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Abstract

Which reaction networks, when taken with mass-action kinetics, have the capacity for mul-
tiple steady states? There is no complete answer to this question, but over the last 40 years
various criteria have been developed that can answer this question in certain cases. This work
surveys these developments, with an emphasis on recent results that connect the capacity for
multistationarity of one network to that of another. In this latter setting, we consider a network
N that is embedded in a larger network G, which means that N is obtained from G by remov-
ing some subsets of chemical species and reactions. This embedding relation is a significant
generalization of the subnetwork relation. For arbitrary networks, it is not true that if N is
embedded in G, then the steady states of N lift to G. Nonetheless, this does hold for certain
classes of networks; one such class is that of fully open networks. This motivates the search
for embedding-minimal multistationary networks: those networks which admit multiple steady
states but no proper, embedded networks admit multiple steady states. We present results
about such minimal networks, including several new constructions of infinite families of these
networks.
Keywords: chemical reaction networks, mass-action kinetics, multiple steady states, deficiency,
injectivity

1 Introduction

Reaction networks taken with mass-action kinetics arise in many scientific areas, from epidemi-
ology (the SIR model) to population biology (Lotka–Volterra) to systems of chemical reactions.
Indeed, reaction networks often form a suitable modeling framework when the variables of in-
terest take non-negative values. In the resulting mathematical model, a unique positive stable
steady state in the mathematical model can underlie robustness in the corresponding biological
system; conversely, the existence of multiple positive stable steady states can explain switching
behavior in the biological system.

This motivates the following important open question: which reaction networks, when taken
with mass-action kinetics, have the capacity for multistationarity? In other words, for which
networks do there exist a choice of positive reaction rate constants and a choice of a forward-
invariant set (or equivalently, a choice of non-negative initial concentrations) within which the
corresponding dynamical system admits two or more (nondegenerate) steady states?

At this time, there is no complete answer to this question; indeed, multistationary networks
have not been completely catalogued. Nonetheless, over the last 40 years various criteria have
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been developed that can either preclude or guarantee multistationarity for certain classes of
networks. The aim of the present article is to review these existing criteria, with an emphasis
on recent results that connect the capacity for multistationarity of one network to that of
certain related networks. We will take a broad view, instead of focusing on specific families
arising in chemistry or biochemistry. For a historical survey of experimental findings concerning
multistationarity, see the book of Marin and Yablonsky [34, Chapter 8].

Among the criteria mentioned above for precluding multistationarity are the injectivity cri-
terion [9] and the deficiency zero and deficiency one theorems [19]. However, failing both the
injectivity criterion and the conditions of the deficiency theorems is not sufficient for admitting
multiple steady states. An instance of such a network is the following:

B ⇆ 0 ⇆ A 3A+B → 2A+ 2B

(For readers familiar with the literature, this network has deficiency one, and each of the two
linkage classes have deficiency zero, so neither the deficiency zero nor deficiency one theorems
applies. Also, the injectivity criterion fails.) For this network, a simple calculation rules out
multiple steady states, or the deficiency one algorithm can be applied to reach the same conclu-
sion.

A somewhat more complicated example is the following:

0 ⇆ A 0 ⇆ B 0 ⇆ C

2A ⇆ A+B A+ C ⇆ B + C

In this case, the injectivity criterion fails, and the network has deficiency two – which implies
that the deficiency theorems do not apply, nor does the deficiency one algorithm. Nevertheless,
the advanced deficiency algorithm rules out multistationarity in this case.

By way of comparison, consider the next network:

0 ⇆ A 0 ⇆ B 0 ⇆ C

2A ⇆ A+B A+B ⇆ B + C

where the only change from the previous network is that the complex A+C in the last reaction
has been replaced by the complex A + B. This time we find that the network does admit
multiple steady states, because (1) it contains outflow reactions (such as A → 0) for all three
chemical species (A,B,C), and (2) a so-called “CFSTR atom of multistationarity” network,
namely, {0 ⇆ A , 0 ⇆ B , 0 ⇆ C , B → A+B , 2A → A+B} is “embedded” in the network
(see Theorem 4.5 and Corollary 5.2).

Concerning more complicated networks, how can we assess multistationarity? In order to
address this question, some recent work including our own has adopted the following strategy:
instead of working with a specific network, can we relate the properties of two or more networks?
Specifically, does a (large) network inherit some properties (such as multistationarity) of certain
simpler related networks?

This question is intimately connected with and motivated by the problem of model choice (cf.
[23]). A biological system displays a myriad of interactions among its components which take
place at a wide variety of temporal scales. A good modeling design involves critical decisions
about which components to incorporate within the model and which ones can be safely left out.
In turn, any such decision about inclusion and exclusion of features is guided by the properties
that the modeler is interested in examining as the model output, be it stability, multistationarity,
oscillations, chaos, or some other behavior.
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Within a cell, a huge array of chemical species might interact with each other in a variety
of ways. In this setting, suppose a model consists of a set of chemical reactions including one of
the form A + B → 2C; at least three major implicit assumptions typically underlie this choice
of model:

1. The presence or absence of other chemical species, besides A, B and C, does not affect the
rate of the reaction in which A and B combine to produce two molecules of C. However,
future work may invalidate this assumption if further experimentation reveals that the
reaction occurs only in the presence of an enzyme E, and thus the true chemical process is
more accurately represented by one or more reactions involving E, such as A+B + E →
2C + E.

2. The chemical reactions that are included in the model are the only ones that are necessary to
produce the dynamical range of behaviors under study, and inclusion of additional reactions
will not significantly affect this dynamical repertoire. Of course, it may turn out that species
A participates in an as-yet-unreported set of reactions involving a new substrate F , thus
causing A to be sequestered (and thus unavailable) for the original reaction A+B → 2C
when the substrate F is introduced into the reaction vessel or cell.

3. At the time scale of interest, the reaction A + B → 2C is a one-step reaction, in other
words, there are no intermediate complexes that form as a molecule of A combines with
a molecule of B to yield two molecules of C, and if any such intermediates do form, the
time scale at which the intermediate species exist is much shorter than the time scale at
which the species A, B, and C are stable. For instance, the reaction A + B → 2C, when
modeled at a finer temporal scale may be instead A+B ⇆ AB → 2C.

Of course, assumptions such as these ones are unavoidable because biological processes tend to
be quite complex, and even if the underlying mechanisms are known to a high level of detail,
modeling every known feature is unrealistic. Indeed, underlying all modeling effort is an appeal
to an implicit, redeeming principle that certain properties of the system are likely to be invariant
to the level of detail included in the problem, once certain essential ingredients are incorporated
into the model.

In this article, we explore the validity of this implicit assumption by probing it closely in
the case of multistationarity of reaction networks: how accurately are the system dynamics
reflected by our choice of which reactions, species, and complexes are included in the model?
Can the number of steady states increase with the inclusion of more reactions or species? Can
multistationarity be destroyed by increasing the level of detail included in the description of the
model? Do the number of intermediate complexes (representing, for instance, various forms of
an enzyme-substrate complex) in a model affect multistationarity? We take up these questions
and describe some results in this direction.

This article is organized as follows. Section 2 introduces chemical reaction networks and the
dynamical systems they define. Section 3 reviews existing criteria pertaining to the capacity
of a given network for multistationarity. In Sections 4–5, we recall what it means for one
network to be “embedded” in another, give some properties of this relation, and review existing
criteria for when multiple steady states can be lifted from an embedded network. In Sections 6–
7, we demonstrate the existence of infinitely many embedding-minimal multistationary and
multistable networks. Finally, a discussion appears in Section 8.

2 Background

In this section we recall how a chemical reaction network gives rise to a dynamical system.

