
Chapter 1

A SURVEY OF MODEL-BASED SENSOR
DATA ACQUISITION AND MANAGEMENT

Saket Sathe
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

saket.sathe@epfl.ch

Thanasis G. Papaioannou
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

thanasis.papaioannou@epfl.ch

Hoyoung Jeung
SAP Research
Brisbane, Australia

hoyoung.jeung@sap.com

Karl Aberer
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

karl.aberer@epfl.ch

Abstract In recent years, due to the proliferation of sensor networks, there has been a

genuine need of researching techniques for sensor data acquisition and manage-

ment. To this end, a large number of techniques have emerged that advocate

model-based sensor data acquisition and management. These techniques use

mathematical models for performing various, day-to-day tasks involved in man-

aging sensor data. In this chapter, we survey the state-of-the-art techniques for

model-based sensor data acquisition and management. We start by discussing

the techniques for acquiring sensor data. We, then, discuss the application of

models in sensor data cleaning; followed by a discussion on model-based meth-

2

ods for querying sensor data. Lastly, we survey model-based methods proposed

for data compression and synopsis generation.

Keywords: model-based techniques, data acquisition, query processing, data cleaning, data

compression.

1. Introduction

In recent years, there has been tremendous growth in the data generated

by sensor networks. Equivalently, there are pertinent techniques proposed in

recent literature for efficiently acquiring and managing sensor data. One im-

portant category of techniques that have received significant attention are the

model-based techniques. These techniques use mathematical models for solv-

ing various problems pertaining to sensor data acquisition and management.

In this chapter, we survey a large number of state-of-the-art model-based tech-

niques for sensor data acquisition and management. Model-based techniques

use various types of models: statistical, signal processing, regression-based,

machine learning, probabilistic, or time series. These models serve various

purposes in sensor data acquisition and management.

It is well-known that many physical attributes, like, ambient temperature or

relative humidity, vary smoothly. As a result of this smoothness, sensor data

typically exhibits the following properties: (a) it is continuous (although we

only have a finite number of samples), (b) it has finite energy or it is band-

limited, (c) it exhibits Markovian behavior or the value at a time instant de-

pends only on the value at a previous time instant. Most model-based tech-

niques exploit these properties for efficiently performing various tasks related

to sensor data acquisition and management.

In this chapter, we consider four broad categories of sensor data manage-

ment tasks: data acquisition, data cleaning, query processing, and data com-

pression. These tasks are pictorially summarized in the toy example shown

in Figure 1.1. From Figure 1.1, it is interesting to note how a single type

of model (linear) can be used for performing these various tasks. For each

task considered in this chapter, we extensively discuss various, well-researched

model-based solutions. Following is the detailed discussion on the sensor data

management tasks covered in this chapter:

Data Acquisition: Sensor data acquisition is the task responsible for

efficiently acquiring samples from the sensors in a sensor network. The

primary objective of the sensor data acquisition task is to attain energy

efficiency. This objective is driven by the fact that most sensors are

battery-powered and are located in inaccessible locations (e.g., environ-

mental monitoring sensors are sometimes located at high altitudes and

are surrounded by highly inaccessible terrains). In the literature, there

A Survey of Model-Based Sensor Data Acquisition and Management 3

f(t)

data cleaning

(b)

t

v

t1 t2
t

outlier

query processing

(c)

f(t)
v

t1 t2

t

f(t)

t1 t2

t

store
v

data compression

(d)

value

t'

v

t1

data acquisition

(a)

t2

f(t)

Figure 1.1: Various tasks performed by models-based techniques. (a) to im-

prove acquisitional efficiency, a function is fitted to the first three sensor val-

ues, and the remaining values (shown dotted) are not acquired, since they are

within a threshold δ, (b) data is cleaned by identifying outliers after fitting a

linear model, (c) a query requesting the value at time t′ can be answered us-

ing interpolation, (d) only the first and the last sensor value can be stored as

compressed representation of the sensor values.

are two major types of acquisition approaches: pull-based and push-

based. In the pull-based approach, data is only acquired at a user-defined

frequency of acquisition. On the other hand, in the push-based approach,

the sensors and the base station agree on an expected behavior; sensors

only send data to the base station if the sensor values deviate from such

expected behavior. In this chapter, we cover a representative collection

of model-based sensor data acquisition approaches [2, 12, 17, 16, 18,

27, 28, 41, 66].

Data Cleaning: The data obtained from the sensors is often erroneous.

Erroneous sensor values are mainly generated due to the following rea-

sons: (a) intermittent loss of communication with the sensor, (b) sen-

sor’s battery is discharged, (c) other types of sensor failures, for exam-

ple, snow accumulation on the sensor, etc. Model-based approaches for

data cleaning often use a model to infer the most probable sensor value.

Then the raw sensor value is marked erroneous or outlier if the raw sen-

sor value deviates significantly from the inferred sensor value. Another

important approach for data cleaning is known as declarative data clean-

ing [32, 46, 54]. In this approach, the user registers SQL-like queries

that define constraints over the sensor values. Sensor values are marked

as outliers when these constraints are violated. In addition to these meth-

ods, we also discuss many other data cleaning approaches [31, 73, 23,

21, 52, 65]

Query Processing: Obtaining desired answers, by processing queries

is another important aspect in sensor data management. In this chapter,

4

we discuss the most significant model-based techniques for query pro-

cessing. One of the objectives of these techniques is to process queries

by accessing/generating minimal amount of data [64, 5]. Model-based

methods that access/generate minimal data, and also handle missing val-

ues in data, use models for creating an abstraction layer over the sen-

sor network [18, 33]. Other approaches model the sensor values by a

hidden Markov model (HMM), associating state variables to the sensor

values. It, then, becomes efficient to process queries over the state vari-

ables, which are less in number as compared to the sensor values [5].

Furthermore, there are approaches that use dynamic probabilistic mod-

els (DPMs) for modeling spatio-temporal evolution of the sensor data

[33, 29]. In these approaches, the estimated DPMs are used for query

processing.

Data Compression: It is well-known that large quantity of sensor data

is being generated by every hour. Therefore, eliminating redundancy

by compressing sensor data for various purposes (like, storage, query

processing, etc.) becomes one of the most challenging tasks. Model-

based sensor data compression proposes a large number of techniques,

mainly from the signal processing literature, for this task [1, 72, 22, 53,

7]. Many approaches assume that the user provides an accuracy bound,

and based on this bound the sensor data is approximated, resulting in

compressed representations of the data [24]. A large number of other

techniques exploit the fact that sensor data is often correlated; thus, this

correlation can be used for approximating one data stream with another

[24, 67, 49, 3].

This chapter is organized as follows. In Section 2, we define the preliminar-

ies that are assumed in the rest of the chapter, followed by a discussion of im-

portant techniques for sensor data acquisition. In Section 3, we survey model-

based sensor data cleaning techniques, both on-line and archival. Model-based

query processing techniques are discussed in Section 4. In Section 5, model-

based compression techniques are surveyed. At the end, Section 6 contains a

summary of the chapter along with conclusions.

2. Model-Based Sensor Data Acquisition

In this section, we discuss various techniques for model-based1 sensor data

acquisition. Particularly, we discuss pull- and push-based sensor data acquisi-

1We use model-based and model-driven interchangeably.

A Survey of Model-Based Sensor Data Acquisition and Management 5

tion methods. In general, model-based sensor data acquisition techniques are

designed for tackling the following challenges:

Energy Consumption: Obtaining values from a sensor requires high amount

of energy. In contrast, since most sensors are battery-powered, they have lim-

ited energy resources. Thus, a challenging task is to minimize the number of

samples obtained from the sensors. Here, models are used for selecting sen-

sors, such that user queries can be answered with reasonable accuracy using

the data acquired from the selected sensors [2, 17, 16, 27, 28].

Communication Cost: Another energy-intensive task is to communicate the

sensed values to the base station. There are, therefore, several model-based

techniques proposed in the literature for reducing the communication cost, and

maintaining the accuracy of the sensed values [41, 18, 66, 12].

Table 1.1: Summary of notations.

Symbol Description
S Sensor network consisting of sensors sj , where j = (1, . . . , m).

sj Sensor identifier for a sensor in S.

vij Sensor value observed by the sensor sj at time ti, such that vij ∈ R.

vi Row vector of all the sensor values observed at time ti, such that vi ∈ R
m.

Vij Random variable associated with the sensor value vij .

2.1 Preliminaries

We start by describing our model of a sensor network and establishing the

notation that is utilized in the rest of the chapter. The sensor network consid-

ered in this chapter consists of a set of stationary sensors S = {sj|1 ≤ j ≤ m}.

The value sensed by a sensor sj at time ti is denoted as vij , which is a real

number. In addition, note that we use sj , where j = (1, . . . ,m), as sensor

identifiers. In certain cases the sampling interval could be uniform, that is,

ti+1 − ti is same for all the values of i ≥ 1. In such cases, the time stamps ti
become irrelevant, and it is sufficient to use only the index i for denoting the

time axis.

In this chapter, we assume a scenario where the sensors are used for envi-

ronmental monitoring. We assume that all the sensors are monitoring/sensing

only one environmental attribute, such as, ambient temperature2 . As discussed

in Section 1, we assume that the environmental attribute we monitor is suf-

ficiently smooth and continuous. If necessary for rendering the discussion

complete and convenient, we will introduce other attributes being monitored

by the sensors. But, in most cases, we restrict ourselves to using only ambient

2We use ambient temperature and temperature interchangeably.

6

sensor_values

vijyjxjsjtii

Figure 1.2: Database table containing the sensor values. The position of the

sensor sj is denoted as (xj , yj). Since the sensors are assumed to be stationary,

the position can also be stored using a foreign-key relationship between sj and

(xj , yj). But, for simplicity, we assume that the sensor values table is in

a denormalized form.

temperature. Figure 1.2 shows a conceptual representation of the sensor values

in a form of a database table, denoted as sensor values.

2.2 The Sensor Data Acquisition Query

Sensor data acquisition can be defined as the processes of creating and con-

tinuously maintaining the sensor values table. In existing literature, nat-

urally, many techniques have been proposed for creating and maintaining the

sensor values table. We shall discuss these techniques briefly, describing

their important characteristics and differences with other techniques. We use

the sensor data acquisition query shown in Query 1.1 for discussing how dif-

ferent sensor data acquisition approaches process such a query. Query 1.1 is a

query that triggers the acquisition of ten sensor values vij from the sensors sj

at a sampling interval of one second. Moreover, Query 1.1, is the typical sen-

sor data acquisition query that is used by many methods for collecting sensor

data.

