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Abstract

Statistical signal processing applications usually require the estimation of some parameters of interest given a set of
observed data. These estimates are typically obtained either by solving a multi-variate optimization problem, as in the
maximum likelihood (ML) or maximum a posteriori (MAP) estimators, or by performing a multi-dimensional
integration, as in the minimummean squared error (MMSE) estimators. Unfortunately, analytical expressions for these
estimators cannot be found in most real-world applications, and the Monte Carlo (MC) methodology is one feasible
approach. MC methods proceed by drawing random samples, either from the desired distribution or from a simpler
one, and using them to compute consistent estimators. The most important families of MC algorithms are the Markov
chain MC (MCMC) and importance sampling (IS). On the one hand, MCMC methods draw samples from a proposal
density, building then an ergodic Markov chain whose stationary distribution is the desired distribution by accepting
or rejecting those candidate samples as the new state of the chain. On the other hand, IS techniques draw samples
from a simple proposal density and then assign them suitable weights that measure their quality in some appropriate
way. In this paper, we perform a thorough review of MC methods for the estimation of static parameters in signal
processing applications. A historical note on the development of MC schemes is also provided, followed by the basic
MC method and a brief description of the rejection sampling (RS) algorithm, as well as three sections describing many
of the most relevant MCMC and IS algorithms, and their combined use. Finally, five numerical examples (including the
estimation of the parameters of a chaotic system, a localization problem in wireless sensor networks and a spectral
analysis application) are provided in order to demonstrate the performance of the described approaches.

Keywords: Statistical signal processing, Bayesian inference, Monte Carlo methods, Metropolis-Hastings algorithm,
Gibbs sampler, MH-within-Gibbs, Adaptive MCMC, Importance sampling, Population Monte Carlo

1 Introduction
1.1 Motivation: parameter estimation in statistical signal

processing applications

Statistical inference deals with the estimation of a set

of unknowns given a collection of observed data con-

taminated by noise and possibly by some other types of

distortions and interferences [1]. In many signal process-

ing applications, this typically amounts to inferring some

static parameters of interest from the noisy observations
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[2–4]1. For instance, in denoising applications, the aim is

reconstructing the original signal (e.g., an audio recording

or an image) from the noisy observations [5]. An extended

version of this problem occurs in blind deconvolution,

where a noisy filtered signal is available and the goal is

to recover both the unknown filter and the input [6]2.

Finally, as a third application, target localization/tracking

in wireless sensor networks requires estimating/tracking

1Note that, although we concentrate here on the parameter estimation
problem, other related signal processing problems (model selection,
prediction, classification, etc.) can be addressed in a similar way.
2Closely related problems are blind equalization (where the input is a digital
communications signal), blind identification (where the main goal is to
recover the filter) [7], and blind source separation (where multiple input
signals have to be separated from a collection of multiple outputs) [8].
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the location of the target (maybe jointly with some param-

eters of the system, such as the noise variance, the propa-

gation constant or even the position of the sensors) from

measurements recorded by the sensors [9, 10].

In the Bayesian framework, all the aforementioned

problems are addressed by formulating a prior distribu-

tion, which should gather all the available information

about the parameters of interest external to the data,

and assuming an input-output model (the likelihood), that

incorporates our knowledge or lack thereof on the way in

which the observed data relate to the unknown param-

eters [11]. Then, Bayes theorem allows us to obtain the

posterior distribution, which takes into account both the

effect of the prior information and the observed data in

an optimal way. Finally, the desired Bayesian point esti-

mators are obtained by minimizing a pre-defined cost

function that can typically be expressed either as some

integral measure with respect to (w.r.t.) the posterior or

as some optimization problem. For instance, the well-

known minimum mean squared error (MMSE) estimator

corresponds to the conditional mean of the parameters of

interest given the data (i.e., the expected value of the pos-

terior distribution), whereas the maximum a posteriori

(MAP) estimator corresponds to the value of the param-

eters where the posterior attains its highest peak3. Note

that a similar procedure is also followed by frequentist

methods (i.e., in the end they also attempt to minimize

some cost function which is either expressed as some

integral measure or formulated as an optimization prob-

lem), even though they are completely different from a

conceptual point of view. Indeed, the frequentist max-

imum likelihood (ML) estimator simply corresponds to

the Bayesian MAP estimator with a uniform prior. Hence,

although we focus on Bayesian approaches in the sequel,

all the techniques mentioned here are also applicable in a

frequentist context.

Unfortunately, obtaining closed-form expressions for

any of these estimators is usually impossible in real-

world problems. This issue can be circumvented by using

approximate estimators (e.g., heuristic estimators in the

frequentist context or variational Bayesian approxima-

tions) or by restricting the class of models that were

considered (e.g., in the case of Bayesian inference by

using only conjugate priors). However, with the increase

in computational power and the extensive development

of Monte Carlo methods, Bayesian inference has been

freed from the use of a restricted class of models and

much more complicated problems can now be tackled in

a realistic way. In the following section, we briefly review

the history of Monte Carlo methods, pointing out the

3Note that the MAP estimator can also be expressed in an integral form [2, 3],
but the maximization approach is much more useful from a practical point of
view.

key developments and some of the most relevant algo-

rithms that will be described in detail throughout the

paper. Note that, apart from MC methods, there are sev-

eral alternative techniques for approximating integrals in

statistical inference problems [12]: asymptotic methods,

multiple quadrature approaches, and subregion adaptive

integration. However, these schemes cannot be applied in

high-dimensional problems and MC algorithms become

the only feasible approach in many practical applications.

Another related topic which is not covered here due to

space constraints is variational Bayesian inference. How-

ever, the interested reader can check some of the existing

tutorials (and references therein) for an overview these

methods [13, 14].

1.2 Framework: Monte Carlo methods

The so-called Monte Carlo (MC) methods encompass a

large class of stochastic simulation techniques that can be

used to solve many optimization and inference problems

in science and engineering. Essentially, MC methods pro-

ceed by obtaining a large pool of potential values of the

desired parameters and substituting the integrations by

sample averages. In practice, these parameter values can

be obtained either by physically replicating the desired

experiment or by characterizing it probabilistically and

generating a set of random realizations.

The origin of MC methods can be traced back to Buf-

fon’s experiments to compute an empirical value on the

St. Petersburg game,4 and the formulation of his famous

experiment (nowadays commonly known as Buffon’s nee-

dle) to calculate the value of π [16, 17]5. Buffon’s needle

experiment became quite well known after it was men-

tioned by Laplace in 1812 [18], and several scientists

attempted to replicate his experiment during the last quar-

ter of the ninteenth century [19–22]6. Meanwhile, other

statisticians were experimenting with different mecha-

nisms to generate random numbers (e.g., using cards, a

roulette or dice) to verify empirically, through some kind

of primitive stochastic simulation, their complicated sta-

tistical procedures [26]. Another example of simulation

in statistical computations occurred at the beginning of

the twentieth century, when William Gosset (“Student”)

published his famous papers, where he investigated the

4The St. Petersburg game consists of tossing a fair coin repeteadly until a head

occurs [15]. The payoff then is 2k , where k is the number of tosses required.
Buffon’s goal was computing the expected payoff of the game in practice
(theoretically it is infinite), which turned out to be 4.9106 in his experiment.
5Buffon’s needle experiment consists of dropping a needle of length ℓ on a
grid of parallel lines uniformly separated by distance d > ℓ and counting the
number of times that the needles intersect the lines (n) out of the N
experiments. This empirical intersection probability, p̂ = n

N , can be used to

obtain an approximate value of π , since p = 2ℓ
πd , and thus π ≈ 2ℓ

p̂d
.

6Actually, Lazzarini’s experimental approximation of π ≈ 3.1415929 (accurate
to six decimal places), provided in [21], has been disputed and several authors
have suggested that he did not perform a fair experiment [23–25].
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distribution of the t-statistic and the correlation coeffi-

cient [27, 28]7. Finally, Leonard H. C. Tippett devised a

way to systematically draw random numbers for his exper-

iments on extreme value distributions and published a list

of random digits that was used by subsequent researchers

[31, 32]. However, all these approaches occurred before

the advent of computers and aimed only at solving some

particular problem at hand, not at providing some gen-

eral simulationmethod (except for Galton’s approach [33],

which provided a generic way to draw normal random

variables (RVs) for all types of applications, but failed to

gain widespread acceptance).

In spite of all these early attempts to perform stochas-

tic simulation (a.k.a. statistical sampling), the formulation

of the MC method as we know it today did not happen

until the construction of the first computers in the 1940s8.

Stanislaw Ulam, a Polish mathematician working at Los

Alamos National Laboratory, devised the MC method

while convalescing from an illness in 1946 [36, 38].