3



We begin with an example of a chemical reaction: A+B → 3A+C. In this reaction, one unit
of chemical species A and one of B react to form three units of A and one of C. The reactant
A + B and the product 3A + C are called complexes. The concentrations of the three species,
denoted by xA, xB , and xC , will change in time as the reaction occurs. Under the assumption
of mass-action kinetics, species A and B react at a rate proportional to the product of their
concentrations, where the proportionality constant is the reaction rate constant κ. Noting that
the reaction yields a net change of two units in the amount of A, we obtain the first differential
equation in the following system, and the other two arise similarly:

d

dt
xA = 2κxAxB

d

dt
xB = − κxAxB

d

dt
xC = κxAxB .

A chemical reaction network consists of finitely many reactions. The mass-action differential
equations that a network defines are comprised of a sum of the monomial contribution from the
reactant of each chemical reaction in the network; these differential equations will be defined in
equation (2).

2.1 Chemical reaction systems

We now provide precise definitions.

Definition 2.1. A chemical reaction network G = (S, C,R) consists of three finite sets:

1. a set of chemical species S = {A1, A2, . . . , As},

2. a set C = {y1, y2, . . . , yp} of complexes (finite nonnegative-integer combinations of the
species), and

3. a set of reactions, which are ordered pairs of the complexes: R ⊆ C × C.

Throughout this work, the integer unknowns p, s, and r denote the numbers of complexes,
species, and reactions, respectively. Writing the i-th complex as yi1A1 + yi2A2 + · · · + yisAs

(where yij ∈ Z≥0 for j = 1, 2, . . . , s), we introduce the following monomial:

xyi := xyi1

1 xyi2

2 · · ·xyis

s .

For example, the two complexes in the reaction A+B → 3A+C considered earlier give rise to
the monomials xAxB and x3

AxC , which determine the vectors y1 = (1, 1, 0) and y2 = (3, 0, 1).
These vectors define the rows of a p × s-matrix of nonnegative integers, which we denote by
Y = (yij). Next, the unknowns x1, x2, . . . , xs represent the concentrations of the s species in
the network, and we regard them as functions xi(t) of time t.

For a reaction yi → yj from the i-th complex to the j-th complex, the reaction vector yj − yi
encodes the net change in each species that results when the reaction takes place. We associate
to each reaction a positive parameter κij , the rate constant of the reaction. In this article, we
will treat the rate constants κij as positive unknowns in order to analyze the entire family of
dynamical systems that arise from a given network as the κij ’s vary.

A network can be viewed as a directed graph whose nodes are complexes and whose edges
correspond to the reactions. A linkage class is a connected component of the directed graph:
the complexes y and y′ belong to the same linkage class if and only if there is a sequences of
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complexes (y0 := y, y1, . . . , yn−1, yn := y′) such that either yi → yi+1 or yi+1 → yi is a reaction
for all 0 ≤ i ≤ n− 1. A network is said to be weakly reversible if every connected component of
the network is strongly connected. A reaction yi → yj is reversible if its reverse reaction yj → yi
is also in R; these reactions may be depicted as yi ⇋ yj .

The stoichiometric matrix Γ is the s× r matrix whose k-th column is the reaction vector of
the k-th reaction i.e., it is the vector yj − yi if k indexes the reaction yi → yj . The reaction
matrix is the negative of the transpose, −Γt ∈ Z

r×s, and the reactant (source) matrix is the
r × s matrix whose k-th row is yi if k indexes the reaction yi → yj .

The choice of kinetics is encoded by a locally Lipschitz function R : Rs
≥0 → R

r that encodes
the reaction rates of the r reactions as functions of the s species concentrations. The reaction
kinetics system defined by a reaction network G and reaction rate function R is given by the
following system of ODEs:

dx

dt
= Γ ·R(x) . (1)

For mass-action kinetics, which is the setting of this paper, the coordinates of R are Rk(x) =
κijx

yi , if k indexes the reaction yi → yj . A chemical reaction system refers to the dynamical
system (1) arising from a specific chemical reaction network (S, C,R) and a choice of rate
parameters (κ∗

ij) ∈ R
r
>0 (recall that r denotes the number of reactions) where the reaction rate

function R is that of mass-action kinetics. Specifically, the mass-action ODEs are the following:

dx

dt
=

∑

yi→yj is in R

κijx
yi(yj − yi) =: fκ(x) , (2)

The stoichiometric subspace is the vector subspace of Rs spanned by the reaction vectors
yj − yi, and we will denote this space by S:

S := R{yj − yi | yi → yj is in R} . (3)

Note that in the setting of (1), one has S = im(Γ). For the network consisting of the single
reaction A+B → 3A+C, we have y2 − y1 = (2,−1, 1), which means that with each occurrence
of the reaction, two units of A and one of C are produced, while one unit of B is consumed.
This vector (2,−1, 1) spans the stoichiometric subspace S for the network. Note that the vector
dx
dt

in (1) lies in S for all time t. In fact, a trajectory x(t) beginning at a positive vector
x(0) = x0 ∈ R

s
>0 remains in the stoichiometric compatibility class, which we denote by

P := (x0 + S) ∩ R
s
≥0 , (4)

for all positive time. In other words, this set is forward-invariant with respect to the dynam-
ics (1).

A steady state of a reaction kinetics system (1) is a nonnegative concentration vector x∗ ∈
R

s
≥0 at which the ODEs (1) vanish: fκ(x

∗) = 0. A steady state x∗ is nondegenerate if
Im (dfκ(x

∗)) = S. (Here, dfκ(x
∗) is the Jacobian matrix of fκ at x∗.) A nondegenerate steady

state is exponentially stable if each of the σ := dimS nonzero eigenvalues of dfκ(x
∗), viewed

over the complex numbers, has negative real part. Also, we distinguish between positive steady
states x∗ ∈ R

s
>0 and boundary steady states x∗ ∈

(
R

s
≥0 \ R

s
>0

)
. A system is multistationary

(or admits multiple steady states) if there exists a stoichiometric compatibility class P with two
or more positive steady states. In the setting of mass-action kinetics, a network may admit
multistationarity for all, some, or no choices of positive rate constants κij ; if such rate constants
exist, then we say that the network itself is has the capacity for multistationarity or, for short,
is multistationary. One focus of this work is on the following open question:
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Problem 2.2. Which reaction networks are multistationary?

This question is difficult in general: assessing whether a given network is multistationary
means determining if the parametrized family of polynomial systems arising from the mass-
action ODEs (1) ever admits two or more positive solutions. Section 3 will describe results
for certain families of networks, and Section 8 provides an outlook on future progress on this
question.

2.2 The deficiency of a chemical reaction network

The deficiency δ of a reaction network is an important invariant. For a reaction network, recall
that p denotes the number of complexes. Also, let l denote the number of linkage classes
(connected components, as defined earlier). All networks considered in this article have the
property that each linkage class contains a unique terminal strong linkage class, i.e. a maximal
strongly connected subgraph in which there are no reactions from a complex in the subgraph
to a complex outside the subgraph. In this case, Feinberg showed that the deficiency of the
network can be computed in the following way:

δ := p− l − dim(S) ,

where S denotes the stoichiometric subspace (3). Note that in this case the deficiency depends
only on the reaction network and not on the specific values of the rate constants. The deficiency
of a reaction network is nonnegative because it can be interpreted as the dimension of a certain
linear subspace [18].

2.3 Networks with flow reactions

Here we give some definitions pertaining to flow reactions (which in some settings may be
interpreted as production and degradation).

Definition 2.3. 1. A flow reaction contains only one molecule; such a reaction is either an
inflow reaction 0 → Xi or an outflow reaction Xi → 0. A non-flow reaction is any reaction
that is not a flow reaction.

2. A reaction network is a continuous-flow stirred-tank reactor network (CFSTR network) if
it contains outflow reactions Xi → 0 for all species Xi of the network.

