1997], discussed in
detail in Sec. 6, is complementary to the previous methods in that it computes an outer
approximation of the manifold by boxes of the same dimension n as the phase space of (1).
This method uses the time-τ map of the flow φt for some fixed τ . A subdivision algorithm
first finds a covering of W u

loc(x0) with n-dimensional boxes of suitably small diameter. This
local box covering is then globalized in steps by adding new boxes (of the same small size)
that are ‘hit’ under the time-τ map by the present collection of boxes. The practical problem
is to reliably detect when the image of one box intersects another box (for example, by using
test points). If a-priori bounds on the local growth rate of the vector field are known then
it is possible to compute a rigorous box covering of W u(x0); see [Junge, 2000a].

In the following sections we present the different algorithms in more detail, again illus-
trated with the computation of the Lorenz manifold W s(0).

2 Approximation by Geodesic Level Sets

The method of [Krauskopf & Osinga, 1999, Krauskopf & Osinga, 2003] approximates a global
(un)stable manifold as a sequence of geodesic circles of the parametrization (6). Only the case
of a two-dimensional unstable manifold of a saddle point in a three-dimensional space is pre-
sented here. However, the method can be formulated in terms of computing a k-dimensional
manifold of a vector field in R

n, and has been implemented to compute two-dimensional
(un)stable manifolds of saddle points and saddle periodic orbits in a phase space of any
dimension; see the examples in [Krauskopf & Osinga, 1999, Krauskopf & Osinga, 2003] and
also in [Osinga, 2000, Osinga, 2003]. Variants of this method exist to compute global mani-
folds of maps; see [Krauskopf & Osinga, 1998a, Krauskopf & Osinga, 1998b].

The method completely steps away from evolving an existing mesh. Instead, new mesh
points are computed by means of solving appropriate boundary value problems; see Sec. 2.1.
The boundary conditions predetermine where the new mesh points need to be added in
order to achieve a prescribed mesh quality. This method is as independent of the dynamics
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Fr

r
Ci

qr(tr)

br(tr)

W s(0) ∩ Fr

Figure 4: The boundary value problem formulated for a mesh point r on the geodesic level set
Ci is solved by a family of trajectories, starting at qr(t) on Ci and ending at br(t) in Fr, that
is parametrized by integration time t. There is a unique first orbit such that ||br(tr)−r ||= ∆i.
The image shows actual data for the Lorenz manifold W s(0) of Fig. 5 where Ci ≈ Sηi

with
ηi = 32.75 and ∆i = 4.0.

as possible and it grows the manifold as a sequence of discretized geodesic circles until ηmax

is reached where the geodesic level sets are no longer smooth circles; see Sec. 1.3.
To be more specific, let Mi denote a circular list of mesh points from which a continuous

topological circle Ci is formed by connecting neighboring points of Mi by line segments. The
mesh points in Mi are computed to ensure that Ci is a good approximation (according to
prespecified accuray parameters) of an appropriate geodesic circle Sηi

. The manifold W s(0)
is then approximated up to a prescribed geodesic distance L by the triangulation formed by
the total mesh M = ∪0≤i≤lMi, where l ∈ N depends on L and the accuracy parameters.

The start data is a uniform mesh M0 on an initial small geodesic circle Sη0 = Sδ ⊂ Eu(x0)
at some prescribed distance δ from 0. The method then computes at each step i a new circular
list Mi+1 that approximates the next level set Sηi+1

. In other words, at every step a new
band is added to W u(x0); the width of this band is determined by the curvature of geodesics.
The method stops when the prespecified fixed geodesic distance L from 0 is reached.

2.1 Finding a new point in Mi+1

Let us consider the task of finding Mi+1 at some prescribed increment ∆i from a known
circular list Mi representing Sηi

. The circular list Mi+1 is constructed pointwise. Let r ∈ Mi

and consider the (half)plane Fr through r that is (approximately) perpendicular to Ci at r.
(In the implementation the normal to Fr is defined as the average of the two unit vectors
through r and its immediate left and right neighbors.) Then W u(x0) ∩ Fr is a well-defined
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one-dimensional curve locally near r, which is parametrized by the time it takes to reach
W u(x0) ∩ Fr by integration from Ci. Points in W u(x0) ∩ Fr can be found by solving the
two-point boundary value problem

qr(t) ∈ Ci, (9)

br(t) := φt(cr(t)) ∈ Fr, (10)

where the integration time t is a free parameter. The situation is shown in Fig. 4 with
actual data for the Lorenz manifold W s(0) presented in Sec. 2.3. Note that for an unstable
manifold t ≥ 0 and for a stable manifold t ≤ 0.

The point br(tr) ∈ Fr is uniquely defined by the property that tr is the smallest integration
time (in absolute value) for which ||br(tr) − r ||= ∆i. If ∆i is small enough then br(tr) exists
and can be found by continuation of the trivial solution br(0) = qr(0) = r for t = 0 while
checking for the first zero of the test function

∆i − ||br(t) − r || . (11)

When the first zero is found then br(tr) = br(t) is the candidate for a point in Mi+1; see
Fig. 4.

2.2 Mesh adaptation

Once all candidate points in Mi+1 have been found, all for the same ∆i, then it is decided
whether the step size ∆i was appropriate. To this end, it is checked that the curvature
of (approximate) geodesics through all points r ∈ Mi was not too large. This is done
with a criterion that was originally introduced for one-dimensional global manifolds of maps
[Hobson, 1993]. Let αr denote the angle between the line through r and br(tr) and the line
through pr and r, where pr ∈ Mi−1 is the associated point of Mi−1 on the approximate
geodesic. The step of geodesic distance ∆i was acceptable if both

αr < αmax, and (12)

∆i · αr < (∆α)max (13)

hold for all r ∈ Mi. In this case Mi+1 is accepted and step i is complete. If there is some
r ∈ Mi that fails either (12) or (13) then ∆i is halved and step i is repeated with this
smaller ∆i. Similarly, ∆i may be doubled if for every r ∈ Mi both αr and ∆i · αr are well
below the respective upper bounds in (12) or (13), say, below αmin and (∆α)min respectively.
The parameters αmin, αmax, (∆α)min, and (∆α)max implicitly determine the mesh adaptation
along geodesics and are fixed by the user before a computation.

It is important to ensure that Ci+1 is also a good approximation of Sηi+1
. In other

words, neighboring points of Mi+1 may not be too close or too far from each other. When
two neighboring points of Mi lead to two neighboring points of Mi+1 at more than the
prespecified distance ∆F from each other, then a new point is added in between. This is
not done by interpolating between points of Mi+1 but by applying step i of Sec. 2.2 for
finding a new point in Mi+1 to the middle point on Ci. In other words, no interpolation is
ever performed between points that are more than distance ∆F apart. In order to ensure

11



(a) (b)

(c) (d)

Figure 5: The Lorenz manifold computed with the method of Krauskopf & Osinga up to
geodesic distance 154.75. Panel (a) shows the entire manifold, panel (b) an enlargement
where the manifold is transparent, panel (c) a further enlargement near the Lorenz attractor
(in magenta) where only every second band is shown, and panel (d) the computed mesh
when looking into the outer scroll.

proper order relations between directly neighboring points of Mi+1 a point is removed if two
neighboring points in Mi+1 lie closer together than a prespecified distance δF .
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The mesh adaptation as decribed ensures that the overall error of a computation up to
a prescribed geodesic distance L is bounded. This means that the computed piece of the
manifold lies in an ε-neighborhood of W u(x0), provided the accuray parameters are chosen
small enough; see [Krauskopf & Osinga, 2003] for the proof.