He was playing solitaire and trying to calculate the proba-

bility of success (a difficult combinatorial problem) when

he realized that an easier way to accomplish that task

(at least in an approximate way) would be to play a cer-

tain number of hands and compute the empirical success

probability. On his return to Los Alamos, he learnt of

the new computers that were being built from his close

friend John vonNeumann, a consultor both at Los Alamos

and the Ballistics Research Laboratory (where the first

computer, the ENIAC, was being developed), and dis-

cussed the possibility of developing a computer-based

implementation of his idea to solve difficult problems in

statistical physics. Von Neumann immediately recognized

the relevance of Ulam’s idea and sketched an approach to

solve neutron diffusion/multiplication problems through

computer-based statistical sampling in a 1947 letter to

Robert Richtmyer (head of the Theoretical Division at Los

Alamos) [38]. The method was then successfully tested on

9 neutron transport problems using ENIAC and Nicholas

Metropolis coined the name “Monte Carlo”, inspired by

an uncle of Stan Ulam who borrowed money from rela-

tives because “he just had to go to Monte Carlo” [36, 37].

The seminal paper on MC was then published in 1949

[39], more powerful computers were developed (like the

MANIAC in Los Alamos [35]), and many physicists

started using computer-based MC methods to obtain

approximate solutions to their problems [40]. MC meth-

ods required an extensive supply of random numbers,

7William S. Gosset published his two famous papers under the pseudonym
“Student”, after attaining permission from his employer Arthur Guinness &
Sons of Dublin, to avoid conflicts with other employees who were forbidden
from publishing papers in scientific journals [29, 30].
8Apparently, Enrico Fermi was the first one to make a systematic use of
statistical sampling techniques to compute approximations to all kind of
physical quantities of interest while working in Rome (i.e., before 1938).
However, he never wrote anything about it and we only have an indirect
account of this fact from his student Emilio Segrè [34] (see also [35–37]).

and the development of the essential random number

generators required by MC methods also started during

those years. For instance, von Neumann described the

rejection sampling (RS) method in a 1947 letter to Ulam

[38] (although it was not published until 1951 [41]) and

Lehmer introduced linear congruential random number

generators in 1951 [42].

The next milestone in statistical sampling was the devel-

opment of the Metropolis-Hastings (MH) algorithm. The

MH algorithm was initially devised by Nicholas Metropo-

lis et al. in 1953 as a general method to speed up the

computation of the properties of substances composed of

interacting individual molecules [43]. The idea is rather

simple: random uniformly distributed moves of particles

around their current position were proposed; if the global

energy of the system was decreased, these moves were

always accepted; otherwise, they were accepted only with

some non-null probability that depended on the energy

increase (the larger the increase, the less likely the move

to be accepted). Rejected moves were also used to com-

pute the desired averages. Metropolis et al. proved that

the method was ergodic and samples were drawn from

the desired distribution. This approach can be seen as a

Markov chain, with an RS sampling step at the core to

ensure that the chain has the desired invariant probabil-

ity density function (PDF), and thus Markov chain Monte

Carlo (MCMC) methods were born. A symmetric pro-

posal density was considered in [43]. In 1970, Hastings

showed that non-symmetric proposal densities could also

be used [44], thus allowing for muchmore flexibility in the

method, and proposed a generic acceptance probability

that guaranteed the ergodicity of the chain. In the mean-

time, a different acceptance probability rule had been

proposed by Barker in 1965 [45], and it remained to be

seen which rule was better. This issue was settled in 1973

by Peskun (a Ph.D. student of Hastings), who proved that

the Hastings acceptance rule was optimal [46]. The MH

algorithm was extensively used by the physics commu-

nity since the beginning, but few statisticians or engineers

were aware of it until the 1990s [47].

Another crucial event in the history ofMCmethods was

the introduction, by Stuart Geman and Donald Geman

in 1984, of a novel MCMC algorithm, the Gibbs sampler,

for the Bayesian restoration of images [48]. The Gibbs

sampler became very popular soon afterwards, thanks to

the classical 1990 paper of Gelfand and Smith [49], who

gave examples of how the Gibbs sampler could be applied

in Bayesian inference. Andrew Gelman showed in 1992

that the Gibbs sampler was a particular case of the MH

algorithm [50], thus causing a renewed interest in the

MH algorithm by statisticians. Then, Tierney wrote an

influential paper on the history and theory of the MH

algorithm in 1994 [51], where he showed how it could be

used to deal with non-standard distributions in Bayesian
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inference. Simple explanations of the Gibbs sampler and

the MH algorithm also appeared in the 1990s [52, 53],

and those two methods started being applied for all sort

of problems during the following years: medicine [54],

econometrics [55], biostatistics [56], phylogenetic infer-

ence [57], etc. Indeed, the MH algorithm has become

so popular since its re-discovery in the early 1990s that

it was named one of the top 10 algorithms in the 20th

century by the IEEE Computing in Science & Engineering

Magazine [58].

The first signal processing applications of MCMC fol-

lowed soon after Geman and Geman’s publication of the

Gibbs sampler (indeed, their original application involved

a signal processing problem: the denoising of images). In

the 1990s, both the MH algorithm and the Gibbs sampler

were applied to several signal processing problems: blind

identification, deconvolution, and equalization [59–63];

denoising and restoration of missing samples in digital

audio recordings [5, 64–66]; reconstruction of the images

obtained in computed tomography [67, 68]; parameter

estimation of time-varying autoregressive (AR) models

[69, 70]; etc. Then, Fitzgerald published the first tutorial

on MCMC methods for signal processing applications in

2001 [71], and the first special issue on MC methods for

statistical signal processing (edited by Petar Djuric and

Simon Godsill) appeared in 2002 [72]. During these years,

tutorial papers on the related areas of signal processing

for wireless communications and machine learning also

appeared [73, 74], as well as another review paper on MC

methods for statistical signal processing [75].

The second large family ofMonte Carlo methods are the

so-called importance sampling (IS) and its adaptive ver-

sions (AIS). Unlike MCMC techniques, where candidate

samples can be either accepted or discarded, IS meth-

ods employ all the generated candidates, assigning them

a weight according to their “quality”. IS was first used

in statistical physics in order to estimate the probability

of nuclear particles to penetrate shields [76]. During the

following decades, IS was extensively used as a variance

reduction technique (especially for rare event simula-

tion) in a large variety of applications: operations research

[77], simulation of stochastic processes [78], other prob-

lems in statistical physics [79, 80], digital communications

[81, 82], computer reliability [83], inventory systems [84],

etc. In the 1970s and 1980s, several authors also applied

the IS principle in Bayesian inference problems when

direct sampling from the posterior distribution was either

impossible or impractical [85–87]. The limitations of the

IS approach were also recognized at this time: the per-

formance of IS-based estimators critically depends on

the choice of the proposal, with good proposals leading

to a substantial decrease in variance and bad proposals

resulting in a very poor performance (with a potentially

infinite variance from a theoretical point of view). In

order to solve these issues, the multiple IS (MIS) approach

and alternative weighting schemes (like the so called

deterministic mixture (DM)) were proposed in the 1990s

[88–91]. During these years, sequential importance sam-

pling (SIS) methods (a.k.a. particle filters) were also

developed as an alternative to the Kalman filter for

the estimation of dynamic parameters [92, 93]. These

methods are also based on the IS methodology, with

weights that are sequentially updated as new observations

become available. See the companion tutorial in this spe-

cial issue for a detailed review of sequential Monte Carlo

(SMC) methods, which essentially correspond to SIS with

resampling [93].

However, IS techniques did not become widely known

to all computational statistics, machine learning and sta-

tistical signal processing practitioners until the 2000s. In

2001, Iba published a cross-disciplinary survey in which

he grouped several algorithms where “a set of ‘walk-

ers’ or ‘particles’ is used as a representation of a high-

dimensional vector” under the generic name of population

Monte Carlo algorithms [94]. Soon afterwards, Cappé et

al. published their influential population Monte Carlo

(PMC) paper [95], where they borrowed the name coined

by Iba for their proposed AIS framework. In short, [95]

showed that previously drawn samples can be used to

adapt the proposal in order to reduce the variance of

the desired estimators. The original PMC algorithm con-

sidered a set of Gaussian proposals with different vari-

ances and means selected from the previous population

through a multinomial resampling step, where particles

were selected with a probability proportional to their

IS weights. This classical or standard PMC algorithm

is numerically unstable and shows a poor performance

in many practical applications, but opened the door to

other improved PMC algorithms, like the mixture PMC

(M-PMC) [96] or the recent deterministic mixture PMC

(DM-PMC) [97]. Furthermore, the success of PMC-based

approaches renewed the interest in IS techniques for the

estimation of static parameters, encouraging authors to

develop other AIS methods, like the adaptive multiple

importance sampling (AMIS) [98] or the adaptive popula-

tion importance sampling (APIS) [99] algorithms.

