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1. INTRODUCTION

The class of nonlinear programming algorithms known as methods of

feasible directions, or as modified methods of centers, is quite large.

All the algorithms in this class apply to discrete optimal control pro-

blems (see [9]), but only three or four of these can be extended for the .v

solution of continuous optimal control problems. In this paper we shall

review three of the most promising methods of feasible directions for

optimal control: an extension of the Frank-Wolfe method [5], which is a .'.

composite of algorithms proposed by Demyanov [4], Levitin and Polyak [7], ;•

Barnes [2] and Armijo [1], a dual method of feasible directions devised

by Pironneau and Polak [8], and a Zoutendijk method [13].

From the point of view of feasible directions algorithms, continuous ;. .,

optimal control problems must be divided into four categories: (i) fixed

time problems with fixed initial state, free terminal state, and simple .

constraints on the control; (ii) fixed time problems with inequality con-:

straints on both the initial and the terminal, state and no control con- /

straints, (iii) free time problems with inequality constraints on the . ' . • ' •

initial and terminal states and simple constraints on the control, and

finallyj (iv) fixed time problems with inequality state space constraints .

and constraints on the control.

.We shall show that the above mentioned extension of the Frank-Wolfe

method can be used for solving problems in category (i), that the Pironneau-

Polak method can be used for solving problems in category (ii), and that

the Zoutendijk method can be used for solving discretized problems in category

(iv). The Pironneau-Polak method can also be used for solving problems in

category (iii). However, this requires a messy modification of the method,



based on a Valentine type transformation. The interested reader will find

the details of this in [10]..

2. THE. NONLINEAR PROGRAMMING ALGORITHMS

The. three nonlinear programming algorithms, which are going to adapt

for the solution of optimal control problems, were originally intended to

solve problems of the form .

min{f0(z)|f1(z)'<- 0, j = 1, 2, ..., m}v (2.1)

where the f ̂ : "H -»• lR , j = 0, 1, ..., m, are continuously differentiable.

We begin with a modification of the Frank-Wolfe method [5], which

can be used only when the set

•'• fl = {z|fj'(z) <_ 0, j = 1, 2, ..., m} (2.2)

is convex. The modification of the Frank-Wolfe algorithm below combines a

direction finding subroutine proposed by Levitin and Polyak [5] and by -.-.-..'•

Barnes [2], with an efficient step length subroutine due to Armijo [1] .

Such "hybrids" are quite common in nonlinear .programming.

Algorithm 2.3 (Modification of Frank-Wolfe Method) ..-.'•• }

Step 0: Select a continuous, symmetric, positive semi-definite nxn

2
matrix D(z), an a ̂  (0,1) and a g £ (0,1). (Try a =0.5, 3 = 0.7). .

Step 1; Compute a starting point z G R, as explained in (2.7), below,

and set i = 0.

Step 2; Compute a point z. as a solution of the problem

d°(z.) = min{(Vf°(z.),z-zi >+ < z-zi,D(zi)(z-zi) > j

and set d(z.) = z.-z..

fj(z) 1 0, j = 1, 2, ..., m} (2.4)
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Step 3: If d (z±\ = 0, stop; else, compute the smallest integer

k(z ) >_ 0 such that

-
-0. a<Vf(Z),d(Z) > £0 (2.5)

i

Step 4: Set z = z± +6 d(z±).

Step 5: Set i = i+1 and go to Step 2. n

The function d (•) used in algorithm (2.3) has the following proper-

ties: (i) d (z) £ 0 for all z G fi. (ii) Suppose that ft is convex and '•:.

that z S n is optimal for (2.1), then d (z.) = 0 (i.e. d (z.) = 0 is a

necessary condition of optimality) . This result can be established by

reasoning similar to that in Section 4.4 in [9]. (iii) When the set fi

satisfies the Kuhn-Tucker constraint qualification, d (z.) = 0, for a

z. £ ft, if and only if there exist multipliers y . >_.0, j = 1, 2, ..., m,

such that Vf (z.) + E y^V fj (z ) = 0 and y-'f:i(z.) = 0, j = 1, 2, ... ., m. ,
1 j=l X

When $7 is convex, algorithm (2.3) does not jam up. Its convergence

properties can be summed up as follows (see Sec. 4. 3 of [9]).

