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Abstract Traditionally, a bottleneck preventing the devel-
opment of more intelligent systems was the limited amount
of data available. Nowadays, the total amount of informa-
tion is almost incalculable and automatic data analyzers are
even more needed. However, the limiting factor is the inabil-
ity of learning algorithms to use all the data to learn within
a reasonable time. In order to handle this problem, a new
field in machine learning has emerged: large-scale learning.
In this context, distributed learning seems to be a promising
line of research since allocating the learning process among
several workstations is a natural way of scaling up learning
algorithms. Moreover, it allows to deal with data sets that
are naturally distributed, a frequent situation in many real
applications. This study provides some background regard-
ing the advantages of distributed environments as well as an
overview of distributed learning for dealing with “very large”
data sets.

Keywords Machine learning - Large-scale learning -
Data fragmentation - Distributed learning - Scalability

1 Introduction

Automatic learning has become increasingly important due
to the rapid growth of the amount of data available. In the
year 2000, the total amount of information on the Web varied
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somewhere between 25 and 50 terabytes [1]. By 2005, the
total size was approximately 600 terabytes [2]. Nowadays,
the total amount of information is almost incalculable. This
unrestrainable growth of data opens the way for new appli-
cations of machine learning. Automatic data analyzers are
needed since a human, even an expert, cannot look at a
“very large” data set and plausibly find a good solution
for a given problem based on those data. In this situation,
new challenges are raised regarding the scalability and effi-
ciency of learning algorithms with respect to computational
and memory resources. Practically, all existing implementa-
tions of algorithms operate with the training set entirely in
main memory. If the computational complexity of the algo-
rithm exceeds the main memory then the algorithm will not
scale well, will not be able to process the whole training
data set or will be unfeasible to run due to time or mem-
ory restrictions. However, increasing the size of the train-
ing set of learning algorithms often increases the accuracy
achieved by classification models [3], and thus, in order to
handle “very large” data sets, a new and active research field
emerges, large-scale learning [4,5]. It intends to develop effi-
cient and scalable algorithms with regard to accuracy and
to requirements of computation (memory, time and com-
munication needs). Large-scale learning has received con-
siderable attention in the recent years and many successful
techniques have been proposed and implemented [6—8]. The
different techniques proposed in the literature can be cate-
gorized into three main approaches where, in most cases,
techniques from separate categories are independent and can
be applied simultaneously. The three main approaches are
to:

— design a fast algorithm,

— use a relational representation, and
— partition the data [9].
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Following the last approach, one of the most promising
research lines for large-scale learning is distributed comput-
ing since allocating the learning process among several work-
stations is a natural way of scaling up learning algorithms. In
this study, we will explore this approach by presenting some
of the most popular distributed learning algorithms.

Regarding distributed algorithms, we can distinguish
between two different contexts. On the one hand, there are
models based on distributing data artificially between dif-
ferent computational systems, and normally, they move data
between them during the execution of the distributed algo-
rithm. In this context, we can find classical techniques such as
[10,11] and nowadays improvements like [12,13]. This con-
text is connected to a new computing paradigm namely “big
data” processing [ 14—16]. For example, the general approach
is offered by the Hadoop philosophy [17].

In this survey, we focus our attention on a second con-
text in which data are naturally distributed but moving them
between systems is not permitted. This constraint restricts
some techniques available for developing distributed algo-
rithms. Note, however, that these classes of algorithms will
be valid in both naturally and artificially distributed data.

2 Background

In the form of multi-core processors and cloud comput-
ing platforms, powerful parallel and distributed comput-
ing systems have recently become widely accessible. This
development makes various distributed and parallel comput-
ing schemes applicable to a variety of problems that have
been traditionally addressed by centralized and sequential
approaches. In this context, machine learning can take advan-
tage of distributed computing to manage big volumes of data
or to learn over data that are inherently distributed as can be,
for example, wireless sensors in a smart city.

2.1 Data fragmentation into distributed databases

In general, the data set used for training consists of a set of
instances where each instance stores the values of several
attributes. The distributed nature of such a data set can lead
to at least two common types of data fragmentation [18]:

— Horizontal fragmentation wherein subsets of instances
are stored at different sites.

— Vertical fragmentation wherein subsets of attributes of
instances are stored at different sites.

The great majority of distributed data sets are horizontally
fragmented since it constitutes the most suitable and nat-
ural approach for most applications. Vertical fragmentation
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is solely useful where the representation of data could vary
along time by adding new attributes.