Finally, let us remark that many important advances

have occurred in the field of Monte Carlo methods dur-

ing the last 20 years: adaptive MCMC techniques that

increase the acceptance rate and decrease the correlation

among samples, gradient-based MCMC methods which

improve the performance in high-dimensional parame-

ter spaces, multiple candidate MCMC algorithms for a

higher efficiency in sample generation, generalized sam-

pling and weighting schemes in MIS algorithms for a

reduced variance of the desired estimators, the combina-

tion of MCMC and AIS techniques in order to exploit

their complementary strong points and minimize their
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drawbacks, etc. A detailed description of all these meth-

ods is provided in this survey. Other important topics that

are also briefly covered here are the following: the pseudo-

marginal MCMC framework [100], approximate Bayesian

computation (ABC) [101, 102], the application of Monte

Carlo algorithms in a big data context [103], noisy MCMC

methods, and approximated likelihood algorithms.

1.3 Related articles, books, and software packages

The literature on MC methods is rather vast, with many

technical reports, journal papers, conference articles,

books, and book chapters that cover different aspects of

the many existing MC algorithms. In this section, we

provide a brief summary (which intends to be illustra-

tive rather than exhaustive) of the articles and books that

provide a tutorial introduction or an overview of several

aspects of MC methods and closely related topics. At the

end of the section we also describe some of the most

relevant software packages which are freely available to

implement several important MC algorithms. Note that

these articles, books, and/or software packages often con-

centrate on some particular class of MC algorithms, and

the user has to select the most appropriate family of meth-

ods and software for the specific problem. In particular,

note that different MCMC methods have different con-

vergence properties, and therefore we encourage users to

be careful and select the most reliable algorithm for their

problem.

On the one hand, many excellent books are entirely

devoted to the general theory and practice ofMCmethods

[104–109]. However, none of these books is specifically

written with signal processing practitioners in mind and

they are 5–14 years old, thus not covering several impor-

tant recently developed algorithms. On the other hand,

several books are also devoted to specific classes of MC

methods. For instance, [110] and [111] focus on particle

filters for tracking applications and random set models

respectively, [112] details several different state-space pro-

cessors (including those based on particle filters), [113] is

entirely devoted to the theoretical and practical aspects

of SMC methods, and [114] covers Bayesian filtering and

smoothing techniques from Kalman to particle filters.

Finally, several books address the related topic of random

variable generation [115–119], which is an essential issue

for MC algorithms, and some of these books also contain

one or more chapters on MC methods (e.g., Chapter 7 of

[118, 119]).

There are also many other journal papers and con-

ference articles that provide tutorial descriptions of MC

methods, but they are either more than 10 years old, dif-

fer in scope from the present paper, or cover only some

specific class of MC algorithms. The first tutorial on

MC methods for signal processing practitioners (as far

as we know), covering classical MC techniques (e.g., the

MH algorithm, the Gibbs sampler, and reversible jump

MCMC) for parameter estimation and model selection,

appeared in 2001 [71]. Similar tutorials for wireless com-

munications [73], including also SIS and SMC schemes,

andmachine learning [74], where simulated annealing and

the MC-EM algorithm are described, shortly followed.

Then, another tutorial onMCmethods for signal process-

ing was published in 2004 and focused on recent advances

in MCMC algorithms and particle filters [120]. More

recently, Green et al. published a tutorial on Bayesian

computation that partially overlaps with the current sur-

vey (e.g., it includes MALA, the HMC algorithm, and

particle MCMC) [121]. A survey specifically focused on

different Multiple Try MCMC methods can be found in

[122], whereas Robert et al. [123] have recently published

in arXiv another overview on algorithms to accelerate

MCMC that briefly discusses several methods included

in this paper (like MTM, HMC, or adaptive MCMC).

Several surveys that concentrate exclusively on impor-

tance samplingmethods have also been published recently

[124–126].

Finally, note that many toolboxes and specific soft-

ware implementations (in Matlab, Python, R, and other

programming languages) of the different algorithms

described in this survey are freely available online. Due to

their importance, let us mention three of the main exist-

ing environments for MC computation: BUGS, JAGS, and

Stan9. On the one hand, BUGS (Bayesian inference Using

Gibbs Sampling) is a software package that allows the user

to specify a statistical model by simply stating the relation-

ships between related variables [127–129]. The software

includes an “expert system” that determines the appro-

priate MCMC scheme (based on the Gibbs sampler) for

analysing the specified model. On the other hand, JAGS

(Just Another Gibbs Sampler) is a program for the analysis

of Bayesian hierarchical models using MCMC simula-

tion [130]. It provides a cross-platform engine for the

BUGS language, allowing users to write their own func-

tions, distributions, and samplers. Finally, Stan is a flexible

probabilistic programming language that allows users to

specify their statistical models and then perform Bayesian

inference usingMCMCmethods (NUTS and HMC), ABC

or ML estimation [131, 132]. Stan has Python and R inter-

faces, as well as wrapper packages for Matlab, Julia, Stata,

and Mathematica.

1.4 Acronyms, notation, and organization

Table 1 provides a list of the acronyms used throughout

the paper, whereas Table 2 summarizes the main notation.

9Further information about them can be found in their respective web sites:
JAGS (http://mcmc-jags.sourceforge.net), BUGS

(http://www.openbugs.net/w/FrontPage), and Stan

(http://mc-stan.org).
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Table 1 List of acronyms used

ABC Approximate Bayesian computation MC Monte Carlo

ADS Adaptive direction sampling MCMC Markov chain Monte Carlo

AGM-MH Adaptive Gaussian mixture Metropolis-Hastings MH Metropolis-Hastings

AIS Adaptive importance sampling MIS Multiple importance sampling

AISM Adaptive independent sticky metropolis ML Maximum likelihood

AM Adaptive Metropolis MMALA Riemann manifold MALA

AMCMC Adaptive Markov chain Monte Carlo MMSE Minimummean squared error

AMIS Adaptive multiple importance sampling M-PMC Mixture population Monte Carlo

APIS Adaptive population importance sampling MRF Markov random field

ARS Adaptive rejection sampling MSE Mean squared error

ARMS Adaptive rejection Metropolis sampling MTM Multiple-try Metropolis

CDF Cumulative distribution function NUTS No U-turn sampler

CLT Central Limit Theorem OFDM Orthogonal frequency division multiplexing

DA Data augmentation PDF Probability density function

DM Deterministic mixture PMC Population Monte Carlo

DR Delayed rejection PMH Particle Metropolis-Hastings

FUSS Fast universal self-tuned sampler PWC Piecewise constant

GMS Group Metropolis sampling PWL Piecewise linear

HMC Hamiltonian Monte Carlo RMHMC Riemann manifold HMC

IA2RMS Independent doubly adaptive rejection Metropolis sampling RS Rejection sampling

IID Independent and identically distributed RV Random variable

IS Importance sampling SDE Stochastic differential equation

LAIS Layered adaptive importance sampling SIS Sequential importance sampling

MALA Metropolis adjusted Langevin algorithm SMC Sequential Monte Carlo

MAP Maximum a posteriori WSN Wireless sensor network

Moreover, the following rules will be followed regarding

the notation:

• Vectors and matrices will be denoted in boldface

(e.g., y and C), with vec{y1, . . . , yL} denoting the
vectorization operation, i.e., the stacking of a set of

vectors (y1, . . . , yL) of dimension Dy × 1 in order to

construct a single vector y ∈ R
LDy . Capital boldface

symbols are used for matrices, whereas lowercase

boldface symbols are used for vectors.
• The notation θ¬i will be used to denote a vector with

the i th component removed, i.e.,

θ¬i =[ θ1, . . . , θi−1, θi+1, . . . , θDθ
]⊤.

• Capital letters will be used to denote random

variables (e.g., X ), while lowercase letters are used for

their realizations (e.g., x).
• When required, properly normalized PDFs will be

indicated by using a bar (e.g., π̄ and q̄), whereas their

non-negative unnormalized versions will be indicated

by the same letter without the bar (e.g., π and q).
• The notation x ∼ p(X) indicates that a realization x

of the random variable X is drawn from the PDF p.

• We use an argument-wise notation for the different

normalized and unnormalized densities used

throughout the text. For instance, π(θ) denotes the

Dθ -dimensional target, whereas π(θd|θ¬d) denotes

the one-dimensional full conditional density of the

d th parameter.
• The notation Ep(g) will be used to denote the

mathematical expectation of the function g w.r.t. the

PDF p.

Regarding the structure of the paper, let us remark that

we concentrate on the use of MCMC methods for the

estimation of static parameters, although the extension of

some of these techniques to a dynamical setting will be

occasionally discussed. This choice is motivated by two

facts: the need to keep the length of the tutorial within

reasonable bounds and the existence of two recent review

papers on AIS methods [126, 133]. However, two sections

detailing the different IS and AIS techniques, as well as

the use of IS-within-MCMC, have also been included

for the sake of completeness. Regarding the selection of

the methods covered, we have tried to include the most
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Table 2 Summary of the main notation used throughout the paper

Notation Description

Dy Dimension of the data.