2.6 Theorem: Suppose that fi is convex, and compact, and that the sequence

{z.} is constructed by algorithm (2.3). If {z.} is finite, then its last

0 • i

element, z , satisfies d (z ) = 0. If {z.} is infinite, then every
S S •*-

accumulation point z of {z.} satisfies d (z) = 0. a ;

2.7 Remark : Algorithm (2.3) requires a starting point z € J2. Such a

point can be computed by applying algorithm (2.3) to the problem, in

min{y°|fj(y) - y° £ 0, j = 1, 2, . . . , m} . (2.7)

A starting point (yn>yn) for solving (2.7) is obtained by taking y_ to
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be a good guess and then setting yfi = max f-* (y_) . When the set {zlf-'(z)

j
< 0, j = 1, 2, ..., m} is not empty, after a finite number of iterations,

the algorithm will construct a (y.,y.) such that f (y.) £ 0, j = 1, 2,

~0
..., m, at which point we set z^ = y.. This is so since the optimal y

is strictly negative. n

For the sake of saving.space and so as to exhibit their common fea-

tures, we state .the -following two algorithms as one, with a parameter p.

When p = 1, the algorithm becomes a composite using the Zoutendijk Pro-

cedure 1 [13] direction finding subroutine and the Armijo step size sub-

routine [1]. When p = 2, the algorithm becomes the Pironneau-Polak

modified method of centers [8]. These-two algorithms differ both in their

direction finding and step length subroutines. Both of these algorithms

require that the set Q = {z)f-'(z) < 0, j = 1, 2, ..., m} be non empty,

otherwise they jam up. Convexity of fi is not required.

Algorithm 2.8 (Zoutendijk Method of Feasible Directions and Pironneau-

Polak Modified Method of Centers).

Step 0: Select parameters X > 0, e' ̂  (0,e ], a S (0,1), B G (0,1),

Y > 0. Set p = 1 to obtain Zoutendijk Procedure 1 type method of feasible

directions; set p = 2 to obtain Pironneau-Polak modified method of centers.

(It is difficult to recommend values for EO and y> but try e_ = 0.1, y =

0.1; e1 is a precision parameter, try e' = 10 ; try a = 0.25, 3 = 0.7.

Try A = 2 or A = 1.)

Step 1; Compute a zn £ fi by applying (2.8) to (2.7), and set i = 0,

Step 2: Set
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J(zi,e) = I(Zi,e) U {0} (2.10)

and go to Step 3p (p = 1 or 2) .

Step 31: Compute (d (z ,e), d(z.,e))» where d (z.,e) S IK ,

d(z.,e) S IK , as a solution of the linear program

<j>(z ,e) = min d°|<Vfj(z ),d > - d° <_ 0, j e j(z ,e)
' • • ••;. ; • (2.11)

• |d I <_ 1, £ = 1, 2, .... n}, _• •

and go to Step 4. ,

Step 32: Compute (d (z.,e), d(z.,e)), where d (z. ,e.) G R. ,.

d(z. ,e) ̂ R , as a solution of the quadratic program

$(zife) = min{d° + j Hdll2 |< Vf0(z±) ,d > - d° <_ 0; . . ' .-

fj(Zi) +<Vf
j(Zi),d > - d° £0, j S l(Zi,e)}, (2.12)

and go to Step 4.

Step 4: If <j> (z.,e) <_ - ye^, go to Step 6p; else go to Step 5.

Step 5: If e £ e', stop; else, set e = 3e and go to Step 2.

Step 61: Compute the smallest integer k(z.,e) >^ 0 such that .

. k(z ,e)
d(zi,e)) _< 0 for j = 1, 2,'•...., m and

(2.13)

- Xg 1 a<Vf°(zi), d(z.,e) > <_ 0,

and go to Step 7.
4

Step 62; Compute the smallest integer k(z.,e) >_ 0 such that

\f f *y f\ ]e (7 {?}n Kv .z^ , e ; ^ K ^ Z ^ , e ;
d ( z . , e ) ) - f ( z . ) ; f J ( z . + X 3 d ( z . , e ) ) ,1 1 1 i

j = 1, 2, .... m} - Xg x a«{)(z i,e) <. 0,
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and go to Step 7.

if I *y f 1*v \ « • ) * y • :

Step 7; Set z = z + X3 d(z ,e).

