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1. INTRODUCTION

The class of nonlinear programmiqg algorithms knewn as methods of_
feasible directions, or as medified metﬁods of centers; is éuiee iarge.
All the algorithms in this class apply to‘dlscrete optlmal control pro-
blems (see [9]1), but: only three or four of these can be extended for the }ifj;'
eolutlon of cont}nuous ppt;mal‘contrqlup;oblemse_ In this paper we shall
reﬁiew three éf tﬁe mosf promising methddeiof feaeible'difectiens fof :
optimal control: an exteneion of the FrankLWoife metﬁed [5]; wHich is a
composite of algorithms prOposed by Demyanov [4], Lev1t1n and Polyak.[7], 1};;

Barnes [2] and Armljo [l], a dual method of feasible d1rect10ns dev1sed

‘ by Pironneau and Polak [8], and a Zoutendljk -method [13]

From the p01nt of view of fea51ble d1rect10ns algorlthms, contlnuous }fiv
optimal control problems muet be divided into fou; categorles: (1) fixed
: tﬁpe ﬁroblems Qith fixed initial state,.free terminal seate,fand'simplee

eohstraiﬂes oe the contfél?'fii)-fixed tiﬁe'froblems‘withjinequality.cen-?:"
straints-on both the.initial and the terminai,state ana no coﬁ£r01 con;'
straintg, (iii) free time problems with inequality'eoestraints on the
initiai and tErminel states‘and simple constfainfé,on the_centrel,'aﬁd }
finally, (iv) fixed time problems with inequality seate space eenstfeints
ane constraints on the control.

'We shall ‘show that the above mentioned extension of-the Freﬁk-Wolfe
methodrcan be used for sblving,probleﬁs in category (i), that the Pironneeue.
Polak ﬁetﬁod can be used for solving problems in.eategory (ii), and that
the Zoutendijk method can be used fof solving discretized problems in category
'(iV). The Pironneau-Polak method can alse be used for solving proBlems in

category (iii). However, this requires a messy modification of the method,



Sééed on a Valenfine typenprénsfbrmatipﬂw' The int§res£ed readef wii} findtzf_f
thg'dgtails of this in [10].. )
2. THE NONLINEAR fROGRAMMINC-ALGORITHMS,
The. three noﬁlinear programming aigqrithg53 yhéch aréAgbing to adap;.-:i;'

fof the solution of optimal contrél probleﬁé% were originallyiintendea thf%u

solyé problems of the form

nin{£2(2) [ £1(2) < 0, 3 1,2, ey mdy @

whe;e the £': ﬁ%n *.ﬁzl’ j=0,1, ..., m, aré continﬁoﬁsly diffefentiablé. '“” -

We begin with a modificationvof the Frank-Wolfe methbd [5]»_,-1 whigh

can be used only when the set

e lnd@<co, -1, 2, om0 @y

' diféctionvfindiﬁgusubroﬁtine proposed by LevitihianQ-Polyak [5] and by -
"Barnes- [2], with an efficient step length subroutine due to Afmijo [1].

" Such "hybrids" are quite common in nonlinear programming.

é}gorifhm 2.3>(Modificationlof Frapk;WoifévMethod)
Step 0O: Seiect a.continuous; symmétrié, pbsiti&e semi;definife nxn
métrix D(z), an o € (0,1) and a B G'(O;l);z. (Try o =0.5, B = 0.7).;;
Step 1: Compﬁte'a starting point ZO-E Q, asvexplained in (2.7), below;‘
and set i = 0.

Step 2: Compute a point z, as a ‘solution of the problem
0 A . 0
d (29 = mln{(Yf (?i),z—zi Y+ (2 zi,D(zi)(z zi) )]

£3(z) <0, 5=1,2, ..., m} (2.4

and set d(z.) = E.—z..3
. 1 1 1

is ¢onvex. The modification of the Frank-Wolfe algoiithm'bélowlcombinés 3 ;7 ~f;,,



SteB 3: 1f do(zi) = 0, stop; else, céﬁpute the smallest integer
. k(zi) >0 such that

Kz) k(z)