2.3 The Lorenz manifold approximated by geodesic circles

Figure 5 shows the Lorenz manifold W s(0) represented by a total of 75 bands and with
total geodesic distance 154.75. The manifold was computed starting with a mesh M0 of
20 points on Sδ ⊂ Es(0) with δ = 1.0. The computation was initiated with ∆1 = 0.25
and the mesh was generated using the accuracy parameters αmin = 0.3, αmax = 0.4,
(∆α)min = 0.1, (∆α)max = 1.0, ∆F = 2.0, and δF = 0.67. The coloring illustrates the
geodesic distance from the origin, where blue is small, green is intermediate and red is
large. The manifold was rendered as a two-dimensional surface with the visualization pack-
age Geomview [Phillips et al., 1993]; other illustrations of the Lorenz manifold can be found
in [Krauskopf & Osinga, 2003, Krauskopf & Osinga, 2004, Osinga & Krauskopf, 2002] and
animations with [Krauskopf & Osinga, 2003, Krauskopf & Osinga, 2004].

Figure 5(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint; notice the similarity with the geodesic level sets in Fig. 2. Figure 5(b) shows
an enlargement of the Lorenz manifold where the manifold is now transparent. This brings
out the detail of the manifold, in particular, the development of a pair of extra helices
that follow the main helix along the z-axis. Notice that points of the same color are on
the same geodesic circle, which shows that points on W s(0) that are close to the origin in
Euclidean distance need not be close to the origin in geodesic distance. Figure 5(c) shows a
further enlargement near the Lorenz attractor, which is illustrated in magenta by plotting
the unstable manifold W u(0). In this image only every second band is shown to obtain a
see-through effect, showing clearly how the Lorenz manifold ‘rolls’ into the Lorenz attractor.

Figure 5(d) gives an impression of the computed mesh with an enlargement looking into
one of the outer scrolls. Geodesic circles can be seen as spiraling curves (between bands of
the same color). The approximate geodesics are the curves that point approximately radially
out in the image. They are perpendicular to the geodesic circles, and locations where points
were added can be identified as starting points of new approximate geodesics. Notice that the
last six bands are closer together. The image illustrates how the distance between geodesic
circles is determined by the curvature along geodesics, while the mesh distribution on the
geodesic circles is allowed to vary between δF = 0.67 and ∆F = 2.0.

3 BVP Continuation of Trajectories

It seems very natural to use parametrization (8) for defining a one-parameter family that
describes the unstable manifold W u(x0) of a saddle equilibrium x0 of (1). An approximation
to W u(x0) could then be attempted by simple integration of Eq. (1) for a sufficient number of
initial conditions that lie on the circle (or ellipse) Sδ of small radius δ in the stable eigenspace
Eu(x0) centered at x0. However, as was already explained in Sec. 1.3, this procedure does
not generally produce W u(x0) as a surface. The main task is to properly space the initial
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conditions around the circle, so that the result gives a reasonable distribution of the computed
trajectories along the stable manifold. This is a major problem because the entire calculated
trajectory (e.g., of a fixed finite length) dependends very sensitively on the initial condition.

The method of Doedel uses numerical continuation to solve this problem. The basic idea
of continuation is to follow a (one-dimensional) branch of solutions that exists according to
the Implicit Function Theorem around a regular root of a system of m equations with m+1
unknowns. The step size in the continuation procedure (see Sec. 3.1 for details) measures the
change of the entire computed trajectory (and various parameters), and not just the change
in the initial condition. It is this key property of continuation that generally results in a
reasonable distribution of trajectories along the stable manifold.

In this section we only consider the computation of one-parameter families of trajecto-
ries, which together describe a two-dimensional (un)stable manifold of a fixed point. Most
existing continuation algorithms can handle the computation of such one-dimensional fami-
lies (also called solution branches); see, for example, [Beyn et al., 2002, Doedel et al., 1991a,
Doedel et al., 1991b, Keller, 1977, Rheinboldt, 1986, Seydel, 1995], and [Kuznetsov, 1998,
Chapter 10]. The continuation method described here was implemented in the continu-
ation package AUTO [Doedel, 1981, Doedel et al., 1997, Doedel et al., 2000] by specifying
the respective driver files.

Continuation algorithms have also been developed for the higher-dimensional case; see, for
example, [Allgower & Georg, 1996, Henderson, 2002]. Hence, this method could be applied,
in principle, equally well to compute manifolds of dimension larger than two.

3.1 Pseudo-arclength continuation

Let us begin with a discussion of some basic notions of continuation. Consider the finite-
dimensional equation

F (X) = 0, F : R
m+1 → R

m, (14)

where F is assumed to be sufficiently smooth. This equation has one more variable than it
has equations. Given a solution X0, one has, generically, a locally unique solution branch
that passes through X0. To compute a next point, say, X1, on this branch, one can use
Newton’s method to solve the extended system

F (X1) = 0, (15)

(X1 − X0)
∗Ẋ0 = ∆s. (16)

Here Ẋ0 is the unit tangent to the path of solutions at X0, the symbol ∗ denotes transpose,
and ∆s is a step size in the continuation procedure. The vector Ẋ0 is a null vector of
the m × (m + 1)-dimensional Jacobian matrix FX(X0), and it can be computed at little
cost [Doedel et al., 1991a]. This continuation method is known as Keller’s pseudo-arclength
method [Keller, 1977]. The size of the pseudo-arclength step ∆s is normally adapted along
the branch, depending, for example, on the convergence history of Newton’s method. It is
very important to note that the stepsize is measured with respect to all components of the
solution, and not just one.
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The continuation procedure is well posed near a regular solution X0, that is, if the null
space of FX(X0) is one-dimensional. Namely, in this case the Jacobian of the entire system
(15)–(16) at X0, that is, the (m + 1) × (m + 1) matrix

(
FX(X0)

Ẋ∗
0

)
(17)

is nonsingular. The Implicit Function Theorem then guarantees that a locally unique solution
branch passes through X0. This branch can be parametrized locally by ∆s. Moreover, for
∆s sufficiently small, and for sufficiently accurate initial approximation (for example, when

taking X
(0)
1 = X0 + ∆sẊ0), Newton’s method for solving Eqs. (15)–(16) converges.

3.2 Boundary value problem formulation

When computing a branch of solutions to an ODE of the form (1), parametrized by initial
conditions and the integration time T , one must keep in mind that (1) has infinitely many
solutions and boundary or integral constraints must be imposed. Furthermore, the pseudo-
arclength constraint (16) is then typically given in functional form; more details can be found
in [Doedel et al., 1991b]. This means that the possibly unknown total integration time T is
embedded in the equations. To this end, the vector field (1) is rescaled so that integration
always takes place over the interval [0, 1], and the actual integration time T appears as a
parameter. Hence, in this context, Eqs. (15)–(16) take the form

x′
1(t) = f̂

(
x1(t), λ1

)
, (18)

b(x1(0),x1(1), λ1) = 0, (19)
∫ 1

0

q(x1(s), λ1) ds = 0, (20)

∫ 1

0

(
x1(τ) − xp(τ)

)∗
ẋp(τ) dτ + (λ1 − λ0)

∗λ̇0 = ∆s, (21)

where the dimension of λ1 must be chosen consistently with the dimensions of the boundary
conditions (19) and the integral constraints (20) in order to ensure a one-dimensional family
of solutions. Again we stress that the continuation stepsize is for the entire solution X, and
not just for the parameter vector λ1. Equations (15)–(16) must be solved for X1 = (x1(·), λ1),
given a previous solution X0 = (xp(·), λ0) of the ODE and the path tangent Ẋ0 = (ẋp(·), λ̇0).
That is, in a function space setting, Eqs. (18)–(20) correspond to the equation F (X) = 0,
as in Eq. (14). Note that the dimension (m + 1) of X = (x(·), λ) may be much larger than
the dimension n of the phase space of (1). In particular, λ always contains the parameter
T , which may or may not vary during the continuation; see Sec. 3.3 for specific examples. If
λ = T then f̂

(
x1(t), λ1

)
= Tf

(
x1(t)

)
.