SELECT sj , vij FROM sensor values SAMPLE INTERVAL 1s FOR 10s

Query 1.1: Sensor data acquisition query.

2.3 Pull-Based Data Acquisition

Broadly, there are two major approaches for data acquisition: pull-based

and push-based (refer Figure 1.3). In the pull-based sensor data acquisition

approach, the user defines the interval and frequency of data acquisition. Pull-

based systems only follow the user’s requirements, and pull sensor values as

defined by the queries. For example, using the SAMPLE INTERVAL clause

A Survey of Model-Based Sensor Data Acquisition and Management 7

base station
sensor network

s1

s2 s4

s3 s7

s6

s5

s8

s10

s9
user

query
sensor values

expected behavior

deviated sensor values

query

sensor valuesenergy

efficient

pull-based

push-based

Figure 1.3: Push- and pull-based methods for sensor data acquisition.

of Query 1.1, users can specify the number of samples and the frequency at

which the samples should be acquired.

In-Network Data Acquisition. This approach of sensor data acqui-

sition is proposed by TinyDB [45, 44, 43], Cougar [69] and TiNA [58]. These

approaches tightly link query processing and sensor data acquisition. Due to

the lack of space, we shall only discuss TinyDB in this subsection.

TinyDB refers to its in-network query processing paradigm as Acquisitional

Query Processing (ACQP). Let us start by discussing how ACQP processes

Query 1.1. The result of Query 1.1 is similar to the table shown in Figure 1.2.

The only difference, as compared to Figure 1.2, is that the result of Query 1.1

contains 10 ×m rows. The naı̈ve method of executing Query 1.1 is to simul-

taneously poll each sensor for its value at the sampling interval and for the

duration specified by the query. This method may not work due to limited

range of radio communication between individual sensors and the base station.

Data Acquisition using Semantic Overlays: TinyDB proposes a tree-based

overlay that is constructed using the sensors S. This tree-based overlay is used

for aggregating the query results from the leaf nodes to the root node. The

overlay network is especially built for efficient data acquisition and query pro-

cessing. TinyDB refers to its tree-based overlay network as Semantic Routing

Trees (SRTs). A SRT is constructed by flooding the sensor network with the

SRT build request. This request includes the attribute (ambient temperature),

over which the SRT should be constructed. Each sensor sj , which receives

the build request, has several choices for choosing its parent: (a) if sj has no

children, which is equivalent to saying that no other sensor has chosen sj as its

parent, then sj chooses another sensor as its parent and sends its current value

vij to the chosen parent in a parent selection message, or (b) if sj has children,

it sends a parent selection message to its parent indicating the range of am-

bient temperature values that its children are covering. In addition, it locally

stores the ambient temperature values from its children along with their sensor

identifiers.

8

Next, when Query 1.1 is presented to the root node of the SRT, it forwards

the query to its children and prepares for receiving the results. At the same

time, the root node also starts processing the query locally (refer Figure 1.4).

The same procedure is followed by all the intermediate sensors in the SRT. A

sensor that does not have any children, processes the query and forwards the

value of vij to its parent. All the collected sensor values vij are finally for-

warded to the root node, and then to the user, as a result of the query. This

completes the processing of the sensor data acquisition query (Query 1.1). The

SRT, moreover, can also be used for optimally processing aggregation, thresh-

old, and event based queries. We shall return to this point later in Section 4.1.

1
s

5
s

2
s

4
s

3
s

SELECT sj , vij

FROM sensor_values

s5 vi5

s1 vi1

s5 vi5

s3 vi3

s3 vi3

s4 vi4

s1 vi1

s5 vi5

s3 vi3

s4 vi4

s2 vi2

Figure 1.4: Toy example of a Semantic Routing Tree (SRT) and Acquisitional

Query Processing (ACQP) over a sensor network with five sensors. Dotted

arrows indicate the direction of query response. A given sensor appends its

identifier sj and value vij to the partial result, which is available from its sub-

tree.

Multi-Dimensional Gaussian Distributions. The Barbie-Q

(BBQ) system [17, 16], on the other hand, employs multi-variate Gaussian

distributions for sensor data acquisition. BBQ maintains a multi-dimensional

Gaussian probability distribution over all the sensors in S. Data is acquired

only as much as it is required to maintain such a distribution. Sensor data ac-

quisition queries specify certain confidence that they require in the acquired

data. If the confidence requirement cannot be satisfied, then more data is

acquired from the sensors, and the Gaussian distribution is updated to sat-

isfy the confidence requirements. The BBQ system models the sensor values

using a multi-variate Gaussian probability density function (pdf) denoted as

p(Vi1, Vi2, . . . , Vim), where Vi1, Vi2, . . . , Vim are the random variables associ-

ated with the sensor values vi1, vi2, . . . , vim respectively. This pdf assigns a

probability for each possible assignment of the sensor values vij . Now, let us

discuss how the BBQ system processes Query 1.1.

A Survey of Model-Based Sensor Data Acquisition and Management 9

In BBQ, the inferred sensor value of sensor sj , at each time ti, is defined

as the mean value of Vij , and is denoted as v̄ij . For example, at time t1, the

inferred sensor values of the ambient temperature are v̄11, v̄12, . . . , v̄1m. The

BBQ system assumes that queries, like Query 1.1, provide two additional con-

straints: (i) error bound ǫ, for the values v̄ij , and (ii) the confidence 1 − δ

with which the error bound should be satisfied. Admittedly, these additional

constraints are for controlling the quality of the query response.

Suppose, we already have a pdf before the first time instance t1, then the

confidence of the sensor value v1j is defined as the probability of the random

variable V1j lying in between v̄1j − ǫ and v̄1j + ǫ, and is denoted as P (V1j ∈
[v̄1j − ǫ, v̄1j + ǫ]). If the confidence is greater than 1− δ, then we can provide

a probably approximately correct value for the temperature, without spending

energy in obtaining a sample from sensor sj . On the other hand, if a sensor’s

confidence is less than 1 − δ, then we should obtain one or more samples

from the sensor (or other correlated sensors), such that the confidence bound

is satisfied. In fact, it is clear that there could be potentially many sensors for

which the confidence bound may not hold.

As a solution to this problem, the BBQ system proposes a procedure to

chose the sensors for obtaining sensor values, such that the confidence bound

specified by the query is satisfied. First, the BBQ system samples from all the

sensors S at time t1, then it computes the confidence Bj(S) that it has in a

sensor sj as follows:

Bj(S) = P (V1j ∈ [v̄1j − ǫ, v̄1j + ǫ]|v1), (1.1)

where v1 = (v11, v12, . . . , v1m) is the row vector of all the sensor values at

time t1. Second, for choosing sensors to sample, the BBQ system poses an

optimization problem of the following form:

min
So⊆S and B(So)≥1−δ.

C(So), (1.2)

where So is the subset of sensors that will be chosen for sampling, C(So) and

B(So) = 1
|So|

∑

j:sj∈So
Bj(S) are respectively the total cost (or energy re-

quired) and average confidence for sampling sensors So. Since the problem

in Eq. (1.2) is NP-hard, BBQ proposes a greedy solution to solve this prob-

lem. Details of this greedy algorithm can be found in [17]. By executing the

proposed greedy algorithm, BBQ selects the sensors for sampling, then it up-

dates the Gaussian distribution, and returns the mean values v̄11, v̄12, . . . , v̄1m.

These mean values represent the inferred values of the sensors at time t1. This

operation when performed ten times at an interval of one second generates the

result of the sensor data acquisition query (Query 1.1).

10

2.4 Push-Based Data Acquisition

Both, TinyDB and BBQ, are pull-based in nature: in these systems the cen-

tral server/base station decides when to acquire sensor values from the sensors.

On the other hand, in push-based approaches, the sensors autonomously decide

when to communicate sensor values to the base station (refer Figure 1.3). Here,

the base station and the sensors agree on an expected behavior of the sensor

values, which is expressed as a model. If the sensor values deviate from their

expected behavior, then the sensors communicate only the deviated values to

the base station.

PRESTO. The Predictive Storage (PRESTO) [41] system is an example

of the push-based data acquisition approach. One of the main arguments that

PRESTO makes against pull-based approaches is that due to the pull strategy,

such approaches will be unable to observe any unusual or interesting patterns

between any two pull requests. Moreover, increasing the pull frequency for

better detection of such patterns, increases the overall energy consumption of

the system.

The PRESTO system contains two main components: PRESTO proxies and

PRESTO sensors. As compared to the PRESTO sensors, the PRESTO proxies

have higher computational capability and storage resources. The task of the

proxies is to gather data from the PRESTO sensors and to answer queries posed

by the user. The PRESTO sensors are assumed to be battery-powered and

remotely located. Their task is to sense the data and transmit it to PRESTO

proxies, while archiving some of it locally on flash memory.

Now, let us discuss how PRESTO processes the sensor data acquisition

query (Query 1.1). For answering such a query, the PRESTO proxies always

maintain a time-series prediction model. Specifically, PRESTO maintains a

seasonal ARIMA (SARIMA) model [60] of the following form for each sen-

sor:

vij = v(i−1)j + v(i−L)j − v(i−L−1)j + θei−1 − Θei−L + θΘei−L−1, (1.3)

where θ and Θ are parameters of the SARIMA model, ei are the prediction

errors and L is known as the seasonal period. For example, while monitoring

temperature, L could be set to one day, indicating that the current temperature

(vij) is related to the temperature yesterday at the same time (v(i−L)j) and a

previous time instant (v(i−L−1)j). In short, the seasonal period L allows us to

model the periodicity that is inherent in certain types of data.