0 i’ _ .0 _ i 0, ;
£ (zi+8 ; d(zi)) f (zi) B. ol VE (zi),d(zi) ) E'Of - (2.5)
. B _ k(zi)
Sfep 4: Set Zig1 T % f"B d(zi);
" 'Step 5: Set i = i+l and go to Step 2. ~H

The function do(-) used in aigorifhm (2;3)‘has_the foilowiﬁg proper- R
tiésf (1) do(z) < 0 for all z € Q. (ii) Suppoée that Q‘is coﬁvex and |
.that z, € Q is optimal for (2{1), then do(zi) =0 (i;é. do(zi) =0 is‘a
necessarf-condition of optimality)}l Thié-result.can be established by.f'
_reasoning‘similar to that‘in SeCtion 4}4 inv[9].- (iii) Wheh the set

satisfies the Kuhn-Tucker constraint-qualification,’do(zi)'= 0, for a

]

zg € @, if and only if there exist multipliers y°. > 0, j =1, 2, cee, m,

© such th;t1Vf°(zij £ 7y £3(z,) = 0 and u?fj(zi)!; 0, 3=1,2, ..., m. .
| © 3= - ~
When @ is convex, algorithm (2.3) does not jam up. Its cdnvefgence

properties can be summed up as folldwé (see Sec. 4.3 of [9]).. |

2.6 _Théorem: Suppose that Q is convex, and compact, and that the sequence - .
'{zi} is constructed by algorithm (2.3). If {zi} is finite, then its last o
elepent,zs, satisfies do(zs) =.O. AIf'{zi} is-infinite; then every.
accumulation point z of‘{zi} satisfies do(ﬁ)'= 0. n

2.7 Remark: Algorithm (2.3) requires a starfing péint z, € Q. Such a
point can be computed by applying algorithm (2.3) to the problem, in

ﬁ{n+l’

mih{yOIfJ(y) - yo <0, 3=1,2, ..., m}. (2.7)

A starting point (yg,yo) for solving (2.7) is obtained by taking Yo to



"be a good gﬁess and then setting yg = maxva(yO). When the set'{zlfj(z)A._‘f‘

3 ‘

<0, j=1, 2, ..., m} is not empty, after a finite number of iterations, ,” R

the algorithm QillAconstruct a (yg,yi) sgch‘that fj(yi) <0,3j=1, 2,
cees W, ét.which point we set_z0 =¥ fhfs is so'since‘the optimal.§0
ié stricﬁly negative. n
vFor the-sake of saving.space and so as'ﬁo exﬁibiﬁ'their COmmbnAfea—

:tqres,‘ﬁe state .the following two algo;ifhms.és.one, witﬁ.a parameter p.
fWheh P = 1, the’algorithm bécomes‘a compoéiiéiusing the Zouténdijk Pro--
cedufé 1 [13] direction finding subroutine and the Armijo step size sub~
routine [1]. When p =_2,'tHe algorithm becomes the Pironneau-Polak |
modified method of centers [8]. Theséatw0'algorithms,differ-both in their
dirécfioé finding aﬁd step iength subroutines. Both Qf';hese algorithms
'Vréquirejfhat.the sét Q ;-{zlfj(z) < 0,3 = i, 2, ..., m} be non émpty,

' ofherwiseAthey~jam‘up; Convexity of @ is not required.

Algorithm 2.8 (Zoutendijk Method of Feasible Directions and Pironneau-

Polak Modified Method of Centers).

Step 0: Select parameters A > 0, &' € (0,e4], o € (0,1), 8 € (0,1), .
Y > 0. Set p=1to obtain Zoutendijk Procedure 1 type method of feasible-

directions; set p = 2 to obtain Pironneau-Polak modified method of centers.

it

(It is difficult to recommend values for éo and v, but try 60 = 0.1, ¥
0.1; €' is a precision parameter, try e' = 10-6; try o = 0.25, B = 0.7.
Try A = 2 or A = 1.)

Step 1: Compute a z. € Q by applying (2.8) to (2.7), and set i = 0,

0
€ =_ EO-
Step 2: Set
Lz;e) = {3 € {1, 2, «oosm[(2) 2 - e} (2.9



I(zg,€) = Lze) VIOY 8 | (2.0
and go to Step 3p (p = 1 or 2).