In each continuation step, Eqs. (18)–(21) are solved by a numerical boundary value al-
gorithm. Here, the package AUTO [Doedel, 1981, Doedel et al., 1997, Doedel et al., 2000]
is used, which uses piecewise polynomial collocation with Gauss-Legendre collocation points
(also called orthogonal collocation), similar to COLSYS with adaptive mesh selection
[Ascher et al., 1995, De Boor & Swartz, 1973, Russell & Christiansen, 1978]. In combina-
tion with continuation, this allows the numerical solution of ‘difficult’ orbits. Moreover,
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for the case of periodic solutions, AUTO determines the characteristic multipliers (or Flo-
quet multipliers) that determine asymptotic stability and bifurcation properties, as a by-
product of the decomposition of the Jacobian of the boundary value collocation system
[Doedel et al., 1991b, Fairgrieve & Jepson, 1991]; see also [Lust, 2001].

3.3 BVP continuation of the (un)stable manifold of an equilibrium

Consider now the situation that (1) has a saddle equilibrium x0 with a two-dimensional
unstable manifold, meaning that the Jacobian Df(x0) has exactly two eigenvalues µ1 and
µ2 with positive real part. Suppose further that v1 and v2 are the associated (generalized)
eigenvectors. We are looking for solutions of the system

x′(t) = Tf
(
x(t)

)
, (22)

x(0) = x0 + δ(cos(θ)v1 + sin(θ)v2), (23)

which is a combination of Eqs. (18) and (19) with λ = (θ, T ). Note that in Eqs. (22)–(23)
the continuation equation corresponding to Eq. (21) (or Eq. (16)) has been omitted, even
though it is an essential part of the continuation procedure. The continuation equation will
also not be written explicitly in subsequent continuation systems.

If the eigenvalues µ1 and µ2 are real, then it is advantageous to choose the initial condition
on the ellipse that is given by the ratio of the eigenvalues as

x(0) = x0 + δ

(
cos(θ)

v1

|µ1|
+ sin(θ)

v2

|µ2|

)
. (24)

In other words, in the continuation Eq. (23) is replaced by Eq. (24).
Obvious starting data for the system (22)–(23) consist of a value of θ (0 ≤ θ < 2π),

T = 0, and x(t) = x0 + δ(cos(θ)v1 +sin(θ)v2), that is, x(t) is constant. An actual trajectory
for a specific value of θ can now be obtained using continuation as well. While this may
seem superfluous, it has the added benefit that the output files of this first step in AUTO
are then compatible with subsequent continuation steps. In this continuation step, system
(22)–(23) is solved for X = (x(·), T ), keeping the angle θ fixed. Here, T > 0 for an unstable
manifold and T < 0 for a stable manifold since then integration is backward (or negative)
in time.

Once a single orbit is obtained up to a desired length, defined by a suitable end-point
condition, then this orbit is continued numerically as a boundary value problem where the
initial condition on the small circle (or ellipse) is now a component of the continuation
variable. In this way, the family (8) of such orbits on (part of) the stable manifold W u(x0)
is approximated. The simplest way to do this is to fix T in the continuation system (22)–
(23) after the first step and allow θ, the angle of the starting point on Sδ to vary freely.
It is important to note that θ is not used as the sole continuation parameter. Instead
each continuation step is taken in the full continuation variable X = (x(·), θ), so that the
continuation step size includes variations along the entire orbit. Also, θ is one of the variables
solved for in each continuation step and it is not fixed a priori.

Instead of keeping T fixed, there are other ways to perform the continuation. For example,
one can constrain the end point x(1) as one wishes. This is done by adding to system (22)–

16



Figure 6: Continued trajectories on W s(0) near the origin starting from the ellipse (24) with
δ = 5.0, µ1 = −22.828 and µ2 = −2.667; the coloring is according to integration time T ,
where red indicates faster and green slower flow.

(23) the equation

g(x(1), θ, T )− α = 0. (25)

Here g is an appropriate functional, chosen to control the end point in a desirable manner,
for example, by requiring one coordinate to have a particular fixed value. The continuation
variable can now be taken as X = (x(·), θ, T ), while α is kept fixed.

Another possibility is to impose an integral constraint along the orbit, namely adding to
(22)–(23) the equation

∫ 1

0

h(x(s), θ, T ) ds − L = 0. (26)

Now h is an appropriate functional, chosen to control the orbit in a desirable manner. The
continuation variable can again be taken as X = (x(·), θ, T ), but now keeping L fixed. A
particularly useful choice is h(x, λ, T ) = T ||f

(
x, λ

)
||, which results in the total arclength of

the orbit being kept fixed during the continuation. Finally, it is entirely possible to use a
combination of end-point conditions and integral constraints, but this will not be used here.
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(a) (b)

(c) (d)

Figure 7: The Lorenz manifold computed with the continuation method of Doedel. Panels
(a), (b) and (c) show the manifold where the arclength of the trajectories is fixed at L = 250.
In panel (a) the coloring indicates the arclength along trajectories and in panels (b) and (c)
the coloring is according to the total integration time T of trajectories; the strong stable
manifold lies inside the red region. Panels (a) and (c) show all trajectories, while panels
(b) shows only every fourth trajectory as a tube. Panel (d) demonstrate that only a part of
interest of the stable manifold may be computed, such as a part of the main scroll; this was
done by fixing x = −25 at the end point of trajectories.
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3.4 The Lorenz manifold as a family of trajectories

Figure 6 shows an enlargement near the origin of the orbits that were continued on the
Lorenz manifold W s(0) (for negative T ). The angle θ is allowed to vary from 0 to 2π, so
that the initial condition varies along the ellipse in the middle of the image, which is defined
by (24) with δ = 5.0, µ1 = −22.828 and µ1 = −2.667. All orbits have the same arclength
and the coloring is in terms of the total integration time T along each trajectory. In other
words, the coloring gives an indication of the speed of the flow along trajectories, where red
is fast and green is slower. The flow is fastest along the strong stable manifold, which is
located in the middle of the red region. Note that the disctribution of points is much denser
near the top and bottom of the ellipse, that is, near the invariant z-axis, which ensures a
good distribution of orbits over the Lorenz manifold W s(0).

Figure 7(a)–(c) shows the Lorenz manifold W s(0) covered by 2284 trajectories of ar-
clength 250, where the ellipse of initial conditions is as in Fig. 6. The number of mesh points
along each trajectory was NTST = 75, with NCOL = 4 collocation points in each mesh in-
terval. Figure 7(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint. The coloring changes from blue to red according to the mesh point number along
a trajectory, which gives an impression of the arclength of trajectories. Figures 7(b) and (c)
show enlargements where the coloring shows the total integration time T along trajectories.
As in Fig. 6, this indicates the speed of the flow; the strong stable manifold is located in
the red region of fast flow. In Fig. 7(b) every fourth trajectory is rendered as a thin tube.
This results in a better sense of depth so that an impression is given of how trajectories lie
in phase space to form W s(0). Figure 7(c) is an enlargement of Fig. 7(a) (though with a
different color scheme) showing how the manifold forms a scroll.

Figure 7(d) illustrates the flexibility of the method by showing part of the Lorenz manifold
computed by numerical continuation of solutions to the boundary value problem (22)–(23)
and (25) for the choice g(x, λ, T ) = x. This results in the x-coordinate of the end point x(1)
being kept fixed during the continuation, and it was set to x = −25 in the computation.
For an appropriate choice of α, for which some trajectories intersect this plane several times,
the continuation procedure then naturally leads to non-monotonous variation of θ, thereby
allowing the computation of a scroll-like structure on the stable manifold. In Fig. 7(d) the
origin is the point on the right from which all trajectories emerge.

4 Computation of Fat Trajectories

The method of [Henderson, 2003] computes a compact piece of a k-dimensional invariant
manifold by covering it with k-dimensional spherical balls in the tangent space, centered at
a set of well-distributed points. This set is found by computing so-called fat trajectories,
which are trajectories augmented with tangent and curvature information at each point.
The centers of the balls are points on the fat trajectory, and the radius is determined by the
curvature.

