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A survey of modeling and control techniques for

Micro- and Nano-electromechanical systems
Antoine Ferreira ∗ Sumeet S. Aphale

Abstract—In the current times, MEMS and NEMS form
a major inter-disciplinary area of research involving science,
engineering and technology. A lot of work has been reported
in the area of modeling and control of these devices, with
the aim of better understanding their behavior and improving
their performance. This work presents a review of the emerging
advances in the modeling and control of these micro- and nano-
scale devices and converges on the exciting research in on-
chip control, with a mechatronics and controls perspective and
concludes by projecting future trends.

Index Terms—MEMS, NEMS, lab-on-a-chip, modeling, control

I. INTRODUCTION

Though micro-electromechanical systems (MEMS) and

nano-electromechanical systems (NEMS) research has gained

tremendous popularity and momentum in the past two decades,

the potential of small micro-, nano- and even molecular

machines was recognized by researchers, especially physicists

and chemists almost half a century ago [1]. The race for minia-

turizing had begun and finally in 1974, the term Nanotechnol-

ogy was coined [2]. The development of ‘cluster’ science, [3],

and the invention of the Scanning Tunneling Microscope, [4],

in the early 1980s ushered the era of nanotechnology and the

first book on this subject appeared in 1986, [5].

It is generally accepted that an electrostatically excited

tuning fork employing field-effect transistor ”readout” was the

first operational MEMS device, [6]. Since then, the MEMS

technology has progressed rapidly and in recent years special-

ized devices for applications such as blood cell separation and

analysis are constantly expanding the boundaries of MEMS

[7]. NEMS devices have also evolved since their first prototype

was successfully demonstrated by researchers at IBM, [8].

Research aimed at developing specific sensor ([9], [10], [11])

and actuator ([12], [13], [14], [15], [16], [17], [18], [19])

technologies for improved MEMS and NEMS devices is

ongoing. More details as to the current state-of-the-art for

sensors and actuators can be found in [20].

Models that can capture the dynamic behavior of these

devices can be of great help in understanding and improving

their design and ultimately, their performance. Additionally,

as with any dynamic system, a suitable control strategy could
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align the actual performance of these MEMS/NEMS devices

closer to the desired objectives. Therefore, the two key avenues

of current engineering interest that have the potential to

significantly enhance MEMS/NEMS devices are: (i) modeling

and (ii) control. Modeling techniques that lead to a better un-

derstanding of these miniature device dynamics are currently

being sought after. Accurate dynamic models could lead to

specialized control strategies that will in turn lead to major

improvements in device performances. In the recent years, a

lot of research has been reported in the area of modeling and

control of MEMS and NEMS. This paper presents an overview

of the emerging innovative modeling techniques applicable to

these miniature devices. Different models are presented for

system design and control associated with physical mecha-

nisms, geometry/scaling issues or computational aspect for

real-time control of MEMS with challenging issues in NEMS.

It also reviews the recent advances in the control of MEMS

and NEMS devices that have been inspired by the recent

innovations in sensors, actuators, modeling techniques and

control theory.

A. Organization

The remainder of this review is organized as follows.

Section II presents an overview of the various modeling

innovations that describe the behavior of MEMS and NEMS

devices. Complexity in modeling is reviewed with respect to

associated physical mechanisms, geometry/scaling issues and

computational aspect to minimize the real time control issues.

This section is further divided into two parts viz: (i) Modeling

for MEMS/NEMS design (subsection II-A), (ii) Modeling

for MEMS/NEMS control (subsection II-B). Section III will

review the various control technique implementations and is

divided in to (i) Open-loop control (subsection III-A), (ii)

Open-loop control with input pre-shaping (subsection III-B),

(iii) Closed-loop control (subsection III-C) and (iv) On-chip

control (subsection III-D). Section IV will present the possible

future directions in modeling and control of MEMS and

NEMS devices. Finally, section V will give the concluding

remarks of this review.

II. MODELS FOR SYSTEM DESIGN AND CONTROL

Today, an abundance of commercial circuit and system sim-

ulation tools exist for electronic circuits and control system vir-

tual prototyping. Microelectromechanical systems have been

analyzed using the classical physical models or continuum

theories for the mechanical (elastostatic or elastodynamic),

the thermal (thermostatic), magnetic (magnetodynamics) and
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(a) (b) (c)

Fig. 1. Examples of mechanical nodal conventions. F and M are positive valued. (a) Beam in tension, Fx,a = −Fx,b = −F. (b) Beam accelerating in x.
Fx,a = Fx,b = F . (c) Moment bending beam with positive curvature in y. Mz,a = −Mz,b = −M , (Courtesy of [21]).

the electrical (electrostatic) energy domains [22]. Naturally,

the design of reliable actuating techniques requires simple but

realistic dynamic models of the device, either in input/output

or in the state variable form. Accurate models lead towards op-

timal system design, better performance, better understanding

of the device, short development time, and consequently, lower

cost of the device. Furthermore, due to the compact layout,

manufacturing tolerance, modeling errors, and environmental

changes, MEMS are subjected to parasitics and parameter

variations. In order to better guarantee their stability and a

certain level of performance, one must take into account these

factors in the design of MEMS control systems. This section

reviews the models for system design (subsection II-A) and

control subsection II-B associated with physical mechanisms,

geometry/scaling issues or computational aspect for real-time

control of MEMS with challenging issues in NEMS.

A. Modeling for MEMS/NEMS design

1) Reduced-order Models: In higher level MEMS/NEMS

simulation applications, the computational complexity of

getting an output for a given input from the model is

simply too high. Thus, model reduction involves reducing

the computational complexity of the model by reducing the

number of parameters in the original model. If the original

model is described by linear ordinary differential equations

(ODE) then a typical approach is to write down the algebraic

relation in the frequency domain. Reduced order models

(ROM) are cheap in terms of memory and computational

time and are needed to perform fast and efficient system-level

composite circuit for MEMS on-chip development. For

practical implementation of feedback control design, the

models need to be finite-dimensional. In [24], a reduced

nonlinear model was linearized at multiple operating points

in order to design a PID-controller tuned via LMI-theory.