: ~,.0 ' ' .0 1
Step 31: ~Compute (d (zi,s), d(zi,e)), where 'd (zi,e) < ﬁ2 R

d(zi,s) € ﬁ?“, as a solution of the linear program

ne

¢(zi,e) min d0|<ij(Zi),d ) % do 5_0; j E:J(ziQE)‘

_ (2.11)

Ja*l <1, %=1, 2, .oy m),

and:go to éteb 4. | o
Step 32: Compﬁté (do(z é) d(z e)) where do(z €) G-Fll
otep Jos  LOomE Tty CRE RIS WHER i2%0 T T

d(z,,e) € R", as a solution of the quédtatic'program'

i*€
b(zp.e) = min{d® + 21412 [<ve% 20,00 - & < o

Sz + vl 2,00 - <0, s€1,0), (212

and go to Step 4.
Step 4: If_¢?(zi,e) < - Yep, go to Stgp 6p;_e1se go to Stép 5.,:
'SteB 5: If € <e', stop; else, set € = Be_and go to Step 2.

Step 61: -Computé the smallest integer k(zi,s) 2_0 such that .

3o k(zi,g) o : . .
f (zi+AB d(zi,s))‘j_O for 3 =1, 2, v.., m and

k(z,,e) |
P n8 L Tz, - (2 |
‘ (2.13)

k(z.,e)
-ag 1 a(VfO(zi), d(zi,s))

IA

0,
and go to Step 7.
Step 62: Compute the smallest integer k(zi,e) > 0 such that4.

. k(Z_,E) . k(Z.,E)-
max{fo(zi+18 * d(zi,e)) - fo(zi); fJ(zi+AB * d(zi,e)),

Ak(z,,e) (2.14)

i=1,2, ..., m} =28 T aplzge) <0,



 and gb to Step 7.

: ) . k(zi,E)
Step 7: Set z ., =z, fﬂAB _ .d(zi,e)f
Step 8: Set i = i+l, and go to Step 2. . =n

Remark: Suppose that zg € Qland_that-¢(zi,0) is defined by (2.11) or'by

(2.12). Then $(z;,0) < 0, and ¢(z,,0) = 0 if and only if there exist’

B m ., . '
> 0, such that % uJVfJ(zi) = 0,

'multipliefs uo >0, ul > 0, tuey >

1= I

uij(z.)'= 0, 3 =1, 2, ...; m, I uJ‘
41 R ’ J':O

1,-i.e., #(z;,0) = 0 if and only
if 2, satisfies the F. John optimality éondition'[é] (see Sec. 4.3 of
[9D). "o

The convergence properties of,the two algorithms defined by.(2.12),

(which can be used even when the setllefJ(z)‘j_O, j 1, 2, ..., m} 'if
" is not convex, provided the éet3{z|fj(z) <0,3j=1,2, v.., m} is non-

- empty) are stated below., H

2.15 Theorem: Suppose that the setA{z|fJ(z) <0, j=1, 2, ..., m} is:

non-empty. Then, for p =1 or p = 2, -and €' = 0, algorithm (2.8) either
-~ jams up at a point zé, in which case ¢(zs,0) = 0, or it constructs an

> 2 . . A - ! . ' . ~ ) @
-infinite sequence {zi}i= such that every accumulation point z of {zi}i=0

0
sa?isfies 6(z,0) = 0. ”(séé [13] for p = 1 and [8] for p = 2). n

Nofe that a sequence {zi}:=0 constructed by (2.8) will always have
accumulation pointg when the set Q'(zo) é {z|f0(z)—f0(zo) < 0; fj(é).f_o,
j=1, 2, ..., m} is bounded. Note also that in using an algorithm such
as (2.8) or (2.3), there is no need to ektfact a convergent subsequence

of {zi}, since usually the sequence'{zi}:zo converges to the set {z € Q'(zo)!