For the implemented case of computing a two-dimensional unstable manifold W u(x0) of
a saddle point of (1), the method starts with a small circle Sδ ⊂ Eu(x0) and at every step
circular disks are added along a fat trajectory with a fixed total arclength (from x0) of L.
Initially all fat trajectories start on Sδ, but at later stages fat trajectories begin at points
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interpolated where two fat trajectories move too far from each other. The method stops
when W u(x0) has been covered up to the prescribed arclength L.

4.1 Fat trajectories on the global stable manifold

The method requires a basis for the tangent space and the curvatures in that basis to
construct the disks. As was mentioned in the introduction, invariant manifolds are not
defined locally, so that there is no local way of determining the tangent space or curvature
for a given a point on the invariant manifold. This information is known at points on
the initial curve Sδ ⊂ Eu(x0), for example, the tangent to Sδ is known, and if the flow is
transverse to the initial curve Sδ, f can be used as the second tangent. The circle Sδ (or
possibly an ellipse) may be chosen to be transverse to the flow for sufficiently small δ. The
curvature information can be obtained using the second derivative tensor.

The tangent and curvature can be ‘transported’ over W u(x0) by deriving and solving
evolution equations for them along a trajectory. To this end, one writes the parametrization
(5) in the form

x(t, σ) = c(σ) +

∫ t

0

f(x(s, σ))ds , (27)

where c(σ) parametrizes Sδ with the one-dimensional parameter σ. (An example of such a
parametrization is (24).) Then the tangent space at x(t, σ) is spanned by xσ and xt = f ,
and the corresponding curvatures are given by the second derivatives xσσ, xtσ = fxxσ and
xtt = fxf . Evolution equations for the unknown quantities can be found by differentiating
(27)

d

dt
x = f, (28)

d

dt
xσ = fxxσ, (29)

d

dt
xσσ = fxxσσ + fxxxσxσ . (30)

Note that, even if xσ is orthogonal to f at the initial point, there is no reason to expect the
basis to remain orthogonal. In [Henderson, 2003], equations are derived for the evolution
of a local parametrization which does remain orthonormal and has minimal change in the
basis along the trajectory. (This is analogous to finding Riemannian normal coordinates
in gravitation, where trajectories play the role of geodesics [Misner et al., 1970].) If the
tangents in the local parametrization are u0 and u1, they evolve according to

d

dt
u0 = fxu0 − uT

0 fxu0 u0 − uT
1 fxu0 u1 , (31)

d

dt
u1 = fxu1 − uT

0 fxu1 u0 − uT
1 fxu1 u1 . (32)
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t=T

Figure 8: Two adjacent fat trajectories starting from Sδ. A new fat trajectory is started from
the point where the two fat trajectories separate. This point can be found by interpolation
between two suitable mesh points, which is indicated by the green lines.

4.2 Interpolation points on the invariant manifold

The method starts with a set of well-distributed points on the initial curve Sδ, which can
be found using the algorithm described in [Henderson, 2002]. At each such point on Sδ

an orthonormal basis for the invariant manifold and second derivatives of the manifold in
that basis are computed, and used as initial conditions for finding a set of disks along a fat
trajectory. Because trajectories may move apart from each other, these disks will generally
not cover W u(x0); see Fig. 8. This means that additional fat trajectories must be started
at suitable points until W u(x0) is covered. In order to generate a well-spaced set of points
on W u(x0), one chooses a starting point from the boundary of the computed part of the
manifold.

The method in [Henderson, 2002] represents the boundary of the union of disks {Di}
using polygons related to the Voronoi regions of the centers of the disks. A disk Di consists
of a center x(ti, σi) (a point on a fat trajectory), the orthonormal basis for the tangent space
of the manifold u0(ti, σi) and u1(ti, σi), a radius Ri, and polygon Pi. The polygon Pi is
represented by a list of vertices in the tangent space and edges joining them (this actually
works in arbitrary dimensions). The polygons are constructed in such a way that each edge
of Pi which crosses the boundary of Di corresponds to a neighboring disk Dj . The situation
is sketched in Fig. 8.

Suppose that part of W u(x0) is represented this way, and a new disk Di is to be added.
Pi is initially a square centered at the origin with sides 2Ri, and for each disk Dj which
intersects the new disk Di complementary half spaces are subtracted from Pi and Pj. The
projection of Dj into the tangent space at xi is approximated by a disk of radius Rj centered
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at the projection of xj . If Ri and Rj are small enough so that the distance between the
tangent space and the manifold is small (this depends on the curvature of W u(x0)), then
this is a good approximation. This pair of disks in the tangent space at xi defines a line
containing the intersection of the circles bounding the disks, and one subtracts from Pi a
half space bounded by this line. The same approach is used to update Pj by projecting xi

into the tangent space at xj .
With these polygons a point on the boundary of the union can easily be found. Any point

on δDi ∩ Pi is near the boundary of the union (the distance to the boundary is controlled
by the distance between the tangent space and the manifold at the radius). Points on the
boundary where two disks meet correspond to points where an edge of Pi crosses δDi (the
point obtained is in the tangent space of the manifold and must be projected onto the
manifold).

If one considers the part of the invariant manifold that is not yet covered (that is, the
exterior of the union of neighborhoods, t < T ), one can define something resembling a
constrained minimization problem (it lacks a global objective function) which looks for a
point in this region that lies furthest back in time under the flow. With a mild assumption
about the shape of the region (it must be a topological ball), such a minimal point must
exist. It must lie on the boundary of the region at the intersection of two disks. This point is
a ‘minimum’ if the flow vector extended backwards intersects the interior of the edge joining
the centers of the intersecting disks. (This is, in fact, Guckenheimer and Vladimirksy’s
upwinding criterion; see Sec. 5.) One can easily find candidate points on the boundary from
the edges of the polygons, and checking the upwinding criterion is a matter of computing a
projection. One can then either interpolate tangents and curvatures from the disks’ centers
(the method used in the computations shown in Fig. 9) or use a homotopy (as Doedel
uses in AUTO [Doedel, 1981, Doedel et al., 1997, Doedel et al., 2000]) to move from the fat
trajectory from Sδ through the center of one of the disks to the fat trajectory which starts
on Sδ and passes underneath the interpolation point.

This interpolation to find new starting points for fat trajectories completes the algorithm.
It computes a covering of the manifold W u(x0) with disks centered at well-spaced points.
Provided the disks are sufficiently small compared to the curvature, the algorithm is guar-
anteed to terminate, and all points lie on trajectories that originate on the initial curve Sδ

or at points interpolated between nearby trajectories.
The fat trajectory, with its string of disks and polygons, is integrated until a prespecified

total arclength L is reached. This is repeated for all the points on the initial curve. (The
total integration time T of fat trajectories varies with the initial condition.)
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(a) (b)

(c) (d)

Figure 9: The Lorenz manifold computed with the method of Henderson up to a total
trajectory arclength of 250. Panel (a) shows a view of the entire manifold, panel (b) a
transparent enlargement near the main scroll, panel (c) shows the part of the manifold for
x < 0 together with the Lorenz attractor and the one-dimensional stable manifolds of the
two other equilibria, and panel (d) gives an impression of the computed mesh.
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4.3 The Lorenz manifold covered by fat trajectories

Figure 9 shows the Lorenz manifold W s(0) computed (using integration backward in time)
up to a total trajectory arclength of 250. The step was controlled so that the distance
between the tangent space and W u(x0) over each disk was less than 0.5. The scaled time
step along trajectories was 0.01 (many more than one time step is taken between sucessive
points on a fat trajectory), and no radius is greater than 2.0. The result was a total of 221,210
disks. Figure 9(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint. Figure 9(b) shows an enlargement of the Lorenz manifold near the central region
where the manifold is now transparent. Notice the different ‘sheets’ of manifold in the scroll
and the extra helices forming around the z-axis. This complicated structure of the Lorenz
manifold is further illustrated in Fig. 9(c) where only the half of W s(0) with negative x-
coordinate is shown. The intersection curves of the manifold with the plane {x = 0} are
shown in white. Also shown is the one-dimensional unstable manifold W u(0) (red curve)
accumulating on the the Lorenz attractor (yellow) and the stable manifolds (blue curves) of
the other two equilibria.