Finally, a third type of data fragmentation is mixed
fragmentation wherein subsets of instances, or subsets of
attributes of instances, are stored at different sites. It is
defined as a process of simultaneously applying horizontal
and vertical fragmentation on a data set.

2.2 Why distributed databases? Some initial motivations

In a company, the database organization might reflect the
organizational structure, which is distributed into units. Each
unit maintains its own data set. In this distributed approach
for storing data, both efficiency and security are improved
by storing only the data required by local applications and so
making data unavailable to unauthorized users.

On the other hand, classical machine learning approaches
are designed to learn from a unique data set and, thus, to be
applied to distributed data, they would require the collection
of that data in a database for central processing. However,
this is usually either ineffective or infeasible for the following
reasons [19]:

— The cost of storing a central data set is much larger than
the sum of the cost of storing smaller parts of the data
set. Itis obvious that the requirements of a central storage
system are enormous. A classical example concerns data
from the astronomy science and especially images from
earth and space telescopes. The size of such databases is
reaching the scale of exabytes (10'® bytes) and is increas-
ing at a high pace. The central storage of the data of all
telescopes of the planet would require a huge data ware-
house of enormous cost. Another example of storage cost
considers a multinational corporation, with thousands of
establishments throughout the world, who wants to store
data regarding all purchases of all its customers.

— The computational cost of mining a central database
is much bigger than the sum of the cost of analyzing
smaller parts of the data. Furthermore, with fragments
as units of distribution, the learning task can be divided
into several sub-tasks that operate in parallel. A distrib-
uted mining approach would make a better exploitation
of the available resources. For example, the best way to
quickly develop a successful business strategy is to ana-
lyze the data in a distributed manner, since the centralized
approach takes too long due to the “very large” number
of instances.

— The transfer of huge data volumes over network might
take extremely much time and also require an unviable
financial cost. Even a small volume of data might create
problems in wireless network environments with lim-
ited bandwidth. Note also that it is common to have
frequently updated databases, and communication could
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be a continuous overhead that can even impede the useful-
ness of a learnt machine if its development and/or appli-
cation take too long.

— Data can be private or sensitive, such as people’s med-
ical and financial records. The central collection of such
data is not desirable as it puts their privacy into risk when
communicating, for example, financial corporations who
want to cooperate in preventing fraudulent intrusion into
their computing systems [20]. The data stored by finan-
cial corporations are sensitive and cannot be exchanged
with outsiders. On the other hand, in certain cases, the
data might belong to different, perhaps competing, orga-
nizations that want to exchange knowledge without the
exchange of raw private data.

Distributed algorithms deal with the above issues in order to
learn from distributed data in an effective and efficient way.

2.3 Advantages of distributed data learning

Most distributed learning algorithms have their foundations
in ensemble learning [21]. Ensemble learning builds a set of
classifiers in order to enhance the accuracy of a single classi-
fier. Although there are other methods, the most common one
builds the set of classifiers by training each one on different
subsets of data. Afterwards, the classifiers are combined in a
concrete way defined by the ensemble algorithm. Thus, the
ensemble approach is almost directly applicable to a distrib-
uted environment since a classifier can be trained at each site,
using the subset of data stored in it, and then the classifiers
can be eventually aggregated using ensemble strategies. In
this sense, the following advantages of distributed learning
come from the advantages of ensemble learning [22]:

— Using different learning processes to train several clas-
sifiers from distributed data sets increases the possibility
of achieving higher accuracy especially on a large-size
domain. This is because the integration of such classi-
fiers can represent an integration of different learning
biases which possibly compensate one another for their
inefficient characteristics. Hansen and Salamon [23] have
shown that, for an ensemble of artificial neural networks,
if all classifiers have the same probability of making error
of less than 0.5 and if all of them make errors indepen-
dently, then the overall error must decrease as a function
of the number of classifiers.

— Learning in a distributed manner provides a natural solu-
tion for large-scale learning where algorithm complexity
and memory limitation are always the main obstacles.
If several computers or a multi-core processor are avail-
able, then they can work on a different partition of data
in order to independently derive a classifier. Therefore,
the memory requirements as well as the execution time,

assuming some minor communication overhead, become
smaller since the computational cost of training several
classifiers on subsets of data is lower than training one
classifier on the whole data set.

— Distributed learning is inherently scalable since the grow-
ing amount of data may be offset by increasing the num-
ber of computers or processors.