In the PRESTO system the proxies estimate the parameters of the model

given in Eq. (1.3), and then transmit these parameters to individual PRESTO

sensors. The PRESTO sensors use these models to predict the sensor value v̂ij ,

and only transmit the raw sensor value vij to the proxies when the absolute dif-

ference between the predicted sensor value and the raw sensor value is greater

A Survey of Model-Based Sensor Data Acquisition and Management 11

than a user-defined threshold δ. This task can be summarized as follows:

|vij − v̂ij | > δ, transmit vij to proxy. (1.4)

The PRESTO proxy also provides a confidence interval for each predicted

value it computes using the SARIMA model. Like BBQ (refer Section 2.3.0),

this confidence interval can also be used for query processing, since it rep-

resents an error bound on the predicted sensor value. Similar to BBQ, the

PRESTO proxy queries the PRESTO sensors only when the desired confidence

interval, specified by the query, could not be satisfied with the values stored at

the PRESTO proxy. In most cases, the values stored at the proxy can be used

for query processing, without acquiring any further values from the PRESTO

sensors. The only difference between PRESTO and BBQ is that, PRESTO

uses a different measure of confidence as compared to BBQ. Further details of

this confidence interval can be found in [41].

Ken. For reducing the communication cost, the Ken [12] framework

employs a similar strategy as PRESTO. Although there is a key difference be-

tween Ken and PRESTO. PRESTO uses a SARIMA model; this model only

takes into account temporal correlations. On the other hand, Ken uses a dy-

namic probabilistic model that takes into account spatial and temporal correla-

tions in the data. Since a large quantity of sensor data is correlated spatially,

and not only temporally, Ken derives advantage from such spatio-temporal cor-

relation.

The Ken framework has two types of entities, sink and source. Their func-

tionalities and capabilities are similar to the PRESTO proxy and the PRESTO

sensor respectively. The only difference is that the PRESTO sensor only rep-

resents a single sensor, but a source could include more than one sensor or a

sensor network. The sink is the base station to which the sensor values vij are

communicated by the source (refer Figure 1.3).

The fundamental idea behind Ken is that both, source and sink, maintain

the same dynamic probabilistic model of data evolution. The source only com-

municates with the sink when the raw sensor values deviate beyond a certain

bound, as compared to the predictions from the dynamic probabilistic model.

In the meantime, the sink uses the sensor values predicted by the model.

As discussed before, Ken uses a dynamic probabilistic model that consid-

ers spatio-temporal correlations. Particularly, its dynamic probabilistic model

computes the following pdf at the source:

p(V(i+1)1, . . . , V(i+1)m|v1, . . . , vi) =

∫

p(V(i+1)1, . . . , V(i+1)m|Vi1, . . . , Vim)

p(Vi1, . . . , Vim|v1, . . . , vi)dVi1 . . . dVim.

(1.5)

12

This pdf is computed using the observations that have been communicated

to the sink; the values that are not communicated to the sink are ignored by

the source, since they do not affect the model at the sink. Next, each sensor

contained in the source computes the expected sensor value using Eq. (1.5) as

follows:

v̄(i+1)j =

∫

V(i+1)jp(V(i+1)1, . . . , V(i+1)m)dV(i+1)1 . . . dV(i+1)m. (1.6)

The source does not communicate with the sink if |v̄(i+1)j − v(i+1)j | < δ,

where δ is a user-defined threshold. If this condition is not satisfied, the source

communicates to the sink the smallest number of sensor values, such that the δ

threshold would be satisfied. Similarly, if the sink does not receive any sensor

values from the source, it computes the expected sensor values v̄(i+1)j and uses

them as an approximation to the raw sensor values. If the sink receives a few

sensor values form the source, then, before computing the expected values, the

sink updates its dynamic probabilistic model.

A Generic Push-Based Approach. The last push-based approach

that we will survey is a generalized version of other push-based approaches

[38]. This approach is proposed by Silberstein et al. [61]. Like other push-

based approaches, the base station and the sensor network agree on an expected

behavior, and, as usual, the sensor network reports values only when there is a

substantial deviation from the agreed behavior. But, unlike other approaches,

the definition of expected behavior proposed in [61] is more generic, and is not

limited to a threshold δ.

In this approach a sensor can either be an updater (one who acquires or

forwards sensor values) or an observer (one who receives sensor values). A

sensor node can be both, updater and observer, depending on whether it is on

the boundary of the sensor network or an intermediate node. The updaters and

the observers maintain a model encoding function fenc and a decoding function

fdec. These model encoding/decoding functions define the agreed behavior of

the sensor values. The updater uses the encoding function to encode the sensor

value vij into a transmission message gij , and transmits it to the observer.

The observer, then, uses the decoding function fdec to decode the message

gij and construct v̂ij . If the observer finds that vij has not changed signifi-

cantly, as defined by the encoding function, then the observer transmits a null
symbol. A null symbol indicates that the sensor value is suppressed by the

observer. Following is an example of the encoding and decoding functions

[61]:

fenc(vij , vi′j) =

{

gij = vij − vi′j , if |vij − vi′j | > δ;

gij = null, otherwise.
(1.7)

A Survey of Model-Based Sensor Data Acquisition and Management 13

fdec(gij , v̂(i−1)j) =

{

v̂(i−1)j + gij , if gij 6= null;

v̂(i−1)j , if gij = null.
(1.8)

In the above example, the encoding function fenc computes the difference be-

tween the model predicted sensor value vi′j and the raw sensor value vij . Then,

this difference is transmitted to the observer only if it is greater than δ, other-

wise the null symbol is transmitted. The decoding function fdec decodes the

sensor value v̂(i−1)j using the message gij .

The encoding and decoding functions in the above example are purposefully

chosen to demonstrate how the δ threshold approach can be replicated by these

functions. More elaborate definitions of these functions, which are used for

encoding complicated behavior, can be found in [61].

3. Model-Based Sensor Data Cleaning

A well-known characteristic of sensor data is that it is uncertain and erro-

neous. This is due to the fact that sensors often operate with discharged batter-

ies, network failures, and imprecision. Other factors, such as low-cost sensors,

freezing or heating of the casing or measurement device, accumulation of dirt,

mechanical failure or vandalism (from humans or animals) heavily affect the

quality of the sensor data [31, 73, 23]. This may cause a significant prob-

lem with respect to data utilization, since applications using erroneous data

may yield unsound results. For example, scientific applications that perform

prediction tasks using observation data obtained from cheap and less-reliable

sensors may produce inaccurate prediction results.

To address this problem, it is essential to detect and correct erroneous val-

ues in sensor data by employing data cleaning. The data cleaning task typi-

cally involves complex processing of data [71, 30]. In particular, it becomes

more difficult for sensor data, since true sensor values corresponding to erro-

neous data values are generally unobservable. This has led to a new approach –

model-based data cleaning. In this approach, the most probable sensor values

are inferred using well-established models, and then anomalies are detected by

comparing raw sensor values with the corresponding inferred sensor values. In

the literature there are a variety of suggestions for model-based approaches for

sensor data cleaning. This section describes the key mechanisms proposed by

these approaches, particularly focusing on the models used in the data cleaning

process.

3.1 Overview of Sensor Data Cleaning System

A system for cleaning sensor data generally consists of four major compo-

nents: user interface, stream processing engine, anomaly detector, and data

storage (refer Figure 1.5). In the following, we describe each component.

14

ti

10:2

11:2

:

sensors

i

2

1

:

vij

10.1

10.9

:

stream processing engine

raw sensor data cleaned data

(materialized views)

user interface

data storage

anomaly detector

ti

10:2

11:2

:

i

2

1

:

vij

fixed

10.9

:

of
fli

ne

online

Figure 1.5: Architecture of sensor data cleaning system.

User Interface: The user interface plays two roles in the data cleaning process.

First, it takes all necessary inputs from users to perform data cleaning, e.g.,

name of sensor data and parameter settings for models. Second, the results of

data cleaning, such as ‘dirty’ sensor values captured by the anomaly detector,

are presented using graphs and tables, so that users can confirm whether each

candidate of such dirty values is an actual error. The confirmed results are then

stored to (or removed from) the underlying data storage or materialized views.

Anomaly Detector: The anomaly detector is a core component in sensor data

cleaning. It uses models for detecting abnormal data values. The anomaly

detector works in online as well as offline mode. In the online mode, whenever

a new sensor value is delivered to the stream processing engine, the dirtiness

of this value is investigated and the errors are filtered out instantly. In the

offline mode, the data is cleaned periodically, for instance, once per day. In the

following subsections, we will review popular models used for online anomaly

detection.

Stream Processing Engine: The stream processing engine maintains stream-

ing sensor data, while serving as a main platform where the other system com-

ponents can cooperatively perform data cleaning. The anomaly detector is typ-

ically embedded into the stream processing engine, it may also be implemented

as a built-in function on database systems.

Data Storage: The data storage maintains not only sensor values, but also the

corresponding cleaned data, typically in materialized views. This is because

applications on sensor networks often need to repeatedly perform data cleaning

over the same data using different parameter settings for the models, especially

when the previous parameter settings turn out to be inappropriate later. There-

A Survey of Model-Based Sensor Data Acquisition and Management 15

fore, it is important for the system to store cleaned data in database views with-

out changing the original data, so that data cleaning can be performed again at

any point of time (or time interval) as necessary.

3.2 Models for Sensor Data Cleaning

This subsection reviews popular models that are widely used in the sensor

data cleaning process.

Regression Models. As sensor values are a representation of physical

processes, it is naturally possible to uncover the following properties: conti-

nuity of the sampling processes and correlations between different sampling

processes. In principle, regression-based models exploit either or both of these

properties. Specifically, they first compute the dependency from one variable

(e.g., time) to another (e.g., sensor value), and then consider the regression

curves as standards over which the inferred sensor values reside. The two most

popular regression-based approaches use polynomial and Chebyshev regres-

sion for cleaning sensor values.

Polynomial Regression: Polynomial regression finds the best-fitting curve

that minimizes the total difference between the curve and each raw sensor value

vij at time ti. Given a degree d, polynomial regression is formally defined as:

vij = c+ α1 · ti + · · · + αd · t
d
i , (1.9)

where c is a constant and α1, . . . , αd are regression coefficients.

Polynomial regression with high degrees approximate given time series with

more sophisticated curves, resulting in theoretically more accurate description

of the raw sensor values. Practically, however, low-degree polynomials, such

as constant (d = 0) and linear (d = 1), also perform satisfactorily. In addition,

low-degree polynomials can be more efficiently constructed as compared to

high-degree polynomials. A (weighted) moving average model [73] is also

regarded as a polynomial regression.