3. A reaction network is fully open if it contains inflow reactions 0 → Xi and outflow reactions
Xi → 0 for all species Xi of the network. (Thus, a fully open network is a CFSTR.)

Notation. The subnetwork of a network G consisting of the non-flow reactions of G will
be called the non-flow subnetwork of G and denoted by G◦. Similarly, any reaction network
G = {S, C,R} is contained in a fully open network obtained by including all flow reactions; we
call this the fully open extension of G and denote this CFSTR by

G̃ := {S, C ∪ S ∪ {0}, R∪ {Xi ↔ 0}Xi∈S} .

3 Precluding or guaranteeing multiple steady states

Broadly speaking, results for assessing multistationarity of a given network arise from two areas:
deficiency theory and injectivity theory. This section surveys these results (see Table 1). Ad-
ditionally, many recent results relate the capacity for multistationarity of one network to that
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of another; these will be described in more depth in Section 4.1. We note that, for simplicity,
many of the results we describe are not stated here in their strongest or most general form (for
instance, some results hold for more general kinetics than mass-action); instead, we refer the
interested reader to the original papers.

Table 1: Results for precluding or guaranteeing multistationarity

Precluding Guaranteeing
multistationarity multistationarity Both

Deficiency theory Theorems 3.1 and 3.2 Advanced deficiency and
higher deficiency theories

Injectivity criterion Theorems 3.3 and 4.16 Theorem 4.17

Using embedded networks Theorem 4.5

Other approaches Monotone systems results See Section 3.3

3.1 Deficiency theory

Chemical reaction network theory, initiated by Feinberg, Horn, and Jackson beginning in the
1970s, aims to analyze reaction networks independently of the choice of rate constants. One key
area of progress is deficiency theory. Here we review how these results can be used to preclude
multistationarity. For details, we refer to the review paper of Feinberg [19, §6]. The following
two results are due to Feinberg.

Theorem 3.1 (Deficiency zero theorem). Deficiency-zero networks are not multistationary.
Moreover:

1. Every zero-deficiency network that is weakly reversible admits a unique positive steady state
(for any choice of rate constants), and this steady state is locally asymptotically stable.

2. Every zero-deficiency network that is not weakly reversible admits no positive steady states
(for any choice of rate constants).

Theorem 3.2 (Deficiency one theorem). Consider a reaction network G with linkage classes
G1, G2, . . . , Gl. Let δ denote the deficiency of G, and let δi denote the deficiency of Gi. Assume
that:

1. each linkage class Gi has only one terminal strong linkage class,

2. δi ≤ 1 for all i = 1, 2, . . . , l, and

3.
l∑

i=1

δi = δ.

Then G is not multistationary.

Additionally, Ellison, Feinberg, and Ji developed advanced deficiency and higher deficiency
theories (including the deficiency one and advanced deficiency algorithms) which in many cases
can affirm that a given network admits multiple steady states or can rule out the possibility
[16, 20, 29]. All of these deficiency-related results have been implemented in CRN Toolbox, freely
available computer software developed by Feinberg, Ellison, Knight, and Ji [17]. For readers
who have a particular network of interest of small to moderate size, we recommend exploring
what the Toolbox can say about your network.
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3.2 The injectivity criterion

In [9], Craciun and Feinberg introduced a criterion that guarantees that a reaction network does
not admit multiple steady states. This test, which subsumed an earlier criterion of Schlosser
and Feinberg [39], is applicable even when the deficiency zero and deficiency one theorems are
not, so this approach is complementary to the results from deficiency theory.

The criterion arises from the following basic observation: letting fκ(x) denote the mass-
action ODEs (2) arising from a network and rate constants κ = (κij), a sufficient condition to
rule out multiple steady states is if the restricted map fκ|P : P → S is injective for all κ and
all stoichiometric compatibility classes P. Such a network is said to be injective or to pass the
injectivity criterion (also called the Jacobian criterion).

The next result summarizes the contributions of many works that extended and gave equiv-
alent formulations of the injectivity criterion. We let σ(x) ∈ {+,−, 0}n denote the sign vec-
tor of x ∈ R

n. Also, for an m × n matrix M and nonempty subsets I ⊆ {1, 2, . . . ,m} and
J ⊆ {1, 2, . . . , n}, we let MI,J denote the submatrix of M formed by the rows indexed by I and
columns indexed by J .

Theorem 3.3 (Injectivity criterion [5, 9, 10, 11, 12, 29, 40, 43, 36]). Let G be a reaction network
with stoichiometric matrix Γ ∈ Z

s×r, reactant matrix M ∈ Z
r×s
≥0

, and stoichiometric subspace
S = im(Γ). Let fκ(x) := Γ · R(x) denote the mass-action ODEs (2) arising from G and rate
constants κ = (κij) ∈ R

r
+. Then, the following are equivalent:

• For all κ ∈ R
r
+ and all stoichiometric compatibility classes P, the map fκ|P : P → S is

injective.

• For all κ ∈ R
r
+ and all x ∈ R

s
+, the Jacobian matrix of fκ(x) with respect to x is injective

on S.

• For all subsets I ⊆ {1, 2, . . . , s} and J ⊆ {1, 2, . . . , r} of size equal to the rank of Γ, the
product det(ΓI,J) · det(MJ,I) either is zero or has the same sign as all other nonzero such
products, and moreover at least one such product is nonzero.

• The sets ker(Γ) and M(σ−1(σ(S))) have no nonzero sign vector in common.

If these equivalent conditions hold, then G is not multistationary.

Remark 3.4. The original injectivity criterion of Craciun and Feinberg was for the case of
CFSTRs (each chemical species has an associated outflow reaction) [9]. Another proof of their
result appeared in the context of geometric modeling [8], and extended criteria were subsequently
achieved for arbitrary networks [25, 21, 29]. For injectivity criteria for more general kinetics
than mass-action, see the references listed in [36, Remark 3.5].

Remark 3.5. In some cases, the injectivity criterion can be translated to easy-to-check con-
ditions on certain graphs arising from the network, namely, the species-reaction graph or the
interaction graph [11, 35, 3, 27, 41]. We refer the interested reader to the review chapter of
Craciun, Pantea, and Sontag [13].

Additionally, Ivanova obtained a result for precluding multistationarity that is based on the
directed species-reaction graph [28]. More precisely, the graph yields a system of inequalities
involving the rate constants that, if consistent, guarantees that the mass-action system avoids
multiple steady states. For some networks, this inequality system is satisfied for all choices of
rate constants, and thus multistationarity is precluded. For an example of such a network and
an overview of these results, see [44, §5.4].
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Remark 3.6. Determining whether a given network is injective (and thus precludes multista-
tionarity) can be accomplished easily with the online software tool CoNtRol [15] (which gives
much more information as well). We encourage the reader to give it a try.

In their original setting of CFSTRs, Craciun and Feinberg extended ideas underlying Theo-
rem 3.3 to give a criterion that can guarantee multiple steady states; we will postpone stating
this result (namely, Theorem 4.17) until after introducing “embedded networks” in Section 4. A
related result for guaranteeing multistationarity for non-injective networks appears in [36, §3.2].

3.3 Other approaches for assessing multistationarity

Besides deficiency theory and injectivity theory, there are other approaches for determining
whether a network is multistationary. We mention several here, and then in Section 4 describe
another approach: relating the capacity for multiple steady states of two or more similar net-
works. First, monotone systems theory can be used to preclude multistationarity (for instance,
see [1, 2, 4, 5, 14]). In this context, if a dynamical system (such as a chemical reaction system)
preserves some partial order, then existence and uniqueness of a positive steady state can be
guaranteed. For graph-theoretic criteria for monotonicity, see [13]. Additionally, Conradi and
Mincheva used degree theory to obtain a graph-theoretic condition for ruling out multiple steady
states which is applicable for systems for which trajectories are bounded [6]. Finally, Schlosser
and Feinberg gave a condition guaranteeing multiple steady states for certain networks in which
each linkage class consists of a pair of reversible reactions [39, Theorem 5.1].