L Number of data available.

y ∈ R
LDy LDy-dimensional observations vector, y = vec{y1 , . . . , yL} with yi ∈ R

Dy for i = 1, . . . , L.

Dθ Dimension of the parameter space.

� = �1 × · · · × �Dθ
Feature space for the parameter vector θ .

θ ∈ R
Dθ Dθ -dimensional parameter vector, θ =[ θ1 , . . . , θDθ

] with θd ∈ �d for d = 1, . . . ,Dθ .

θ (m) mth sample of the parameter vector in MC and RS.

θ (t) Sample of the parameter vector at the tth iteration in MCMC methods.

π̄(θ |y) ≡ π̄(θ) Target (i.e., posterior) PDF.

π(θ |y) ≡ π(θ) Target function (i.e., non-negative but unnormalized).

p0(θ) Prior probability density function.

ℓ(y|θ) Likelihood.

Z(y) Normalizing constant of the target (a.k.a. partition function, marginal likelihood, or model evidence).

π̄(θd|θ¬d) Full conditional PDF for the dth parameter given all the other parameters (used in the Gibbs sampler).

T Number of Monte Carlo iterations performed.

Tb Number of iterations for the burn-in period in MCMC.

N Number of proposals used in multiple IS approaches.

M Number of samples drawn in the MC algorithm, RS and IS approaches. UsuallyM ≥ N in MIS.

q̄(θ), q̄t(θ), q̄m,t(θ) Proposal PDF.

q(θ), qt(θ), qm,t(θ) Proposal function (i.e., non-negative but unnormalized) for t = 1, . . . , T andm = 1, . . . ,M.

wm,t(θ) Unnormalized weight of themth particle (m = 1, . . . ,M) at the tth iteration (t = 1, . . . , T ) for AIS approaches.

wm,t(θ) Normalized weight of themth particle (m = 1, . . . ,M) at the tth iteration (t = 1, . . . , T ) for AIS approaches.

π̂(θ) Randommeasure used to approximate the target at the tth iteration.

N (µ,C),N (·|µ,C) Gaussian PDF with mean µ and covariance C.

U(I) Uniform PDF within the interval I .

relevant MC algorithms from the different families, fol-

lowing a chronological order from the classical (and usu-

ally simpler) MC methods to the more recent and sophis-

ticated ones. Finally, note that the main focus of the paper

is describing the different MC algorithms in a unified

way by using a consistent notation which is amenable to

signal processing practitioners. However, some theoreti-

cal aspects are also briefly discussed, as well as the main

advantages and limitations of each algorithm.

The rest of the paper is organized as follows. First

of all, the mathematical background is provided in

Section 2. The Bayesian framework for statistical infer-

ence and the basicMC algorithm are briefly reviewed here

(Section 2.1), altogether with RS, which lies at the heart of

MCMC methods (Section 2.2). Then, Section 3 describes

in detail many of the most relevant MCMC algorithms

for signal processing applications: the MH algorithm, the

Gibbs sampler, and their combined use (Section 3.1);

adaptive MCMC methods (Section 3.2); gradient-based

algorithms (Section 3.3); and other advanced MCMC

schemes (Section 3.4). A short dicussion on MCMC

convergence diagnostics (Section 3.5) is also included

here. This is followed by Section 4, where IS techniques

are described: standard IS vs. multiple IS (Section 4.1);

adaptive IS (Section 4.2); group IS (Section 4.7); and

sequential IS (Section 4.8). Some convergence results

on IS and AIS (Section 4.3) are also included here,

as well as a short discussion on the variance of the

IS estimator and the choice of the optimal proposal

(Section 4.4), a note on the estimation of the effec-

tive sample size (Section 4.5), and a description of

proper weighting schemes (Section 4.6). This is fol-

lowed by the description of different schemes for the

use of IS-within-MCMC in Section 5: multiple try

approaches for static (Section 5.1) and dynamic param-

eters (Section 5.2); pseudo-marginal MCMC methods

(Section 5.3); noisy MCMC algorithms (Section 5.4); and

approximated likelihood methods (Section 5.4.2). Finally,

the performance of many of the described methods

is demonstrated through several numerical simulations

in Section 6: two simple examples for MCMC and IS

methods (Sections 6.1 and 6.2); the estimation of the
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parameters of a chaotic system (Section 6.3); a localization

problem in wireless sensor networks (Section 6.4); and a

spectral estimation application (Section 6.5). A discussion

of the reviewedmethods concludes the paper in Section 7.

2 Mathematical formulation
2.1 Bayesian inference and the Monte Carlo method

Let us assume that we have a dataset,

y = vec{y1, . . . , yL} ∈ R
LDy with yi ∈ R

Dy , which

depends on some static parameter vector,

θ =[ θ1, . . . , θDθ
]⊤ ∈ � ⊆ R

Dθ . From a Bayesian point

of view, all the information required to solve any task

related to θ (e.g., inference or optimization problems) is

contained in the posterior or target PDF, π̄(θ |y). Using
Bayes rule, this posterior can be expressed as

π̄(θ |y) = ℓ(y|θ)p0(θ)

Z(y)
= π(θ |y)

Z(y)
, (1)

where ℓ(y|θ) is the likelihood, that depends on the statis-

tical input-output model assumed; p0(θ) is the prior PDF,

which summarizes all the information available about

θ external to the observation of the data; Z(y) is the

marginal likelihood (a.k.a. as model evidence or parti-

tion function in some contexts), a normalizing termwhich

does not depend on θ ; and π(θ |y) is the target function, a
non-negative definite function (i.e., π(θ |y) ≥ 0 for all θ ∈
� ⊆ R

Dθ and y ∈ R
LDy ) such that

∫
�

π(θ |y) dθ = Z(y)

with Z(y) 	= 1 in general.

Now, let us assume that we want to compute the follow-

ing integral,

I = Eπ̄ (g(θ)) =
∫

�

g(θ)π̄(θ |y)dθ

= 1

Z(y)

∫

�

g(θ)π(θ |y)dθ < ∞, (2)

where g(θ) can be any integrable function w.r.t. π̄(θ |y).
For instance, when g(θ) = θ this integral becomes the

well-known minimum mean squared error (MMSE) esti-

mator of the parameter θ [2–4],

θ̂MMSE = Eπ̄ (θ) =
∫

�

θ π̄(θ |y)dθ , (3)

which is widely used in many statistical signal processing

applications and corresponds to the conditional expecta-

tion of θ w.r.t. the posterior PDF.

Unfortunately, obtaining an analytical solution of these

integrals is usually unfeasible in many practical problems

of interest. In these cases, an approximate solution of (2)

can be obtained through the Monte Carlo (MC) method

shown in Algorithm 1. Essentially, the MCmethod simply

consists of obtaining a set of independent and identically

distributed (IID) samples of the parameter vector to be

inferred and using them to approximate the desired inte-

gral by means of an unweighted sum. These M samples,

θ (m), can be obtained either by sampling directly from

the target PDF (i.e., the posterior π̄(θ |y)), as shown in

Algorithm 1, or by replicating the physical procedure

where the desired parameters are involved. Note that the

subindexM in ÎM denotes the number of samples involved

in the estimation.

Algorithm 1 Monte Carlo (MC) approximation of the

integral in Eq. (2)

1. Draw θ (m) ∼ π̄(θ |y) form = 1, . . . ,M.

2. Approximate the integral in Eq. (2) as

ÎM = 1

M

M∑

m=1

g(θ (m)). (4)

The MC estimate of I provided by Eq. (4) is unbiased,

i.e., Eπ̄ (̂IM) = I. Moreover, by the strong law of large

numbers, ÎM → I almost surely (a.s.) as M → ∞ [104].

Furthermore, if g(θ) is square integrable w.r.t. π̄(θ |y), then
we can use the central limit theorem (CLT) to state the

following result [104]:

ÎM − I√
VM

d→ N (0, 1) as M → ∞, (5)

where
d→ denotes convergence in distribution, and

VM = 1

M
Eπ̄ ((g(θ) − I)2) = 1

M

∫

�

(g(θ) − I)2π̄(θ |y) dθ .

(6)

Note that (5) is equivalent to stating that ÎM
d→

N (I,VM) asM → ∞.

Unfortunately, Algorithm 1 cannot be applied in many

practical problems, because we cannot draw samples

directly from π̄(θ |y). In these cases, if we can perform

point-wise evaluations of the target function, π(θ |y) =
ℓ(y|θ)p0(θ), we can apply other types ofMonte Carlo algo-

rithms: rejection sampling (RS) schemes, Markov chain

Monte Carlo (MCMC) techniques, and importance sam-

pling (IS) methods. These two large classes of algorithms,

MCMC and IS, are the core of this paper and will be

described in detail in the rest of this work. Before, we

briefly recall the basis of the RS approach, which is one of

the key ingredients of MCMC methods, in the following

section.