Chebyshev Regression: Chebyshev regression is another popular model class

for fitting sensor values, since they can quickly compute near-optimal approx-

imations for given time series. Suppose that time values ti vary within a range

[min(ti),max(ti)]. We, then, obtain normalized time values t′i within a range

[−1, 1], by using the following transformation function f(ti) and its inverse

transformation function f−1(t′i) as follows:

f(ti) =

(

ti −
max(ti) + min(ti)

2

)

·
2

max(ti) − min(ti)
, (1.10)

f−1(t′i) =

(

t′i ·
max(ti) − min(ti)

2

)

+
max(ti) + min(ti)

2
. (1.11)

16

Figure 1.6: Detected anomalies based on 2-degree Chebyshev regression.

Next, given a degree d, Chebyshev polynomial is defined as:

vij = f−1(cos(d · cos−1(f(ti)))).

Figure 1.6 illustrates a data cleaning process using degree-2 Chebyshev

polynomials. Here, the raw sensor values are plotted as green curves, while

the inferred values, obtained by fitting a Chebyshev polynomials, are overlaid

by black curves. The anomaly points are then indicated by the underlying red

histograms as well as red circles.

Probabilistic Models. In sensor data cleaning, inferring sensor val-

ues is perhaps the most important task, since systems can then detect and clean

dirty sensor values by comparing raw sensor values with the corresponding

inferred sensor values. Figure 1.7 shows an example of the data cleaning pro-

cess using probabilistic models. At time ti = 6, the probabilistic model infers

a probability distribution using the previous values v2j , . . . , v5j in the sliding

window. The expected value v̄6j (e.g., the mean of the Gaussian distribution in

the future) is then considered as the inferred sensor value for sensor sj .

Next, the anomaly detector checks whether the raw sensor value v6j resides

within a reasonably accurate area. This is done in order to check whether the

value is normal. For instance, the 3σ range can cover 99.7 % of the density

in the figure, where v6j is supposed to appear. Thus, the data cleaning process

can consider that v6j is not an error. At ti = 7, the window slides and now

A Survey of Model-Based Sensor Data Acquisition and Management 17

contains raw sensor values v3j , . . . , v6j . By repeating the same process, the

anomaly detector finds v7j resides out of the error bound (3σ range) in the

inferred probability distribution, and is identified as an anomaly [57].

anomaly

va
lu

e

sliding window

3

ti = 6

probability
distribution inferred

expected value

3

ti = 7
time

v
5j v

6j

v
6j

v
3j

v
6j

v
7j

v
7j

!
v

2j

Figure 1.7: An example of data cleaning based on a probabilistic model.

A vast body of research work has utilized probabilistic models for comput-

ing inferred values. The Kalman filter is perhaps one of the most common

probabilistic models to compute inferred values corresponding to raw sensor

values. The Kalman filter is a stochastic and recursive data filtering algorithm

that models the raw sensor value vij as a function of its previous value (or

state) v(i−1)j as follows:

vij = Av(i−1)j +Bui + wi,

where A and B are matrices defining the state transition from time ti−1 to time

ti, ui is the time-varying input at time ti, and wi is the process noise drawn

from a zero mean multi-variate Gaussian distribution. In [63], the Kalman filter

is used for detecting erroneous values, as well as inter/extrapolating missing

sensor values. Jain et al. [29] also use the Kalman filter for filtering possible

dirty values.

Similarly, Elnahrawy and Nath [21] proposed to use Bayes’ theorem to es-

timate a probability distribution Pij at time ti from raw sensor values vij , and

associate them with an error model, typically a normal distribution. Built on

the same principle, a neuro-fuzzy regression model [52] and a belief propa-

gation model based on Markov chains [13] were used to identify anomalies.

Tran et al. [65] propose a method to infer missing or erroneous values in RFID

data. All the techniques for inferring sensor values also enable quality-aware

processing of sensor data streams [36, 37], since inferred sensor values can

serve as the bases for indicating the quality or precision of the raw sensor val-

ues.

18

Outlier Detection Models. An outlier is a sensor value that largely

deviates from the other sensor values. Obviously, outlier detection is closely

related to the process of sensor data cleaning. The outlier-detection techniques

are well-categorized in the survey studies of [51, 8].

In particular, some of the outlier detection methods focus on sensor data

[59, 71, 15]. Zhang et al. [71] offer an overview of such outlier detection

techniques for sensor network applications. Deligiannakis et al. [15] consider

correlation, extended Jaccard coefficients, and regression-based approximation

for model-based data cleaning. Shen et al. [59] propose to use a histogram-

based method to capture outliers. Subramaniam et al. [62] introduce distance-

and density-based metrics that can identify outliers. In addition, the ORDEN

system [23] detects polygonal outliers using the triangulated wireframe surface

model.

3.3 Declarative Data Cleaning Approaches

From the perspective of using a data cleaning system, supporting a declar-

ative interface is important since it allows users to easily control the system.

This idea is reflected in a wide range of prior work that proposes SQL-like

interfaces for data cleaning [32, 46, 54]. These proposals hide complicated

mechanisms of data processing or model utilization from the users, and facili-

tate data cleaning in sensor network applications.

More specifically, Jeffery et al. [31, 32] divide the data cleaning process

into five tasks: Point, Smooth, Merge, Arbitrate, and Virtualize. These tasks are

then supported within a database system. For example, the SQL statement in

Query 1.2 performs anomaly detection within a spatial granule by determining

the average of the sensor values from different sensors in the same proximity

group. Then, individual sensor values are rejected if they are outside of one

standard deviation from the mean.

As another approach, Rao et al. [54] focus on a systemic solution, based

on rewriting queries using a set of cleansing rules. Specifically, the system

offers the rule grammar shown in Figure 1.8 to define and execute various data

cleaning tasks. Unlike the prior relational database approaches, Mayfield et al.

DEFINE [rule name]
ON [table name]
FROM [table name]
CLUSTER BY [cluster key]
SEQUENCE BY [sequence key]
AS [pattern]
WHERE [condition]
ACTION [DELETE | MODIFY | KEEP]

Figure 1.8: An example of anomaly detection using a SQL statement.

A Survey of Model-Based Sensor Data Acquisition and Management 19

SELECT spatial granule, AVG(temp)
FROM data s [Range By 5 min]

(SELECT spatial granule, avg(temp) as avg,
stdev(temp) as stdev
FROM data [Range By 5 min]) as a

WHERE a.spatial granule = s.spatial granule
AND a.avg + (2*a.stdev) < s.temp
AND a.avg - (2*a.stdev) > s.temp

Query 1.2: An example of anomaly detection using a SQL statement.

[46] model data as a graph consisting of nodes and links. They, then, provide

an SQL-based, declarative framework that enables data owners to specify or

discover groups of attributes that are correlated, and apply statistical methods

that validate and clean the sensor values using such dependencies.

4. Model-Based Query Processing

In this section we elaborate another important task in sensor data manage-

ment – query processing. We primarily focus on in-network and centralized

query processing approaches. We consider different queries assuming the sen-

sor network described in Section 2.1, and then discuss how each approach pro-

cesses these queries. In Section 2, however, we followed an approach where

we chose a singe query (i.e., Query 1.1) and demonstrated how different tech-

niques processed this query. On the contrary, in this section, we chose different

queries for all the approaches, and then discuss these approaches along with

the queries. We follow this procedure since, unlike Section 2, the assumptions

made by each query processing technique are different. Thus, for highlight-

ing the impact of these assumptions and simplifying the discussion, we select

different queries for each approach.

4.1 In-Network Query Processing

In-network query processing first builds an overlay network (like, the SRT

discussed in Section 2.3.0). Then, the overlay network is used for increasing

the efficiency of aggregating sensor values and processing queries. For in-

stance, while processing a threshold query, parent nodes send the query to the

child nodes only when the query threshold condition overlaps with the range of

sensor values contained in the child nodes, which is stored in the parent node’s

local memory.

Consider the threshold query given in Query 1.3. Query 1.3 requests the

sensor identifiers of all the sensors that have sensed a temperature greater than

10◦C at the current time instance. Before answering this query, we assume

that we have already constructed a SRT as described in Section 2.2 (refer Fig-

20

ure 1.4). Query 1.3 is sent by the root node of the SRT to its children that are

a part of the query response. The child nodes check whether the sensor value

they have sensed is greater than 10◦C. If the sensor value is greater than 10◦C

at a child node, then that child node appends its sensor identifier to the query

response. The child node, then, forwards the query to its children and waits

for their response. Once all the children of a particular node have responded,

then that node forwards the response of its entire sub-tree to its parent. In

the end, the root node receives all the sensor identifiers sj that have recorded

temperature greater than 10◦C.

SELECT sj FROM sensor values WHERE vij > 10◦C AND ti == NOW()

Query 1.3: Return the sensor identifiers sj where vij > 10◦C.

4.2 Model-Based Views

The MauveDB [18] approach proposes standard database views [19] as an

abstraction layer for processing queries. These views are maintained in a form

of a regression model; thus they are called model-based views. The main ad-

vantage of this approach is that the model-based view can be incrementally

updated as fresh sensor values are obtained from the sensors. Furthermore,

incremental updates is an attractive feature, since such updates are computa-

tionally efficient.

Before processing any queries in MauveDB, we have to first create a model-

based view. The query for creating a model-based view is shown in Query 1.4.

The model-based view created by this query is called RegModel. RegModel
is a regression model in which the temperature is the dependent variable and

the sensor position (xj , yj) is an independent variable (refer Figure 1.9). Note

that RegModel is incrementally updated by MauveDB. At time t1 values from

sensors s1, s3 and at time t2 the value from sensor s2 are respectively used to

update the view. The view update mechanism exploits the fact that regression

functions can be updated. Further details regarding the update mechanism can

be found in [18].

CREATE VIEW RegModel AS FIT v OVER x2, xy, y2, x, y

TRAINING DATA SELECT xj , yj , vij FROM sensor values
WHERE ti > tstart AND ti < tend

Query 1.4: Model-based view creation query.

Once this step is performed many types of queries can be evaluated using

the RegModel view. For instance, consider Query 1.5. MauveDB evaluates

this query by interpolating the value of temperature at fixed intervals on the

A Survey of Model-Based Sensor Data Acquisition and Management 21

x- and y-axis; this is similar to database view materialization [19]. Then the

positions (x, y) where the interpolated temperature value is greater than 10◦C

are returned.