Step 8; Set i = i+1, and go to Step 2. °

Remark: Suppose that z. £ ft and that <j>(z.,0) is defined by (2.11) or by

(2.12). Then $(z±,0) <_ 0, and <Kz±,0) = 0 if and only if there exist

multipliers y >_.0, V 21 °» '••••» V* — °» such- that £ yJVfJ(z ) = 0,

ŷ f̂ z.) = 0, j = 1, 2, ..., m, • Z yj = 1,-i.e., 4>(z.,0) = 0 if and only
1 j=0 x

if z. satisfies the F. John optimality condition [4] (see Sec. 4.3 of

[9]). n ' :

The convergence properties of the two algorithms defined by (2.12),

(which can be used even when the set {z|f (z)' _<_ 0, j = 1, 2, ..., m}

is not convex, provided the set (z|f̂ (z) < 0, j = 1, 2, ..., m} is non-

empty) are stated below. n .

2.15 Theorem; Suppose that the set (z|f-'(z) < 0, j = 1, 2, . .., m} is

non-empty. Then, for p = 1 or p = 2, and e' = 0, algorithm (2.8) .either

jams up at a point z , in which case <)>(z ,0) = 0, or it constructs ans s .
OO ' ' ** OO

infinite sequence {z.}._n such that every accumulation point z of {z.}.__

satisfies <|>(z,0) = 0. (see [13] for p = 1 and [8] for p = 2). a

OO

Note that a sequence {z.}._n constructed by (2.8) will always have

accumulation points when the set fi'(z ) = {z|f (z)-f (z ) <_ 0; fj (z) <_ 0,

j = 1, 2, ..., m} is bounded. Note also that in using an algorithm such

as (2.g) or (2.3), there is no need to extract a convergent subsequence

of {z.}, since usually the sequence (z.}.__ converges to the set {z £ ft'(zn>

<j>(z,0) = 0}, i.e. inf{llz.-zll |z e ft' (z ) ,4>(z,0) = 0} = 0, where K is the set
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of all positive integers.

3. THE OPTIMAL CONTROL PROBLEMS

For the purpose of applying the algorithms in Section 2, we must

state our optimal 'control problems in a form similar to (2.1). Thus,

suppose that tfl < tf are given and that L^[t0,tf] is the Banach space of

equivalence classes of essentially bounded, measurable functions from

[t_,t '] into II\V with norm Hull = ess supllu(t)U, where II • II denotes the
te[t0,tf]

euclidean norm. Suppose that h°:. lRSx 1R<* x TR1 + 1R1, $.• 1RS + TR1

and h: R x 1R^ x 1R -> 1RS are continuously dif ferentiable functions.

Then we define f°: II S x L2[tQ,tf] -»• D
 -1 by

f
= I

V

• . - • •
h°(x(t,?,u),u(t),t) dt + .*(x(tf,5,u)) - ._ (3.1)' '

where x(t,5,u),'t ̂  [t_,t_], is the solution of the d.e.

~ x = h(x,u,t), t e [tQ,tf], . (3.2)

with x(tQ) =5.

Next, let gj: 1R S . * TR1, j = 1, 2, . . . , mQ, and gj: 1R
S •* 1R1/ j «

1, 2, ..., mf, be continuously dif ferentiable functions. For j = 1, 2,

..., m, m = m + mf, we define f ̂ : 1R
S x.L^[t ,tf] -> IK as follows:

fj(C,u) = g(O, j = 1, 2, ..., m - (3.3)

f (S,u) = ĝ (x(tf,C,u)), j = 1, 2, ..., mf. (3.4)

With these definitions we shall be able to solve the problems PI, P2,
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P3, below.

PI min{f°(C,u)|.£ = Cn5 u(t) e U C IR^, t e [t ,t ]}, (3.5)
\J w w

with .