Figure 9(d) gives an impression of the computed mesh. The fat trajectories are the
white curves and they are surrounded by the polygons that make up the Lorenz manifold.
Clearly visible are points where new fat trajectories are started from interpolated data. The
boundary of the manifold at termination simply consists of the disks that are distance L
from x0 (measured along trajectories).

5 PDE Formulation

Another method for approximating invariant manifolds of hyperbolic equilibria was intro-
duced by [Guckenheimer & Vladimirsky, 2004]. Their approach locally models a codimension-
one invariant manifold as the graph of a function g satisfying a quasi-linear PDE that ex-
presses the tangency of the vector field f of (1) to the graph of g. The PDE is then discretized
in an Eulerian framework and the manifold is approximated by a triangulated mesh. We
denote by M the triangulated approximation of the ‘known’ part of the manifold. It can be
extended by adding simplices at the current polygonal boundary ∂M in a locally-outward
direction in the tangent plane. The discretized version of the PDE is then solved to obtain
the correct slope for the newly added simplices. To avoid solving the discretized equations
simultaneously, an Ordered Upwind Method (OUM) is used to decouple the system: the
causality is ensured by ordering the addition/recomputation of new simplices based on the
lengths Λ of the vector field’s trajectories.

Two key ideas provide for the method’s efficiency:

1. The use of Eulerian discretization ensures that ‘geometric stiffness’, a high non-uniformity
of separation rates for nearby trajectories on different parts of the manifold, does not
affect the quality of the produced approximation: new simplices constructed at the
current boundary ∂M are as regular as is compatible with the previously constructed
mesh.

2. Since OUM is non-iterative, the PDE-solving step of the method is quite fast.
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5.1 Tangency condition

The method is explained here for a two-dimensional manifold W u(x0) of a saddle point x0 in
R

3; see [Guckenheimer & Vladimirsky, 2004] for more details. Let (u, g(u)) = (u1, u2, g(u1, u2))
be a local parametrization of the manifold of (1). Then the vector field f should be tangential
to the graph of g(u1, u2), that is,

[
∂

∂u1

g(u1, u2),
∂

∂u2

g(u1, u2),−1

]
· f (u1, u2, g(u1, u2)) = 0. (33)

The above first-order quasi-linear PDE can be solved to ‘grow’ the manifold in steps, because
the Dirichlet boundary condition is specified on the boundary ∂M of the piece of the manifold
computed in previous steps. The initial boundary is chosen by discretizing a small circle
or ellipse Sδ ⊂ Eu(x0) that is transverse to f , so that the vector field is outward pointing
everywhere.

Unlike a general quasi-linear PDE, Eq. (33) always has a smooth solution as long as the
chosen parameterization remains valid. Thus, switching to local coordinates when solving
the PDE avoids checking the continued validity of the parameterization.

In [Guckenheimer & Vladimirsky, 2004] the PDE formulation (33) is extended to approx-
imate two-dimensional manifolds in R

n. A similar characterization can be used for general
k−dimensional invariant manifolds in R

n, but the current numerical implementation relies
on k = 2.

The PDE approach for characterizing invariant surfaces goes back to at least the 1960s.
The existence and smoothness of solutions for equations equivalent to (33) were the sub-
jects of Sacker’s analytical perturbation theory [Sacker, 1965] and later served as a basis for
several numerical methods, for example, those in [Dieci & Lorenz, 1995, Dieci et al., 1991,
Edoh et al., 1995]. However, all this work was done for the computation of invariant tori.
There are two very important distinctions between the PDE methods for tori and the method
presented in this section:

1. These prior methods assume the existence of a coordinate system in which the invari-
ant torus is indeed globally a graph of a function g : T

k 7→ R
n−k. This implies the

availability of a global mesh, on which the PDE can be solved. For invariant manifolds
of hyperbolic equilibria such a mesh is not available a priori and has to be constructed
in the process of ‘growing’ the approximation M.

2. For the invariant tori computations, the solution function g has periodic boundary con-
ditions; hence, the discretized equations are inherently coupled and have to be solved
simultaneously.
For the approximation of W u(x0) all characteristics of the PDE start at the initial
boundary (chosen in Eu(x0)) and run ‘outward’. Knowledge of the direction of infor-
mation flow can be used to decouple the discretized system, resulting in a much faster
computational method.

5.2 Eulerian discretization

To enable decoupling of the discretized system, our discretization of Eq. (33) at a ‘new’
mesh point y has to be ‘upwinding’, i.e. it should use only previously-computed mesh points
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y1

y2

ŷ

y = ŷ + αw

Figure 10: Geometric interpretation of Eq. (34). The search space for y is the normal
subspace, here corresponding to the line spanned by w. The segment y1y2 is a part of the
AcceptedFront, and ŷ is a Considered point.

straddling y’s approximate trajectory. For a two-dimensional invariant manifold in R
3,

let G(u1, u2) be a piecewise-linear numerical approximation of the local parameterization
g(u1, u2). Consider a simplex yy1y2, where y

�

= (ui
1, u

i
2, G(ui

1, u
i
2)) = (ui, G(ui)) and

y = (u1, u2, G(u1, u2)) = (u, G(u)). Suppose that the vertices y1 and y2 are two adjacent
mesh points on the discretization of the current manifold boundary, called AcceptedFront
(thus, G(u1) and G(u2) are known and can be used in computing G(u)). If u is chosen so
that the simplex uu1u2 is well-conditioned, then y = (u, G(u)) can be determined from the

PDE. Define the unit vectors P � = u−ui

‖u−ui‖
and let P be the square invertible matrix with

the P � ’s as its rows. The directional derivative of G in the direction P � can be computed as
vi(u) = (G(u) − G(ui)) /‖u − ui‖, for i = 1, 2. Therefore, ∇g(u) ≈ ∇G(u) = P−1v, where

v =

[
v1

v2

]
. This yields the discretized version of Eq. (33) as

[
P−1v(u)

]
1
f1(u, G(u)) +

[
P−1v(u)

]
2
f2(u, G(u)) = f3(u, G(u)). (34)

This nonlinear equation can be solved for G(u) by the Newton-Raphson method or any other
robust zero-solver. In addition, it has an especially simple geometric interpretation if the
local coordinates are chosen so that G(u1) = G(u2) = 0. Namely, we reduce the problem to
finding the correct ‘tilt’ of the simplex yy1y2 with respect to the simplex ŷy1y2 where ŷ =
(u, 0) can be interpreted as a preliminary position (predictor) of y. (As is discussed in Sec. 5.3
below, when ŷ is first added to the mesh, u is chosen so that ŷy1y2 is a well-conditioned
simplex in a tangent plane.) Hence, solving Eq. (34) is equivalent to finding α ∈ R such that
f(ŷ + αw) lies in the plane defined by y1, y2, and y = ŷ + αw, where w is the unit vector
normal to ŷy1y2; see Fig. 10. A similar discretization and geometric interpretation can be
derived for the general case of k ≥ 2 and n ≥ 3 [Guckenheimer & Vladimirsky, 2004].