Admittedly, although updating the model-based view is efficient, but for

processing queries the model-based view should be materialized at a certain

fixed set of points. This procedure produces a large amount of overhead when

the number of independent variables is large, since it dramatically increases

the number of points where the view should be materialized.

SELECT x, y FROM RegModel WHERE v > 10◦C

Query 1.5: Querying model-based views.

4.3 Symbolic Query Evaluation

This approach is proposed by the FunctionDB [64] system. FunctionDB,

like MauveDB, also interpolates the values of the dependent variable, and then

uses the interpolated values for query processing.

As discussed before, the main problem with value interpolation is that the

number of points, where the sensor values should be interpolated, increase dra-

matically as a function of the number of independent variables. As a solution

to this problem, FunctionDB symbolically executes the filter (for example, the

WHERE clause in Query 1.5) and obtains feasible regions of the independent

variables. These feasible regions are the regions that include the exact response

to the query, at the same time contain a significantly low number of values to

interpolate. FunctionDB evaluates the query by interpolating values only in

the feasible regions, followed by a straightforward evaluation of the query.

t1 t2

model-based

views

10
20

40

10
20

50

10
20

40

10
20

50

s1

s2 s3

s1

s2 s3
v11

v13

v22

-- sensors -- sensor values

model-based

views are

continuously

updated
time

Figure 1.9: Example of the RegModel view with three sensors. RegModel
is incrementally updated as new sensor values are acquired.

22

Moreover, FunctionDB treats the temperature of the sensor sj as a contin-

uous function of time fj(t), instead of treating it as discrete values sampled

at time stamps ti. An example of a query in the FunctionDB framework is

given in Query 1.6. This query returns the time values t between tstart and

tend where the temperature of the sensor s1 is greater than 10◦C. Note that the

time values t are not necessarily the time stamps ti where a particular sensor

value was recorded.

SELECT t WHERE f1(t) > 10◦C AND t > tstart AND t < tend GRID t 1s

Query 1.6: Continuous threshold query.

For defining the values of the time axis t (or any continuous variable), Func-

tionDB proposes the GRID operator. The GRID operator specifies the interval

at which the function f1(t) should be interpolated between time tstart and tend.

For instance, GRID t 1s indicates that the time axis should be interpolated

at one second intervals between time tstart and tend. To process Query 1.6,

FunctionDB first symbolically executes the WHERE clause and obtains the fea-

sible regions of the time axis (independent variable). Then, using the GRID
operator, it generates time stamps TI in the feasible regions. The sensor value

is interpolated at the time stamps TI using regression functions. Lastly, the

query is processed on these interpolated values, and time stamps T ′
I ⊆ TI

where the temperature is greater than 10◦C are returned.

4.4 Processing Queries over Uncertain Data

In this form of query processing the assumption is that sensor data is in-

herently uncertain. This uncertainty can arise due to various factors: loss of

calibration over time, faulty sensors, unsuitable environmental conditions, low

sensor accuracy, etc. Thus, the approaches that treat sensor data as uncertain,

assume that each sensor value is associated with a random variable, and is

drawn from a distribution. In this subsection, we discuss two such methods

that model uncertain data by either a dynamic probabilistic model or a static

probability distribution.

Dynamic Probabilistic Models. Dynamic probabilistic models

(DPMs) are proposed for query processing in [33, 29]. These models continu-

ously estimate a probability distribution. The estimated probability distribution

is used for query processing. Mainly, there are two types of models that are

frequently used for estimating dynamic probability distributions: particle fil-

ters and Kalman filters. Particle filters are generalized form of Kalman filters.

Since we have already discussed Kalman filters in Section 3.2, here we will

focus on particle filtering.

A Survey of Model-Based Sensor Data Acquisition and Management 23

Consider a single sensor, say s1, the particle filtering approach [4], at each

time instant ti, estimates and stores pweighted tuples {(w1
i1, v

1
i1), . . . , (w

p
i1, v

p
i1)},

where the weight w1
i1 denotes the probability of v1

i1 being the sensor value of

the sensor s1 at time ti, and so on. An example of particle filtering is shown in

the pf sensor values table in Figure 1.10.

Now, consider Query 1.7 that requests the average temperature AVG(vij)
between time tstart and tend. To evaluate this query, we assume that we already

have executed the particle filtering algorithm at each time instance ti and have

created the pf sensor values table. We, then, perform the following two

operations:

1. For each time ti between tstart and tend, we compute the expected tem-

perature v̄i1 =
∑p

l=1 w
l
i1 · vl

i1. The formal SQL syntax for computing

the expected values using the pf sensor values table is as follows:

SELECT ti,
∑p

l=1w
l
i1 · vl

i1 FROM pf sensor values WHERE ti >
tstart AND ti < tend GROUP BY ti

2. The final result is the average of all the v̄i1 that we computed in Step 1.

Essentially, the tuples {(w1
i1, v

1
i1), . . . , (w

p
i1, v

p
i1)} represent a discretized

pdf for the random variable Vi1. Moreover, the most challenging tasks in par-

ticle filtering are to continuously infer weights w1
i1, . . . , w

p
i1 and to select the

optimal number of particles p, keeping in mind a particular scenario and type

of data [4].

SELECT AVG(vi1) FROM pf sensor values WHERE t > tstart AND t < tend

Query 1.7: Compute the average temperature between time tstart and tend.

pf_sensor_values

yjxjsjtii p
p

ij
v p
w

Figure 1.10: Particle filtering stores p weighted sensor values for each time

instance ti.

24

Static Probabilistic Models. Cheng et al. [9–11] model the sen-

sor value as obtained from an user-defined uncertainty range. For example,

if the value of a temperature sensor is 15◦C, then the actual value could vary

between 13◦C and 17◦C. Furthermore, the assumption is that the sensor value

is drawn from a static probability distribution that has support over the uncer-

tainty range.

Thus, for each sensor sj we associate an uncertainty range between lij and

uij , in which the actual sensor values can be found. In addition, the pdf of the

sensor values of sensor sj is denoted as pij(v). Note that the pdf has non-zero

support only between lij and uij . Consider a query that requests the average

temperature of the sensors s1 and s2 at time ti. Since the values of the sensors

s1 and s2 are uncertain in nature, the response to this query is a pdf, denoted

as pavg(v). This pdf gives us the probability of the sensor value v being the

average. pavg(v) is computed using the following formula:

pavg(v) =

∫ min(ui1,v−li2
)

max(li1,v−ui2
)
pi1(y)pi2(v − x)dx. (1.12)

Naturally, Eq. (1.12) becomes more complicated when there are many (and

not only two) sensors involved in the query. Additional details about handling

such scenarios can be found in [9].

4.5 Query Processing over Semantic States

The MIST framework [5] proposes to use Hidden Markov Models (HMMs)

for deriving semantic meaning from the sensor values. HMMs allow us to

capture the hidden states, which are sometimes of more interest than the actual

sensor values. Consider, as an example, a scenario where the sensors S are

used to monitor the temperature in all the rooms of a building. Generally, we

are only interested to know which rooms are hot or cold, rather than the actual

temperature in those rooms. We, then, can use a two-state HMM with states

Hot (denoted asH) and Cold (denoted asC) to continuously infer the semantic

states of the temperature in all the rooms.

Furthermore, MIST proposes an in-network index structure for indexing the

HMMs. This index can be used for improving the performance of query pro-

cessing. For instance, if we are interested in finding the rooms that are Hot

with probability greater than 0.9, then the in-network model index can effi-

ciently prune the rooms that are surely not a part of the query response. Due

to the lack of space, we shall not cover the details of index construction and

pruning. We encourage the interested reader to read the following paper [5].

A Survey of Model-Based Sensor Data Acquisition and Management 25

4.6 Processing Event Queries

Event queries are another important class of queries that are proposed in the

literature. These queries continuously monitor for a particular event that could

probably occur in sensor data. Consider a setup consisting of RFID sensors in

a building. An event query could monitor an event of a person entering a room

or taking coffee, etc. Moreover, event queries can also be registered, not only

to monitor a single event, but a sequence of events that are important to the

user. Again, due to space constraints, we shall not cover any of the event query

processing approaches in detail. The interested reader is referred to the prior

works on this subject [55, 65, 68, 45].

5. Model-Based Sensor Data Compression

Recent advances in sensor technology has resulted in the availability of a

multitude of (often privately-held) sensors. Embedded sensing functionality

(e.g., sound, accelerometer, temperature, GPS, RFID, etc.) is now included in

mobile devices, like, phones, cars, or buses. The large number of these devices

and the huge volume of raw monitored data pose new challenges for sustain-

able storage and efficient retrieval of the sensor data streams. To this end, a

multitude of model-based regression, transformation and filtering techniques

have been proposed for approximation of sensor data streams. This section

categorizes and reviews the most important model-based approaches towards

compression of sensor data. These models often exploit spatio-temporal cor-

relations within data streams to compress the data within a certain error norm;

this is also known as lossy compression. Moreover, several standard orthog-

onal transformation methods (like, Fourier or wavelet transform) reduce the

amount of storage space required by reducing the dimensionality of data.

Unlike the assumptions of Section 2, where we assumed a sensor network

consisting of several sensors, here we assume that we only have a single sensor.

We have dropped the several sensors assumption to simplify the notation and

discussion in this section. Furthermore, we assume that the sensor values from

the single sensor are in a form of a data stream. Let us denote such a data

stream as a sequence of data tuples (ti, vi), where vi is the sensor value at time

ti.

5.1 Overview of Sensor Data Compression
System

The goal of the sensor data compression system is to approximate a sen-

sor data stream by a set of functions. Data compression methods that we are

going to study in this section permit the occurrence of approximation errors.

These errors are characterized by a specific error norm. Furthermore, a stan-

26

dard approach to sensor data compression is to segment the data stream into

data segments, and then approximate each data segment, so that a specific error

norm is satisfied. For example, if we are considering the L∞ norm, then each

sensor value of the data stream is approximated within an error bound ǫ.