4 Precluding/guaranteeing multistationarity by using em-

bedded networks

In this section, we recall the definition of “embedding” and explain how this notion is useful
for assessing multistationarity. Embedded networks were introduced by the authors in [31],
generalizing Craciun and Feinberg’s notion of network projections [12, §8]. The embedding
relation generalizes the subnetwork relation – a subnetwork N is obtained from a reaction
network G by removing a subset of reactions (alternatively, setting some of the reaction rates
to be 0), while an embedded network is obtained by removing a subset of reactions or a subset
of species (alternatively, setting the stoichiometric coefficients of those species to be 0) or both.
For instance, removing the species B from the reaction A+B → A+ C results in the reaction
A → A+ C.

In some cases, removing species results in a trivial reaction – where the source and product
complex are identical. For instance, removal of both B and C from A+ B → A+ C results in
the trivial reaction A → A. So, after removing species, any trivial reactions and any copies of
duplicate reactions are discarded.

Definition 4.1. Given a set of reactions R and a set of species S, we define the restriction of R
to S, denoted R|S , to be the set of reactions obtained from R after implementing the following
steps: (1) set the stoichiometric coefficients of species that are not in S equal to 0, and then
(2) discard any trivial reactions, that is, reactions of the form Ci → Ci, where the source and
product complexes are identical.

As for removing both species and reactions, consider a network G = (S, C,R) and a subset
of reactions {y → y′} ⊆ R and a subset of species {Xi} ⊆ S that are to be removed. Then the
reactions in the resulting embedded network N will be denoted by RN = (R \ {y → y′}) |S\{Xi}
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in Definition 4.2 – operationally, we obtain N by first removing all the reactions {y → y′} from
G, and then removing the species {Xi} from G, and finally restricting the set of reactions to
the remaining species.

Definition 4.2. Let G = (S, C,R). The embedded network N of G obtained by removing the
set of reactions {y → y′} ⊆ R and the set of species {Xi} ⊆ S is

N =
(
S|C|RN

, C|RN
, RN := (R \ {y → y′}) |S\{Xi}

)
.

Note that the subset of reactions that remain in the embedded network N is not necessarily
a complement of {y → y′}|S\{Xi}, because some reactions may be removed because they are
either trivial reactions or duplicate reactions. Similarly, the subset of species that are in the
embedded network need not be a complement of the subset of the removed species {Xi}. The
following result establishes some basic properties about embedded networks; the proof appears
in the Appendix.

Proposition 4.3. Consider networks N and G, with stoichiometric subspaces SN and SG and
deficiencies δN and δG, respectively.

1. If N is an embedded network of G, then dim(SN ) ≤ dim(SG).

2. If N is a subnetwork of G, and each linkage class of N and each linkage class of G contains
a unique terminal strong linkage class, then δN ≤ δG.

4.1 Existing results for assessing multistationarity of one network
from another

In Section 3, we reviewed results for directly assessing multistationarity of a given network.
In this section, we recall what is known about how the capacity for multistationarity of a
given network G is related to that of one of its embedded networks N . Most of these results
“lift” steady states of N to G, so in these settings1, if N is multistationary then G is too, or,
equivalently, if G is not multistationary then neither is N . Therefore these results can be used
to preclude or to guarantee multistationarity. We summarize what is known in this setting in
Theorem 4.5, of which parts 1 and 3 are due to the authors of the present work [32], part 2 is
due to Craciun and Feinberg [10, Theorem 2], and part 4 is due to Feliu and Wiuf [23].

Definition 4.4. The induced network obtained by removing complexes {C1, . . . , Ck} is obtained
by removing those complexes and then replacing any pairs of reactions of the form C′ → Ci → C′′

with a reaction C′ → C′′ (and removing duplicate reactions, as necessary). Also, an intermediate
complex has the form Xi, where Xi is a species with total molecularity 1 (so it appears with
stoichiometry 1 in the intermediate complex, and appears in no other complexes).

Theorem 4.5. Let N and G be reaction networks that are related in at least one of the following
ways:

1. N is a subnetwork of G which has the same stoichiometric subspace as G,

2. G is the fully open extension of N , i.e. G = Ñ (in this case, N is a subnetwork of G),

3. N is a CFSTR embedded in a fully open network G,

4. N is an induced network of G obtained by removing one or more intermediates.

1In general, it may be impossible to lift multiple steady states from an embedded network N to G [32, Example
4.5].
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Then, if N admits m positive nondegenerate steady states (for some choice of rate constants),
then G admits at least m positive nondegenerate steady states (for some choice of rate constants).
Also, if N admits q positive, stable steady states, then G admits at least q positive, stable steady
states.

Remark 4.6. In the context of Theorem 4.5, G might admit more steady states than N . For
instance, a single reversible reaction has a unique positive steady state (by part 1 of the defi-
ciency zero theorem), but making it irreversible yields no positive steady states (by part 2 of the
theorem).

Remark 4.7. Each of the cases of Theorem 4.5 defines a partial order on the set of reaction
networks. For case 4, Feliu and Wiuf called a minimal network with respect to this partial
order (i.e. a network with no intermediates) a “core model”, and then “extension models” are
all networks obtained from the core model by adding intermediates. For case 3 (CFSTRs), the
authors gave the name “CFSTR atoms of multistationarity” to the minimal networks [32] (see
Definition 4.8 below), and now Theorem 4.5 motivates us to consider the general partial order
formed by the embedding relation.

Definition 4.8. 1. A fully open network is a CFSTR atom of multistationarity if it is mini-
mal with respect to the embedded network relation among all fully open networks that admit
multiple nondegenerate positive steady states.

2. An embedding-minimal multistationary network is minimal with respect to the embedded
network relation among all networks that admit multiple nondegenerate positive steady
states.

3. A fully open network is a CFSTR atom of multistability if it is minimal with respect to the
embedded network relation among all fully open networks that admit multiple nondegenerate
positive stable steady states.

4. An embedding-minimal multistable network is minimal with respect to the embedded net-
work relation among all networks that admit multiple nondegenerate positive stable steady
states.

Note that any embedding-minimal multistationary network that is fully open is a CFSTR
atom.

In Section 5, we will begin to answer the following open problems in the case of certain small
networks:

1. Catalogue all CFSTR atoms of multistationarity.

2. Catalogue all embedding-minimal multistationary networks.

Remark 4.9. In order to implement Theorem 4.5, the authors propose the following “wish list”:

1. A database of known CFSTR atoms of multistationarity, together with:

2. Software for automatically checking whether a given CFSTR contains as an embedded
network a member of the database (which would imply that the larger CFSTR admits
multiple steady states).

Going beyond item 1 of Theorem 4.5, we now consider the case that the stoichiometric
subspaces of G and its subnetwork N do not coincide2. Then the next (easy) result states that a

2In this case, when the two stoichiometric subspaces do not coincide, there is one result of the form in Theorem 4.5:
Conradi et al. proved that under certain conditions one can lift multiple steady states from certain subnetworks called
“elementary flux modes” [7, Supporting Information].
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sufficient condition for being able to lift positive steady states (or for the larger network to have
any positive steady states at all) is that some positive linear combination of the new reaction
vectors must be in the stoichiometric subspace of N . In particular, adding a single reaction to
N that is not in the stoichiometric subspace of N results in a network with no positive steady
states.