— Finally, distributed learning overcomes the problems of
centralized storage, already mentioned in Sect. 2.2.

Thus, many researches on distributed data learning have been
concentrated on ensemble learning where the emphasis is put
on making accurate predictions based on multiple models. As
a consequence, one of the most promising research lines in
distributed learning is “local learning and global integration”.

2.4 Information to be combined

In distributed learning, as well as in ensemble learning,
there are several learnt models and therefore several poten-
tial answers for a given problem. As the goal is to obtain an
unique answer they have to be combined somehow. There
are, in general, two types of information that can be com-
bined [24]. On the one hand, the classifiers by themselves
and, on the other hand, the predictions of the classifiers.
The first approach presents several limitations. Learning
algorithms are concerned with learning concept descriptions
expressed in terms of the given attributes. These descrip-
tions can be represented in different ways as, for example,
in the form of a decision tree, a set of rules or a neural
network. Moreover, in distributed learning, the type of learn-
ing technique employed at one learning site might be dif-
ferent from the one employed at another, since there is no
restriction on this aspect. Consequently, the learning algo-
rithms to be combined could have different representations
and, in order to combine the generated classifiers, we need
to define a uniform representation into which the different
classifiers are translated. It is difficult to define such a rep-
resentation to encapsulate all other representations without
losing a significant amount of information during the transla-
tion. Furthermore, a probable and undesirable consequence
of this translation would be the restriction, to a large degree,
of the information supported by the classifier. For example,
it is difficult to define a uniform representation to merge a
distance-based learning algorithm with a rule-based learn-
ing algorithm and, even if it were possible, the amount of
information lost during translation might be unacceptable.
An alternative strategy to combine classifiers is to merge
their outputs instead of the classifiers themselves. In this way,
the representation of the classifiers and their internal orga-
nization is completely transparent since the type of infor-
mation is based on the predictions which are the outputs
of the classifiers for a particular data set, for example, a
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hypothesized class for each input instance. As in the pre-
vious case, there is a need to define an unique representation,
in this case with regards to predictions as they can be cat-
egorical or numerical (associated with some measure like
probabilities or distances). However, the difficulty to define
a uniform framework to combine the outputs is much less
severe than the one to combine classifiers, as numerical pre-
dictions can be treated as categorical by simply choosing, as
the corresponding categorial label, the class where the out-
puts reach the highest value. The opposite is not considered,
since converting categorical predictions into predictions with
numeric measures is undesirable or impossible.

3 Algorithms for distributed machine learning

The great majority of learning algorithms published in the lit-
erature focus their development on combining the predictions
of a set of classifiers, since any classifier can be employed in
this case, avoiding potential problems with concept descrip-
tions and knowledge representation. In this section, several
of the most popular distributed machine learning algorithms
will be described, that follow this approach.

3.1 Decision rules

One of the simplest way of combining distributed classifiers
consists on using non-trainable or adaptable methods of inte-
gration [25,26]. Instead, fixed rules are defined as functions
that receive as inputs the outputs of the set of learnt classifiers
and combine them to produce a unique output.

Consider a classification problem where instance x is to
be assigned to one of the C possible classes c1, ¢, ..., cc.
Let us assume that we have N classifiers and thus N outputs
yvi,i =1,..., N to take the decision.

According to the Bayesian theory, given measurements
vi,i =1,..., N, the instance x should be assigned to class
¢ provided the a posteriori probability of that interpretation
is maximum, i.e., assign

x — ¢;if P(cjly1, ..., yn) = maxg P(ckly1, ..., yN).

This is a correct statement of the classification problem
but the computation of the a posteriori probability func-
tions would depend on the knowledge of high-order statis-
tics described in terms of joint probability density functions
which would be difficult to infer. To avoid this problem and
make the rules more manageable, they must be expressed in
terms of decisions produced by individual classifiers. When
ameasure of belief, confidence, or certainty is available, pos-
terior probability can be estimated as P(c;|x) = y;, where
y; is computed as the response of a classifier i. This scenario
provides a scope for the development of a range of efficient
classifier combination rules[27]. Denote Vi (x) as the output
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of the classifier i in the class j for the instance x and provided

that the outputs y; are normalized, i.e., P(cj|x) = ZiiYk

some of the most popular rules are defined as:

— Product rule, x — ¢; if

N c N
-H1 iy () = max [ i, (x)
i=

i=1

— Sumrule, x — ¢; if

N c N
Z;‘ ¥i; () = max 3 yi, (x)
i=

i=1

— Max rule, x — ¢; if
N cC N
max y;, (x) = max max y;, (x)
i=1 " k=1 i=I

This rule approximates the sum rule under the assumption
that output classes are a priori equiprobable. The sum will
be dominated by the output which lends the maximum
support for a particular hypothesis.