$(z,0) = 0}, i.e. inf{ﬂzi—zulz € Q'(zo),¢(z,0) = 0} = 0, where K is the set
i€k :



of all positive integers.
3. THE OPTIMAL CONTROL PROBLEMS

For the purpose of applying the algorithms in Segfion'Z, we must
state ou;.optimal'con;rq} problems in a fgrm similar to (2.1). Thus,
éuppose-fﬁat.to <Aéf'are given énd that Lg[go,éf]-is.the'Banath:space of
equivalegce.classes of esseﬁtially bounded,‘méééﬁrable functions from

[to,tfjfihto ‘ q,"%ifh,norm'"u“06 = eés Sup“p(t)“, where . denotes the
. ' : : tE[tO,tf] o

euclidean norm. Sﬁppoée that hO:, W?Sx, ﬁ{q.* “?1 +‘F§l; ¢5'_FR§ +‘F?1

and h:. R® x R? « ﬁ?l > Rs are continuously differentiable functions.. -

Then we define £0: 1%« Lg[to,tf] 11 by
£9(g,u) = f RO (x(e,E,u),u(e),6) dt + p(x(eg,Em) - (3.D) -
-0

. where x(t,E,u), t € [to,tf],‘iS-the-solufion of the d.e.

a | : -
Ez-g‘-;h(x,u,t), F € [to,tf], ‘ -  »(3.2)

~ with x(to) = £,

Next, let g%: RS » F?l, j=1, 2,'...; mo, and g%: F?S > le,'j =

1, 2, ..., m be continuously differentiable functions. For j =1, 2,

f,
s M, M= my +mg, we define fj: s X~Lg[t0,tf] -> F?l asvfollowé:
fJ(E,u) = gg(g)s j = l: 2, vees mo ) . . (3-3)
f . (E.;,U) =_ gf(x(tfagau))y j=1, 2, ceey mf' (3'4)

With these definitions we shall be able to solve the problems P1l, P2,



P3, below.

Pl  minif (g,u>]g £y u(t) €U CRY, ¢t € ey 1Y, (3.5)
: with . : . o |
U={v.ETRq|ai'iv1ibi, 1=1,2, .., q}s (3.6)
or with ~ 3 : | ¥
 ouv=weRYwr <13, = (3.7)
P2 -mih{-fo(g,u)lfj-(g,u) <0, i=1,2, ., m (3.8

For P2 (see (3 3), (3. 4))we assume that either the set {(E,u) gO(E) < 0, gf(x(tf,
m m

£, u)) < 0} is not empty (g0 (go,go, cevs Bg ), g = (gf,gg, s B ))
or thati{EO} ='{£|g0(£) 5;0} and the set-{ulgf(X(tf,go,u)) < 0} is no;?
empty. m | B . N |
Finally, 1et N > 0 be an integér gnd let A = (tf—to)/N. ' For i.=‘Q; i,
2, ...s N, let gi: RS *’“?1, j=1,2, ..}; mi; Be_continuously‘differ-< o
ehtiaﬁle:“ Then the discrete optimal éoﬁtrol problem that we.can solve‘isll

| 0
P3 min{f (g,u)[gi(x(lA,g,u))'< 0, i=0,1, 2, ..., N,
' N-1"-

S o | | (3.9
§=1,2,..,m5 u(t) = E VTr(t -i8), v, €U CTRq}, S
i=0 :
- with U as in (3.6) or (3.7), fo as in (3.1) and with
n(t) = 1 for t € [0,4) . ' (3.10)

= 0 otherwise.

For P3, with U as in (3.6), we must assume that either the set'{(E,VO,v

1’
cees v D e (xGEB,EW) <0, =1, 25w, my, 120,01, 2, cn, N
N-1 ' . '
u(t) = ) v m(t-id), 2 € U} is non-empty; or that the set {Elgo(g),j_O}:=
i=0 - :
:{Eb}‘and tha; Fhe gég'{(vo, Vis eees vN—l) gi(x(iA,go,u)) <0, j=1, 2,...,mi,



- : N-1 | o
1=1,2, ..., N, u(t) = 2, v,n(t-id), v; € U.} is not empty. When U.

is as in‘(3.7); replace U by int;U in the preceding conditions. "

Note that the discretizatioo in P3 is only.of the control and not -
of tﬁe differential equation (3.2). However, while P1 and P2 are pro-
blems on the inflnlte dimen31ona1 space F‘ X. Lq[to,t 1, problem P3 is
.xdefined on the finite dimensional space_ﬁz X 72q x ﬁ?q ( WQS+NQ),
l and is obv1ous1y of the form of the problem (2 1), w1th n ; s+Nq and m.
determined by the number of the g; and the description of U.