Proposition 4.10. Let N be a subnetwork of G with subspaces SN and SG, respectively. Let
T = {yi → y′i}i=1,...,q denote the reactions in G but not in N . If SN 6= SG and no positive linear
combination of the reaction vectors of T is in SN , i.e.

q∑

i=1

αi (y
′
i − yi) /∈ SN

for all (αi) ∈ R
q
>0, then G is not multistationary (and in fact G has no positive steady states).

Proof. Let {yi → y′i}i=q+1,...,r denote the reactions in N . If x∗ is a positive steady state of the
mass-action system arising from G and rate constants κ, then letting αi := κyi→y′

i
(x∗)yi and

rearranging the steady state equations yields
∑q

i=1
αi (y

′
i − yi) =

∑r

j=q+1
αi (y

′
i − yi) /∈ SN .

Remark 4.11. Underlying Proposition 4.10 and its proof is the following necessary condition for
a network to admit positive steady states: the reaction vectors must be positively dependent [20,
Remark 2.1].

Remark 4.12. In Theorem 4.5, the number of steady states of a “smaller” network N is a
lower bound on the number for a “larger” network G. The only result known to us where
(roughly speaking) a “smaller” network gives an upper bound on the number of steady states
of a “larger” network is due to Feliu and Wiuf [23]. They considered the (larger) “extension
models” of some “core model” network (recall Remark 4.7); then a “canonical model” is obtained
by adding certain the reactions to the core model. If this canonical model is not multistationary,
then every extension model of the core model also is not multistationary [23, Corollary 6.1].

4.2 Using square embedded networks to apply the injectivity criterion
to CFSTRs

In Theorem 4.5, we saw that embedded networks are useful for both “ruling out” and “ruling in”
multistationarity. In this section, we will see that certain embedded networks (namely, square
embedded networks) can be used to elaborate on the injectivity criterion (Theorem 3.3) for the
case of a CFSTR, and again give results both for precluding and guaranteeing multiple steady
states (Theorems 4.16 and 4.17).

Definition 4.13. 1. A network is square if it has the same number of reactions and species.

2. Consider a square reaction network G = (S, C,R) with R = {y1 → y′1, . . . , ys → y′s} . The
orientation of G is Or(G) = det([y1, . . . , ys]) det([y1 − y′1, . . . , ys − y′s]).

It is straightforward now (by translating part 3 of Theorem 3.3) to give the following equiv-
alent formulation of the injectivity criterion: all square embedded networks of size equal to the
dimension of the stoichiometric subspace and with nonzero orientation have the same orientation
(and at least one is nonzero). We will state this in Theorem 4.16 for the case of CFSTRs.

Any square embedded network that contains an inflow reaction has zero orientation. On the
other hand, removing a species which participates in an outflow reaction does not change the
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orientation of the resulting SEN. These two observations significantly simplify the calculation of
orientation of all s-square networks of a CFSTR in s species. In fact, we only need to examine
the square embedded networks of G◦ where G◦ is the non-flow subnetwork of G. This is because
there is an orientation-preserving one-to-one map between the subnetworks of G containing s
reactions at least one of which is a non-flow reaction, and the square embedded networks of G◦.

We need the following definitions in order to state this result precisely.

Definition 4.14. Consider a reaction network whose set of non-flow reactions is given by:

y1 → y′1 y2 → y′2 . . . yl → y′l

yl+1 ↔ y′l+1 yl+2 ↔ y′l+2 . . . yl+k ↔ y′l+k ,

where none of the first l reactions is reversible. The total molecularity of a species Xi in the
network is the following non-negative integer: TM(Xi) =

∑l+k

j=1

(
yji + y′ji

)
, where yji is the

stoichiometric coefficient of species Xi in the complex yj.

Definition 4.15. A network N is relevant if it satisfies the following properties:

• N has no outflows, inflows, generalized inflow reactions 0 →
∑

i aiXi, or generalized
outflows aXi → bXi (where 0 ≤ b ≤ a).

• N does not contain a pair of reversible reactions.

• Each species appears in at least two complexes and in at least one reactant complex.

• At least one species of N has a total molecularity of at least 3.

Non-relevant square embedded networks may be ignored for the purposes of establishing
injectivity. This observation contributes to the following result:

Theorem 4.16 ([9], Theorems 4.9 and 5.1 of [31]). For a CFSTR G with s species, with G◦ its
subnetwork of non-flow reactions, the following are equivalent:

1. G passes the injectivity criterion (i.e. satisfies the equivalent conditions of Theorem 3.3).

2. Each s-square embedded network of G has non-negative orientation.

3. Each square embedded network of G◦ has non-negative orientation.

4. Each relevant square embedded network of G◦ has non-negative orientation.

If these equivalent conditions hold, then G is not multistationary.

The following is a partial generalization of Theorem 4.16: for any network G (not necessarily
a CFSTR) with stoichiometric subspace S, the network G is injective if and only if each (dimS)-
square embedded network of G has non-negative orientation. This result is simply a translation
of item 3 of Theorem 3.3.

Finally, we present a criterion that can certify multistationarity in a CFSTR: if it fails
the injectivity criterion (that is, the equivalent conditions in Theorem 4.16 do not hold), then
sometimes a negatively oriented SEN can be used to guarantee multiple steady states. The
result is due to Craciun and Feinberg.

Theorem 4.17 (Determinant optimization method, Theorem 4.2 of [9]). For a CFSTR G with
s species, with G◦ its non-flow subnetwork, assume that there exists a negatively oriented square
embedded network of G◦ of size s, consisting of reactions yi → y′i (for i = 1, 2, . . . , s), and that
some positive linear combination of the negative reaction vectors yi− y′i is a positive vector (i.e.

there exist η1, η2, . . . , ηs > 0 such that
s∑

i=1

ηi(yi − y′i) ∈ R
s
>0). Then, the fully open extension of

G is multistationary.
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Building on Theorem 4.17, Feliu recently gave a new method based on injectivity for either
guaranteeing or precluding multistationarity for general (not necessarily CFSTR) networks [22,
§2.4].

5 CFSTR atoms of multistationarity

For certain small reaction networks, a complete characterization of multistationarity is known.
Here we report on these results, including what is known about small CFSTR atoms of multi-
stationary (recall Definition 4.8).

5.1 Classification of multistationary, fully open networks with 1 non-
flow reaction

Fully open reaction networks with a single non-flow reaction (irreversible or reversible) form
an infinite family of networks. Strikingly, however, the multistationary networks in this family
have been completely determined. Moreover, their characterization depends entirely on a simple
arithmetic relation on the stoichiometric coefficients, which is ascertained at a glance. The
following result is due to the first author [30], and its proof uses primarily the deficiency one
algorithm, along with deficiency theory (Theorems 3.1–3.2).

Theorem 5.1 (Classification of fully open networks with one non-flow reaction [30]). Let n be
a positive integer. Let a1, a2, . . . , an, b1, b2, . . . , bn be nonnegative integers.

1. The (general) fully open network with one irreversible non-flow reaction and n species:

0 ⇆ X1 0 ⇆ X2 · · · 0 ⇆ Xn

a1X1 + · · ·+ anXn → b1X1 + · · ·+ bnXn

is multistationary if and only if
∑

i:bi>ai
ai > 1.

2. The (general) fully open network with one reversible non-flow reaction and n species:

0 ⇆ X1 0 ⇆ X2 · · · 0 ⇆ Xn

a1X1 + . . . anXn ⇆ b1X1 + . . . bnXn

is multistationary if and only if
∑

i:bi>ai
ai > 1 or

∑
i:ai>bi

bi > 1.

Theorem 5.1 can be used to determine all CFSTR atoms with exactly one non-flow reaction:

Corollary 5.2 (Classification of CFSTR atoms of multistationarity with one non-flow reaction).
Up to symmetry, the CFSTR atoms of multistationarity that have only one non-flow reaction
are the following:

1. {0 ↔ A, mA → nA}, where m and n are positive integers satisfying n > m > 1.