— Min rule, x — ¢; if

N c N
min y; . (x) = max min y;, (x)
i=1"" k=1 i=l

This rule approximates the product rule under the
assumption that output classes are a priori equiprobable.
The product will be dominated by the output which lends
the minimum support for a particular hypothesis.

— Median rule, x — ¢; if

1 al c 1 N
5 2 Vi () = max — > yi, (x)

i=1 i=1

— Majority voting, x — ¢; if

N c N
D A = max Z} A, (x)
=

i=1

This rule is obtained from the sum rule under the assump-
tion that classes are a priori equiprobable and soft out-
puts y;, (x) are transformed into hard outputs [0,1] where
Ay (x) = 1if y; (x) = max"_, y;, (x) and Az, (x) = 0
otherwise.
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3.2 Stacked generalization

An alternative type of classifier combination approaches
involves learning a global classifier that combines the out-
puts of a number of classifiers instead of using fixed rules. At
the outset, stacked generalization [28], also known as staking
in the literature, was developed with the aim of increasing the
accuracy of a mixture of classifiers using a high-level model
for combining the low-level classifiers, but it can be easily
adapted to distributed learning.

Stacked generalization is a general method for combining
multiple classifiers by learning the way that their output cor-
relates with the true class. It works by deducing the biases of
the classifiers with respect to an independent evaluation set.
This deduction proceeds by generalizing the already trained
classifiers over a second space. In this second space, the
inputs x are the predictions of the classifiers for the instances
of the independent evaluation set, and the outputs are the true
class for those instances. The training procedure, adapted for
a distributed environment, is summarized as follows. It is
important to remark that, from now on and unless otherwise
stated, every step is executed in every learning node,

1. Divide the data into training and validation sets.

2. Train a classifier on the training set.

3. Broadcast the classifier to all other nodes. Note that at the
end of this step every node will contain every classifier.

4. Form the meta-level training set. Let y; (x) be the output
of the classifier i for the instance x of the validation set
and class(x) the true class, then the meta-level instances
will be of the form:

[y1(x), y2(x) ... yn(x), class(x)]

5. Send the meta-level subsets of data to a single node.
6. In this single node, a global classifier is trained on the
meta-level training set using all meta-level subsets.

When a new instance appears for classification, the output
of every local classifier is first computed to form a meta-level
instance that will be an input to the global classifier which
will be determined the final classification.

3.3 Meta-learning

Meta-learning [24] applies the concept of stacked gener-
alization on combining classifiers but investigates several
schemes for structuring the meta-level training set. Thus,
both approaches follow the same procedure but they differ-
entiate on how they form the meta-level training set and on
how they determine the final output of new instances, as it is
explained below.

1. Divide the data into training and validation sets.
2. Train a classifier on the trainingdata.

3. Broadcast the classifier to all other nodes.
4. Form the meta-level training set. There exist three types
of meta-learning strategies for combining classifiers.

— Inthe combiner strategy, the outputs of the classifiers
for the validation set form the meta-level set. A com-
position rule determines the content of the instances
of the meta-level based on different schemes,

— Meta-class. Similar to stacked generalization, it
uses the outputs of the classifiers together with
the true class,

[y1(x), y2(x) ... yn (x), class(x)]

— Meta-class-attribute. Similar to Meta-class with
the addition of the attributes of the instance in the
validation set,

[y1(x), y2(x) ... yn (x), x, class(x)]

— Meta-class-binary. Similar to Meta-class, again
the outputs of the classifiers for the validation
set are included, but in this case, every output
contains C binary predictions, as a strategy one-
versus-rest is followed for every classifier,

[yllmc (-x)$ Y21.¢c (x) -+ YNi. ¢ (.X), Class(x)]

— Inthe arbiter strategy, the meta-level set M is a subset
of the validation set, i.e., the meta-level is a particu-
lar distribution of the validation set. A selection rule
determines the subset of instances of the validation
set that will contain the meta-level set based on dif-
ferent schemes,

— Meta-different. Select the instances with outputs
that disagree to form the meta-level set My,

Mg = {x| y1(x) # y2(x) V y1(x) # y3(x)
VeV oy 1(x) # yul

— Meta-different-incorrect. In this case, also the
instances with outputs that agree but do not pre-
dict the true class are added to M,

M=M;U{x| y1(x) =y2(x) =--- = yu(x)
Aclass(x) # y1(x)}

— The hybrid strategy integrates the combiner and
arbiter strategies. Here, a composition rule form the
meta-level set on the subset of instances returned
when using a selection rule.