U = {v G lRq |a
i '<_ v1 <_ b1, i = 1, 2, '...,. q}, (3.6)

or with

U = {v e1Rq | | |v| |-• '<_ 1}. n (3.7)

, P2 - m i n t f . i O l f C C . u ) <. 0, j = 1, 2, ..., m} ' (3.8)

For P2 (see (3.3), (3.A))we assume that either the set {(C,u) g_(C) < 0, g f(x(t f,

1 2 m O 1 2 m f
5,u)) < .0} is not empty (gQ = (gQ,g0» • • • , gQ )> gf = ( g f » 8 f » • • • » §f ))»

or that {CQ} = {?|gQ(O 1 0} and the set {u| gf (x(tf ,CQ,u)) < 0} is not

empty. n .

Finally, let N > 0 be an integer and let A = (tf-t )/N. For i =0, 1,

2, ..,, N, let g^: IR3-*^1, j = 1, 2, ..., m̂ .̂ , be continuously differ- , :-

entiable. Then the discrete optimal control problem that we can solve is

P3 min{f°(£,u) |gJ(x(iA,C,u)) £ 0, i = 0, 1, 2, ' . . . . , N,

^ o <3 '9)
j = l ,2 , . . . ,m ; u(t) = > v ir(t-iA), v e u c l R q } ,

-*- Am^^l •*- -̂

i=0 .

with U as in (3.6) or (3.7), f° as in (3.1) and with

Tr( t ) = 1 for t e [0,A) (3.10)

= 0 otherwise.

For P3, v;ith U as in (3.6), we must assume that either the set {(S.v-.v ,

.̂u)) < 0, j = 1, 2, ..., m±, i = 0, 1, 2, ..., N;

N-l
u(fc) = S v.ir(t-iA), v. G U} is non-empty; or that the set U|gn(£) _< 0} .=

i=0 1 X '

(C0> and that the set {(VQ, v^, ..., v̂ -ĵ ) g|(x(iA,?0,u)) < 0, j = 1, 2,...̂ ,



N-l .
i = 1, 2, .... N, u(t) = £ v.ir(t-iA), v € D.} is not empty. When U

i=0

is as in (3.7), replace U by int U in the preceding condi.ti.ons. n

Note that the discretization in P3 is only of the control and not

of the differential equation (3.2). However, while PI and P2 are pro-

blems on the infinite dimensional space K x. i/J[t_,t,] , problem P3 is

defined on the finite dimensional space 1R s x TR q x .. .x 1Rq (= TRS+Nq),

and is obviously of the form of the problem (2.1), with n = s+Nq and m

determined by the number of the g. and the description of U.

The algorithms in Section 2 make use of gradients and scalar prod-

ucts. For the problems stated in this section-, we use the scalar

product < • ,• > on IR s x L^ [tQ,t ], defined by

J" <u,(t),u2(t) >dt, (3.11)

where, as before, < •,• ) denotes the euclidean scalar product. The deri-

vation of the gradients below can be found in [9] Section 2.5; here we

shall merely state the formulas for their computation. These gradients

have .the same properties with respect to linear expansions as gradients

in R . Note that, as defined below, VfJ(5,u), j = 0,1,. . . ,m, is an

element (a pair) in R S x L^ [t ,t ]. The first part of the pair is

the gradient with respect to the initial state, while the second part

is the gradient with respect to the control. Thus, for problems PI and

P2, .

,u) = (V f(C,u), V f(C,u)(-)) = (- pn(t C,u),
5 U U U (3.12)
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(i.e. it is a pair consisting of a vector in IR and of a vector valued

function in L^ [t ,tf]) where pQ(',C,u) is defined by

~ P0(t,C,u) = - [~ (x(t,C,u),u(t),t)]
Tp0(t,£,u)

0 (3.13)

+ [|̂- (x(t,£,u),u(t),t)]T,t e It0,tf],

P0(tf, ,u) = - [ (x(£s,C,u))]. (3.14).