The algorithms in Section 2 makeiose_of gradients and scalar prod-
octs.- For the oroblems stated in tois-eectioog Qeluse'the ecalar 7
product.(-,- )2 on W?S'x' Lg [to;tf]’ defined of"

- | 3 | |
( (El’ui)’4,(€2’u2) Yo= B8, ) + I (u,(t),ué(t) ,) dt, '(3.11)

o

" where, as before, (:,- ) denotes the euclidean scalar prodoet. ‘The deri- ...

vation of the gradients below can be found in [9] Section 2.5; here we
shall merely state the formulas for their computation. These gredients
have .the same properties with respect to linear expansions as gradients
in R®, Note that, as defined below, ij(g,u), j=20,1,...,m, is an

element (a pair) in R° «x LZ [t The first part of the pair is

0°tel
the gradient with respect to the initial state, while the second part

is the gradient with respect to the control. Thus, for problems Pl and -

P2,

VEO(E,0) = (T EO(6,w), TUEO(E,0) () = (= py(eq.E,u),

(3.12)
0
- [—(X( s&,u),ul),. )] Po(',E u) + ['——(X( EU) su(e),: )] ),



(i.e. it is a pair consisting of a vector in R® and of a vector valued

fuhction in 'Li [to,tf]) where po(-,é;u) is defingd byv

G Pl Ea) = - IR Ge(e,E,w,u(0),0) 1R (e, 60 R
' o ' (3.13)

dh T L
+ g Ge(E,50,u0,01 7, € [t
pO(tf’ ,u) =.=- [—Jp' (X(tS,‘E,u))}T- o (3.14) ] :
Also for problems Pi and fZ;'and i= 1,2,..I;m;
, agj |
O v
ved (e, W = (7 B e,w0,7 85 @) = (22 0,00, 5 = 1,2,..,m,
Cymy  gmg g
vVE (E,U) = (ng . (E,u), Vuf (E,u)) = (.-, Pj (tosg,u)’ o
| o . (3.16)
- [Eﬁ' (x(-,g,u),u(-),-)]T pj(',E,U)), J = 1,?, °"mf’ ’
.wﬁere,‘fér j'= i,2,..., mf,\thé pj(-;E,u) aré(défined'by
3:: Py (6850) = - GeC,E,0),u (), 017, (5,6,0),
‘ (3.17)
t € [tO’tf]’ '
: - Bg% . T , ' .
Pj (tfsgau) [a (x(tfsgsu).)] ' (3.17')

In the case of problem P3, the discretization of the control implies
that fo is a function of the initial state & and of the control sequence

vV = (vo,vl,...,v ). Hence, given an initial state {, and a control '

N-1
N-1
sequence V, we obtain, with u = Z viTr(t-iA)
i=0

-10-

(3.15)



0

S 3f T : I I,
N 0 A a£° T
and for i = 0,1 2,...,N -1, (note that V £ Fyml I etc.)
. Vi vy

250 te |
[ (E u)] .I. {- I . (x(t 6 u) u(t) ,£)] po(t £, u) +
e | |

0
oh°, T
[ 5, &(t,8,u),u(t),t)] I (t-ia)dt .
where Py is computed as in (3 13), (3 14)
B Slmllarly, for j= 1;2,...,mi and i = 0,1,2,..., N-1, we ebtain .v
| [ L xtasse, )1’ Piy(taow)s 0 (B.20)
agJ s o C - o
. h . . T -
[———(x(lA Es u))] =j -1 55 &(,8,u),u(e),e)]” x
Ji A dinas e
7h0 =

- Py (E:850) m(e=2h)de, for & = 0,1,...,i-1,

0 for £ = i, i+l, ..., N-1,

- where Py (t E u) is defined by

i3 (t,E,u) = [ (X(t g,u),u(t), t)] p (t € u),

dt (3.22)

e [ty-tels
Py (18,8,0) =~ [———— (x(ip,¢ u))] , (3.23)

Thus, the discretization in problem P3 does not remove the need for

integrating differential equations. Its main advantage is that it results

in a problem which we can solve, at least in principle, by algorithm (2.8),

~11-

G.o1)y



. with p = 1, whereas we do not know how to solve cdntinudus-time problems
with control and state space constraints by means of feasible directions

algorithms.
4. . EXTENSION OF NONLINEAR PROGRAMMING ALGORITHMS.