The described discretization procedure is similar in spirit to an implicit Euler’s method for
solving initial value problems since y1 and y2 are assumed to be known and the vector field
is computed at the to-be-determined point y. In solving first-order PDEs, a fundamental

26



y
�
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Figure 11: An acceptable (a) and an unacceptable (b) approximation of f (y); The range
of upwinding directions is shown by dotted lines; the local linear approximation to the
trajectory is shown by a dashed line; ỹ is its intersection with the line y

�

y
�

. In the second
case the upwinding criterion is not satisfied and the update for y should be computed using
another segment of AcceptedFront.

condition for the numerical stability requires that the mathematical domain of dependence
should be included in the numerical domain of dependence. Since the characteristics of
PDE (33) coincide with the trajectories of the vector field, G(u) should be computed using
the triangle through which the corresponding (approximate) trajectory runs. Thus, having
computed y = (u, G(u)) by (34) using two adjacent mesh points y

�

and y
�

, we need to
verify an additional upwinding condition: the linear approximation to the trajectory of y

should intersect the line y
�

y
�

at a point ỹ = (ũ, G(ũ)) that lies between y
�

and y
�

; see Fig.
11. An equivalent formulation is that f(y) should point from the newly computed simplex
yy

�

y
�

.
Algebraically, if y solves (34), then f(y) = β1(y − y

�

) + β2(y − y
�

); thus, the upwind-
ing criterion above simply requires β1, β2 ≥ 0. In this case the discretization is locally
second-order accurate and the arclength Λ(y) of the trajectory up to the point y can be
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approximated as

Λ(y) ≈ ‖y − ỹ‖ + Λ(ỹ) ≈ ‖f(y)‖
β1 + β2

+ β1Λ(y
�

) + β2Λ(y
�

) ≈ da(0, y). (35)

Numerical evidence indicates that the resulting method is globally first-order accurate
[Guckenheimer & Vladimirsky, 2004].

5.3 Ordered Upwind Method

Ordered Upwind Methods (OUMs) were originally introduced for static Hamilton-Jacobi-
Bellman PDEs [Sethian & Vladimirsky, 2003]. In [Guckenheimer & Vladimirsky, 2004] the
same idea of space-marching for boundary value problems is used to solve Eq. (33). All mesh
points are divided into those that are Accepted, that is, already fixed as belonging to the
approximation M, and those Considered, which are in a tentative position adjacent to the
current polygonal manifold boundary ∂M, called the AcceptedFront. A tentative position
can be computed for each Considered mesh point y under the assumption that its trajectory
intersects ∂M in some neighborhood N (y) of that point. In other words, y is updated
by solving Eq. (34) for a ‘virtual simplex’ yy

�

y
�

such that y
�

y
�

∈ ∂M⋂N (y) and the
upwinding criterion is satisfied. All Considered points are sorted based on the approximate
trajectory arclengths Λ(y) defined by (35). The method starts with ∂M discretizing a small
ellipse in Eu(x0). That initial boundary is surrounded by a single ‘layer’ of Considered
mesh points (also in Eu(x0)).

A typical step of the algorithm consists of picking the Considered point ȳ with the
smallest Λ and making it Accepted. This operation modifies ∂M (ȳ is included, and the mesh
points that are no longer on the boundary are removed) and causes a possible recomputation
of all the not-yet-Accepted mesh points near ȳ. If y

�

is adjacent to ȳ and y
�

ȳ is on the
boundary, then the mesh is locally extended by adding a new Considered mesh point y

connected to y
�

ȳ in a tangent plane. To maintain good aspect ratios of newly-created
simplices, the current implementation relies on an ‘advancing front mesh generation’ method
similar to [Peraire et al., 1999]. Other local mesh-extension strategies can be implemented
similarly to methods in [Rebay, 1993] or [Henderson, 2002].

The vector field near ∂M determines the order in which the correct ‘tilts’ for tentative
simplex-patches are computed and the Considered mesh points are Accepted. This ordering
has the effect of reducing the approximation error (since a mesh point y first computed
from a relatively far part of N (y) is likely to be recomputed before it gets Accepted). The
default stopping criterion is to enforce Λ(ȳ) ≤ L, so that the algorithm terminates when the
maximal approximate arclength L is reached. Other stopping criteria (for example, based
on Euclidean or geodesic distance or the maximum number of simplices) can be used as well.
Current algorithmic parameters include L, the radius RN of the neighborhood N (y), and the
desired simplex size ∆. (The simplex size is fixed in the present implementation; it could be
adapted according to curvature information.) As in the original OUMs, the computational
complexity of the algorithm is O(M log M), where M = O(L2/∆2) is the total number of
mesh points and the (log M) factor results from the necessity to maintain a sorted list of
Considered mesh points. A detailed discussion of the algorithmic issues can be found in
[Guckenheimer & Vladimirsky, 2004].
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(a) (b)

(c) (d)

Figure 12: The Lorenz manifold computed with the method of Guckenheimer and
Vladimirsky up to a total trajectory arclength of about 174. Panel (a) shows a view of
the entire manifold, panel (b) an enlargement near the main scroll where the manifold is
shown transparent, panel (c) shows how the manifold interacts with the Lorenz attractor,
and panel (d) gives an impression of the computed mesh.
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5.4 The Lorenz manifold computed with the PDE formulation

Figure 12 shows the Lorenz manifold W s(0) computed up to an approximate total arclength
of L = 174. The computation was started from Sδ ⊂ Es(0) with δ = 2.0, ∆ = 0.6
and RN = 4∆, which resulted in the total of 271469 mesh points. The coloring shows
arclength along trajectories where blue is small and red is large. The manifold was ren-
dered as a two-dimensional surface with Matlab; other illustrations can be found in
[Guckenheimer & Vladimirsky, 2004] and for animations see [Vladimirsky, 2004].

Figure 12(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint. Figure 12(b) is an enlargement near the central scrolls where the manifold is now
shown transparent. Clearly visible are two secondary spirals forming near the positive z-axis.
The coloring is such that points of the same color are equally far away from the origin in
arclength along trajectories. Figure 12(c) is a further enlargement near the unstable manifold
W u(0) accumulating on the Lorenz attractor. This clearly shows how the Lorenz manifold
‘rolls’ into both wings of the Lorenz attractor, creating different sheets that do not actually
intersect the shown trajectories representing the unstable manifold W u(0).

Figure 12(d) gives an enlarged impression of the computed mesh looking into one of the
outer scrolls. The simplices of the mesh are sufficiently uniform in spite of the complicated
geometry of the manifold they represent. The red boundary of the computed manifold is not
a smooth curve, because it is formed simply by the last simplices that were added locally.

6 Box Covering

In contrast to the techniques described so far, the method of [Dellnitz & Hohmann, 1996,
Dellnitz & Hohmann, 1997] presented in this section approximates invariant manifolds by
objects of the same dimension as the underlying phase space. It first produces an outer
covering of a local unstable manifold by a finite collection of sets. This covering is then
‘grown’ in order to cover larger parts of the manifold analogously to what is described in
Sec.s 2 and 5. In combination with set-oriented multilevel techniques for the computa-
tion of invariant sets, such as periodic orbits, attractors and general chain recurrent sets,
the technique allows, in principle, for the computation of manifolds of arbitrary dimension,
where the numerical effort is essentially determined by the dimension of the manifold. In
combination with rigorous techniques for the implementation of this approach, it is pos-
sible to compute rigorous coverings of the considered object. For a more detailed expo-
sition of the general method see [Dellnitz & Hohmann, 1996, Dellnitz & Hohmann, 1997,
Dellnitz et al., 2001, Dellnitz & Junge, 2002]. The algorithm is implemented in the software
package GAIO [Dellnitz et al., 2001].

6.1 The box covering algorithm

The box covering algorithm applies to a discrete-time dynamical system, that is, to a diffeo-
morphism D. In the context of approximating global manifolds, it can compute the unstable
manifold of an (unstable) invariant set of D in a compact region of interest Q. In this
section, we explain how this method can be used for the computation of a two-dimensional
(un)stable manifold of a saddle x0 in R

3.
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Here, the diffeomorphism D : R
3 → R

3 is given by the time-τ map of the vector field
(1). For an unstable manifold τ > 0, while for a stable manifold τ < 0 to account for
reversing time. Numerically, the map D may be realized by classical one-step integration
schemes. Since the algorithm involves integration over short time intervals only, typically
the requirements in terms of accuracy or preservation of structures of the underlying vector
field f are rather mild. The diffeomorphism D then has a hyperbolic saddle fixed point
x̄ = x0 and, in the case τ < 0, x̄ has a two-dimensional unstable manifold W u(x̄), which is
identical to the stable manifold of x0.