Also for problems PI and P2, and j = l,2,...',m,

TV . ., . Vf3. u),,(!!it£.u; ( 5 ^'U-J' u ^ 'u 8x v

(3.15)

j-hn j+m j+m
Vf U(C,u) = (Vf °(C,U),. 7f

 U(5,u)) = (- .p1 . \<-Q>S»"y J

(3.16)

,C,.u)), j = 1,2, ...,m

Where, for j = 1,2,..., mf, ,the p.(-,£;>u) are defined by

j(t,5,u) = - f~ (x(t,?,u),u(t),t))]
T
pj(t,C-,u),

(3.17)

Pj(tf,e,u) = - [3̂ - (xCtj.C.u)')]
1 (3.17')

In the case of problem P3, the discretization of the control implies

that f is a function of the initial state C and of the control sequence

V = (vn ,v. , . . . ,v ). Hence, given an initial state £ , and a control
U l N— 1

sequence V, we obtain, with u = v.ir(t-iA)

i=0
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and, for i = 0,1,2,... ,N-1, (note that V f° £ [|~]T, etc.)

j . _ J _ . 1 ' r - . • d f l j J . . . * . . _ ! .
+

I • Sh T
J {- I — (x(t,S,u),u(t),t)] i>0(t,S,u)

,, • (3.19)

«LP,
8u ^

where pfl is computed as in (3.13), (3.14).

Similarly, for j = l,2,...,m. and i = 0,1,2,..., N-l, we obtain

= -p± (t0,Ctu), (3.20)

ftf 3h
=J -{{ -jg

t_
(x( t ,C,u) ,u( t ) , t ) ] x

(3.21)
p ( t ,C ,u ) i r( t -£A)dt , for I = 0,1,

= 0 for H = i, i+1,-...., N-l,

where p..(t,5,u) is defined by

- [ |̂  (x(t,5,u),u(t),t)]TP (t,?,u),
dx 13 (3.22)

t.s [t0,tf],

9g T1. (3.23)

Thus, the discretization in problem P3 does not remove the need for

integrating differential equations. Its main advantage is that it results

in a problem which we can solve, at least in principle, by algorithm (2.8),
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with p = 1, whereas we do not know how to solve continuous time problems

with control and state space constraints by means of feasible directions

algorithms.
4. _EXTENSION OF NONLINEAR PROGRAMMING ALGORITHMS,

We shall nowrshow how to apply algorithm (2.3) to. the problem PI,

algorithm (2.8) with p = 2, to problem P2, and algorithm (2.8)>

p = 1,, to problem P3.

Problem-PI and the modified Frank-Wolfe method (2.3).

Thus, consider problem PI and suppose that we have a control u.(')

such that u. (t) e U for t G ItQ,tJ, where U is as in (3.6) or as in

(3.7). To compute u-+1(") according to algorithm (2.3) we must first

solve (2.4), where we associate z. with u.(•)• Following Barnes [2],

' * X 1 32h°
for improved rate of convergence, we set D(u.)(t) = y—~— (x(t,£n,u.),

u ,t), t e [t ,tf], if that matrix is positive semi-definite; otherwise,

to avoid singular subproblems, we set D(u.)(t) = I. If we calculate

Vf (£Q,u.) by linearization, rather than by formula (3.12), we find that

(2.4) is equivalent to the quadratic cost optimal control problem

ftf Sh°
d (ut) = min{J [ — (x(t .̂ Q,̂ ; ,u± (t) ,t)6x(t) +

, , o . - • ' • • . '

3x

(x(t,50,ui),ui(t),t)6u(t) +<6u(t), D(Ui)(t)6u(t) > ]dt

6x(t) = 1̂  (x(t,?n,u.),u (t),t)6xdX U 1 1

+ fj ̂Ct̂ 0,ui),ui(t),t)6u(t), te It0,tf],

6x(tQ) = 0; Iu..(t) + 6u(t)] e U, t e [tQ,tf]}. (4.1)

We solve (4.1) by means of the Pontryagin Maximum Principle [11] and
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denote the optimal control for (4.1) by 6u.(')- Next, we must compute
k(u±) V

the step size 3 as given by (2.5), which in this case becomes,

because of (3.1) and (3.12),

ft
I

t

, t)

(4.2)

- h°(x(t,C0,ui) .û Ct) ,t) -3 ' «< VaO'ui) (t) >6ui.(t)

Note that in solving (4.1) we have also computed V f (£ ,u.)(t) =

3h T 3>i
) 0 , i , i , o , 0 , i . Q . .

since the adjoint equations for (4.1) coincide with (3.13), (3.14).

The next control u ..,(•) is then computed according to u 1 (t) = u.(t) +
k(u.) 1+1 1+i x

3 X <Su (t), t e [t t ].
1 ° k(u±)

Note that^ to compute the step size 3 , we may have to integrate

the system (3.2) (with £ = £ ) several times, once for each trial value of

k >_ 0 which we wish to test for the condition in (4.2).