Let us assume that we have K segments of a data stream. We denote these

segments as g1, g2, . . . , gK , where g1 approximates the data tuples

((t1, v1), . . . , (ti1 , vi1)), while gk, where k = 2, . . . ,K, approximates the data

items ((tik−1+1, vik−1+1), (tik−1+2, vik−1+1), . . . , (tik , vik)). Similar to [20],

we distinguish between two classes of the segments used for approximation,

namely connected segments and disconnected segments. In connected seg-

ments, the ending point of the previous segment is the starting point of the

new segment. On the contrary, in disconnected segments, the approximation

of the new segment starts from the subsequent data item in the stream. Discon-

nected segments offer more approximation flexibility and may lead to fewer

segments; however, for linear approximation [35], they necessitate the storage

of two data tuples (i.e., start tuple and end tuple) per data segment, as opposed

to connected segments.

Since functions are employed for approximating data segments, only the ap-

proximated data segments are stored in the database, instead of the raw sensor

values of the data stream [64, 50]. A schema for linear segments is presented in

[64], consisting of a table, referred to as FunctionTable, where each row

represents a linear model with attributes start time, end time, slope
and intercept (i.e., base) of the segment. In case of connected segments

[20], the end time attribute can be omitted.

A more generic schema for storing data streams, approximated by multiple

models was proposed in [50] that consists of one table (SegmentTable) for

storing the data segments, and a second table (ModelTable) for storing the

model functions, as depicted in Figure 1.11. A tuple of the SegmentTable
contains the approximation data for a segment in the time interval

[start time, end time]. The attribute id stands for identification of the

model that is used in the segment. The primary key in the SegmentTable
is the start time, while in the ModelTable it is id. When, both, lin-

ear and non-linear models are employed for approximation, left value is

the lowest raw sensor value encountered in the segment, and right value
is the highest raw sensor value encountered in the segment. In this case,

start time, end time, left value and right value define a rect-

angular bucket that contains the values of the segment.

The attribute model params stores the parameters of the model associ-

ated with the model identifier id. For example, regression coefficients are

stored for the regression model. The attribute model params has variable

length (e.g., VARCHAR or VARBINARY data types in SQL) and it stores the

concatenation of the parameters or their compressed representation, by means

A Survey of Model-Based Sensor Data Acquisition and Management 27

Figure 1.11: The database schema for multi-model materialization.

of standard lossless compression techniques (refer Section 5.7) or by a bitmap

coding of approximate values, as proposed in [3]. Each tuple in the Mod-

elTable corresponds to a model with a particular id and function. The at-

tribute function represents the name of the model and it maps to the names

of two user defined functions (UDFs) stored in the database. The first function

implements the mathematical formula of the model, and the second function

implements the inverse mathematical formula of the model, if any. Both the

UDFs are employed for answering value-based queries. While the first func-

tion is used for value regeneration over fixed time steps (also referred to as

gridding), the second function is used for solving equations.

5.2 Methods for Data Segmentation

In [34], the piecewise linear approximation algorithms are categorized in

three groups: sliding window, top-down and bottom-up. The sliding window

approach expands the data segment as long as the data tuples fit. The bottom-up

approach first applies basic data segmentation employing the sliding window

approach. Then, for two consecutive segments, it calculates merging cost in

terms of an approximation error. Subsequently, it merges the segments with

the minimum cost within the maximum allowed approximation error, and up-

28

dates the merging costs of the updated segments. The process ends when no

further merging can be done without violating the maximum approximation

error. The top-down approach recursively splits the stream into two segments,

so as to obtain longest segments with the lowest error until all segments are

approximated within the maximum allowed error.

Among these three groups, only the sliding window approach can be used

online, but it employs look-ahead. The other two approaches perform better

than the sliding window approach, but they need to scan all data, hence they

cannot be used for approximating streaming data. Based on this observation,

Keogh et al. [34] propose a new algorithm that combines the online processing

property of the sliding window approach and the performance of the bottom-

up approach. This approach needs a predefined buffer length. If the buffer is

small, then it may produce many small data segments; if the buffer is large, then

there is a delay in returning the approximated data segment. The maximum

look-ahead size is constrained by the maximum allowed delay between data

production and data reporting or data archiving.

5.3 Piecewise Approximation

Among several different data stream approximation techniques, piecewise

linear approximation has been the most widely used [34, 39]. Piecewise lin-

ear approximation models the data stream with a separate linear function per

data segment. Piecewise constant approximation (PCA) approximates a data

segment with a constant value, which can be the first value of the segment (re-

ferred to as the cache filter) [47], the mean value or the median value (referred

to as poor man’s compression - midrange (PMC-MR) [39]).

In the cache filter, for all the sensor values in a segment gk, the following

condition should be satisfied:
∣

∣vik−1+p − vik−1+1

∣

∣ < ǫ for p = 1, . . . , ik, (1.13)

where ǫ is the maximum allowed approximation error according to the L∞

norm. Also, for PMC-Mean and PMC-MR the sensor values in a segment gk

should satisfy the following condition:

max
1≤p≤ik

vik−1+p − min
1≤p≤ik

vik−1+p ≤ 2ǫ . (1.14)

Furthermore, for PMC-Mean, the approximation value for the segment gk is

given by the mean value of the sensor values in segment gk . But, for PMC-MR

it is given as follows:

max1≤p≤ik vik−1+p − min1≤p≤ik vik−1+p

2
.

The data segmentation approach for PMC-MR is illustrated in Figure 1.12.

A Survey of Model-Based Sensor Data Acquisition and Management 29

25.9

25.95

26

26.05

26.1

26.15

04.22.08 20:09 04.23.08 00:57

T
e

m
p

e
ra

tu
re

 (
o
C

)

Date & Time (mm/dd/yy hours:min)

Raw Data

PMC-MR

2ε

Figure 1.12: Poor Man’s Compression - MidRange (PMC-MR).

Moreover, the linear filter [34] is a simple piecewise linear approximation

technique in which the sensor values are approximated by a line connecting the

first and second point of the segment. When a new data tuple cannot be approx-

imated by this line with the specified error bound, a new segment is started. In

[20], two new piecewise linear approximation models were proposed, namely

Swing and Slide, that achieve much higher compression compared to the cache

and linear filters. We briefly discuss the swing and slide filters below.

Swing and Slide Filters. The swing filter is capable of approximating

multi-dimensional data. But, for simplicity, we describe its algorithm for one-

dimensional data. Given the arrival of two data tuples (t1, v1) and (t2, v2) of

the first segment of the data stream, the swing filter maintains a set of lines,

bounded by an upper line u1 and a lower line l1. u1 is defined by the pair

of points (t1, v1) and (t2, v2 + ǫ), while l1 is defined by the pair of points

(t1, v1) and (t2, v2 − ǫ), where ǫ is the maximum approximation error bound.

Any line segment between u1 and l1 can represent the first two data tuples.

When (t3, v3) arrives, first it is checked whether it falls within the lines l1,

u1. Then, in order to maintain the invariant that all lines within the set can

represent all data tuples so far, l1 (respectively u1) may have to be adjusted

to the higher-slope (respectively lower-slope) line defined by the pair of data

tuples ((t1, v1), (t3, v3 − ǫ)) (respectively ((t1, v1), (t3, v3 + ǫ))). Lines below

this new l1 or above this new u1 cannot represent the data tuple (t3, v3). The

segment estimation continues until the new data tuple falls out of the upper

and lower lines for a segment. The generated line segment for the completed

30

filtering interval is chosen so as to minimize the mean square error for the

data tuples observed in that interval. As opposed to the slide filter (described

below), in the swing filter the new data segment starts from the end point of

the previous data segment.

In the slide filter, the operation is similar to the swing filter, but upper

and lower lines u and l are defined differently. Specifically, after (t1, v1)
and (t2, v2) arrive, u1 is defined by the pair of data tuples (t1, v1 − ǫ) and

(t2, v2 + ǫ), while l1 is defined by (t1, v1 + ǫ) and (t2, v2 − ǫ). After the arrival

of (t3, v3), l
1 (respectively u1) may need to be adjusted to the higher-slope (re-

spectively lower-slope) line defined by ((tj , vj + ǫ), (t3, v3 − ǫ)) (respectively

((ti, vi − ǫ), (t3, v3 + ǫ))), where i ∈ [1, 2]. The slide filter also includes a

look-ahead of one segment, in order to produce connected segments instead of

disconnected segments, when possible.

Palpanas et al. [48] employ amnesic functions and propose novel techniques

that are applicable to a wide range of user-defined approximating functions.

According to amnesic functions, recent data is approximated with higher ac-

curacy, while higher error can be tolerated for older data. Yi and Faloutsos

[70] suggested approximating a data stream by dividing it into equal-length

segments and recording the mean value of the sensor values that fall within the

segment (referred to as segmented means or as piecewise aggregate approxi-

mation (PAA)). On the other hand, adaptive piecewise constant approximation

(APCA) [6] allows segments to have arbitrary lengths.

Piecewise Linear Approximation. The piecewise linear approx-

imation uses the linear regression model for compressing data streams. The

linear regression model of a data segment is given as:

vi = s · ti + b, (1.15)

where b and s are known as the base and the slope respectively. The difference

between vi and ti is known as the residual for time ti. For fitting a linear

regression model of Eq. (1.15) to the sensor values vi : ti ∈ [tb; te], the

ordinary least squares (OLS) estimator is employed. The OLS estimator selects

b and s such that they minimize the following sum of squared residuals:

RSS(b, s) =

te
∑

ti=tb

[vi − (s · ti + b)]2.

A Survey of Model-Based Sensor Data Acquisition and Management 31

Therefore, b and s are given as:

b =

te
∑

ti=tb

(

ti −
tb+te

2
∑te

ti=tb
(ti −

tb+te
2)ti

)

vi,

s =

∑te
ti=tb

vi

te − tb + 1
− b

tb + te

2
.

(1.16)

Here, the storage record of each data segment of the data stream consists of

([tb; te]; b, s), where [tb; te] is the segment interval, and s and b are the slope

and base of the linear regression, as obtained from Eq. (1.16).

Similarly, instead of the linear regression model, a polynomial regression

model (refer Eq. (1.9)) can also be utilized for approximating each segment

of the data stream. The storage record of the polynomial regression model is

similar to the linear regression model. The only difference is that for the poly-

nomial regression model the storage record contains parameters α1, . . . , αd

instead of the parameters b and s.