2.2 Rejection sampling (RS)

The RS method is a classical Monte Carlo technique for

universal sampling that can be used to generate samples

virtually from any target density π̄(θ) by drawing from
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a simpler proposal density q̄(θ)10. The sample is either

accepted or rejected by applying an adequate test to the

ratio of the two PDFs, and it can be easily proved that

accepted samples are actually distributed according to the

target density [115]. The RS algorithm was originally pro-

posed by John von Neumann in a 1947 letter to Stan Ulam

[38], but it was not published until 1951 [41]. In its origi-

nal formulation, von Neumann considered only a uniform

proposal PDF, but the algorithm was later generalized to

allow drawing samples from any proposal density from

which sampling is straightforward. In the standard RS

algorithm [41, 115], we first draw a sample from the pro-

posal PDF, θ ′ ∼ q(θ) and then accept it with probability

pA(θ ′) = π(θ ′)

Cq(θ ′)
≤ 1, (7)

where C is a constant such that Cq(θ) is an envelope func-

tion for π(θ), i.e., Cq(θ) ≥ π(θ) for all θ ∈ �. We

can summarize this procedure in an equivalent way: at

the tth iteration, draw a sample θ (t) ∼ q̄(θ) and u ∼
U([ 0, 1] ); if u ≤ π(θ (t))

Cq(θ (t))
, accept θ (t), otherwise, reject it;

when the desired number of samples have been drawn

from π̄(θ), stop. Algorithm 2 summarizes the generation

of M samples from the target PDF using the standard RS

algorithm.

Algorithm 2 Rejection Sampling (RS) method.

1. Initialization: Choose a proposal function, q(θ), and

the required number of samples from the target,M.

Find an upper bound, C ≥ π(θ)
q(θ)

for all θ ∈ �, and let

t = m = 1.

2. WHILEm ≤ M:

(a) Draw θ (t) ∼ q̄(θ) and u ∼ U([ 0, 1)).

(b) If u ≤ π(θ (t))

Cq(θ (t))
, accept θ (t), setting θ (m) = θ (t)

and lettingm = m + 1.

(c) Set t = t + 1 regardless of whether θ (t) has been

accepted or not.

3. Approximate the integral in Eq. (2) using Eq. (4).

The RS algorithm is a simple MC method for approx-

imating the integral in Eq. (2) that can be universally

applied as long as the upper bound C can be found. How-

ever, it has several important drawbacks that hinder its

practical application:

1. For complicated targets, finding a bound C such that

Cq(θ) ≥ π(θ) for all θ ∈ � can be difficult, especially

for high-dimensional parameter spaces.

10For the sake of simplicity, in the sequel, we drop the dependence on the data
(y) from the target, i.e., we use π̄(θ) ≡ π̄(θ |y) and π(θ) ≡ π(θ |y).

2. Even if this bound can be found, the RS algorithm

can be very inefficient if the ratio π(θ)
Cq(θ)

is small for a

large portion of the parameter space. Indeed, the

acceptance probability of the RS algorithm is given by

PA =
∫

�

π(θ)

Cq(θ)
q̄(θ) dθ = Zπ

CZq
, (8)

where Zπ =
∫
�

π(θ) dθ and Zq =
∫
�
q(θ) dθ .

Depending on the target and the proposal selected,

this PA can be very low (this happens when

CZq ≫ Zπ ), thus rendering the RS algorithm useless

in practice. For this reason, many RS approaches

have been specifically designed for drawing efficiently

from a specific target distribution [134, 135]. For

example, efficient random number generators based

on RS schemes can be found for the Gamma, Beta,

and Nakagami distributions [136–140].

3. The number of iterations required to generateM

samples, T , is a random variable with an expected

value E(T) = M
PA

and PA given by (8). Hence, the

exact time required to generateM valid samples

cannot be set a priori, and this can be a serious

problem in many applications.

One way to tackle some of these difficulties is by con-

structing the proposal q(θ) adaptively, using some of the

so called adaptive RS (ARS) methods. The ARS algo-

rithm was originally proposed by Gilks and Wild in 1992

[141], and several generalized ARS algorithms have been

proposed since then [142–150]. However, the need to

have Cq(θ) ≥ π(θ) for all θ ∈ � and the difficulty of

constructing the adaptive proposals in high-dimensional

parameter spaces limit the applicability of those gener-

alized ARS algorithms [119, 151], rendering MCMC and

IS approaches more efficient in general, and thus prefer-

able for practical applications. For further information see

Chapters 3 and 4 in [119].

3 Markov chain Monte Carlo (MCMC)
According to Definition 7.1 of [104], an MCMC method

is any method producing an ergodic Markov chain whose

stationary density is the desired target PDF, π̄(θ). In the

following, we detail some of the most relevant MCMC

algorithms, starting from the basic building blocks (the

MH algorithm and the Gibbs sampler) in Section 3.1, and

ending up with several advanced adaptive (Section 3.2),

gradient-based (Section 3.3), and other advanced MCMC

schemes (Section 3.4). Note that we focus on describing

the different algorithms rather than on their theoretical

properties, although a brief discussion on the validity of

the MH algorithm (due to its importance as the basis of

most MCMC algorithms) is provided in Section 3.1.2.
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3.1 MCMC basic building blocks: Metropolis-Hastings and

Gibbs samplers

3.1.1 Metropolis-Hastings (MH) algorithm

As mentioned in the introduction, the MH algorithm was

initially devised by Nicholas Metropolis et al. in 1953 as a

general method to speed up the computation of the prop-

erties of substances composed of interacting individual

molecules [43]. In a two-dimensional square with N par-

ticles, studying these properties requires computing 2N-

dimensional integrals, an impossible task (both analyti-

cally or numerically) for the large values of N required in

practice. A naive MC simulation would consist in drawing

particle configurations uniformly at random and assigning

them weights proportional to exp(−E/KT ), where E is

the energy of the configuration, K ≈ 1.38×10−23 is Boltz-

mann’s constant and T is the absolute temperature (in

Kelvin degrees)11. Nevertheless, Metropolis et al. devised

the following alternative modified MC scheme:12

1. Place the N particles in an initial arbitrary

configuration (e.g., in a regular lattice) within the

square.

2. At the tth iteration (t = 1, . . . ,T) and for

i = 1, . . . ,N :13

(a) Propose a move for the i th particle, located at

θ
(t−1)
i , according to the following rule:

θ ′
i = θ

(t−1)
i + κξ (t), (9)

where κ is a user-defined parameter that

represents the maximum allowed

displacement per iteration, while

ξ (t) ∼ U([−1, 1)×[−1, 1)).

(b) Compute the change in energy caused by the

move, �E
(t)
i . If the energy is not increased

(i.e., �E
(t)
i ≤ 0), then accept the move, setting

θ
(t)
i = θ ′

i. Otherwise (i.e., if the energy is

increased and thus �E
(t)
i > 0), accept the

move with probability exp(−�E
(t)
i /KT ),

thus setting θ
(t)
i = θ ′

i, or reject it with

probability 1− exp(−�E
(t)
i /KT ), thus letting

θ
(t)
i = θ

(t−1)
i .

11Nowadays this would be considered an application of the IS methodology,
since the particles are not drawn from the desired target density,
π̄(θ) ∝ exp(−E(θ)/KT ), but from a uniform random proposal. Thus, they
are assigned the corresponding standard IS weights, w(θ) ∝ exp(−E(θ)/KT ),
for the subsequent integration (see Section 4.2 for a description of IS methods).
12Note that we have used θ to represent the positions of the particles (which
are the parameters to be inferred), as in the rest of the paper, instead of the
original notation of [43], which used x.
13Note that the way in which the samples are drawn actually corresponds to
theMH-one-at-a-time algorithm [75], which is equivalent to the well-known
MH-within-Gibbs algorithm (see Section 3.1.4) with one iteration of the
internal MH method per iteration of the external systematic scan Gibbs
sampler (see Section 3.1.3), since the particles are moved one at a time and the
proposed moves are not performed according to the desired target PDF, but
using a simpler proposal (and thus they can be accepted or rejected).

3 All the different configurations, θ
(t)
i for t = 1, . . . ,T ,

are used to compute the desired averages.

Intuitively, the MH algorithm can be seen as a general-

ized rejection sampler whose proposal depends on the

result of the previous iteration (i.e., on θ (t−1)). Further-

more, the acceptance rate also depends on θ (t−1) and the

value of θ (t−1) is re-used whenever a candidate sample

θ ′ is rejected. This creates an undesired effect, since the

drawn samples are no longer independent as in the RS

algorithm, but allows us to work with proposal densi-

ties that may lie below the target. This is due to the fact

that the underlying Markov chain has the desired target

as the limiting invariant distribution (e.g., see [104] for

a rigorous proof). Another useful perspective is to view

the method as a thinning of a random walk in precisely

the right way to ensure convergence to the correct tar-

get. Loosely speaking, the chain is thinned by discarding

those candidates which correspond to moves from the

current state that happen too often, and this is done with

the right probability to ensure that the invariant distribu-

tion of the Markov chain is exactly the desired target. See

the excellent tutorial (but rigorous) exposition of the MH

algorithm provided by Chib and Greenberg for further

information about this issue [53].