For MEMS, truncated low-order models can be established

this way, using a summation over only selected operating

points. In the presence of significant nonlinearities, which

often is the case for MEMS, the simple truncated models

tend to be too imprecise. However, the technique can be

enhanced, by combining structure of the model with finite

element analysis a novel way to perform unknown parameters

identification. New technique by combining the Taylor series

expansion with the Arnoldi method to automatically develop

reduced-order models for coupled energy domain nonlinear

microelectromechanical devices is given in [25]. Model

order reductions via Arnoldi algorithm applied directly to

ANSYS finite element models has also been reported [26].

In this work, the authors adopt a micro accelerometer as

an example to demonstrate the advantages of this approach.

An electrostatically actuated fixed-fixed beam structure with

squeeze-film damping effect was examined to illustrate the

model-order reduction method in [27]. Compared with the

linearized model, these works show that the reduced-order

nonlinear models can capture the device dynamic behavior

over a much larger range of MEMS operation but stability

preservation is not guaranteed and has a low accuracy away

from the expansion point. Based on differentiation of the

discretized Finite Element (FE) equations for parameterization

of MEMS macromodels (see, Figure 1) the authors in [21]

computed the governing system matrices as well as high

order derivatives (HOD) with regard to design parameters

by means of Automatic Differentiation (AD). While the

above formalisms were developed primarily for numerical

simulations, the possibility to create nonlinear parameterized

models based on Karhunen-Loeve decomposition is proposed

in [23]. This reduced order model is cheap in terms of

memory and computational time and compatible with fast and

efficient system-level composite circuit for on-chip feedback

control. In the presence of significant nonlinearities, which

often is the case for MEMS, the simple linear model order

reduction reported in this section tend to be rapidly imprecise

due to the vast amount of possible expressions of nonlinearity.

General approaches are formulated in the following section for

updating the parameters of systems governed by multiphysics

equations using advanced optimization techniques.

2) Macromodeling: Several computer algorithms based on

3-D Finite Element Analysis (FEA) have been coupled to 3-

D design tool to simulate MEMS, [28]. In order to alleviate

the computational expense associated with the 3-D analyses,

considerable efforts have been devoted to the development of

reliable distributed reduced-order models (ROM) for MEMS,

[21], [23]. As an illustration, model order reductions via the

block Arnoldi algorithm with/without Taylor-series expansion

directly to ANSYS finite element models have been proposed

for MEMS accelerometers, [26], as well as electrostatically

actuated fixed-fixed beam structure with squeeze-film damping

effect, [29]. Furthermore, the authors in [30] demonstrated
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Fig. 2. System level model of an electrostatic torsional actuator. Damping is included as a mixed-level model, (Courtesy of [23]).

that the resulting ROM can capture the static/dynamic be-

haviors of the electrostatically actuated MEMS plate very

well. Taking the analogy to electronic circuit design further,

the next generation of MEMS system designers are starting

to use composable MEMS models (macromodeling) [31] as

the electrostatic torsional actuator shown in Fig. 2, [32]. It

shows a mixed level damping approach where the torsional

actuator dynamics is simulated by Navier-Stokes equation-

based finite element modeling and the squeeze film damp-

ing by lumped-parameter modeling. The pioneering work in

forming composable MEMS models is SUGAR from UC

Berkeley [33], coventor ARCHITECT, [34], and NODAS from

Carnegie Mellon, [35]. ARCHITECT and NODAS use Analog

hardware description language (AHDL) descriptions, while

SUGAR has its models written in MATLAB. In the later

case, the performance of the tunneling MEMS sensor can be

estimated and improved based on mechanical-level analysis

by ANSYS and system-level analysis by MATLAB, [36]. A

feedback control system with one zero and two poles has been

synthesized, improving the dynamic range and the bandwidth

of the closed-loop system (around 15 kHz).

Recently, MEMS design engineers developed a practical

method that combines structure of the model with Finite

Element Analysis (FEA) in novel way to perform system

identification and identify the unknown parameters. The

result was a lumped dynamical model of a MEMS device

that can be used for the design of feedback control systems,

[38]. In principle, any lumped-constant model can be

described in this way, thus overcoming the most serious

limitation of the equivalent-circuit modeling technique

mentioned earlier. A likely reason for the popularity of this

technique is that it makes it possible to simulate MEMS

using ordinary circuit simulators. An another modeling

alternative is to use functional entities representing nano-

devices in an object-oriented fashion, termed macromodeling.

Macromodeling procedure for coupled-domain MEMS devices

with electrostatic and electrothermal effects have been widely

presented. Numerical simulation of the dynamics using hybrid

BEM/FEM (Boundary Element and Finite Element Method)

approach was presented in, [39]. Hybrid analytical/numerical

macromodels for the substructures with regular geometry

were generated by analytical method and the ones with odd

geometry by numerical method [40]. These techniques were

tested on a generic MEMS device, a microtweezer. The

nonlinear tunneling mechanism and electrostatic actuation

were linearized using small-signal approximation. It must

be noted that exporting macromodels for MEMS simulation

requires the interfacing of various commercial tools for

CAD (e.g., SolidWorksTM ), FEA, simulation of electronic

circuits (e.g., AHDL/VHDL language), control systems

(e.g., Matlab/SimulinkTM ), multibody systems (e.g.,

ANSY S/MultiphysicsTM ) and also the microfabrication

processes. There are definite drawbacks, the simulation

of HDL models or models written in other high-level

languages is usually considerably slower than the simulation

of equivalent models built into the simulator. Furthermore,

it is noteworthy to discuss macromodeling applicability

in conjunction with MEMS control design since realtime

feedback control issues are still unsolved.