_ We shall now .show how to apply algorlthm (2 3) to. the problem Pl
algorlthm (2 8) w1th P =2, to problem P2, and algorlthm (2 8)’a,1 ';_ ,

p=1, to problem P3.

Problem.P1 and t'he modified Frank-Wolfe method (2.3) .

Thus, consider problem P1 and suppose that we have a control u, ()
such that u () evu for t € [to’tf]’ where U'is as in (3 6) or as in
(3.7). To compute ui+l(') according to algorlthmn(2;3)-we~must first

solve (2.4), where we associate zy with uy ( ) Followiné Béfnest[Z], h.

. : . 2.0
for 1mproved rate of convergence we set D(u )(t) = %'3 g (x(t Eo,u ),

u, t), t E [t , L ], if that matrix is p031t1ve sem1—def1n1te, otherw1se,' _ffftle ;

to av01d 51ngular subproblems, we set D(u )(t) . If we calculate
Vf (Eo,u ) by llnearlzatlon, rather than by formula (3 12), we f1nd that f‘

(2.4) is equivalent to the quadratlc cost “optimal control problem

0 | tf aho Ce e .v
d,(ui) = min{ [ ——-(x(t Eo,u )suy (t), t)Gx(t) +
. ’ : t

0

0 . v : o ' o
—2—*—‘— Ge(e580515) 5y (£, £)8u(t) + < su(t), D(ui)(t)au(t) Y. ldt + | ‘

(X(t ,€O,u ))6x Gk(t) sh-(x(t Egols ), u, (t) t)dx

BB (o (6,5 oy oy (0,800, € € [egtcl,

Gx(t ) = 0; Iu (t) + Su(t)] €U, t € [t }. 4.1)

te]

We solve (4.1) by means of the Pontryagin Maximum Principle [11] and

-12-




’ denote the optimal control for (4 1) by du (*). Next, we,must compute
' k(u,) - - '
the step size B - as given by (2.5), which in this case becomes,

because of (3.1) and (3.12),

_tf‘_ 0. . k(u ) I ' k(u ) '
f [h™ (x(t,E,,u,+8 Su, ),u (t)+B c3u (t), t)
A a S
4 : : AR ' ’(4.2)
- k(u )

g h (x(t go,u ),u, (c) t) -8 ca.(V f (zo,u )(t) Gu () ]dt < 0.

Note that in solving (4.1) we have also computed V f (go,u )(t)
‘0
- I <X(t Egoty) sy, (8, o’ Py ts so,u )+ [——— Ge(t,80,u;) 5uy (t) t)]

since the adjoint equations for (4. 1) c01nc1de w1th (3. 13), (3 14).

‘The next control U, (') is then computed accordlng to u, (t) = u.(t) +
- k(u,) : : . _ 1+l i
B Teu (), t € Qeg,ed.
: k(u,) _ v
Note that,.to compute'the step size B »- we may have to integrate
the system (3-2) (with & = 56) several'times; oncé‘fpr each trial valué of.

k > 0 which we wish to test for the condition in (4.2).

Problem P2 and the Pirohnéau—Polak Algorithm (2.8), with p = 2.

Next, let us turn to problem P2 for which we now adapt'algorithm.(2.8)h

with p = 2. fhr this purpose, we must find a way for solving.(2.12), with
the gradlents and scalar products as defined in Sectlon 3. This task is
made easy by the fact that (2.12) has a convénlent dual (see [8]), so that
¢(zi,€) and d(zi,e)rcan also be computed by solving the dual quadratic
program

d>(z ,e:) = max{ Z fJ(z )y - = || Z JVfJ(Z )l IU >0,

-3 € Iz sE) j € J(z L,E)

i €3Gz ,0), 2. W eu @

7 €
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and‘then'setting
R - gl | :
d(z,,e) = w;vEs(z. ). : ,
i je J(zi,e) i i | (4.48)