5.4 Compressing Correlated Data Streams

Several approaches [14, 42, 24] exploit correlations among different data

streams for compression. The GAMPS approach [24] dynamically identifies

and exploits correlations among different data segments and then jointly com-

presses them within an error bound employing a polynomial-time approxima-

tion algorithm. In the first phase, data segments are individually approximated

based on piecewise constant approximation (specifically the PMC-Mean de-

scribed in Section 5.3). In the second phase, each data segment is approxi-

mated by a ratio with respect to a base segment. The segment formed by the

ratios is called the ratio segment. GAMPS proposes to store the base segment

and the ratio segment, instead of storing the original data segment. The idea

here is that, in practice, the ratio segment is flat and therefore can be signifi-

cantly compressed as compared to the original data segment.

Furthermore, the objective of the GAMPS approach is to identify a set of

base segments, and associate every data segment with a base segment, such

that the ratio segment can be used for reconstructing the data segment within a

L∞ error bound. The problem of identification of the base segments is posed

as a facility location problem. Since this problem is NP-hard, a polynomial-

time approximation algorithm is used for solving it, and producing the base

segments and the assignment between the base segments and data segments.

Prior to GAMPS, Deligiannakis et al. [14] proposed the self-based regres-

sion (SBR) algorithm that also finds a base-signal for compressing historical

sensor data based on spatial correlations among different data streams. The

base-signal for each segment captures the prominent features of the other sig-

nals, and SBR finds piecewise correlations (based on linear regression) to the

32

base-signal. Lin et al. [42] proposed an algorithm, referred to as adaptive linear

vector quantization (ALVQ), which improves SBR in two ways: (i) it increases

the precision of compression, and (ii) it reduces the bandwidth consumption by

compressing the update of the base signal.

5.5 Multi-Model Data Compression

The potential burstiness of the data streams and the error introduced by

the sensors often result in limited effectiveness of a single model for approxi-

mating a data stream within the prescribed error bound. Acknowledging this,

Lazaridis et al. [39] argue that a global approximation model may not be the

best approach and mention the potential need for using multiple models. In

[40], it is also recognized that different approximation models are more appro-

priate for data streams of different statistical properties. The approach in [40]

aims to find the best model approximating the data stream based on the overall

hit ratio (i.e., the ratio of the number of data tuples fitting the model to the total

number of data tuples).

Papaioannou et al. [50] aim to effectively find the best combination of dif-

ferent models for approximating various segments of the stream regardless of

the error norm. They argue that the selection of the most efficient model de-

pends on the characteristics of the data stream, namely rate, burstiness, data

range, etc., which cannot be always known a priori for sensors and they can

even be dynamic. Their approach dynamically adapts to the properties of the

data stream and approximates each data segment with the most suitable model.

They propose a greedy approach in which they employ multiple models for

each segment of the data stream and store the model that achieves the high-

est compression ratio for the segment. They experimentally proved that their

multi-model approximation approach always produces fewer or equal data seg-

ments than those of the best individual model. Their approach could also be

used to exploit spatial correlations among different attributes from the same

location, e.g., humidity and temperature from the same stationary sensor.

5.6 Orthogonal Transformations

The main application of the orthogonal transformation approaches has been

in dimensionality reduction, since reducing the dimensionality improves per-

formance of indexing techniques for similarity search in large collections of

data streams. Typically, sequences of fixed length are mapped to points in

an N -dimensional Euclidean space; then, multi-dimensional access methods,

such as R-tree family, can be used for fast access of those points. Since, se-

quences are usually long, a straightforward application of the above approach,

which does not use dimensionality reduction, suffers from performance degra-

dation due to the curse of dimensionality [56].

A Survey of Model-Based Sensor Data Acquisition and Management 33

The process of dimensionality reduction can be described as follows. The

original data stream or signal is a finite sequence of real values or coefficients,

recorded over time. This signal is transformed (using a specific transforma-

tion function) into a signal in a transformed space. To achieve dimensionality

reduction, a subset of the coefficients of the orthogonal transformation are se-

lected as features. These features form a feature space, which is simply a

projection of the transformed space. The basic idea is to approximate the orig-

inal data stream with a few coefficients of the orthogonal transformation; thus

reducing the dimensionality of the data stream.

Discrete Fourier Transform (DFT). The Fourier transform is the

most popular orthogonal transformation. It is based on the simple observa-

tion that every signal can be represented by a superposition of sine and cosine

functions. The discrete Fourier transform (DFT) and discrete cosine transform

(DCT) are efficient forms of the Fourier transform often used in applications.

The DFT is the most popular orthogonal transformation and was first used in

[1, 22]. The Discrete Fourier Transform of a time sequence x = x0, . . . , xN−1

is a sequence X = X0, . . . ,XN−1 of complex numbers given by:

Xk =

N−1
∑

j=0

e−i2π k
N

j. (1.17)

The original signal can be reconstructed by the inverse Fourier transform ofX,

which is given by:

xj =
N−1
∑

k=0

Xke
i2π k

N
j. (1.18)

In [1], Agrawal et al. suggest using the DFT for dimensionality reduction

of long observation sequences. They argue that most real signals only require

a few DFT coefficients for their approximation. Thus similarity search can be

performed only over the first few DFT coefficients, instead of the full observa-

tion sequence. This provides an efficient and approximate solution to the prob-

lem of similarity search in high-dimensional spaces. They use the Euclidean

distance as the dissimilarity measure.

Discrete Wavelet Transform. Wavelets can be thought of as a

generalization of the Fourier transform to a much larger family of functions

than sine and cosine. Mathematically, a wavelet is a function ψj,k defined on

the real numbers R, which includes an integer translation by k, also called a

shift, and a dyadic dilation (a product by the powers of two), known as stretch-

ing. The functions ψj,k play a similar role as the exponential functions in the

Fourier transform: ψj,k form an orthonormal basis for the L2(R) space. The

34

L2(R) space consists of all the functions whose L2 norm is finite. Particularly,

the functions ψj,k, where j and k are integers are given as follows:

ψj,k(t) = 2j/2ψ(2jt− k). (1.19)

Similar to the Fourier transform, by using the orthonormal basis functions

ψj,k, we can uniquely express a function f ∈ L2(R) as a linear combination

of the basis functions ψj,k as follows:

f =
∑

j,k∈Z

< f,ψj,k > ψj,k, (1.20)

where < f, g >:=
∫

R fgdx is the usual inner product of two functions in

L2(R).
The Haar wavelets are the most elementary example of wavelets. The mother

wavelet ψ for the Haar wavelets is the following function:

ψHaar(t) =

1, if 0 < t < 0.5,

−1, if 0.5 < t < 1,

0, otherwise.

(1.21)

Ganesan et al. [26, 25] proposed in-network storage of wavelet-based sum-

maries of sensor data. Recently, discrete wavelet transform (DWT) was also

proposed in [53, 7] for sensor data compression. For sustainable storage and

querying, they propose progressive aging of summaries and load sharing tech-

niques.

Discussion. The basis functions of some wavelet transforms are non-

zero only on a finite interval. Therefore, wavelets may be only able to cap-

ture local (time dependent) properties of the data, as opposed to Fourier trans-

forms, which can capture global properties. The computational efficiency of

the wavelet transforms is higher than the Fast Fourier transform (FFT). How-

ever, while the Fourier transform can accurately approximate arbitrary signals,

the Haar wavelet is not likely to approximate a smooth function using few

features.

The wavelet transform representation is intrinsically coupled with approx-

imating sequences whose length is a power of two. Using wavelets with se-

quences that have other lengths require ad-hoc measures that reduce the fi-

delity of the approximation, and increase the complexity of the implementa-

tion. DFT and DCT have been successfully adapted to incremental computa-

tion [72]. However, as each DFT/DCT coefficient makes a global contribution

to the entire data stream, assigning less significance to the past data is not ob-

vious with these transformations.

A Survey of Model-Based Sensor Data Acquisition and Management 35

5.7 Lossless vs. Lossy Compression

While lossless compression is able to accurately reconstruct the original

data, lossy compression techniques approximate data streams within a certain

error bound. Most lossless compression schemes perform two steps in se-

quence: the first step generates a statistical model for the input data, and the

second step uses this model to map input data to bit sequences. These bit

sequences are mapped in such a way that frequently encountered data will

produce shorter output than infrequent data. General-purpose compression

schemes include DEFLATE (employed by gzip, ZIP, PNG, etc.), LZW (em-

ployed by GIF, compress, etc.), LZMA (employed by 7zip). The primary en-

coding algorithms used to produce bit sequences are Huffman coding (also

used by DEFLATE) and arithmetic coding. Arithmetic coding achieves com-

pression rates close to the best possible, for a particular statistical model, which

is given by the information entropy. On the other hand, Huffman compression

is simpler and faster but produces poor results.

Lossless compression techniques, however, are not adequate for a number

of reasons: (a) as experimentally found in [39], gzip lossless compression

achieves poor compression (50%) compared to lossy techniques, (b) lossless

compression and decompression are usually more computationally intensive

than lossy techniques, and (c) indexing cannot be employed for archived data

with lossless compression.

6. Summary

In this chapter, we presented a comprehensive overview of the various as-

pects of model-based sensor data acquisition and management. Primarily, the

objectives of the model-based techniques are efficient data acquisition, han-

dling missing data, outlier detection, data compression, data aggregation and

summarization. We started with acquisition techniques like TinyDB [45], Ken

[12], PRESTO [41]. In particular, we focused on how acqusitional queries are

disseminated in the sensor network using routing trees [44]. Then we surveyed

various approaches for sensor data cleaning, including polynomial-based [73],

probabilistic [21, 63, 52, 65] and declarative [31, 46].

For processing spatial, temporal and threshold queries, we detailed query

processing approaches like MauveDB [18], FunctionDB [64], particle filter-

ing [33], MIST [5], etc. Here, our primary objective was to demonstrate how

model-based techniques are used for improving various aspects of query pro-

cessing over sensor data. Lastly, we discussed data compression techniques,

like, linear approximation [34, 39, 48], multi-model approximations [39, 40,

50] and orthogonal transformations [1, 22, 53, 7].

36

All the methods that we presented in this chapter were model-based. They

utilized models – statistical or otherwise – for describing, simplifying or ab-

stracting various components of sensor data acquisition and management.

Acknowledgments

This work was supported by the OpenSense project (Nano-Tera reference

number 839 401), NCCR-MICS (http://www.mics.org), and by the OpenIoT

project (EU FP7-ICT 287305).

References

[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in se-

quence databases. In Foundations of Data Organization and Algorithms,

pages 69–84, 1993.