3) Multiscale Models: The ability to design reliable

MEMS/NEMS devices demand new simulation capabilities

due to the length and time scaling effects at nanoscale [41].

Combination of classical microforces phenomena with quan-

tum fields and molecular considerations become key issues

to the point that thermal fluctuation influences the NEMS

operation. Furthermore, the roles of surface and defects be-

come more dominant. Finally, the behavior of materials at

nanometer scale begins to be atomistic rather than contin-

uous. Taken together, it gives rise to anomalous and often

nonlinear effects, i.e., nanomechanics (Casimir effect, van der

Waals, charges quantization), nano-optics (charge transfer),

electrostatic-fluidics effects (dielectrophoresis, electro-welting,

electroosmosis), nanomagnetics (paramagnetism), and so on.

The challenge now faced by NEMS designers is to bridge

the different scales to a more general framework, which has

been coined as multiscale modeling [42]. Conceptually, two

categories of multiscale simulations can be envisioned: both

sequential and concurrent.

(i) Sequential multiscale simulations

The sequential methodology attempts to piece together a

hierarchy of computational approaches in which large-scales

models use the coarse-grained representations from more

detailed smaller-scale models. In doing so, the simulations
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Fig. 3. A table showing the type of physical models, their features and the applications that are most suitable for respective modeling techniques (Courtesy
of [37]).

are running independently of each other and a complete

separation of both length and time scales are achieved [77],

[73]. Some examples of sequential coupling show that to

accurately model MEMS/NEMS devices at least three length-

scales need to be explored: mesoscopic at the package level;

microscopic at the actuator/sensor level and nanoscopic at the

material level. Reliability of packaged polysilicon microelec-

tromechanical systems involves the computational study of

environmental effects to predict the long-term performance

of MEMS packages at mesoscopic and microscopic length

scales. The authors in [72] present a multiscale finite element

modeling (FEM) approach coupled to Monte-Carlo (MC)

analysis for MEMS failure prediction. In a same way, a

predictive-science-based multiscale modeling and simulation

platform is proposed in [78] to predict material performance

issues, such as radiation, thermo-mechanical cycling and dam-

age and fracture due to shocks. The computational coupling

of the atomic-scale description of nanomaterials (Molecular

Dynamics (MD) simulation) to microscale actuators designs

(traditional finite difference (FDM) or finite-element modeling

(FEM)) pose severe challenges. MD simulation cannot sim-

ulate the whole systems due to its prohibitive computational

cost, whereas continuum FEM/BEM scales poorly with system

size and only approximately account for effects at material

interfaces. To remedy these inadequacies, several authors cou-

pled FDM/BEM simulations to MD models whose underlying

physics are derived from nanomechanics theory [51], [79],

[80], nanoelectronic structure theory [59], nanofluidics theory

[81], and molecular biology [74]. In overall, the sequential

multiscale model showed good qualitative agreement with the

experimental measurements but requires more refinement to

achieve good quantitative agreement.

(ii) Concurrent multiscale simulations

The concurrent multiscale approach attempt to link methods

appropriate at each scale together in a combined model, where

the different scales of the system are considered concurrently

and communicate with a hand-shake procedure. The literature

contains numerous methods of concurrent coupling; (i) the
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TABLE I
COMPARISON OF MODELING AND SIMULATION APPROACHES FOR MEMS AND NEMS DESIGN.

Length scale Modeling Key Ref. Time scale Computational Computational Modeling level
complexity (⋆) error (%)

Macroscopic Physical models

L ≥ 10µm Classical Physics 1s ≤ t ≤ 10s O(n2) ∼ 10 − 30% System-level
[43],[44],[45]
[46],[47],[48]
[49],[50],[51]

Dynamical State-Space model
Lumped Dynamical model [52], [53], [54]

High-Order Derivatives model [55],[56]

Composite circuit macromodels

VHDL/AHDL language [33],[34],[35] O(n2) ∼ 20% System-level
Mixed-level model [40],[39],[57]

Continuum Models O(n3) ∼ 15% MEMS part-level
Finite Element Methods [58],[21]

Boundary Element Methods [42],[59]

Model Order Reduction O(n2) ∼ 5 − 10% MEMS part-level
Krylov algorithms [23],[60]
Arnoldi algorithms [25],[29],[61]

Mesoscopic Stochastic Methods

100nm ≤ l ≤ 1µm Direct Monte Carlo Methods [62] 1µs ≤ t ≤ 1ms O(n3) ∼ 25% Functional-level
Kinetic Monte Carlo [63] Functional-level

Molecular

10nm ≤ l ≤ 100nm Molecular Dynamics [64],[65],[66] 1ns ≤ t ≤ 1µs O(n4) ∼ 20 − 30% Functional-level
Tight-Binding Molecular Dynamics [67] Functional-level

Coarse-Grained Molecular Dynamics [68] Functional-level

Stochastic Dynamics [69] Functional-level

Atomistic

1Å ≤ l ≤ 1nm Density Functional Theory [70] 1ps ≤ t ≤ 1ns O(n5) ∼ 15% Atomic-level
Hartree-Fock Approximations [67] Atomic-level

Multiscale

1Å ≤ l ≤ 100µm Continuum/MD coupled models [71] 1ps ≤ t ≤ 10s O(n5) ∼ 5 − 10% System-level
FEM/CGMD coupled models [68] MEMS part-level

FEM/MC coupled models [72][73],[74] System-level
continuum/MD/QM coupled models [75],[76] System-level

⋆ where n is the number of features in environment.