Problem P2 and the Pironneau-Polak Algorithm (2.8), with p -• 2.

Next, let us turn to problem P2 for which we now adapt algorithm (2.8)

with p = 2. For this purpose, we must find a way for solving (2.12), with

the gradients and scalar products as defined in Section 3. This task is

made easy by the fact that (2.12) has a convenient dual (see [8]), so that

4>(z.,e) and d(z.,e) can also be computed by solving the dual quadratic

program

= max{ 2-f yjfj(z.)-yll £** yjVf j (z . ) U 2

j ̂  I(z..,e)
 1 j e J(Z;L,e)

 X
0,

e j(z ,o, -/ y = i}, (4.3)
••• • C. -r t - _\j e J(Zi,e)
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and then setting

Where the y-? , j G J(z.,e), solve (4.3). The importance of (4.3) is

that the dimension of this problem depends only on the number of e -

active constraints and not on the dimension of z.. Consequently, even .

in the case of the infinite dimensional problem P2, (4.3) remains a

finite dimensional quadratic program. To be specific, given a feasible

initial state C. and a feasible control u.(-) , which we associate with

z. in (4.3), (4.4) according to z. = (5. ,u. (•)) , (4.3) becomes,

(tf •
+ \ FT _, ,F _, Ndt) y > |y

j > 0, j S J(z.,e.), y^ = 1},Jl u,I(z.,e) u,I(z <£) /M |M - ' J i' i/f e j/_ _>,
tQ

 1 "- 3 J(zi'e;) (4.5)

where the f ̂ , j = 0,1,2, ... ,m, are defined as in (3.1), (3.3) and (3.4),

I(zi.,e) = {j e {l̂ ,..̂ }!̂ ^ ,u.) >_- e>, « •U1,.A,,..,A }, r <_ m,
•"• ' o • o o J - ^ i

01 r T 1y = (y ,y. ,y ,...-, u ) , F_ T. v is a matrix with colums V_fJ(5.,
^ ,J (.z. tc) t, i

u.), j G J(z.,e), the columns being ordered in the same way as the

components of y, and F , . (t) is a matrix valued function of t, the
U,J(Z. ,CJ

columns of FU ^ ̂ £,)(t) being V^f ̂ (?.. .u..̂ ) (t) , j e'j(ZjL,e).

Thus, to use (2.8) with p = 2, at each iteration we begin with a

feasible pair (C.,u.) and an e > 0. Then, we carry out the following

operations.
(i) We evaluate the functions f (C.,u.), j = 0,1,..., m.

' - . . • - ,-v̂ î '- ;'.;V . .11

(ii) (step 2 of (2.8)) We construct the index sets I(z.,e) and J(z.se)

(iii) We calculate the gradients VfJ'̂ ,0, j e ĵ .e), according

to (3.12)-(3.l7r)
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(iv) We compute the coefficients of the quadratic form in (4.5).

(v) (step 32 of (2.8)) We solve (4.5) (the dual of (2.12)) by a method

such as Wolfe's [12] to obtain a vector y. = (y. ,y • ,..-. -,v - r) and

(vi) We set

^ -r. ^ yIVJ(W' ..--'--.'. : <*.5'>

and

6u.(t) = - yf'(C.,u )(t); (4.5")
. x j € J(2i,e)

 u V1

so that we associate d(z. ,e) with the pair (<5C. ,6u.'(•))•

(vii) We then go through the tests in Steps 4 and Step 5 of (2.8)

until we reach Step 62, where we calculate the smallest integer

k(zi9e) such that (see- (2.14)),

r k(Zi,<
max{ I [h (x(t,5+X3 65,,u.+X3 (5u,-),; l v v i i i i-'

k(z,,e)
6Ui(t), t) - h(x(t,£i,ui),ui,'

k(z. ,5) . k(z

k(z.,e) k(zi,e)
u.+X3 û.)),j = 1,2,.. ,m_}-X3 cx<f>(z.,e) 5 ̂ *

k(zi,e) k(zjL,e)
(viii) (Step 7) We set CJA1 = ,̂.+X3 6|^ , u^, = u± + X3 fiu±.

and continue, with i+1 replacing i in.al-l--expressions.