2. {0 ↔ A, 0 ↔ B, A + B → mA + nB}, where m and n are positive integers with m > 1
and n > 1.

In Section 6.1, we will see that all the CFSTR atoms in Corollary 5.2 are in fact embedding-
minimal multistationary networks (Theorem 6.1).
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5.2 Classification of multistationary, fully open networks with 2 non-
flow reactions

A monomolecular complex has the form Xi for some species Xi, while a bimolecular complex
has the form 2Xi or Xi + Xj . A complex is at most bimolecular if it is the zero complex,
monomolecular, or bimolecular. A network is at most bimolecular if every complex in the
network is at most bimolecular.

By Corollary 5.2, there are no at-most-bimolecular CFSTR atoms with only one non-flow
reaction. An enumeration of at-most-bimolecular CFSTR atoms with two non-flow reactions
(irreversible or reversible) was completed by the authors in [32]:

Theorem 5.3 (Classification of CFSTR atoms of multistationarity with two non-flow reactions
and at-most-bimolecular complexes [32]). Up to symmetry, there are 11 CFSTR atoms of mul-
tistationarity that have only two non-flow reactions (irreversible or reversible) and complexes
that are at most bimolecular:

1. {0 ⇆ A, 0 ⇆ B, A → 2A, A+B → 0}

2. {0 ⇆ A, 0 ⇆ B, A → 2A, A ⇆ 2B}

3. {0 ⇆ A, 0 ⇆ B, 0 ⇆ C, A → 2A, A ⇆ B + C}

4. {0 ⇆ A, 0 ⇆ B, A → A+B, 2B → A}

5. {0 ⇆ A, 0 ⇆ B, A → A+B, 2B → 2A}

6. {0 ⇆ A, 0 ⇆ B, A → A+B → 2A}

7. {0 ⇆ A, 0 ⇆ B, A → A+B, 2B → A+B}

8. {0 ⇆ A, 0 ⇆ B, B → 2A → A+B}

9. {0 ⇆ A, 0 ⇆ B, B → 2A → 2B}

10. {0 ⇆ A, 0 ⇆ B, 0 ⇆ C, A → B + C → 2A}

11. {0 ⇆ A, 0 ⇆ B, A+B → 2A, A → 2B}

Thus, a CFSTR with two non-flow reactions (irreversible or reversible) admits multiple nonde-
generate positive steady states if and only if it contains one of the eleven networks above as an
embedded network.

Remark 5.4. The first network among the listed two-reaction CFSTR atoms {0 ⇆ A, 0 ⇆

B, A → 2A, A+B → 0}, along with the one-reaction atom {0 ↔ A, 2A → 3A} have received
close examination in the condensed matter theory literature because they exemplify important
principles regarding multistationarity and systems that undergo phase transitions [26, 38].

6 Existence of infinitely many embedding-minimal multi-
stationary networks

Corollary 5.2 demonstrated that there are infinitely many CFSTR atoms of multistationarity
with one non-flow reaction. In Section 6.1, we demonstrate that all the CFSTR atoms listed
in that result are in fact embedding-minimal multistationary networks (Theorem 6.1), showing
that there are infinitely many such networks. The molecularities of the complexes in those
networks are arbitrarily large, which is unrealistic, so Section 6.2 introduces a family of “seques-
tration networks” which are conjectured in Section 6.3 to form an infinite family of networks
with at-most-bimolecular complexes that are both CFSTR atoms and embedding-minimal mul-
tistationary networks.
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6.1 New result: two infinite families with one non-flow reaction

Here we see that even among networks with only one species, there exist embedding-minimal
multistationary networks. In fact, every CFSTR atom with only one non-flow reaction (enu-
merated earlier in Corollary 5.2) is an embedding-minimal multistationary network:

Theorem 6.1. For positive integers m and n, consider the following networks: Gm,n := {0 ↔
A, mA → nA} and Hm,n := {0 ↔ A, 0 ↔ B, A+B → mA+ nB}. Then

1. Gm,n is a CFSTR atom of multistationarity and an embedding-minimal multistationary
network if and only if n > m > 1.

2. Hm,n is a CFSTR atom of multistationarity and an embedding-minimal multistationary
network if and only if m > 1 and n > 1.

Proof. That Gm,n is multistationary if and only if n > m > 1 follows from part 1 of Theorem 5.1.
Additionally, those networks are CFSTR atoms of multistationarity (Corollary 5.2). Thus,
it remains only to show that no proper embedded network of Gm,n (when n > m > 1) is
multistationary. We begin by letting s, l, and k denote the rates of the reactions 0 → A,
A → 0, and mA → nA, respectively. Then, the single mass-action ODE (2) arising from Gm,n

is da
dt

= s−la+(n−m)kam, where a denotes the concentration of the species A; thus the number
of positive steady states is the number of positive real roots of the univariate polynomial

s− la+ (n−m)kam . (5)

The only nontrivial embedded networks of Gm,n arise from removing reactions (as Gm,n has only
one species), i.e. setting one more of the reaction rates s, l, or k to zero. It is straightforward
to see that this results in the polynomial (5) having at most one positive real root.

By analogous reasoning for Hm,n, we need only show that no proper embedded network of
Hm,n (when m,n > 1) is multistationary. We begin by denoting the rates of reactions 0 → A,
A → 0, 0 → B, B → 0, and A+B → mA+ nB by sA, lA, sB , lB , and k, respectively. Letting
a and b represent concentrations of species A and B, respectively, the mass-action mass-action
ODEs (2) are the following:

da

dt
= sA − lAa+ (m− 1)kab

db

dt
= sB − lBb+ (n− 1)kab

Now let N be an embedded network of Hm,n. We first consider the case when at least one
species (and possibly some reactions as well) are removed to obtain N .
(Species-removal case) If both species A and B are removed to obtain N , then N is trivial.
So, assume without loss of generality that species B is removed. Thus, N is a subnetwork of
{0 ↔ A → mA}, so its steady state equation is a linear equation in a, and thus cannot have
multiple solutions. So, we may assume that no species are removed from Hm,n to obtain N , i.e.
N is a subnetwork of Hm,n.
(Reaction-removal case) We must show that if N is a proper subnetwork of Hm,n, i.e. if one or
more rate constants is set to zero, then N is not multistationary. If one of the outflow rates lA
or lB is zero, then there are no steady states as either ȧ > 0 or ḃ > 0 for all (a, b) in the positive
orthant. On the other hand, if k = 0 or one of the inflow rates sA or sB is zero, then the steady
state equations system can be solved explicitly, and there is at most one positive solution.
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Remark 6.2. For the values of m and n for which Gm,n or Hm,n is multistationary, the
parameter space (for the rate constants) for which there exist multiple positive steady states is
identified in [30, Lemmas 4.3 and 4.5].

The networks Gm,n and Hm,n have only one non-flow irreversible reaction, and only one
species (in the case of Gm,n) or two species (Hm,n). Both form infinite families, so the molecu-
larities of the chemical species are unbounded. It may be argued that this is an unnatural prop-
erty, and molecularity in realistic models must be small. In particular, if we restrict complexes
to be at most bimolecular, then by Corollary 5.2 there are no CFSTR atoms of multistationarity
that contain only one non-flow reaction (reversible or irreversible).

In Section 6.3, we will show that even with the bimolecular restriction there are infinitely
many CFSTR atoms of multistationarity. Since molecularity is bounded, the numbers of reac-
tions and species will be unbounded in this family. The demonstration is by explicit construction
– using certain “sequestration networks” introduced next.