combined finite element atomistic method (FEAt), (ii) the

material point method (MPM), (iii) the local quasicontinuum

method (QC), (iv) the bridging scale method, (v) the atomic-

scale finite element method (AFEM), and (vi) coarse grained

molecular dynamics (CGMD) [82], [41]. Molecular dynamics

simulations are commonly used to investigate size-dependence

of the elastic properties of the nano-scale silicon cantilevers

[66]. It reveals that continuum mechanics modeling can still

be used on nanoscale structures provided that the dependence

of elastic constants on dimensional scaling is accounted

for. At a larger scale Coarse-Grained Molecular Dynamics

(CGMD) modeling have been developed [68] to describe

the behavior of the mechanical components of MEMS down

to the atomic scale. It builds a generalized finite element

formalism from the underlying atomistic physics in order

to ensure a smooth coupling between regions governed

by different length scales. Various electrostatic models

namely: the classical conductor model [71], the semiclassical

model [83], and the quantum-mechanical model [51], are

being used for electrostatic analysis of NEMS at various

length scales. The design methodology facilitates, under

restricted conditions, the insertion of quantum corrections

to nano-scale device models, during simulation. In the case

of NEMS-based electrostatic actuation, Figure 3 shows

the evolution of modeling theory w.r.t. device length scale

: from classical continuum models to atomistic quantum

mechanical models. In [37], a multiscale method, seamlessly

combining semiclassical, effective-mass Schrödinger, and

Tight-Binding Theories (TBT), is proposed for electrostatic

analysis of silicon nanoelectromechanical systems. In [84], an

integrated modeling methodology for nano-scale electronic

devices has been proposed. This methodology includes

domain-oriented approximations from ab-initio modeling and

the selection of quantum mechanical compact models that can

be integrated with basic electronic circuit or non-electronic

lumped-element models. Finally, molecular dynamics (MD)

and ab-initio quantum mechanics(QM) coupled to virtual

reality (VR) techniques have been developed in [75], [76]

for the prototyping of biological NEMS. The operator

can design and characterize through molecular dynamics

simulation, the behavior of bio-nanorobotic components and

structures through 3-D visualization. In these works, the
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nonlinear continuum elastic theory, with material properties

extracted from MD simulations, is combined with either

the classical, semiclassical, or the quantum-mechanical

electrostatic model and the continuum theory for the van

der Waals energy domain to compute the self-consistent

electromechanical behavior of biological NEMS. From the

point of view of control, the concurrent coupling between the

mechanical and the electrical energy domains at nanoscale

necessitates a proper understanding of relevant physical

theories for NEMS feedback control [85]. Actually, carbon

nanotube-based NEMS devices (nanoswitch, nanotweezers)

are actuated using analytical energy-based methods modeling

(electrical capacitance model including van der Waals forces

as well as finite kinematics) to predict the structural behavior

and instability of the on/off states of the nanoswitch, or

the open/close states of nanotweezers [42]. Recently, the

influence of control parameters on the stationary oscillations

of carbon nanotube-based oscillators via molecular dynamics

simulations have been conducted [64]. The control of

oscillator motion in the case of considerable fluctuations

through the control force has been rendered possible. The

methodologies reported here are completely general and as

such are expected to be useful in the optimal control of

nanotube-based NEMS devices.

4) Discussion: Table 1 gives a comparison table of various

modeling technologies with its pros and cons. Methods used

for simulation of several properties of MEMS/NEMS differ in

their level of accuracy and in the computation time necessary

to perform such calculations. Accordingly, the time scales that

each of these methods can handle can be from a single total

energy for the most accurate calculations, to picoseconds for

ab−initio molecular dynamics simulations, and up to seconds

for classical physics. The MEMS/NEMS design optimization

requires a tradeoff between very accurate and computationally

expensive descriptions of atomic nanomaterial phenomena

and coarse system description avoiding prohibitively large

computations. Classical continuum theories which are based

on continuum assumptions are efficient and accurate at meso-

scopic scale, but they may not be directly applicable for NEMS

of nanoscale features. Atomistic simulation methods such as

first-principles quantum-mechanical methods, molecular dy-

namics and Monte Carlo simulations are generally accurate

for the mechanical analysis of nanostructures. However, the

extremely high computational cost prohibits the application of

the atomistic methods at the MEMS/NEMS device level. The

unified multiscale approach can retain the accuracy that the

individual approaches provide in their respective scales and

provides a realistic modeling at the system-, MEMS part-,

functional- and atomic-level.

B. Modeling for MEMS/NEMS control

1) Physical Models: Physicals methods for determining

lumped dynamical models of thermal, piezoelectric, magnetic

or electrostatic MEMS and NEMS devices for purposes of

feedback control have been studied extensively in literature.

Current modeling works are mainly focused on the empirical

responses of the system dynamics, black-box models, as a

practical model for real-time control, but offer minimal insight

into the governing equations. System identification based on

measured sets of input and output data obtained from exciting

the system with pseudo random binary data (PRBS) gives

a good fit to the measured data. The MEMS dynamics are

dominated mainly by the first mode which can be accurately

modeled by a mass-spring-damper second order-model, e.g.

piezoelectric MEMS scanner [45], polymer MEMS actuators

[48], piezoelectric microrobot-on-chip [86] and electrostatic

MEMS vibrational gyroscope [87]. However, when the num-

ber of parameters grows, it becomes more difficult to span

the complete parameter space, since each parameter lets the

number of possible variations grow in an exponential way. As

example, the fast dynamics of MEMS systems require higher-

order models leading to complicated model-based controllers.

As a more detailed approach, the gray-box models are de-

veloped for determining lumped dynamical models of MEMS

devices, [52], [53], [54], for purposes of feedback control. A

model consisting of millions of equations (e.g., a FEM model)

is surely more difficult to handle and takes more time to solve

than an analytic expression based on a simplified gray-box

model. In [88], the authors determined a dynamical state-

space model for control of thermal MEMS devices. The impor-

tance of temperature-dependent parameters was emphasized

for dynamical modeling for purposes of feedback control.

In [56], a computationally efficient model was developed

for investigating the dynamics of the voltage-driven MEMS

device embedded in a dielectric fluid. However, these models

were partly based on physical principles while also relying

on empirical results to define complex physical processes.