5. Send the meta-level subsets of data to a single node.

6. In this single node, build the meta-level training set con-
taining all meta-level subsets of data and train a global
classifier on the meta-level training set.

When a new instance appears for classification, the output
of the global classifier will depend on the scheme.
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— In the combiner and hybrid strategies, the output of every
classifier is first computed to form a meta-level instance
to the global classifier (combiner) which outputs the final
classification.

— Inthe arbiter strategy, the output is the class obtained with
majority vote among the local classifiers and the global
one (arbiter), breaking ties in favor of the arbiter.

In light of the above, we can say that the combiner strategy
tries to find a relationship among the outputs of the classifiers
and the desired output. On the contrary, the arbiter strategy
attempts to mediate among conflictive outputs wherein the
global classifier was trained on a biased distribution of the
validation set. Lastly, the hybrid strategy attempts to improve
the arbiter strategy by correcting the predictions of “contro-
versial” instances.

3.4 Knowledge probing

Knowledge probing [22] is also based on the idea of meta-
learning, but it uses an independent set of instances to build a
comprehensible classifier. Although meta-learning provides
useful solutions to distributed learning, the authors of knowl-
edge probing pointed out some fundamental limitations. The
principal one is the problem of knowledge representation in
the descriptive function, to which the final classifier does not
provide any understanding of the data as it is not the inte-
gration of the knowledge from the base classifiers but the
statistical combination of their predictions.

The key idea underlying knowledge probing is to derive
a descriptive model by learning from un-seen data and the
corresponding set of predictions made by the black box.
The basic steps of knowledge probing can be presented as
follows:

Divide the data into training and validation sets.

Train a classifier on the training set.

Broadcast the classifier to all other nodes.

Form the “probing” set using as inputs the inputs x of the
validation set and as desired class d(x) the one obtained
by applying a simple decision rule, like majority vote, to
the output of the classifiers. The probing instances will
be of the form:

Eal e

[x, d(x)]

5. Send the probing subsets of data to a single node.

6. In this [single node], build the probing set containing all
probing subsets of data and train a global classifier on the
probing set.

When a new instance appears for classification, the global
classifier will simply compute the final classification.
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3.5 Distributed pasting votes

Pasting votes [29] was proposed to build ensembles of classi-
fiers from small pieces or “bites” of data. Two strategies were
implemented, Ivote (I =importance) and Rvote(R =random).
Ivote sequentially generates data sets, and thus classifiers, by
sampling with replacement in a way that each new training set
has more instances that are more likely to be misclassified by
the ensemble of classifiers generated up to that point. Thus,
subsequent classifiers rely on the combined hypothesis of the
previous classifiers. The sampling probabilities are based on
the out-of-bag error, that is, a classifier is only tested on the
instances not belonging to its training set. The out-of-bag
error gives good estimates of the generalization error [30].
Rvote requires the creation of many bites of data by random
and is a fast and simple approach. Distributed pasting votes
[31] proposes a distributed approach following pasting votes.
The authors call the distributed approaches of pasting Ivotes
and Rvotes as DIvote and DRvote, respectively. The proce-
dure for DIvote is as follows. Note that every step is executed
in every node,

1. Build the first bite of data by sampling with replacement
z instances from the available subset of data.

2. Train a classifier on the first bite.

3. Compute the out-of-bag error as follows:

etky=pxetk—1)+ (1 — p) xrk)

where p is the p value (the use of p = 0.75 is recom-
mended [29]), k the number of classifiers in the ensemble
so far, and r (k) is the error rate of the k-th classifier on
the subset of data. The probability Pr(k) of selecting a
correctly classified instance is defined as follows:

e(k)

P =1—"2%

4. Build the subsequent bite of data. An instance is drawn at
random from the subset. If this instance is misclassified
by the majority vote of the out-of-bag classifiers, i.e.,
those classifiers for which the instance was not in their
training set, then put it in the subsequent bite. Otherwise,
put this instance in the bite with a probability of Pr(k).
Repeat until z instances have been selected for the bite.