Where the ui, 3 E,J(zi,e), solve (4.3). The importance of (4.3) is
that the dimension of this problem depends only on the number-of € -
active constraints and not on the;dimenéion ofﬂzi. 'Consequently, even .
in the cese_of the infinite dimensional problem P2, .(4.3) remains a
finite:aimensionelyquadratic program. To be specific, given'e-feaSiblef;. a
initial state £, and a feasible control u(-), which we associate with

z, iﬁ (4.3), (4.4) . accord1ng to z, = (E »Uy N, (4 3) becomes,

¢(Z ,€) ‘= max{ . Z 3¢d Ju)- __( . .
J € 1(z ,s)u .,(g % ) B ( E J(z ,e) E J(z ,E)
('t .
B S ) 3 . _ j
+ j . I"‘U",'I'(Z'-. ,E)FU,I(Zi,E)dt) H ) hJ _?_ 0, ] E J(zi’ei_) ’ . e J(z El)l = 1},
g . 3= 0824080 (4.5)

" where the £9, § = 0,1,2 yoeeam, aze defined as in (3.1), (3.3) and (3.4),
I(z;,e) = UE{laumHﬂ@,u>>-J,={P2, A ), T <m,

0 21 . lr T - i
= (U LU LM seses M ), E,J(zi,s) is’ a matrix with colums.ng (E "
ui), j€ J(zi,e), the columns being ordered in the same way as the

J( s)(t) is a matrix valued function of t, the

componehts»of M, and F
(t) being ¥ ), 1 €36 0.

columns of F
° u,J (2, ,€)
Thus, to use (2.8) with p = 2, at each iteration we begin with a

feasible pair (Ei,ui) and an € > 0. Then, we carry out the following

operations.
_(1) We evaluate the functlons fJ(E Sus ), i =0,1,...,m.

(ii) (step 2 of (2 8)) We construct the index sets I(z ,E€) and J(z JE).
(iii) We calculate tbe gradients VfJ(gi,ui), jE& J(zi,e), according

to (3.12)-(3.17")

14—



(iv) We compute the coefficients. of the . quadratic form in (4.5).

- (v) (step 32 of (2 8)) We solve (4. 5) (the dual of (2.12)) by a method B
L 2 g
such as Wolfe's [12] to obtain a vector ui.= (Ngsuil,--vsu{.)'and

¢(ziaé)-
(vi) We set
i j € J(zi,e) 1‘5 i’ T 'f( . ?*:~ .
and . v . o ) l, |
(t) 1o edrr 0\ ren ; S A
Su,(t) = - WV OEN(E, ,u,) (B); O tasm
i j:é;J(z.,e)ﬂ T e .'-‘-(“i _?

so that we-associate d(z »€) w1th the pair (dg ,6u ( ))
(vii) We then go through the tests in Steps 4 and Step 5 of (2 8)

untll we reach Step 62,'where we calculate the smallest integer Y

_k(zi,e) such,thatj(seew(Ztlﬁ)),

KGz;e) . k(zg,e)

t
, ('t )
: AAmax{d[' [h (x(t E‘*XB 1 Ggi?ui+kﬁ L Gui),,.
. , .
0 - :
. k(Zi,S) . _ ' 0 ' . L : ) T
u, (£)+2B | S Su (1), t) - h (x(t,si,gi),ui,-t)]d_t; (4.6) . -
k(z;,8) -  k(zgee)
(5 +AB GEi), j=1,2,.. >, 3 gf(X(tf,E +AB 651,
k(z, ,€) ' o k(z, )
u A8 i Su)),g = 1,25..,m}-2B * a¢(zi,e) < 0
’k(zi,e) k(z ,€)
(viii) (Step 7) We set €i+l = £i+k8 v GEi, Uiy T Yy + AB ) -6gif‘*:‘ﬂf%$

and continue, with i+l replacing i'in,aklnéxpressions.

Problem P3 and the Zoutendijk type Algorithm (2.8) with p = 1.

Apart from the cumbersome evaluation of functions and derivatives, formulas |

-15-



for which were given in the preceding séction; the application of algo-
rithm (2.8), with p = 1, to problem'P3 is straightforward, once rhe identi-

fication z =A(€’V0’ Vi ) is made. We shall therefore elaborate

cees Yy

no further.