Due to the compact layout [89], manufacturing tolerance

[90], modeling errors [22], and environmental changes (e.g.,

adhesive surface interactions, and scale dependent material

and thermal properties) [91], MEMS devices are subjected to

parasitics and parameter variations. In order to better guarantee

their stability and a certain level of performance, one must take

into account these factors in the design of MEMS control

systems. In the most complex form, white-box models with

partial differential equations (PDEs), e.g., [55],[56], attempt to

explain the underlying physics for the sensing and actuation

responses of MEMS and NEMS. Nonlinear models based

on finite-difference discretization of MEMS structures, e.g.

lateral electrostatically-actuated DC-contact MEMS [53], and

applying boundary conditions have been recently solved using

a Gauss-Seidel relaxation iteration scheme. More efficiently

and equally accurate during circuit simulation than PDEs,

Volterra-series-based modeling describes the frequency depen-

dence (e.g., the mechanical resonance) in combination with

the nonlinear behavior of the MEMS variable capacitor [92].

As the complexity of such models involves model reduction

techniques, there is always a tradeoff between accuracy of the

model or possible range of application.

2) Advanced Modeling Algorithms: Recently, black-box

advanced modeling algorithms of non-electronic parts has been

introduced in MEMS modeling, so enabling radically faster

simulation without concurrent algorithms and parallel compu-

tation, e.g. artificial neural networks (ANN), genetic algorithm
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(GA) optimization, model prediction (MP), or fuzzy logic

algorithms (FL). In [93], a lumped model of the capacitive

transducer, being the part of a MEMS capacitive pressure

sensing system, was created using an ANN. The ANNs here

are considered universal approximators, convenient for black-

box device modeling. A general approach was formulated

in [30] for updating the parameters of systems governed by

multiphysics equations using an optimization technique based

on Genetic Algorithms (GAs). This approach was demon-

strated on a MEMS micromirror which was governed by

both structural and electrostatic physics. For systems with fast

dynamics such as those in MEMS, a hardware embedded real-

time implementation of model predictive control (MPC) has

been investigated in [94]. The results show that MPC would be

an appropriate controller implementation since the size and the

application precludes the use of a dedicated computer. Finally,

a method for reliability prediction was presented in [95], based

on a combined fuzzy-logic and physics-of-failure approach.

The specific case of a MEMS Fabry-Perot interferometer

was analyzed and the failure rate estimations are discussed.

Similar fuzzy logic control algorithms have been applied to

optimally charge the microbattery of on-board MEMS sensors

[96]. Recent manufacturing advances have opened the path

for the fabrication of micromechanical devices and electronic

subsystems under the same manufacturing and packaging

process, thereby opening the path for the use of advanced

modeling algorithms towards systems-on-chip applications.

III. CONTROL SCHEMES

Presence of sensor dynamics, fast high-frequency system

dynamics and extremely sensitive system parameters make the

control of MEMS devices a complex task. Over the years,

researchers all over the world have come up with feasible

control algorithms for MEMS devices. Based on these results,

control techniques for MEMS can be grouped under three

broad classes viz: open-loop control, open-loop control with

input pre-shaping and closed-loop control, [97]. The choice

of the control technique depends on various factors such

as application, needed electronic circuitry, device dynamics,

space constraints and sensor availability / implementation. The

following sub-sections will review the various control strate-

gies mentioned earlier. The section will close with a review

of the on-chip control strategies that have been implemented

by researchers so far, (Subsection III-D).

A. Open-loop control

During the infancy stages of MEMS technology, most

MEMS devices were controlled in open-loop by applying very

simple control inputs. This was mainly due to the relatively

high speed of actuation as well as the inability of the then

existing sensor technologies to procure noise-free sensory

information that was unbiased by the sensor dynamics. Though

advances in sensor and actuator technologies have further

pushed the boundaries of accurate sensing at the micro- and

nano-levels, successful integration of these sensors in MEMS

remains an ongoing challenge, [20]. Recent advances have

resulted in improving the traditional MEMS designs to achieve

better dynamic performance under open-loop actuations, [27].

Open-loop control for large deflection electrostatic actuators

was reported in [17]. In this paper the authors incorporated

significant design improvements to the existing comb-drives

designs [98], [99]. These improvements included reducing the

actuator area by half, redesigning comb-teeth and suspensions

to reduce side instability and using a launch and capture

actuation scheme. MEMS deformable mirrors have been pop-

ularly controlled in open-loop, [100]. The open-loop scheme

delivered accurate tracking to within 3% error. Wavelength-

division multiplexed (WDM) routers with analog micromirror

arrays were shown to operate in open-loop with excellent

repeatability and stability, [101]. High repeatability and long-

term stability of a MEMS wavelength selector switch in open-

loop operation was demonstrated in [102], though it lacked

a 100% add / drop functionality. A low-drift micromirror

in open-loop control was demonstrated in [103]. Open-loop

control of a MEMS deformable mirror using a nonlinearly

constrained quadratic optimization approach has also shown

improvements in performance, [104]. In this case, with an a-

priori knowledge about the aberrations in the target waveform,

a quasi-steady state control was obtained. Though simulated

results reportedly showed improved performance, practical

implementation of this rigorously mathematical technique may

be quite challenging. Recently, MEMS actuator designs are

being modified to give better open-loop performance, [105].

An improved modeling technique that resulted in open-loop

control of a tunneling accelerometer for very high resolution

acceleration measurement was reported in [106]. In this case

the tunnelling accelerometer was modeled based on a clamped

micro-circular plate with a tunneling tip and the classic Kirch-

hoff thin plate theory was used for deriving the governing

equations. A new hardware platform for tuning a MEMS

based gyroscope in open-loop by measuring the frequency

response of the device was reported in [107]. These platforms

tuned the gyroscopes based on an evolutionary computational

technique that improved the sensitivity of the gyroscopes and

also enabled closed-loop operation. An open-loop technique

to address the Sagnac effect in a fiber-optic gyroscope based

on MEMS/NEMS fabrication has also been proposed in [24].