The idea of the algorithm is as follows. Imagine a finite partition P of Q. The method
first finds a (small) collection C0 ⊂ P that covers the local unstable manifold W u

loc(x̄). This
local covering of W u(x̄) is extended in steps, where in each step the sets in the current
collection Ck are mapped forward under D. All sets in P that have an intersection with the
images of Ck are added to the current collection of sets, yielding Ck+1.

More formally, let P0,P1, . . . be a nested sequence of successively finer partitions of Q:
We take P0 = {Q} and each element P ∈ Pℓ+1 is contained in an element P ′ ∈ Pℓ and
diam(P ) ≤ γ diam(P ′) for some fixed number 0 < γ < 1.

The algorithm consists of two main steps:

1. Initialization: Compute an initial covering C(k)
0 ⊂ Pℓ+k of the local unstable mani-

fold W u
loc(x̄) of x̄. (Here the index k indicates the fineness of the initial partition.)

This can be achieved by applying a subdivision algorithm for the computation of rel-
ative global attractors to the element P ∈ Pℓ containing x̄ for some suitable ℓ; see
[Dellnitz & Hohmann, 1996].

2. Growth: From the collection C(k)
j the next collection C(k)

j+1 is obtained by setting

C(k)
j+1 = {P ∈ Pℓ+k : D(P̃ ) ∩ P 6= ∅ for some set P̃ ∈ C(k)

j }.
This step is repeated until no more sets are added to the current collection, that is,
until C(k)

j = C(k)
j+1.

We can show that this method converges to a certain subset of W u(x̄) in Q. Namely, let
W0 = W u

loc(x̄) ∩ P , where P is the element in Pℓ containing x̄ and define

Wj+1 = D(Wj) ∩ Q, j = 0, 1, 2, . . . .

Then we have the following convergence result (see [Dellnitz & Hohmann, 1996]):

1. the sets C
(k)
j = ∪

P∈C
(k)
j

P are coverings of Wj for all j, k = 0, 1, . . .;

2. for fixed j and k → ∞, the covering C
(k)
j converges to Wj in Hausdorff distance.

In general, one cannot guarantee that the algorithm leads to an approximation of the
entire set W u(x̄) ∩ Q. This is due to the fact that parts of W u(x̄) that do not lie in Q may
map into Q. In this case, the method will indeed not cover all of W u(x̄) ∩ Q.

Under certain hyperbolicity assumptions on W u(x̄) it is possible to obtain statements
about the speed of convergence in terms of how the Hausdorff distance between the covering
and the approximated subset of W u(x̄) depends on the diameter of the sets in the covering
collection; see [Dellnitz & Junge, 2002] for details.
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Figure 13: Coverings of the Lorenz manifold during the first three growth steps are shown
in panels (a)–(c), where the covering of the previous step (the initialization box in the case
of (a)) is shown in yellow.

6.2 Realization of the method

The efficiency of the growth part of the algorithm significantly depends on the realization of
the collections Pℓ. In the implementation the Pℓ are partitions of Q into boxes

B(c, r) = {y ∈ R
n : |yi − ci| ≤ ri for i = 1, . . . , n} ,

32



where c, r ∈ R
n, ri > 0, are the center and the sizes of the box B(c, r), respectively. Moreover,

only partitions are used that result from bisecting the initial box Q repeatedly, where in this
process of bisecting the relevant coordinate direction is changed systematically (typically,
the bisected coordinate direction is varied cyclically).

Starting with P0 = {Q}, this process yields a sequence Pℓ of partitions of Q, that can
efficiently be stored in a binary tree. Note that it is easy to store arbitrary subsets of the full
partition Pℓ just by storing the corresponding part of the tree. In fact, in the initialization of
the algorithm one starts with a single box on a given level ℓ, so that the stored tree consists
of a single leaf. Whenever sets are added to the current collection, the corresponding paths
are added to the tree. Figure 13 illustrates the first three growth steps for the computation
of a covering of the Lorenz manifold on level 18 of the tree (all other parameters are as
described in Sec. 6.3 below). The yellow box in Fig. 13(a) was created in the initialization
step and then grown in one step to obtain the blue boxes. Panels (b) and (c) show two
further growth steps, where the covering of the previous step is again shown in yellow.

The hierarchical storage scheme has another crucial computational advantage in that it is
easier to decide which boxes are ‘hit’ by mapping the boxes that were added in the previous
step of the continuation algorithm. Namely, for each of these boxes B ∈ Pℓ+k one needs to
compute the set F(B) = {B ′ ∈ Pℓ+k | D(B) ∩ B′ 6= ∅}. Since B contains an uncountable
number of points, this problem must be discretized. The obvious approach is to choose a finite
set T of test points in B and to approximate F(B) by F̃(B) = {B′ ∈ Pℓ+k | D(T)∩B′ 6= ∅}.
Using the tree structure, the determination of the box that contains the image of a test point
can be accomplished with a complexity that only depends logarithmically on the number of
boxes in Pℓ [Dellnitz & Hohmann, 1997].

6.3 Box covering of the Lorenz manifold

Figure 14 shows a box covering of the Lorenz manifold W s(0). For the computation the
time-τ map of the Lorenz system (2) was considered with τ = −0.1. This map is realized
by the classical Runge-Kutta scheme of fourth order with a fixed step size of −0.01. The
region of interest Q is a box with radius (70, 70, 70) and center (10−1, 10−1, 10−1); this offset
centering is for a practical reason: it avoids having the origin on the edge of a box. Level
ℓ = 27 of the tree was used and 16 growth steps were performed, starting from a single box
containing the origin (i.e. k = 0). In each growth step, an equidistant grid of 125 test points
in each box was mapped forward. The resulting object contains more than 4 million boxes.

Figure 14(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint. The same view is shown in Fig. 14(b) but now the manifold is transparent.
Figure 14(c) shows an enlargement of the transparent rendering near the central region.
Because the method is using the time-τ map of the Lorenz system (2), the Lorenz manifold
first grows initially mainly in the direction of the strong unstable direction until the boundary
of the box of interest is reached. This can be seen nicely in Fig. 13. Later steps of the
growth process then start to build up the other part of the manifold, resulting in the images
in Fig. 14(a) and (b). The further enlargement near the scroll of the manifold in Fig. 14(d)
gives a local impression of the box covering. Notice that covering of the manifold has a
thickness of several box diameters at the end of the scroll.
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(a) (b)

(c) (d)

Figure 14: The Lorenz manifold computed with the box covering method of Dellnitz and
Hohmann seen from the common viewpoint (a). In panels (b) and (c) the manifold is
rendered transparently. Panel (c) shows an enlargement near the z-axis, and panel (d) gives
a closer look at the computed boxes.
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7 Discussion

After a recent flurry of research activity, several complementary methods are available today
to compute global (un)stable manifolds in applications. While these methods are still some-
what under development and testing, we hope that this survey will encourage the reader to
consider computing such global objects in systems arising in applications.

Each of the methods presented in the previous sections is based on a particular point
of view of characterizing a global (un)stable manifold. Common to all is the idea that the
manifold must be ‘grown’ from local information near the saddle point, and the difference is
in how this is done. The choice of method will generally depend on the application one has
in mind and on the particular questions one wants to answer. This discussion is intended to
give an indication of the specific properties of the different approaches.

Approximation by geodesic level sets. The method by [Krauskopf & Osinga, 1999,
Krauskopf & Osinga, 2003] is presently implemented for two-dimensional manifolds of sad-
dle points and saddle periodic orbits in a phase space of arbitrary dimension; see also
[Osinga, 2000, Osinga, 2003]. This implementation approximates the manifold linearly be-
tween mesh points, while the boundary value problems (9)–(10) are solved by single shooting.
It would be possible to use higher order interpolation between mesh points and collocation for
solving the boundary value problems. The method produces a very regular mesh that consists
of (approximate) geodesic circles and approximate geodesics. This means that the manifold
is rendered as a geometric object, independently of the dynamics on it. The mesh is, in fact,
constructed so regularly that it can be interpreted as a crochet pattern. This allows one to
produce a real-life model of the Lorenz manifold; see [Osinga & Krauskopf, 2004] for details.
During a computation the interpolation error is controlled by prescribed mesh quality param-
eters, so that the correctness of the method can be proved; see [Krauskopf & Osinga, 2003]
for details.