Convergence

Invthe éaée of the éptimal coﬂtrol proBlems Pl and P2, the condirioﬁ
~d°(2) =0 (z = u(+)) -which the modified Frank-Wolfe method attexﬁpts to
SQtisfy, and the condition ¢(§,0) =0 (z = gé,ﬁ(f))) whicﬂ the,Pironneaﬁ-f -
Polak method tries t0’sati§fy, can both be shéwn'to be eduivalent to the |
Pdntryagin maximum princrple in differeﬁtial form, i.e. they imply the_
existehce of an'adjoint vector b(-), sétisfying rhe Pontryégin transversal- S
-ity,conditions,'sqch tﬁat for .some p0 <0, ¢ %;-(poho(x(t),gﬁt),t) + (p(t)?"'
h(x(e),u(t),£) )), Su) <0 for all 6u €U (U =R for p2).

We can now summariée the convergence propertiéé of the algorithms (2.3).
Avanq'(Z.S)vwith réspect-tq the prq?lﬁms‘Pl;‘Pzaand P3.‘ We find that.
these are‘slightly better than a direct exténsioh of theorems (2.6) and
(2.15)‘wou1d indicate.. Thus, | | |

(i) Suppose that the sequenceA{ui} constructed by algorithm (2.3) in
' solving problém_Pl remains bounded (i.e. there is an M € (0,») such that
"ui(t)" ; M for i ; 0, 1, 2, ..., and all t E_[to,tf]). Then
dO(E) = 0 for all accumulation points z = u(-) of'{ui(-)}, where we
may take 0(*) to be an accumulatiqn point of'{di} in the L N L, sense
(i.e., "ui(t)" <M, for some M < », i =0, 1, 2, ..., t € [totf], and

e

for some infinite subset K C {0, 1, 2, ...}, lim lu (t) - G(t)"zdt = 0),
' ' iso t, 1
i€K

which is somewhat more general than an accumulation point in Lw[to’tf]'
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fii)' Assumihé that the sequencesl{é;ijénd'{u.} coﬁétrucfed~by algo—
r1thm (2.8), with p = 2, remain bounded (as in (i) above), ¢(z 0) = 0 for
all ‘accumulation points z = (g,u)'of the sequence {(Ei,ui)}, where'we may - - .
.construe,ﬁ(-)'to be an accumulatidn ﬁoint-of {u }'ih the L ﬂ<L2_sénée;:

(111) When algorithm (2.8), with p = 1, is applied to problem P3,

" theorem (2 15) remains valid without quallflcatlons.

CONCLUSTON

Wg.have shown that certaiﬁ ﬁethodg of feasible directions can bé.
extendedgfor use‘in_optimai controlf It>is to be femembered that in}using _';
."methods of féasiblezdireétions.iﬁ oﬁtimal éontrbl, the'majo#“coét is’in_the';
many integrations required per iteration. Ihis cost can.be‘redﬁéed,sub%v |
stahtially by infegratihg coarsely when far from a solution and by fefiﬁingiﬂfv.-'”
the précisipn of integration adaptively as aiéolutiqn_is aﬁpfoachéd.' The
. reader will find details 6f.§rocedures for-déiﬁg»thisﬂih Aépepdix;Awwﬁii ;'f
éf {9], and in [9']; which deals épecifically with thevPironheau—Polak.

method. .
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. Footnotes

1.

The Frank-Wolfe method -and its extensions belong to the class of
feasible directions algorithms.
The choice D(z) = 0 was used by Frank and Wolfe and results in slow. -

- . 1 . o
convergence, proportional to I D(z) > O can sometimes be chosen

‘to obtain a linear rate of convergence; see [2]. Note that the algo- -

rithms we are about to state ipvleeZQafiéué péfaﬁéfers whiéthust be'}
preselected.  We shall indicate a firstﬁcﬁbiée for these pérameters; 
However;'this'éhéicé'may not always- be thé best and thé reéder is
encouraged to experiment a little. | |

Note that the need to solve_(2.4)'restricts-this method to.problems

4in-which the fl, 1=2,2, ..., m are affine;,unless D(z) = 0, in

which case a single (m = 1) quadratic constraint can be accomodated.

Relation (2.14) defines -a step size subroutine of the "centers" type.

It keeps the iterates_zi in the interior of §, a feature which is use~' -

ful in optimal control when coarse integration is used in the early
iterations. Step size rule (2.12) can‘also be -used with p = 2, if

preferred.
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