As problems such as inherent system nonlinearity, induced

vibrations and effects such as stiction and friction cannot be

completely addressed using open-loop control in many MEMS

devices, input pre-shaping was seen as the next logical step in

MEMS control.

B. Open-loop control with input pre-shaping

This technique relies on the fact that the static and dynamic

behavior of many MEMS devices can be accurately modeled

and in most cases, linearized. In this technique, the input

signals are made more complex by shaping them in a way

such that the adverse effects of the system dynamics are

minimized (Ex: Bandlimiting the trajectory signal such that

the natural frequencies/system resonances were not excited),

[109]. For input pre-shaping, an accurate dynamic model of

the system is of paramount importance, if any performance

improvement is expected. An open-loop method that predicted
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(a) (b) (c)
Fig. 4. (a) Scanning electron micrograph of a MEMS variable optical attenuator (VOA). (b) Schematic of the experimental setup of the VOA(c) Open-loop
step responses for the simulated model and the actual VOA, (Courtesy of [97]).

(a) (b)
Fig. 5. (a) Controlled (using shaped signal - solid) and uncontrolled (using standard step commands - dashed) tilt angle responses achieved by the MEMS
micromirror. (b) Corresponding shaped (solid) and unshaped (dashed) actuation voltage signals, (Courtesy of [108]).

control voltages generating prescribed surface shapes on a

MEMS deformable mirror was given in [110]. In this work,

an analytic elastic model was used for the mirror membrane

and an empirical electromechanical model was used for the

actuator dynamics. Open-loop control with input pre-shaping

has also been applied to control oscillations of MEMS based

gyroscopes. For accurate angular rate measurement, the drive

mode oscillation amplitude of the second mass has to be kept

constant. By approximating the gyroscope by a lumped mass-

spring-damper model and applying pre-computed actuation

voltages, the oscillation amplitude can be kept constant as

shown in , [111]. For MEMS devices that involve multiple

moving parts, such as MEMS mirror arrays, a feed-forward

based control has been patented, [112]. This patent was

specific to MEMS based, optical mirror arrays where motion

of an active mirror has an aerodynamically disturbing effect

on the neighboring static mirrors in the array. In this tech-

nique, feed-forward control signals with a normalized profile

that minimized the aerodynamic coupling between the static

mirrors were employed to cancel the induced disturbances.

Feedforward control of a MEMS optical switch was reported

in [113]. In this implementation, feed-forward was used to

force the switch to reach the desired position in a fast and

accurate manner with minimal overshoot.

Very recently, a patent was awarded for a input shap-

ing actuation technique for MEMS devices, [114]. In this

patent, a filtered voltage signal shaping technique has been

demonstrated. This scheme is mainly useful in conjunction

with MEMS devices that have micro-cantilevers and other

vibrating elements whose natural resonances are minimally

damped. The patent is based on results obtained in [115]

by actuating a two-axis gimbal-less scanner using the open-

loop with input pre-shaping technique presented in the patent.

Filtering the input voltages may not always be feasible as it

adds to either the system or the computation cost. Additionally,

sub-optimal filtering may lead to unachievable slew-rates and

supply saturation. It is the property of electrostatic MEMS

actuators to generate a residual charge in their insulating layer

that results in sticking of the electrode and increases response

time. To prevent this sticking of electrostatic MEMS actuators

and generate fast actuator response, an input pre-shaping tech-

nique was described in [116]. The patented technique of Input
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Shaping was demonstrated to potentially nullify unwanted

vibrations in MEMS devices such as MEMS optical switches

in [117]. A similar technique was used in [108], to drive a

micromirror to a desired tilt angle without residual vibrations,

see Figure 5. The key advance in this input shaping technique

was the inclusion of nonlinear system behavior, thus making

it suitable for application in conjunction with a wide range of

MEMS systems.

The inherent reliance of the input-preshaping technique on

an accurate system model as well as a-priori information of

the system behaviour limits the adaptability and robustness that

can be built into this particular control technique. Finally, the

combined advances in MEMS technology, sensor and actuator

designs, system analysis tools and the ever-present demand

to push the boundaries of performance in terms of speed,

reliability and accuracy have led to the MEMS system be

controlled by employing complicated closed-loop strategies

[118].

C. Closed-loop control

Standard control techniques such as PID have been im-

plemented on MEMS devices manufactured in bulk, such as

MEMS based sensors and switches, [120], [121]. MEMS based

sensors have been using closed-loop control for quite some

time. Hitachi demonstrated a MEMS based closed-loop silicon

accelerometer more than a decade ago, [122]. Closed-loop

control was used for a MEMS micro-cantilever based pressure

sensor [123]. In this application, an electromagnetic beam

integrated onto a standard silicon pressure sensor diaphragm

was driven to resonance using closed-loop control. As the

diaphragm deflects under pressure, the stress in the beam

caused a change in its resonant frequency. This change was

found to be a highly sensitive measure of pressure [124].

This device offered wide dynamic range, high sensitivity,

and high stability. It was also easy to be interfaced with

digital compensation circuitry. Another successful application

of closed-loop control in MEMS was reported in [125], where

improving measurement accuracy was the main objective.

Feedback control has been employed to accurately regulate

the gap distance in an electrostatic MEMS based Fabry-

Perot interferometer, [126]. In this implementation, a feedback

circuit capable of sensing the property of the active device

and providing an electrical stop when the minimum separation

distance was achieved was integrated.