In this algorithm, the proposal for the tth iteration

and the ith particle is q̄(θ i|θ (t−1)
1:N ) = q̄(θ i|θ (t−1)

i ) =
U([ θ

(t−1)
i,1 −κ , θ

(t−1)
i,1 +κ)×[ θ

(t−1)
i,2 −κ , θ

(t−1)
i,2 +κ)), whereas

the target is π̄(θ) ∝ exp(−E(θ)/KT ). The acceptance

probability is then given by

α
(
x′
i, x

(t−1)
1:N

)
= min

[
1, exp(−�E

(t)
i /KT )

]
, (10)

with �E
(t)
i = E

(
θ

(t−1)
1 , . . . , θ

(t−1)
i−1 , θ ′

i, θ
(t−1)
i+1 , . . . , θ

(t−1)
N

)
−

E
(
θ

(t−1)
1 , . . . , θ

(t−1)
N

)
. This acceptance probability guar-

antees the ergodicity of the chain and the convergence of

the algorithm to the desired target PDF [43], but is not

the only valid acceptance rule. Indeed, in 1965 Barker pro-

posed an alternative acceptance probability for the com-

putation of radial distribution functions in plasmas [45]:

α(θ ′
i, θ

(t−1)
1:N ) = 1

1 + exp(−�E
(t)
i /KT )

. (11)

Soon afterwards, Hastings generalized these two accep-

tance probabilities, allowing for non-symmetric proposals

(unlike the proposals considered both by Metropolis and

Barker, which were both symmetric) [44]. Using our nota-

tion, where the parameters to be estimated are denoted as

θ , the two acceptance rules (αM and αB denote the gen-

eralization of Metropolis’ and Barker’s acceptance rules,

respectively) become:
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αM(θ ′, θ (t−1))=min

[
1,

π(θ ′)q(θ (t−1)|θ ′)

π(θ (t−1))q(θ ′|θ (t−1))

]
, (12a)

αB(θ ′, θ (t−1))= π(θ ′)q(θ (t−1)|θ ′)

π(θ ′)q(θ (t−1)|θ ′) + π(θ (t−1))q(θ ′|θ (t−1))
,

(12b)

Finally, in 1973 Peskun proved that the acceptance rule of

Eq. (12a) was optimal [46], and this settled the structure

of the algorithm used nowadays [152].

The MH algorithm with the acceptance rule of Eq. (12a)

is summarized in Algorithm 3. The burn-in period (Tb)

is the number of initial samples removed from the empir-

ical average in Eq. (14), which is used to compute the

desired estimator, in order to guarantee that the chain

has converged approximately to its stationary distribu-

tion. This period can be estimated automatically (e.g., see

Section 3.5 for a brief discussion on this issue and [153]

for a comparative review of different techniques to assess

the convergence of a Markov chain and thus determine

the burn-in period) or set to some pre-defined value, and

is required by all MCMC algorithms.

Algorithm 3Metropolis-Hastings (MH) algorithm.

1 Initialization: Choose a proposal function q(θ |θ (t−1)),

an initial state θ (0), the total number of iterations (T),

and the burn-in period (Tb).

2 FOR t = 1, . . . ,T :

(a) Draw θ ′ ∼ q(θ |θ (t−1)) and u ∼ U([ 0, 1)).

(b) Compute the acceptance probability:

αt ≡ α(θ ′, θ (t−1)) = min

[
1,

π(θ ′)q(θ (t−1)|θ ′)

π(θ (t−1))q(θ ′|θ (t−1))

]
.

(13)

(c) If u ≤ αt , accept θ ′ and set θ (t) = θ ′. Otherwise

(i.e., if u > αt), reject θ ′ and set θ (t) = θ (t−1).

3 Approximate the integral in Eq. (2) as

ÎT−Tb
= 1

T − Tb

T∑

t=Tb+1

g(θ (t)). (14)

One of the main advantages of the MH algorithm is

that it is a very generic method that admits the use of

almost any proposal and target PDFs. However, although

the algorithm is valid regardless of the shape and param-

eters of the proposal PDF (see Section 3.1.2 for a brief

review of the specific conditions for the validity of theMH

algorithm), the speed of convergence and the quality of the

estimators obtained substantially depend on the quality of

this proposal. Many choices are possible, but here we will

only consider the twomost widely used (see [53] for a brief

discussion on five different families of proposals):

• Independent MH: The proposal is fixed and does not

depend on the current state of the chain, i.e.,

q̄(θ |θ (t−1)) = q̄(θ). For instance, a widely used choice

in this case is a multi-variate Gaussian PDF with fixed

mean vector and covariance matrices:

q̄(θ) = N (θ |µ,C). An independent proposal can be

considered a global proposal, since it can generate

candidate samples in the whole state space regardless

of the current state of the chain. This type of proposal

fosters the exploration of the state space, but its

performance can be poor for complicated target PDFs

(especially for high-dimensional state spaces, where it

can be difficult to find a good parameterization).
• Random walk MH: The proposal is centered on the

current state of the chain, i.e., the proposed candidate

at the tth iteration can be expressed as

θ ′ = θ (t−1) + ϑ′, where ϑ′ ∼ p(ϑ|0,Cϑ) and

p(ϑ|µ,Cϑ) is an arbitrary PDF specified using a

location parameter µ and a scale parameter C. For

instance, using a Gaussian PDF for ϑ we have

ϑ′ ∼ N (ϑ|0,Cϑ), which implies that

θ ′ ∼ q̄(θ |θ (t−1)) = N (ϑ|θ (t−1),Cϑ). If the PDF of ϑ

is symmetric (i.e., q(ϑ|ϑ(t−1)) = q(ϑ(t−1)|ϑ)), then

the acceptance rule becomes:

α(θ ′, θ (t−1)) = min

[
1,

π(θ ′)

π(θ (t−1))

]
. (15)

This is the type of proposal used by Metropolis et al.

(with a uniform distribution for ϑ) in [43], which led

them to the simplified acceptance probability shown

in Eq. (10). A random walk proposal can be seen as a

local proposal, since it is centered on the current

state of the chain. Hence, the random walk MH

algorithm encourages a more local exploration

around the current state.

A critical issue for the good performance of the MH

algorithm is the acceptance rate (AR), which depends on

the variance of the proposal PDF and should be neither

too high nor too low. On the one hand, a high variance

typically leads to a low AR, thus implying that the MH

algorithm gets stuck because most candidate samples are

rejected. On the other hand, a low variance can easily

lead to a high AR, as only local moves around previ-

ously accepted samples are proposed, but can result in

the MH algorithm failing to explore the target. The sem-

inal work of Roberts, Gelman, and Wilks proved, for the

random walk MH algorithm and in a simplified setting,
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that the proposal’s variance should be tuned in such a

way that the average acceptance rate is roughly 1/4 [154].

In [155], the same authors delved deeper into this issue,

showing that the optimal acceptance rate is approximately

44% for Dθ = 1 and declines to 23% when Dθ → ∞.

These results can be extended to different settings and

other methods based on the MH algorithm, like MH-

within-Gibbs or Hamiltonian MC (see Sections 3.1.4 and

3.3.2, respectively), and have lead to the practical rule of

thumb of choosing the variance of the proposal in order

to ensure and acceptance rate between 25 and 40%. How-

ever, let us remark that several authors have proved that

the optimal AR can be substantially different for other set-

tings/methods. For instance, Bédard and Rosenthal have

recently warned that the asymptotically optimal AR can

be significantly different from the well-known 0.234 AR

when the target’s components are not independent [156].

Indeed, in [157, 158] Bédard showed that 0.234 is the

upper limit for the AR in the simplified model consid-

ered, but much lower ARs can actually be optimal. Other

authors have also found that higher acceptance rates can

be optimal for other algorithms that make use of gradient

information, like the simplified Langevin algorithm (SLA)

or the modified adaptive Langevin algorithm (MALA)

(see Section 3.3.1) [159, 160].

Finally, let us remark that the local and global proposals,

used by the independent and random walk MH algo-

rithms respectively, can be combined. For instance, [161]

proposes using the following small world proposal:

q(θ) = (1 − p) · qG(θ) + p · qL(θ), (16)

where qL(θ) is a local proposal centered around the cur-

rent state of the chain, qG(θ) is a global proposal that

allows for “wild” moves far away from the current state,

and p is a small probability. Using this proposal leads to an

MH algorithm with improved performance, especially for

complicated heterogeneous spaces and multi-modal dis-

tributions, and can turn slowly mixing into rapidly mixing

chains [161, 162].