5. Train a new classifier on the (k + 1)-th bite.

6. Repeat steps 3 and 4 for a given number of iterations to
produce a desired number of classifiers.

Pasting DRvotes follows a procedure similar to DIvotes.
The only difference is that each bite is a bootstrap replicate
of size z, where each instance has the same probability of
being selected. DRvote is very fast, as no intermediate steps
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of Dlvote are required. However, DRvote does not provide
the accuracies achieved by DIvote [31].

Dlvotes and DRvotes can essentially build numerous clas-
sifiers fast, as on each node numerous classifiers are built
independently. It is important to remark that the global clas-
sifier consists of multiple classifiers from multiple nodes.
When a new instance appears for classification, the global
classifier will simply compute the final classification by com-
bining the predictions of the ensembles of classifiers using a
voting mechanism.

3.6 Effective stacking

Effective stacking [32] is motivated by several problems
that arise in approaches based on stacked generalization (see
Sect. 3.2) when dealing with large scale, high dimensional
data. In stacking, the number of inputs in the meta-level
depends on the number of classes and nodes (it becomes the
number of classes times the number of nodes), a condition
that goes against scalability. Another problem is that itis nec-
essary to retain independent, validation, instances to train a
global classifier during the combination step in order to avoid
overfitting of the classifier. This can be a major drawback
since the global classifier is trained using only a sub-sample
of all available data.

Effective stacking attempts to counter the problems of
stacking in large scale by averaging the outputs of the clas-
sifiers and applying a sort of cross validation: each subset
of data serves as the training set for a local model and the
evaluation set for a global model. The basic steps of effective
stacking can be presented as follows:

1. Train a classifier on the subset of data.

2. Broadcast the classifier to all other nodes.

3. Form the meta-level training set using the outputs of
the classifiers along with the true class in the subset of
data, as in stacked generalization. Combine all classifiers
apart from the local one. This is done to insure unbiased
results, as the combination of classifiers requires training
on the local data upon which it was induced. The com-
bination performs stacked generalization of the averages
of the predictions of the classifiers. Thus, the meta-level
instances will be of the form:

[1 al .
— > Vi (), = D v (),
Ni:l Ni:l

1 N
¥ Z Yie (x), class(x)]

i=1

Note that the size of the meta-level training examples
stays equal to the number of classes in the domain regard-
less of the number of local classifiers.

4. Train N global classifiers, one in each site, on the corre-
sponding meta-level training set. These global classifiers
describe the knowledge of all classifiers apart from the
local one with respect to the local subset of data.

When a new instance appears for classification, the final
classifier will simply compute the final classification by com-
bining the predictions of the N global classifiers using the
sum rule (see Sect. 3.1).

3.7 Distributed boosting

Distributed boosting [33] modifies the AdaBoost [34] for its
application to a distributed environment. This algorithm pro-
ceeds in a series of T rounds. In every round ¢, a classifier is
trained using a different distribution D, for its training data
that is altered by emphasizing particular training examples.
Specifically, the distribution is updated to give wrong classifi-
cations higher weights than correct classifications. The entire
weighted training set is given to the classifier to compute the
hypothesis /. At the end, all hypotheses are combined into
a final hypothesis Ayy,.

During the boosting rounds, the node j maintains a local
distribution A;,; and the local weights w;, that directly
reflect the prediction accuracy on that node. The goal is to
emulate the global distribution D, obtained through iterations
when standard boosting is applied to a single data set obtained
by merging all subsets from the distributed nodes. The pro-
cedure is as follows. Note that every step is executed in every
node unless otherwise stated. On node j, j = 1,..., N we
aregivensetSj = (xj,l, yj,l), ceey (xj,mj, )’j,mj):xj,i S Xj,
with labels Yji € Yj =1,...,C.

Let B; =(i,yj):i= 1,...,mj,yj #yj,i

1. Initialize the distribution Ay over the instances, such
that A = %

2. Make a version of the global distribution D; 1, by initial-
izing the j-th interval [22;11 my+1, ZLZI mp] in the
distribution D; 1 with values m%

3. Normalize D;; with a normalization factor such that
Dj 1 is a distribution.

4, Fort=1,2,3,4,..., T

(a) Draw the indices of the instances according to the dis-
tribution D ; and train a classifier L j ; on the sample.

(b) Broadcast the classifier L ;; to all other nodes.