Closed-loop feedback control has been a common strategy

to correct for machining imperfections in MEMS based gyro-

scopes. [127], [111] proposed active nonlinear and adaptive

drive control approaches to compensate for errors due to

device imperfections. Closed-loop tuning of a MEMS based

gyroscope was reported in [107]. A custom-built integrated

circuit that manages the signal filtering and provides real-time

control for the JPL-Boeing manufactured MEMS based gyro-

scopes was reported in [128]. This technique used an ASIC

that enabled the gyroscope to reject vibration disturbances and

damped the transfer function by almost 40 dB. A US Patent for

an application specific integrated circuit capable of exciting a

selected gyroscope mode, induce damping and demodulate the

signal containing the angular rate information to in-phase and

quadrature components was issued, [129]. This circuit featured

attractive properties such as low power consumption as well as

ease of sensor integration. A dual-stage control algorithm that

provided on-site identification of imperfections based on the

dynamic response of the device and compensated for it using

nonlinear electrostatic parallel plate actuators was proposed

in [130]. In this paper, the authors first showed that using

feedback alone to compensate for large structural imperfec-

tions (to the tune of 10%) would seriously compromise the

device performance. Consequently they successfully employed

a feedforward control loop to reduce large imperfections

and combined it with a feedback loop to compensate for

the device non-idealities and perturbations. [131] presented

a novel architecture for the digital control of MEMS based

gyros. Digital control was also proposed for performance

optimization of a MEMS based gyroscope, [132]. In general

digital control was shown to offer more flexibility in terms

of algorithms as well as control parameters. FPGAs used in

these implementations significantly speed up the development

process due to their ease of programmability. Cross-coupling

and fabrication imperfections are the major performance lim-

iting factors in MEMS based gyroscopes. Adaptive control

based on velocity estimation has shown promise in alleviating

these problems and improve the overall performance of the

gyroscope by achieving larger operational bandwidth, elimi-

nating zero-rate output, enabling self-calibration and deeming

the gyroscope highly robust to parameter variations, [133],

[134]. To further improve the gyroscope performance by

accurately estimating the unknown angular velocity, sliding

mode control has also been formulated, [135], [136]. These

investigations proved that though computationally intensive,

both these nonlinear approaches could significantly enhance

the device performance. Furthermore, they also showed that

sliding mode control controller of the vibrating proof mass

resulted in a better estimate of the unknown angular velocity

than that of the model reference adaptive feedback controller.

An active disturbance rejection control scheme was proposed

recently to address issues such as mechanical-thermal noise,

parameter variations, quadrature errors and the mismatch of

natural frequencies between two axes, [137]. In this work

the two main control problems addressed were the vibrating

modes of the gyroscope axes and the time-varying rotation rate

estimation. These major issues can also be alleviated using

an adaptive control method based on Lyapunov functions, as

demonstrated in [138]. A discrete time observer-based adaptive

control algorithm for improved angular rate estimates has also

been reported, [139].

Performance enhancement for a probe-based data storage

system was reported in [140]. In this paper, the authors

proposed a position control system that resulted in accurate

positioning of the micro-cantilever probe over a particular

sector of the data storage disc. Positive Position Feedback

(PPF) control was implemented successfully to provide active

damping to a piezoelectric MEMS acoustic sensor, [141]. A

detailed comparison between open- and closed-loop control

of a MEMS electrostatic comb drive was given in [38].

Model Reference Adaptive Control (MRAC) technique was
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(a) Implementation of the Adaptive Gain Control (AGC) feedback system for the velocity-controlled gyroscope.

(b) Magnitude of the driving signal and envelope of the associated velocity signal under various vacuum conditions
for open-loop (a) and closed-loop (b), (Courtesy of [119]).

formulated for tracking control of MEMS based comb res-

onators, [142]. A real-time implementation of this technique

demonstrated its ability to handle multiple uncertainties in

device parameters that occur due to machining imperfections.

In [113], a linear feedback controller was used to shape the

system dynamics in a MEMS optical switch, resulting in

fast switching operation. Nonlinear control was also used in

manipulating MEMS based mirrors for high tilt and pointing

accuracy, [143]. In this application, digital implementation of

a full-state feedback was carried out resulting in a substan-

tial increase in the mirror’s angular operation range and a

reduction in the long-term angular noise. Nonlinear sliding

mode control applied to controlling the position of a lateral

comb resonator has been simulated in [144]. A cooperative

angle control scheme to reduce the output stable control time

in MEMS optical switches was proposed in [145]. In one of

the novel applications, feedback control has been employed

to provide accurate input gains and implement signal up-

modulation to a MEMS based high-performance operational

amplifier, [146]. In this application, the input stage of the

operational amplifier is a MEMS based variable capacitor that

converts low-frequency input voltages to high-frequency AC

currents, resulting in reduced offsets and low-frequency noise.

In most closed-loop control of MEMS devices, the control

loop was implemented using external circuitry and computing

facilities. In many cases, even the sensors were independent

and not an integral part of the MEMS device. With improved

fabrication methods, component densities on a chip have

increased drastically and on-board sensors and power sources

have become the norm, [147], [148], [149], [150]. Thus, the

system-on-chip concept with on-chip control is now gaining

popularity, [151], [152], [153].

D. On-chip feedback control: The current trend

The main advantages of on-chip feedback are: (1) improved

linearity, (2) improved signal-to-noise ratio and (3) improved
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(c) (d) (e)

Fig. 6. (a) Scanning electron micrograph of the released microgrippers showing the on-chip photo detectors placed beneath the gripping sites. (b) Schematic
of the photo-detector circuit (c) Gripping of a polystyrene bead: before (top); after (bottom), (Courtesy of [154]).

accuracy due to ease of compensation for interferences and

system dynamics. The vast improvements in MEMS design

and fabrication have led to real-time on-chip feedback control

being the current thrust of many research endeavors. One

of the main control issues for on-chip applications is power

generation. Electrical power is needed for the actuation as well

as sensory systems used in MEMS. Generating this power

efficiently with-in the given space constraints of a MEMS chip,

without causing insulation, dynamics or interference problems

is a major concern and research focus. Some on-chip power

sources have been reported and various power generation

schemes are being investigated, [149], [148].