6.2 Sequestration networks

This subsection is a slight detour, in which we introduce sequestration networks, and apply many
of our earlier results to study them. We will call reactions of the type S +E → 0 sequestration
reactions. Here we view S as a substrate that binds with an enzyme E and is then sequestered
or rendered non-reactive. The reaction might be more accurately modeled as S + E → SE,
where SE represents the substrate-enzyme complex. However, we assume that the complex
dissociates very rarely, and does not participate in any other reaction within the network, either
because the complex is inert or because the complex leaves the reaction vessel through some
unspecified mechanism. In such an event, it is reasonable to model the reaction, for simplicity
and without changing the dynamics, as S + E → 0.

Let us describe an instance of a sequestration reaction in Escherichia coli. The trp operon is
a sequence of five genes that codes for the amino acid tryptophan. The regulatory protein, called
trp repressor, can bind in the presence of tryptophan to the operator site of the trp operon and
prevent its transcription. Thus, the presence of tryptophan inhibits its own production in E. coli
[37] – we can model the process as a sequestration reaction with E representing tryptophan and
S representing trp operon.

An even more compelling example is found in neuron signaling mechanisms. Communication
between a pair of neurons occurs via the medium of neurotransmitters released by the presynap-
tic neuron into the synaptic cleft. The signal is terminated by the action of neurotransporters,
which are neurotransmitter reuptake proteins that bind to neurotransmitter molecules and me-
diate their removal from the synaptic cleft [33]. In this case, E represents neurotransporters and
S represents neurotransmitters. In general, even though an individual sequestration reaction
is symmetric in S and E, their distinct chemical roles are revealed when considered within a
network.

Next we define a sequestration network, in which a synthesis reaction of the type X1 → mXn

is coupled with n − 1 sequestration reactions. When n is even, the sequestration reactions
generate negative feedback to the synthesis reaction, while when n is odd, the feedback to the
synthesis reaction is positive. We will establish that this positive feedback results in the capacity
for multiple steady states (Theorem 6.4).

Definition 6.3. For positive integers n ≥ 2,m ≥ 1, we define the sequestration network Km,n
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of order n with production factor m to be:

X1 → mXn (6.2.1)

X1 +X2 → 0 (6.2.2)

...

Xn−1 +Xn → 0 (6.2.n)

The sequestration network Km,n has n species, n (non-flow) reactions, and for 1 ≤ m ≤ 2,
its complexes are at most bimolecular. Also, K2,n is an embedded network of, and is inspired
by, a reaction network analyzed by Schlosser and Feinberg [39, Table 1].

The following result classifies the multistationarity of the fully open extensions of the Km,n’s;
it will follow immediately from Lemmas 6.5 and 6.9 and Theorem 6.8.

Theorem 6.4. For positive integers n ≥ 2 and m ≥ 1, the fully open extension K̃m,n of the
sequestration network Km,n is multistationary if and only if m > 1 and n is odd.

Our analysis of the sequestration networks begins with the following results.

Lemma 6.5. For any positive integer n ≥ 2, if m = 1, then the fully open extension K̃m,n of
the sequestration network Km,n is not multistationary.

Proof. For all m ≥ 1, the maximum total molecularity of any species in Km,n is m+1. Thus, if
m = 1, then the maximum total molecularity is 2, so by definition Km,n has no relevant square
embedded networks. Therefore, by Theorem 4.16 the network does not admit multiple steady
states.

Lemma 6.6. For positive integers n ≥ 2 and m ≥ 1, the sequestration network Km,n has no
proper, relevant square embedded network.

Proof. Let N be a relevant SEN of Km,n. Then N must contain the species Xn, because
otherwise the maximum total molecularity of N is less than three and N must contain the
reactions (6.2.1) and (6.2.n) because Xn must appear in at least two complexes. N must contain
X1 because otherwise (6.2.1) reduces to a generalized inflow reaction, which cannot occur in a
relevant SEN. This further implies that N must contain (6.2.2) because X1 must occur in at
least two complexes, which further implies that X2 must be in N , because otherwise (6.2.2)
reduces to an outflow reaction. Continuing this process, we find that the species X1, . . . , Xn

must be contained in N and the reactions (6.2.1) to (6.2.n) must be in N . Thus N = Km,n is
not a proper SEN of Km,n.

Lemma 6.7. For positive integers n ≥ 2 and m ≥ 1, the sequestration network Km,n is nega-
tively oriented if and only if m ≥ 2 and n is odd.

Proof. Write Km,n informally as An → Bn, where An is the source matrix and Bn is the product
matrix. Thus, the orientation Or(Km,n) is the sign of the following:

detAn det(An−Bn) := det




1 0 0 . . . 0 0
1 1 0 . . . 0 0
0 1 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 1




det




1 0 0 . . . 0 −m
1 1 0 . . . 0 0
0 1 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 1




= 1·
(
1 + (−1)n+1(−m)

)
,

which is negative if and only if n is odd and m ≥ 2.
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Theorem 6.8. For positive integers n ≥ 2 and m ≥ 2, if n is even, then the fully open extension
K̃m,n of the sequestration network Km,n is not multistationary. Furthermore, no sub-CFSTR

(a subnetwork that is a CFSTR) of K̃m,n is multistationary.

Proof. By Lemma 6.6, Km,n has no proper, relevant SENs. Thus, the only relevant SEN, if n is

even, is Km,n itself, which is positively oriented by Lemma 6.7. Thus, by Theorem 4.16, K̃m,n

is not multistationary, nor is any subnetwork of K̃m,n that is also a CFSTR (because relevant
SENs of such a network are relevant SENs of Km,n).

In the next section, we show that K̃m,n is multistationary when n is an odd.

6.3 New result: an infinite family with complexes that are at most
bimolecular

Here we show that the fully open extension of the sequestration network Km,n, which has n
reactions and n species, admits multiple positive steady states when n is odd.

Lemma 6.9. For positive integers n ≥ 2 and m ≥ 2, if n is odd, then

1. K̃m,n is a multistationary CFSTR, and

2. no fully open network that is an embedded network of K̃m,n (besides K̃m,n itself) is mul-
tistationary.

Proof. By Lemma 6.7 together with Theorem 4.17, to show that K̃m,n is multistationary (for
m ≥ 2 and n odd), we need only exhibit a positive linear combination of the reaction vec-
tors (1, 0, . . . , 0,−m), (1, 1, 0, . . . , 0, 0), (0, 1, 1, 0 . . . , 0, 0), . . . , (0, 0, . . . , 0, 1, 1) which is a positive
vector. This can be achieved by choosing as coefficients (η1, . . . , ηn) = (1, 1, . . . , 1,m+ 1).

For part 2, letN be a fully open network that is an embedded network of K̃m,n. Every SEN of
the non-flow subnetworkN◦ ofN is an SEN ofKm,n, so in light of Theorem 4.16 and Lemmas 6.6

and 6.7, N◦ must equal Km,n in order for N to be multistationary, i.e. N = K̃m,n.

The following conjecture is what remains for us to show that the networks K̃m,n in Lemma 6.9
are CFSTR atoms of multistationarity. It is true for n = 3 and m = 2.

Conjecture 6.10. For positive integers n ≥ 2 and m ≥ 2, if n is odd, then K̃m,n admits
multiple nondegenerate steady states.

Theorem 6.11. If Conjecture 6.10 holds, then:

1. For positive integers n ≥ 2 and m ≥ 2, if n is odd, then K̃m,n is a CFSTR atom of
multistationarity.

2. There exist infinitely many embedding-minimal multistationary networks with complexes
that are at most bimolecular.

Proof. Assume that Conjecture 6.10 holds. Then part 1 follows from part 2 of Lemma 6.9.
It follows that the K̃2,n’s, for odd n ≥ 2, form an infinite family of at-most-bimolecular

CFSTR atoms of multistationarity. By definition, each such K̃2,n has at least one subnetwork
N = N2,n which is an embedding-minimal multistationary network.