(c) Create an ensemble E; ; by combining the classifiers
L, and compute the hypothesis 4, : X x ¥ —
[0, 1] using the ensemble E; ;.

(d) Compute the pseudo-loss of hypothesis / ; as

1 :
€ =5 Z(i’y)ij Aj, )X —=hj(xji,yji)
+hje(xjis i)
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(e) Compute Vi =2y ep; wj.(i, yi) where

. L —hji(xji,yj) +hji(xji, )
wj,t(l7yj) — z J.t\ A0 a]CC Jt\A J

J
and p €0, 1,2.

(f) Broadcast V;, to all other nodes. Note that merging
all the weight vectors w; , requires a huge amount
of time for broadcasting, since they directly depend
on the size of the distributed data sets. In order to
reduce this transfer time, only the sums V;; of all
their elements are broadcasted.

(g) Create a weight vector U ; such that the j-th interval
[Z;;ll mp+1, 300 mplis the weight vector wj
while the values in the g-th interval, ¢ # j,q =
1,..., N are set to %

Dji.yj) pUji(y))

(h) Update Dy i Djryili,y)) = 2=t pi ),
where Z;; is a normalization constant chosen such
that D; 41 is a distribution. The values in the j-th
interval of the D ; after normalization make the local
distribution A ;.

Each node at round ¢ maintains its version D;; of the
global distribution D, and its local distribution A ,. The
samples in boosting rounds are drawn according to the distri-
bution D; ;. In order to simulate the boosting on centralized
data, our intention was to draw more data instances from
the sites that are more difficult for learning. The weights
w;,, directly reflect the prediction capability for each data
point, thus satisfying our goal to sample more examples
from the sites that are more difficult to learn. In order to
further emphasize sampling from the sites that are difficult
for learning, we consider dividing the weights w; ; by the
factor acc? , p €0, 1,2, such that the difference between the
weights from two sites is further increased.

4 Other strategies for distributed machine learning

In this section, two other strategies for distributed machine
learning are described that can be used alone or in combina-
tion with the algorithms previously described in Sect. 3.

4.1 Distributed clustering

Most distributed classification approaches view data distrib-
ution as a technical issue and combine local models aiming
at a single global model. This, however, is unsuitable for
inherently distributed databases, which are often described
by more than one classification models that might differ con-
ceptually.

@ Springer

Clustering distributed classifiers is based on: (i) a measure
of classifier distance, (ii) an efficient algorithm to compute
this distance measure for classifiers induced at physically
distributed databases, and (iii) a clustering algorithm that
will receive as input the calculated distances and will output
the clusters.

—

. Train a classifier L at each site on the subset of data D.
2. Broadcast the classifier to all other nodes.

3. Compute the distance of all pairs of classifiers apart from
the local one,

(a) Atevery site [, compute the disagreement measure as
follows:

L8
M
where M isthe sizeof D;, S; = {1, ..., N} —{l},and
(Sl(r]) equals 1 if classifiers L; and L; have different
output on instance r, and 0 otherwise.

(b) Broadcast the distance for each pair of classifiers to
all other nodes. Note that, at the end of this step,
every node will contain N — 2 calculated distances
for each pair of classifiers. The distance of each pair
of local classifiers is evaluated in all N nodes, apart
from the two nodes that were used for training these
two classifiers.

(c) Compute the average of these distances as the overall
distance for each pair of classifiers,

dp,(L;, Lj) = VG, j)eStii<

N
1
d(Li, L)) = 5— > dp,(Li, L))
lESiﬂSj

4. Cluster the classifiers using hierarchical agglomerative
clustering [35]. The sequence of merging the clusters can
be visualized as a tree-shaped graph, which is called a
dendrogram. For the automatic selection of a single clus-
tering result from the sequence, a user-specified cutoff
value can be provided, that affects when the agglomera-
tion of clusters will stop.

The descriptive knowledge that the final clustering result
conveys about the distributed classifiers, can be used for guid-
ing the combination of the classifiers. Specifically, the clas-
sifiers of each cluster can be combined in order to produce a
single classifier corresponding to each cluster.

4.2 Effective voting

Effective voting [36] is an effective extension to classifier
evaluation and selection [37]. A paired 7 test with a signif-
icance level of 0.05 for each pair of classifiers is applied
to evaluate the statistical significance of their relative per-
formance. Effective voting stands between methods that



Prog Artif Intell (2013) 2:1-11

combine all classifiers, such as decision rules or meta-
learning, and methods that just select a single model, such
as evaluation and selection. The former uses error correct-
ing through different learning biases at the expense of com-
bining some classifiers with potentially inferior predictive
performance. The latter selects one classifier at the expense
of not always being the most accurate one. Effective voting
attempts to select the most significant classifiers based on
statistical tests and then combine them by voting.
The training procedure is summarized as follows:

Divide the data into training and validation sets.