3.1.2 Validity of theMetropolis-Hastings algorithm

Let us now take at the conditions when the MH algorithm

(Alg. 3) produces samples from the desired target PDF. In

order to analyze its output, let us first notice that the states

θ (1), θ (2), . . . form aMarkov chain with a certain transition

density K(θ (t)|θ (t−1)). The key trick of the MH algorithm

is that the algorithm has been constructed in such a way

that the stationary PDF of the Markov chain is the target

PDF:

π̄(θ ′) =
∫

�

K(θ ′|θ)π̄(θ)dθ . (17)

One way to ensure the above is the detailed balance

condition, which demands that

K(θ ′|θ)π̄(θ) = K(θ |θ ′)π̄(θ ′). (18)

Integrating both sides over θ and recalling∫
�
K(θ |θ ′)dθ = 1 now gives

∫

�

K(θ ′|θ)π̄(θ)dθ =
∫

�

K(θ |θ ′)π̄(θ ′)dθ = π̄(θ ′),

(19)

which shows that π̄(θ) is the stationary PDF of theMarkov

chain. Furthermore, this condition also ensures that the

Markov chain is reversible [104–106, 152]. The transition

PDF of theMH algorithm consist of two parts—the PDF of

the accepted samples and the PDF of the rejected samples.

It can thus be written in the following form:

K(θ ′|θ) = α(θ ′, θ) q(θ ′|θ)

+
(
1 −

∫

�

α(θ ′, θ)q(θ ′|θ)dθ ′

)
δ(θ ′ − θ).

(20)

By direct computation, it can be easily verified that the

detailed balance condition is satisfied (see also Theorem

7.2 of [104]).

In addition to having the correct stationary PDF, we

also need to ensure that the Markov chain is ergodic. The

ergodicity property ensures that the Markov chain con-

verges to the stationary distribution with a predefined rate

so that we can estimate expectations of the state distribu-

tions by computing time averages. A sufficient condition

for ergodity is to ensure that the Markov chain is also

an aperiodic π̄-irreducible Harris chain, which can be

ensured by the following conditions (see Equations 7.4 and

7.5 and Lemma 7.6 in [104]):14

1. The stationary distribution and the proposal PDF

satisfy P[ π̄(θ)q(θ ′|θ) ≤ π̄(θ ′)q(θ |θ ′)]< 1.

2. The proposal PDF is strictly positive everywhere in

the parameter space, i.e., q(θ ′|θ) > 0 for all θ ′, θ ∈ �.

Provided that the detailed balance condition and the

aforementioned properties are satisfied, then Corollar-

ies 7.5 and 7.7 in [104] ensure the following ergodicity

properties for the MHMarkov chain:

lim
T→∞

T∑

t=1

g(θ (t)) =
∫

�

g(θ)π̄(θ)dθ ′, (21a)

lim
n→∞

∥∥∥∥
∫

�

Kn(·|θ ′)π̄0(θ
′)dθ − π̄

∥∥∥∥
TV

= 0, (21b)

where g is an arbitrary L1 function, ‖·‖TV is the total vari-

ation norm, Kn denotes the n-step transition kernel, and

14These conditions for the proposal density can be slightly relaxed (e.g., see
Lemma 7.6 in [104]).
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π̄0 is an arbitrary initial PDF. Eq. (21a) guarantees that the

sample average converges to the true value of the integral,

whereas (21b) ensures that the chain’s PDF converges to

the target PDF regardless of the initial density.

The aforementioned conditions ensure that the chain

converges to the target distribution and that time averages

can be used to approximate expectations. However, the

convergence of the algorithm can still be arbitrarily slow.

In order to guarantee that the chain does not get stuck

in some region of parameter space for large amounts of

time, we need MCMC algorithms which are geometrically

ergodic. An MCMC algorithm is geometrically ergodic if
∥∥∥∥
∫

�

Kn(·|θ ′)π̄0(θ
′) dθ ′ − π̄

∥∥∥∥
TV

< Cπ̄0ρ
n, (22)

for some Cπ̄0 and 0 < ρ < 1 giving the convergence rate.

There are two main reasons why geometric ergodicity is

essential. On the one hand, geometric ergodicity guar-

antees the existence of a Central Limit Theorem which

enables error bounds to be developed. On the other hand,

without geometric ergodicity algorithms are more-or-less

guaranteed to give rise to sample paths with “heavy-tailed

excursions” far away from the center of the distribution,

thus leading to instability and inaccuracy of the subse-

quent parameter estimation procedures. See [163] and

[164] for amore detailed discussion on geometric ergodic-

ity on the one-dimensional and multi-dimensional cases,

respectively.

3.1.3 Gibbs sampler

The Gibbs sampler was introduced by Stuart Geman and

Donald Geman in 1984 in order to sample from the

Markov Random Field (MRF) induced by the Gibbs distri-

bution [48]. The application considered was the Bayesian

restoration of images degraded by blurring, nonlinear

deformations, and multiplicative or additive noise15. In

order to deal with these distortions, Geman and Geman

proposed a stochastic relaxation algorithm that relied on

iteratively making local random changes in the image

based on current values of the pixels. A simulated anneal-

ing approach, that gradually lowers the system’s “tem-

perature” [165], was used to avoid local maxima. More

precisely, using our notation the Gibbs sampler proposed

in [48] was the following:

1. Select an arbitrary configuration of the pixels,

θ (0) =
[
θ

(0)
1 , . . . , θ

(0)
Dθ

]⊤
.

2. Select the sequence of pixels (n1, n2, . . .) that will be

visited for replacement. The sequence used in [48]

15In [48], the authors use MAP estimators for the Bayesian restoration task,
since they believe that “the MAP formulation is well-suited to restoration,
particularly for handling general forms of spatial degradation.” However, they
also state that “minimum mean-square error (MMSE) estimation is also
feasible by using the (temporal) ergodicity of the relaxation chain to compute
means w.r.t. the posterior distribution.”

corresponded to a raster scan of the image (i.e.,

repeteadly visiting all the sites in some “natural” fixed

order), but this sequence does not necessarily have to

be periodic.

3. At the tth “epoch” (t = 1, 2, 3, . . .), update the ntth

pixel by drawing a sample from the conditional PDF

of θnt given the current value of the remaining pixels,

θ
(t)
nt ∼ π̄(θnt |θ

(t−1)
¬nt

) with

θ
(t−1)
¬nt

=[ θ
(t−1)
1 , . . . , θ

(t−1)
nt−1 , θ

(t−1)
nt+1 , . . . , θ

(t−1)
Dθ

]⊤.
4. Repeat step 3 until a pre-specified termination

condition (e.g., a fixed number of iterations T ) is

fulfilled.

This approach can be easily generalized and adapted

to many practical problems. Algorithm 4 provides a

generic version of the Gibbs sampler with an arbitrary

selection of the indices to be sampled. As already men-

tioned in the introduction, Gelman showed that the

Gibbs sampler is a particular case of the MH algorithm

[50]. This can be easily seen by considering the MH algo-

rithm (Algorithm 3) with a proposal at the tth iteration

given by q(θ |θ (t−1)) = π
(
θdt |θ

(t−1)
¬dt

)
δ
(
θ¬dt − θ

(t−1)
¬dt

)
,

where δ(·) denotes Dirac’s delta. Then,

θ ′ =
[
θ

(t−1)
1 , . . . , θ

(t−1)
dt−1 , θ

′
dt
, θ

(t−1)
dt+1 , . . . , θ

(t−1)
Dθ

]
with

θ ′
dt

∼ π
(
θdt |θ

(t−1)
¬dt

)
, just like in the tth iteration of the

Gibbs sampler of Algorithm 4. Now, we just need to prove

that θ ′ is always accepted, as it happens in the Gibbs

sampler. Noting that π(θ) = π(θdt |θ¬dt )π(θ¬dt ) by the

chain rule of probability, the ratio inside the acceptance

probability (αt) of the MH algorithm becomes:

π(θ ′)q
(
θ (t−1)|θ ′

)

π
(
θ (t−1)

)
q
(
θ ′|θ (t−1)

)

=
π
(
θ ′
d|θ

(t−1)
¬dt

)
π
(
θ

(t−1)
¬dt

)
π
(
θ

(t−1)
d |θ (t−1)

¬dt

)

π
(
θ

(t−1)
d |θ (t−1)

¬dt

)
π
(
θ

(t−1)
¬dt

)
π
(
θ ′
d|θ

(t−1)
¬dt

) = 1.

Hence, the proposed sample (drawn from the dtth full

conditional PDF) is always accepted and only the dtth

coordinate is updated at the tth iteration, just like in the

Gibbs sampler.

Note that we still have to specify how to select the

coordinates to be sampled. In general it may be difficult

to determine the best type of scan for a Gibbs sampler,

as shown by Roberts and Rosenthal in [166], and many

alternative approaches can be devised. However, the three

most widely used schemes are the following [104]:

• Systematic scan: The parameters are updated

according to some pre-specified “canonical” order.

Without loss of generality, let us consider that this

order is simply θ1, θ2, . . . , θDθ
. Then, we have the
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Algorithm 4 Generic Gibbs sampler.