We now claim that K2,n is a subnetwork of N . By way of contradiction, assume that this
is not the case, so N◦, the non-flow subnetwork of N , is a proper, embedded network of K2,n.
Consider a square embedded network Ni of N . If Ni contains an inflow reaction, then its
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orientation is zero. On the other hand, if Ni contains an outflow reaction, the species in the
outflow reaction can be removed without changing the orientation of Ni. Thus, to establish
injectivity of N , it suffices to show that all SENs of N◦ have nonnegative orientation (recall the
discussion after Definition 4.13), which is furthermore equivalent to showing that all relevant
SENs of N◦ have nonnegative orientation. Indeed, this follows from Lemma 6.6, as no proper
SEN of K2,n is relevant.

Thus, N2,n has n species, so these embedding-minimal multistationary networks (for odd n)
form an infinite family.

7 Existence of infinitely many embedding-minimal multi-

stable networks

In this section, we demonstrate the existence of infinitely many embedding-minimal multistable
networks, again via explicit construction. We will build on the findings for the networks Gm,n

studied earlier.

Theorem 7.1. For positive integers m 6= n, consider the network: Gm,n := {0 ↔ A, mA ⇆

nA}. Then Gm,n is a CFSTR atom of multistability and an embedding-minimal multistable
network if and only if n > 1 and m > 1.

Proof. We assume without loss of generality that n > m. We know from Theorem 5.1 that
Gm,n is multistationary if and only if n > m > 1. Let s, l, k+ and k− denote the rates of the
reactions 0 → A, A → 0, mA → nA, and nA → mA, respectively. Then, the single mass-action
ODE (2) arising from Gm,n is ȧ = s − la + (n − m)k+a

m − (n − m)k−a
n, where a denotes

the concentration of the species A; thus the number of positive steady states is the number of
positive real roots of the univariate polynomial

f(a) := s− la+ (n−m)k+a
m − (n−m)k−a

n . (6)

Note that Gm,n reduces to Gm,n when k− = 0. By Theorem 5.1, there exist parameter val-
ues s, l, k+ > 0 for which Gm,n has two nondegenerate positive steady states. Thus, for fixed
s, l, k+ > 0 such that Gm,n has two nondegenerate positive steady states, there exists a suffi-
ciently small k− > 0 such that Gm,n has three nondegenerate positive steady states. Further-
more, since f(0) = s > 0 and lima→∞ f(a) = −∞, the graph of f(a) crosses the a-axis from
above twice – these crossing points correspond to stable steady states.

The only nontrivial embedded networks of Gm,n arise from removing reactions (as Gm,n has
only one species), i.e. setting one of the reaction rates s, l, k+ or k− to zero. It is straightforward
to see that this results in the polynomial (6) having at most two positive real roots, of which at
most one corresponds to a stable steady state.

8 Discussion

As described in the Introduction, deciding whether a given network arising in practice is mul-
tistationary is an important first step in understanding its dynamics. Here we have presented
various criteria for answering this question. However, there are many networks for which none
of the existing criteria apply. To this end, we have seen that the approach via “transferring”
multistationarity from one network to a (typically larger) network can be helpful. Nonetheless,
we are still far from a complete answer.
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Looking forward, we highlight some future directions:

1. Future investigations will likely develop additional criteria for deciding multistationarity
tailored to networks arising in specific application domains.

2. Some networks arising in biology are CFSTRs. Can we use the idea of CFSTR atoms
or embedding-minimal multistationary networks to understand such networks that are
multistationary? As an example, Fouchet and Regoes analyzed a multistationary CFSTR
arising in immunology [24]; can we enumerate, and then interpret, the multistationary
networks embedded in this network? Siegel-Gaskins et al. perfomed a related analysis of
small gene regulatory networks [42]; see also [32, Remark 3.3].

3. We must address computational challenges inherent in enumerating CFSTR atoms and
embedding-minimal multistationary networks, and then providing a method for deter-
mining whether a given network contains as an embedded network, a CFSTR atom, for
instance.

Finally, our true interest is in atoms of multistability, as steady states observed in practice
are necessarily stable. Therefore, we need more criteria, guided by networks arising in practice,
for when such atoms can be lifted.

Appendix: properties of the embedded-network relation

Here we prove Proposition 4.3, restated here as Proposition 8.2.

Lemma 8.1. Let N be an embedded network of G.

1. If N is a subnetwork of G, then the stoichiometric subspace of N is a subspace of the
stoichiometric subspace of G.

2. If N is obtained by removing a set of species of G, then the stoichiometric subspace of N
is a projection of the stoichiometric subspace of G.

3. The number of complexes in N is no more than the number of complexes in G.

Proof. The stoichiometric subspace of a network N is SN := span{y′ − y|y → y′ ∈ N}. If N is
a subnetwork of G, {y′ − y|y → y′ ∈ N} ⊆ {y′ − y|y → y′ ∈ G}, and so SN is a subspace of SG.
If N is obtained by removing a subset of species of G, the reaction vectors of N are a projection
of the reaction vectors of G, from which the second assertion follows. As for the third item, if
N is a subnetwork of G, then the complexes of N are a subset of the complexes of G. In the
case of species removal, every complex in N is a projection of a complex in G, so this completes
the proof.

Proposition 8.2. 1. If N is an embedded network of G, the dimension of the stoichiometric
subspace of N is less than or equal to the dimension of the stochiometric subspace of G,
dim(SN ) ≤ dim(SG).

2. If N is a subnetwork of G, then the deficiency of N is no greater than the deficiency of G,
that is, δN ≤ δG.

Proof. The first assertion is a direction consequence Lemma 8.1. For the second item, we need
only show that if N is obtained from G by removing one reaction, then δN ≤ δG. In fact, we
will show in this case that δN ∈ {δG, δG − 1}. Suppose that N = G \ {y → y′}, i.e. {y → y′} is
the reaction that is removed from G to obtain N . If y′ − y is in the span of the reaction vectors
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of N , then dim(SN ) = dim(SG), otherwise dim(SN ) = dim(SG) − 1. Let pN and pG represent
the number of complexes, and let lN and lG represent the number of linkage classes of N and
G, respectively.

Case (i) (pN = pG − 2): Removing the single reaction {y → y′} from G results in removing
two complexes only if neither y nor y′ participates in any reaction of N . In other words, this
case occurs only if {y → y′} is itself a linkage class. Therefore, lN = lG − 1, and the result
follows.

Case (ii) (pN = pG − 1): In this case, either y or y′, but not both of them, participates in at
least one reaction of N , which implies that lN = lG.

Case (iii) (pN = pG): In this case, each of y and y′ participates in at least one reaction of
N . Suppose that removal of y → y′ from G results in a linkage class of G splitting into two
linkage classes of N , so that lN = lG + 1. Then δN ∈ {δG, δG − 1}. If removal of y → y′ from G
does not split a linkage class, then lN = lG. Since the linkage class does not split, there exists
a set of complexes in N , {y0, y1, . . . ym−1, ym} where y0 := y and ym := y′ such that either
yi → yi+1 or yi+1 → yi is a reaction in N for all i for which 0 ≤ i ≤ m−1. But this implies that
the reaction vector y′ − y is a linear combination of the reaction vectors ±(yi − yi+1). Thus,
dim(SN ) = dim(SG), and so δN = δG.

Remark 8.3. Removing a species from a reaction network, even if doing so does not decrease
the number of reactions, can cause the deficiency to increase, decrease, or remain the same.
For instance, removing species A from {A + B → 0, A → 2B} yields the embedded network
{B → 0 → 2B} and increases the deficiency from 0 to 1. An example in which the deficiency
does not change arises by removing A from the reaction A → B; both have deficiency 0. Finally,
removing the species A from the network {A+B → C → B → D → 2A+B} yields the network
{C ⇆ B ⇆ D}, which decreases the deficiency from 1 to 0.
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