Microfluidics is an area where real-time feedback has been

applied successfully, [155]. Precise handling of microfluidics

in continuous-flow by using a flow sensor to monitor and on-

chip pumps with feedback control to regulate the flowrate was

presented in [156]. Electrowetting-on-dielectric (EWOD) has

been proposed as a method of actuation for on-chip droplet

generation [157]. Due to its compatibility with miniaturization,

simple device configuration and fabrication, capacity to gen-

erate large forces at microscale, and low energy consumption

EWOD has gained popularity in microfluidic applications. To

monitor droplet volume and control applied voltages for on-

chip droplet generation of constant volumes real-time feedback

control was necessary. A successful feedback strategy that

resulted in automated volume-controlled on-chip generation of

droplets was reported in [158]. To account for the uncertain-

ties during droplet separation, an improved feedback scheme

was proposed in [159]. In this work the authors combined

voltage modulation, capacitance sensing and a discrete-time

PID controller to obtain significant improvements in droplet

volume uniformity when compared to open-loop and standard

closed-loop techniques.

On-chip control has also been applied to MEMS based high-

speed synchronous micromotors, [22]. In this work, on-chip

VLSI drivers are used for various signal processing, filtering,

computing, interfacing and amplification tasks and the control

of micromotors is achieved by applying the proper phase

voltages to the micromotor windings. The control technique

also incorporates robust tracking and disturbance rejection.

Nonlinear control of electrostatic MEMS using a novel inte-

grated charge and position sensor was reported in [160]. This

technique resulted in full gap operation and improved transient

performance. The control technique showed on-chip imple-

mentation potential as it could use the local integrated circuit

components and the required sensor was easy to fabricate, did

not increase device footprint and had negligible effect on the

device dynamics. The design of an on-chip CMOS potentiostat

was reported recently, [161]. The potentiostat was mainly

developed for controlling the volume of conjugated polymer

film used in microactuators. This on-chip mechanism was

proposed for controlling microactuators used in cell capture

microsystems.

With the advent of nano-electromechanical systems

(NEMS), on-chip sensor technologies are being revolutionized,

[154], [162]. As a result, the future is bright and holds exciting

prospects for on-chip control of MEMS devices.

IV. A LOOK IN TO THE FUTURE

Nanometer scale actuators and sensors that can provide

motion and measurement with nanometer-order resolution

will enable new industrial applications in which only a few

atoms or molecules are measured, transported, or processed.

The design of molecular systems in which controlled lin-

ear and rotary motion can be achieved under the influence

of an external signal is a major endeavor toward future

nanoscale machinery. New and exciting phenomena have

been observed in multi-walled carbon nanotubes (MWNTs),

including field emission [163], quantum conductance [70]

or constant-force nanosprings [164]. Based on these effects,
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nanoscale linear servomotors with integrated position sensing

have been investigated from experimental, theoretical, and

design perspectives. Fennimore was the first to show an

electromechanical actuator based on MWNTs [165]. Actuation

experiments have demonstrated the feasibility of a prismatic

nanoservomotor with integrated position sensing based on field

emission [166]. The complete extension of the inner core is

observed and the electrostatic force is calibrated to be tens of

nano-Newtons for individual nanotubes16.5 nN under a 30-

V bias. Such nanotube actuators have mainly been designed

for solid-state NEMS actuation where manipulation and as-

sembly of nanoscale objects are required. For applications in

nanomedecine such as novel drug delivery NEMS capable

to perform controlled and targeted drug delivery into cells,

performances of nanotube actuators are limited due to the

operation of high electrostatic fields in liquid mediums [167],

[168]. It is the reason why proteins represent fertile territory

for nanoscale mechatronics that produce linear motions in liq-

uid environments. As illustration, substantial progress in DNA

actuated nanomechanical devices has been initiated [169]

through controlled variations of the physiological medium

(temperature, acidic concentration, salt, ionic level). DNA

undergoes a substantial mechanical denaturating transition (A-

T and G-C base pairs tend to unbind locally) at the origin of

DNA actuated nanomechanical [170]. In approaches toward

artificial machinery, a variety of molecular and supramolecular

systems have been designed in recent years in which changes

in shape, switching processes, or movements occur in response

to external chemical, electrochemical [171], light-driven [172]

or photochemical [173] stimuli. The control of chirality, being

one of the intrinsic features of living nature, was the guiding

principle in a synthetic endeavor that ultimately culminated

in the control of molecular motion, e.g. chiroptical molecular

switches and light-driven unidirectional rotary motors [174].

Controllable and reversible actuation of an array of micro-

cantilever beams has been achieved under redox conditions

when a monolayer of bistable linear motor molecules were

coated on the beams [175]. Bridging the fields of biology and

nanotechnology, the authors in [176] propose a novel concept

of encapsulated DNA molecule acting as nanoscale actua-

tor inside carbon nanotubes in a water solute environment.

While fully servoed linear NEMS remain a challenge, these

investigations demonstrate the possibility of fabricating linear

servomotors with integrated position sensing for various future

NEMS applications, e.g., untethered nanosystems propelled by

magnetotactic bacteria [177], atomic force microscope (AFM)-

based data storage [178] or on-chip temperature sensing and

control for cell immobilization [179].

V. CONCLUDING REMARKS

This review tries to be complete in its general scope by

reviewing most major works in the field of MEMS/NEMS

modeling and control. Though it is impossible (due to the size

and time constraints) to list every single work in a review of

such a varied and dynamic field, the authors believe that this

paper provides the reader with the most up-to-date information

about the various advances that have taken place over the

years in the modeling and control of MEMS/NEMS devices.

With the advent of better, faster computing hardware and

dedicated software, it will be prudent to say that the field

of MEMS/NEMS is bound to see an even greater influx of

academic and industrial interest. As the fields of physics,

chemistry, biology and mathematics evolve and fuse together,

more realistic models that capture the behavior of these micro-

scale systems most accurately should be a key result. This, in

turn, will combine with the fast developments occurring in

the areas of very high device density chip fabrications and

flexible electronics to produce control techniques that will

make the desirable performance of a MEMS/NEMS device

easily realizable, robust and adaptive.
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