Train a classifier on the training set.

Broadcast the classifier to all other nodes.

Compute the error of the classifiers in the validation set.
Send the errors to a single node.

At this single node, compute the overall significance
index for every classifier L as:

SNk L=

N
Sig(Li) = Y _test(L;, L ;)
j=1

where

1 if L; is significantly better than L ;
test(L;, L;) = 1 —1 if L; is significantly better than L;
0 otherwise

When a new instance appears for classification, the output
of the global classifier will depend on the strategy.

— Select the classifiers with the highest significance index
and combine their decisions.

— Select the classifier with the lowest error rate along with
any others that are not significantly worse than this, and
combine their outputs.

— Select the three classifiers with the highest significance
index and combine their outputs.

Effective Voting attempts to first select the most significant
models with the aid of statistical tests and then combine them
through a voting process. It can therefore be considered as
a pre-processing method, rather than an actual combination
method.

5 Evaluating distributed algorithms
In the past years, the theory and practice of machine learning

have been focused on monolithic data sets from where learn-
ing algorithms generate a single model. In this setting, evalu-

ation metrics and methods are well defined [38]. Nowadays,
several sources produce data creating environments with
several distributed data sets. Also big data sets collected in
a central repository in which processing imposes quite high
computing requirements. Then one actually thinks about dis-
tributed processing of the data as a way to have a more pow-
erful computing platform.

In this novel situation, classical evaluation methods
and metrics are unsuitable as new variables appear, like
communication costs, data distribution, etc. On the one hand,
simulation runs the algorithm in a simulated execution envi-
ronment [39]. Such simulations often lead to models and
metrics that do not capture important aspects in distrib-
uted learning. The availability of distributed data sets for
experimenting is limited, an important obstacle to empir-
ical research on distributed learning. This raises the issue
of how to simulate the data properties of inherently dis-
tributed databases, in order to setup a robust platform for
experiments [40], e.g., natural skewness and variability in
context, which are found in real-world distributed data-
bases.

On the other hand, there are no standard measures for eval-
uating distributed algorithms. Many existing measures are
inadequate in distributed learning, showing low reliability
or poor discriminant validity. Measures might be concerned
with the scalability and efficiency of distributed approaches
with respect to computational, memory or communication
resources. Researchers usually vary the number of subsets of
data and measure the prediction accuracy on a disjoint test set.
The scalability of the proposed approaches is evaluated by
analyzing their computational complexity in terms of train-
ing time. But this is a very narrow view of distributed learning
and scalability. Many comparisons are presented in the liter-
ature but these usually focus on assessing a few algorithms
or considering a few data sets. Indeed, they most usually
involve different evaluation criteria. As a result, it is difficult
to determine how does a method behave and compare with
the other ones in terms of test error, training time and mem-
ory requirements, which are the practically relevant criteria,
from the size or dimensionality of the data set, and from the
trade-off between distributed resolution and communication
costs.

In the authors’ opinion, the PASCAL Challenge [41] pro-
vides a good starting point for anyone interested in pursuing
a more in-depth study of scalability and distributed systems.
To assess the models in the parallel track, the PASCAL Chal-
lenge define four quite innovative plots measuring training
time versus area over the precision recall curve, data set size
versus area over the precision recall curve, data set size ver-
sus training time, and training time versus number of CPUs .
Additionally, it may be useful to borrow some ideas from
[42] in which the authors are concerned with the scalability
and efficiency of existing feature selection methods.
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6 Conclusions

An overview of distributed learning was presented in this
work. Distributed learning seems essential in order to provide
solutions for learning from both “very large” data sets (large-
scale learning) and naturally distributed data sets. It provides
alearning scalable solution since the growing volume of data
may be offset by increasing the number of learning sites.
Moreover, distributed learning avoids the necessity of gath-
ering data into a single workstation for central processing,
saving time and money. Despite these clear advantages, new
problems arise when dealing with distributed learning as, for
example, the influence on accuracy of the heterogeneity of
data among the partitions or the need to preserve privacy of
data among partitions. Therefore, this is already an open line
of research that will need to face these new challenges.
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