Problem P3 and the Zoutendijk type Algorithm (2.8) with p = 1.

Apart from the cumbersome evaluation of functions and derivatives, formulas
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for which were given in the preceding section, the application of algo-

rithm (2.8), with p = 1, to problem P3 is straightforward, once the identi-

fication z = (£,v0, v,, ...,
 v
N_-i) is made. We shall therefore elaborate

no further.

Convergence

In the case of the optimal control problems PI and P2, the condition

'd (z) = 0 (z = u(O) which the modified Frank-Wolfe method attempts to

satisfy, and the condition <f>(z,0) = 0 (z = (C,u(-))) which the Pironneau-

Polak method tries to satisfy, can both be shown to be equivalent to the

Pontryagin maximum principle in differential form, i.e. they imply the

existence of an adjoint vector p(-)> satisfying the Pontryagin transversal-

ity conditions, such that for some p < 0, ( -r— (p h (x(t) ,u(t) ,t) + ̂ p(t),
— oU :

h(x(t),u(t),t) > ), <Su > <. 0 for all <$u e u (U = 1RS for P2).

We can now summarize the convergence properties of the algorithms (2.3)

and (2.8) with respect to the problems PI, P2 and P3. We find that

these are slightly better than a direct extension of theorems (2.6) and

(2.15) would indicate. Thus,

(i) Suppose that the sequence {u.} constructed by algorithm (2.3) in

solving problem PI remains bounded (i.e. there is an M €= (0,°°) such that

llu.(t)H < M for i = 0, 1, 2, . .., and all t e [tQ,tf]). Then

d (z) = 0 for all accumulation points z = u(-) of {u.('))> where we

may take u(-) to be an accumulation point of {u.} in the L n L_ sense
1 °° • £•

(i.e., Hu.(t)ll < M, for some M < «, i = 0, 1, 2, ..., t G [t-tj, and1 — U I

ftf ~ 2
for some infinite subset K C (0, 1, 2, ...}, limj HU.(t) - u(t)H dt = 0),

i-**0 t

which is somewhat more general than an accumulation point in L̂ ft,. ,t,_].
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(ii) Assuming that the sequences {£.} and {u.} constructed by algo-

rithm (2.8), with p = 2, remain bounded (as in (i) above), <j>(z,Q) = 0 for

all accumulation points z = (£,u) of the sequence {(£.,u.)}, where we may

>s .

construe u(-) to be an accumulation point of {u.} in the L H r sense.
i °° 2

(iii) When algorithm (2.8), with p = 1, is applied to.problem P3,

theorem '(2.15) remains valid without qualifications. :

CONCLUSION

We have shown that certain methods of feasible directions can be

extended for use in optimal control. It is to be remembered that in using

methods of feasible directions in optimal control, the major cost is in the

many integrations required per iteration. This cost can be reduced sub-

stantially by integrating coarsely when far from a solution and by refining

the precision of integration adaptively as a solution is approached. The

reader will find details of procedures for doing this-in Appendix^A~, -lx ~

of [9], and in [91], which deals specifically with the Pironneau-Polak

method. .
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Footnotes

1. The Frank-Wolfe method and its extensions belong to the class of

feasible directions algorithms.

2. The choice D(z) = 0 was used by Frank and Wolfe and results in slow,

convergence, proportional to — . D(z) > 0 can sometimes be chosen

to obtain a linear rate of convergence, see.; [2]. Note that the algo-

rithms we are about to state involve various parameters, which must be

preselected. We shall indicate a first'choice for these parameters.

However, this choice may not always be the best and the reader is

encouraged to experiment a little.

3. Note that the need to solve (2.4) restricts this method to problems

in which the f , 1 = 2 , 2, ...,m, are affine, unless D(z) = 0, in

which case a single (m = 1) quadratic constraint can be accomodated.

4. Relation (2.14) defines a step size subroutine of the "centers" type.

It keeps the iterates z. in the interior of fi, a feature which is use-

ful in optimal control when coarse integration is used in the early

iterations. Step size rule (2.12) can also be used with p = 2, if

preferred.

_1 Q_
J.O
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