[2] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella. Energy

conservation in wireless sensor networks: A survey. Ad Hoc Networks,

7(3):537–568, 2009.

[3] A. Arion, H. Jeung, and K. Aberer. Efficiently maintaining distributed

model-based views on real-time data streams. In GLOBECOM, pages

1–6, 2011.

[4] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on

particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE

Transactions on Signal Processing, 50(2):174–188, 2002.

[5] A. Bhattacharya, A. Meka, and A. Singh. MIST: Distributed indexing

and querying in sensor networks using statistical models. In VLDB, pages

854–865, 2007.

[6] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally adaptive

dimensionality reduction for indexing large time series databases. ACM

Transactions on Database Systems (TODS), 27(2):188–228, 2002.

[7] K. Chan and W. Fu. Efficient time series matching by wavelets. In ICDE,

pages 126–133, 1999.

[8] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.

ACM Computing Surveys, 41(3):1–58, 2009.

[9] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic

queries over imprecise data. In SIGMOD, pages 551–562, 2003.

[10] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluation of probabilistic

queries over imprecise data in constantly-evolving environments. Infor-

mation Systems, 32(1):104–130, 2007.

[11] R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A database system for

managing constantly-evolving data. In VLDB, pages 1271–1274, 2005.

A Survey of Model-Based Sensor Data Acquisition and Management 37

[12] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Approximate data

collection in sensor networks using probabilistic models. In ICDE, pages

48–48, 2006.

[13] F. Chu, Y. Wang, S. Parker, and C. Zaniolo. Data cleaning using belief

propagation. In IQIS, pages 99–104, 2005.

[14] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing histor-

ical information in sensor networks. In SIGMOD, pages 527–538, 2004.

[15] A. Deligiannakis, V. Stoumpos, Y. Kotidis, V. Vassalos, and A. Delis.

Outlier-aware data aggregation in sensor networks. In ICDE, pages 1448–

1450, 2008.

[16] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting corre-

lated attributes in acquisitional query processing. In ICDE, pages 143–

154, 2005.

[17] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.

Model-driven data acquisition in sensor networks. In VLDB, pages 588–

599, 2004.

[18] A. Deshpande and S. Madden. MauveDB: Supporting model-based user

views in database systems. In SIGMOD, pages 73–84, 2006.

[19] R. Elmasri and S. Navathe. Fundamentals of database systems. Addison

Wesley, 6th edition, 2010.

[20] H. Elmeleegy, A. Elmagarmid, E. Cecchet, W. Aref, and W. Zwaenepoel.

Online piece-wise linear approximation of numerical streams with preci-

sion guarantees. In VLDB, pages 145–156, 2009.

[21] E. Elnahrawy and B. Nath. Cleaning and querying noisy sensors. In

WSNA, pages 78–87, 2003.

[22] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence

matching in time-series databases. In SIGMOD, pages 419–429, 1994.

[23] C. Franke and M. Gertz. ORDEN: Outlier region detection and explo-

ration in sensor networks. In SIGMOD, pages 1075–1077, 2009.

[24] S. Gandhi, S. Nath, S. Suri, and J. Liu. GAMPS: Compressing multi

sensor data by grouping and amplitude scaling. In SIGMOD, pages 771–

784, 2009.

[25] D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do we

need a new data handling architecture for sensor networks? In SIG-

COMM, pages 143–148, 2003.

[26] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and H. J. An

evaluation of multi-resolution storage for sensor networks. In SenSys,

pages 89–102, 2003.

38

[27] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Distributed

regression: An efficient framework for modeling sensor network data. In

IPSN, pages 1–10, 2004.

[28] H. Gupta, V. Navda, S. Das, and V. Chowdhary. Efficient gathering of

correlated data in sensor networks. ACM Transactions on Sensor Net-

works (TOSN), 4(1):4, 2008.

[29] A. Jain, E. Chang, and Y.-F. Wang. Adaptive stream resource manage-

ment using Kalman Filters. In SIGMOD, pages 11–22, 2004.

[30] S. Jeffery, G. Alonso, M. Franklin, W. Hong, and J. Widom. A pipelined

framework for online cleaning of sensor data streams. In ICDE, page

140, 2006.

[31] S. Jeffery, G. Alonso, M. Franklin, W. Hong, and J. Widom. Declarative

support for sensor data cleaning. In Pervasive, pages 83–100, 2006.

[32] S. Jeffery, M. Garofalakis, and M. Franklin. Adaptive cleaning for RFID

data streams. In VLDB, pages 163–174, 2006.

[33] B. Kanagal and A. Deshpande. Online filtering, smoothing and proba-

bilistic modeling of streaming data. In ICDE, pages 1160–1169, 2008.

[34] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for

segmenting time series. In ICDM, pages 289–296, 2001.

[35] E. Keogh and M. Pazzani. An enhanced representation of time series

which allows fast and accurate classification, clustering and relevance

feedback. In SIGKDD, pages 239–241, 1998.

[36] A. Klein. Incorporating quality aspects in sensor data streams. In PIKM,

pages 77–84, 2007.

[37] A. Klein and W. Lehner. Representing data quality in sensor data stream-

ing environments. Journal of Data and Information Quality, 1(2):1–28,

2009.

[38] Y. Kotidis. Snapshot queries: Towards data-centric sensor networks. In

ICDE, pages 131–142, 2005.

[39] I. Lazaridis and S. Mehrotra. Capturing sensor-generated time series with

quality guarantees. In ICDE, pages 429–440, March 2003.

[40] Y. Le Borgne, S. Santini, and G. Bontempi. Adaptive model selection

for time series prediction in wireless sensor networks. Signal Processing,

87(12):3010–3020, 2007.

[41] M. Li, D. Ganesan, and P. Shenoy. PRESTO: Feedback-driven data man-

agement in sensor networks. IEEE/ACM Transactions on Networking

(TON), 17(4):1256–1269, 2009.

[42] S. Lin, V. Kalogeraki, D. Gunopulos, and S. Lonardi. Online information

compression in sensor networks. In IEEE International Conference on

Communications, 2006.

A Survey of Model-Based Sensor Data Acquisition and Management 39

[43] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: A tiny ag-

gregation service for ad-hoc sensor networks. ACM SIGOPS Operating

Systems Review, 36(SI):131–146, 2002.

[44] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The design of an

acquisitional query processor for sensor networks. In SIGMOD, pages

491–502, 2003.

[45] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: An acqui-

sitional query processing system for sensor networks. TODS, 30(1):122–

173, 2005.

[46] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: A database approach

for statistical inference and data cleaning. In SIGMOD, pages 75–86,

2010.

[47] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries

over distributed data streams. In SIGMOD, pages 563–574, 2003.

[48] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, and W. Truppel. On-

line amnesic approximation of streaming time series. In ICDE, pages

339–349, 2004.

[49] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery

in multiple time-series. In VLDB, pages 697–708, 2005.

[50] T. Papaioannou, M. Riahi, and K. Aberer. Towards online multi-model

approximation of time series. In IEEE MDM, pages 33–38, 2011.

[51] A. Patcha and J.-M. Park. An overview of anomaly detection techniques:

Existing solutions and latest technological trends. Computer Networks,

51(12):3448–3470, 2007.

[52] A. Petrosino and A. Staiano. A neuro-fuzzy approach for sensor network

data cleaning. In KES, pages 140–147, 2007.

[53] I. Popivanov. Similarity search over time series data using wavelets. In

ICDE, pages 212–221, 2002.

[54] J. Rao, S. Doraiswamy, H. Thakkar, and L. Colby. A deferred cleansing

method for RFID data analytics. In VLDB, pages 175–186, 2006.

[55] C. Ré, J. Letchner, M. Balazinksa, and D. Suciu. Event queries on corre-

lated probabilistic streams. In SIGMOD, pages 715–728, 2008.

[56] H. Samet. Foundations of multidimensional and metric data structures.

Morgan Kaufmann, 2006.

[57] S. Sathe, H. Jeung, and K. Aberer. Creating probabilistic databases from

imprecise time-series data. In ICDE, pages 327–338, 2011.

[58] M. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis. TiNA: A scheme

for temporal coherency-aware in-network aggregation. In MobiDE, pages

69–76, 2003.

40

[59] B. Sheng, Q. Li, W. Mao, and W. Jin. Outlier detection in sensor net-

works. In MobiHoc, pages 219–228, 2007.

[60] R. Shumway and D. Stoffer. Time series analysis and its applications.

Springer-Verlag, New York, 2005.

[61] A. Silberstein, R. Braynard, G. Filpus, G. Puggioni, A. Gelfand, K. Mu-

nagala, and J. Yang. Data-driven processing in sensor networks. In CIDR,

2007.

[62] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and

D. Gunopulos. Online outlier detection in sensor data using non-

parametric models. In VLDB, pages 187–198, 2006.

[63] Y. Tan, V. Sehgal, and H. Shahri. SensoClean: Handling noisy and in-

complete data in sensor networks using modeling. Technical report, Uni-

versity of Maryland, 2005.

[64] A. Thiagarajan and S. Madden. Querying continuous functions in a

database system. In SIGMOD, pages 791–804, 2008.

[65] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy. Probabilistic

inference over RFID streams in mobile environments. In ICDE, pages

1096–1107, 2009.

[66] D. Tulone and S. Madden. PAQ: Time series forecasting for approximate

query answering in sensor networks. In EWSN, pages 21–37, 2006.

[67] L. Wang and A. Deshpande. Predictive modeling-based data collection

in wireless sensor networks. In EWSN, pages 34–51, 2008.

[68] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event process-

ing over streams. In SIGMOD, pages 407–418, 2006.

[69] Y. Yao and J. Gehrke. Query processing in sensor networks. In CIDR,

2003.

[70] B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar time

sequences under time warping. In ICDE, pages 201–208, 1998.

[71] Y. Zhang, N. Meratnia, and P. Havinga. Outlier detection techniques for

wireless sensor networks: A survey. IEEE Communications Survey &

Tutorials, 12(2), 2010.

[72] Y. Zhu and D. Shasha. StatStream: Statistical monitoring of thousands of

data streams in real time. In VLDB, pages 358–369, 2002.

[73] Y. Zhuang, L. Chen, X. Wang, and X. Lian. A weighted moving average-

based approach for cleaning sensor data. In ICDCS, page 38, 2007.