The price one has to pay for obtaining a guaranteed ‘geometric mesh’ is that one needs
to set up and continue a boundary value problem for each new mesh point. This makes
the method more expensive compared to other methods. With the non-optimized present
implementation and the accuracy parameters as in Sec. 2.3, computing the Lorenz manifold
up to geodesic distance 140 takes about 10 minutes, while the larger image in Fig. 5 with
69,900 mesh points took 40 minutes and 47 seconds on an 800MHz Pentium III machine.

Because it is based on the geodesic parametrization (6), the method works as long as
the geodesic level sets of this parametrization remain smooth circles. While this is not an
obstruction for computing the Lorenz manifold, there are examples where the computation
stops when a geodesic circle ceases to be smooth; see [Krauskopf & Osinga, 2003]. Further-
more, the method stops when it encounters an equilibrium or a periodic orbit on (the closure
of) the (un)stable manifold.

An implementation for global (un)stable manifolds of dimension three would already be
quite challenging. First of all, geodesic level sets are spheres in this case, on which one
needs to compute a regular mesh. Secondly, the method would require multi-parameter
continuation to continue the boundary value problems (9)–(10).
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BVP continuation of trajectories. The method by Doedel is arguably the most straight-
forward one. The continuation calculations can be carried out using the standard boundary
value continuation capabilities of AUTO. This means that all that is required are rather
standard AUTO equations and parameter files. The orbits that make up the manifold are
computed very accurately, due to the high accuracy of the orthogonal collocation method,
which is superconvergent for the solution at the mesh points and for scalar variables. Fur-
thermore, the boundary value continuation algorithms in AUTO, written in the f77 or C
programming language, are rather efficient, so that the calculations can generally be done
in relatively little computer time. For example, computing the Lorenz manifold up to a tra-
jectory arclength of 250 with a high resolution of NTST = 75, as in Fig. 7(a)–(c), takes 30
seconds on a 1.6 MHz Pentium M laptop; for NTST = 25, which still gives good resulution,
the computation time (including writing the output) drops to just over 10 seconds.

The method is very flexible in that it allows for different boundary conditions at the
endpoint of a trajectory. This means that one can compute only a part of interest of the
manifold, as was illustrated in Fig. 7(d). However, the manifold cannot be ‘grown’, so that
the continuation must be repeated if a larger part of the manifold is desired.

While visualizing or even animating the computed trajectories gives much insight into
the geometry of the manifold, it would require substantial post-processing to produce a nice
mesh representation of the manifold as a two-dimensional object. In particular, the density
of the orbits may be high in areas where the further evolution of the trajectories depends
sensitively on the current state. For example, in Fig. 7(a) and (c) the density of the orbits
is high along a curve in the direction of the z-axis, that is, the direction of the weakly stable
eigenvector.

Computation of fat trajectories. While also essentially computing trajectories, the
method of [Henderson, 2003] does produce a nice mesh representation by ‘fattening’ the tra-
jectories with a string of polygonal patches. The method tends to minimize the need for
interpolation. When interpolation is needed there is a guarantee that appropriate points ex-
ist, and at those points information is available which allows higher order interpolation or the
generation of an interpolating trajectory. The algorithms for computating fat trajectories,
for finding a third-order approximation to the manifold, and for finding interpolation points
are implemented for any dimension k of the manifold. The interpolation itself is presently
limited to k = 2. The code used to compute the Lorenz manifold is available as OpenSource;
see [Henderson, 2003].

The computation of a fat trajectory is more expensive than straighforward integration,
because it adds equations for the evolution of the tangent space and curvatures. How-
ever, the implementation of updating the computed boundary is quite efficient; see also
[Henderson, 2002]. The overall algorithm is relatively fast. For example, the Lorenz mani-
fold in Fig. 9 was computed on a 375MHz Power3 processor in about 7.3 hours.

Finally, the algorithm may encounter a geometric problem. It must be able to distinguish
between mesh points on different sheets of the invariant manifold, for example, where a
trajectory returns close to itself. This can be done by checking the values of t and σ at the
centers of the disks, but it demands sufficiently small disks so that those quantities vary
only little across each disk. This requirement may result in many more mesh points being
computed than is necessary to obtain a geometrically smooth manifold. This geometric
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problem occurs when trajectories spiral tightly, as is the case, for example, on the unstable
manifolds of the two equilibria on the wings of the Lorenz attractor.

PDE formulation. The PDE approach by [Guckenheimer & Vladimirsky, 2004] leads to
a very efficient numerical method for computing a mesh representation of a global (un)stable
manifold. The computational cost of this method is largely independent of the geometric
stiffness present in the system. For example, the Lorenz manifold in Fig. 12 was computed
in under 90 seconds on a Pentium III 850 MHz processor.

The constructed approximation M is ‘causal’, that is, it contains approximate trajectories
for all of the mesh points on ∂M. The method is not restricted to manifolds where the
level curves of the geodesic distance remain smooth. In particular, the method can be
used for approximating manifolds containing homoclinic and heteroclinic trajectories; see
[Guckenheimer & Vladimirsky, 2004] for examples.

The computational cost of adding each mesh point is proportional to the codimension
(n−k) of the manifold. When approximating manifolds of high codimension, this is clearly a
disadvantage compared to other methods for which this cost is proportional to the dimension
of the manifold k. A second limitation of the method is that the constructed approximation
is globally only first-order accurate, in contrast with, for example, the second-order accuracy
of computing fat trajectories.

A variant of the code exists that uses a global coordinate system defined by a triangu-
lated mesh. This means that the PDE method could be used in a continuation framework,
where an approximation of the manifold for one parameter value is used to build a global
parametrization for nearby parameter values. This would reduce the cost of locally extending
the mesh near ∂M at every step of the continuation.

The current implementation of the PDE approach works for two-dimensional manifolds
in a phase space of arbitrary dimension. An adaptive implementation for k ≥ 3 will have to
employ a robust algorithm for a higher-dimensional local mesh extension, which remains a
challenge.

Box covering. The box covering algorithm of [Dellnitz & Hohmann, 1996],
[Dellnitz & Hohmann, 1997, Dellnitz et al., 2001, Dellnitz & Junge, 2002] constructs a cov-
ering of (part of) the global invariant manifold. This covering consists of a collection of
small boxes. The method is formulated for discrete time systems, and differential equations
can be handled by considering a corresponding time-τ -map. It allows for the computation of
(un)stable manifolds of arbitrary invariant sets. It is possible (and implemented in GAIO)
to compute manifolds of arbitrary dimension. The ‘thickness’ of the covering depends on
the contraction rate transverse to the manifold. The stronger the contraction, the fewer
‘box-layers’ along the manifold will be produced. In particular, the algorithm needs to be
modified in order to apply it to Hamiltonian systems [Junge, 2000b].

The key implementational issue, namely how to compute the image of a given box, is
typically discretized by mapping a (finite) set of test points in each box. Evidently, depending
on the properties of the underlying map, the choice of these points determines the quality
of the resulting covering. Using too few points may lead to missing boxes, while using too
many slows down the computation. There exist strategies for a near-optimal choice of these
points. In the case that Lipschitz estimates of the dynamical system are available, one may
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compute rigorous coverings. In this case, it can be ensured that the manifold is contained
inside the union of the sets in the constructed covering [Dellnitz et al., 2001, Junge, 2000a].

The overall computational cost is quite high when good resolution, that is, many boxes
are required. For example, the Lorenz manifold in Fig. 14 of more that 4 million boxes took
about 120 minutes on a 1.25 GHz G4 processor. Since the numerical cost depends on the
dimension of the manifold, for manifolds of dimension larger than two it may only be feasible
to compute rather coarse approximations.
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