1 Initialization: Choose an initial state θ (0), the total

number of iterations (T), and the burn-in period (Tb).

2 FOR t = 1, . . . ,T :

(a) Select the coordinate to be sampled,

dt ∈ {1, . . . ,Dθ }, using some of the approaches

described below.

(b) Draw θ
(t)
dt

∼ π̄(θdt |θ
(t−1)
¬dt

), with

θ
(t−1)
¬dt

=[ θ
(t−1)
1 , . . . , θ

(t−1)
dt−1 , θ

(t−1)
dt+1 , . . . , θ

(t−1)
Dθ

]⊤.

3 Approximate the integral in Eq. (2) using Eq. (14).

following sequence of coordinates to be updated:

d1 = 1, d2 = 2, . . . , dDθ
= Dθ , dDθ+1 = 1, dDθ+2 =

2, . . . , d2Dθ
= Dθ , d2Dθ+1 = 1, . . . This can be

expressed more compactly as dt = ((t − 1))Dθ
+ 1,

where ((t))Dθ
denotes the modulo operation:

((t))Dθ
= m ⇐⇒ t = kDθ + m for some k,m ∈ Z

withm ∈ {0, 1, . . . ,Dθ − 1} and −∞ < k < ∞. In

this particular case, the Gibbs sampler in Algorithm 4

can be expressed using a double FOR loop, with the

inner loop running sequentially over the different

parameters, as shown in Algorithm 5. In this

systematic scan Gibbs sampler, which is probably the

most widely used version of the algorithm in signal

processing applications, one iteration of the Gibbs

sampler corresponds to one step of the outer loop.

Note that the total number of samples drawn from

the full conditional PDFs in Algorithm 5 is TDθ ,

whereas in Algorithm 4 only T samples were drawn.

Finally, note that the Markov chain induced by the

systematic scan Gibbs sampler is non-reversible [104].
• Symmetric scan: The coordinates are also explored

following a pre-specified deterministic order [104]:

first in an ascending order and then in a descending

order, and this scheme is repeated periodically, i.e.,

d1 = 1, d2 = 2, . . . , dDθ
= Dθ , dDθ+1 =

Dθ − 1, dDθ+2 = Dθ − 2, . . . , d2Dθ−1 = 1, d2Dθ
=

1, d2Dθ+1 = 2, . . . Using the modulo notation,

dt = min{((t − 1))2Dθ−2, ((−t))2Dθ−2}16. Unlike the
systematic scan, the symmetric scan leads to a

reversible Markov chain and can also result in an

improved performance. The symmetric Gibbs

sampler can also be expressed using a double FOR

loop, as shown in Algorithm 6, with one iteration of

16Note that the modulo notation is very convenient, since it leads to a
straightforward computation of the sequence of indexes. For instance, in
MATLAB the sequence of indexes for the systematic scan Gibbs sampler is
obtained as dt = mod(t-1,Dpar), whereas for the symmetric scan it is
given by dt = min(mod(t-1,2*Dpar-2),mod(-t,2*Dpar-2)),
with Dpar indicating the dimension of the parameter space. Moreover, since
these sequences are deterministic, they can be easily pre-computed and stored
for further use when T is fixed a priori.

the Gibbs sampler corresponding to one step of the

outer loop. Now, the total number of samples drawn

from the full conditional PDFs is T(2Dθ − 1).
• Random scan: This method was proposed originally

by Liu et al. [167]. In this case, the parameter to be

updated is selected randomly at each iteration,

typically following a uniform distribution, i.e.,

dt ∼ U({1, 2, . . . ,Dθ }). This scheme also produces a

reversible Markov chain and can lead to an improved

performance w.r.t. the symmetric scan Gibbs

sampler17.

Algorithm 5 Systematic scan Gibbs sampler.

1 Initialization: Choose an initial state θ (0), the total

number of iterations (T), and the burn-in period (Tb).

2 FOR t = 1, . . . ,T :

(a) Draw θ
(t)
1 ∼ π̄(θ1|θ (t−1)

2:Dθ
).

(b) FOR d = 2, . . . ,Dθ − 1:

• Draw θ
(t)
d ∼ π̄(θd|θ (t)

1:d−1, θ
(t−1)
d+1:Dθ

).

(c) Draw θ
(t)
Dθ

∼ π̄(θDθ
|θ (t)

1:Dθ−1).

3 Approximate the integral in Eq. (2) using Eq. (14).

Algorithm 6 Symmetric scan Gibbs sampler.

1 Initialization: Choose an initial state θ (0), the total

number of iterations (T), and the burn-in period (Tb).

2 FOR t = 1, . . . ,T :

(a) Draw θ ′
1 ∼ π̄(θ1|θ (t−1)

2:Dθ
).

(b) FOR d = 2, . . . ,Dθ − 1:

• Draw θ ′
d ∼ π̄(θd|θ ′

1:d−1, θ
(t−1)
d+1:Dθ

).

(c) Draw θ
(t)
Dθ

∼ π̄(θDθ
|θ ′

1:Dθ−1).

(d) FOR d = Dθ − 1, . . . , 2:

• Draw θ
(t)
d ∼ π̄(θd|θ ′

1:d−1, θ
(t)
d+1:Dθ

).

(e) Draw θ
(t)
1 ∼ π̄(θ1|θ (t)

2:Dθ
).

3 Approximate the integral in Eq. (2) using Eq. (14).

Note that only the samples corresponding to the outer

loops in Algorithms 5 and 6 (i.e., θ (t) =[ θ
(t)
1 , . . . , θ

(t)
Dθ
]⊤)

17Note that the sequence of indexes for the random scan Gibbs sampler can
also be pre-computed when T is fixed a priori. In this case, this sequence is
obtained by the following Matlab command: dt = randi(Dpar,1,T),
with Dpar indicating again the dimension of the parameter space.
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are typically used to compute the approximate estimator

of Eq. (14). This entails an inefficient use of the generated

samples w.r.t. the generic Gibbs sampler of Algorithm 4,

which uses all the drawn samples to compute the approx-

imate estimator of Eq. (14). However, “nothing prevents

the use of all the simulations [samples] in integral approx-

imations”, as stated by Robert and Casella [104]. Indeed, it

has been shown very recently that using all the interme-

diate samples, both in the Gibbs and MH-within-Gibbs

(see Section 3.1.4) samplers, can result in a substantial

improvement in performance in some cases [168].

Regarding the convergence of the Gibbs sampler,

[48, 169] provide regularity conditions under which the

Gibbs sampler is ergodic and the distribution of θ (t) con-

verges to the target distribution as t → ∞, whereas [52]

provides a simple convergence proof. In short, the con-

vergence of the Gibbs sampler essentially requires that all

the coordinates keep being updated as the algorithm pro-

ceeds, implying that every coordinate is visited infinitely

often as t → ∞.

Finally, note that there is no need to sample each of

the Dθ parameters individually. Indeed, if a certain sub-

set of parameters can be easily sampled jointly given the

rest, then we can group them together inside the loop

of Algorithm 4 (and also in Algorithms 5 and 6). Let

us assume that the Dθ parameters in θ =[ θ1, . . . , θDθ
]⊤

can be grouped into Ng disjoint groups in such a way

that ϑ =[ϑ1, . . . ,ϑNg ]
⊤ contains all the parameters to be

inferred. Then, Algorithm 4 can be applied on ϑ instead

of θ , drawing ϑ
(t)
dt

∼ π̄(ϑdt |ϑ
(t−1)
¬dt

). This algorithm is

known as the group or block Gibbs sampler. Alternatively,

if a subset of parameters can be easily sampled given the

rest, we can remove them from the loop of the Gibbs

sampler. Without loss of generality, let us assume that

we keep the first D̃θ parameters and leave the remaining

parameters outside of the iterations of the Gibbs sam-

pler, i.e., we only draw samples from the reduced set of

parameters θ̃ =[ θ1, . . . , θD̃θ
]⊤. Then, Algorithm 4 can be

applied on θ̃ instead of θ , drawing θ
(t)
dt

∼ π̄(θdt |̃θ
(t−1)
¬dt

)

with dt ∈ {1, . . . , D̃θ }. When the chain has converged,

then we can easily sample from the remaining parameters

given the samples from the first D̃θ parameters obtained

using the Gibbs sampler. This algorithm is known as the

collapsed Gibbs sampler. Although the addition of auxil-

iary variables can speed up the convergence of the Gibbs

sampler in some cases (e.g., see the data augmentation

algorithm in Section 3.1.5), in general grouping or col-

lapsing down variables leads to improved convergence and

decreased sample autocovariances, as shown by Liu in

[170]. However, let us remark that Liu’s proof is highly

restrictive and in some cases the uncollapsed sampler can

actually converge faster than the collapsed one (e.g., see

the counterexample in Appendix A of Terenin et al. [171]).

Finally, note also that finding the optimal variables to

group or collapse in order to achieve the optimal perfor-

mance depends on the problem and can be a very difficult

task.

The Gibbs sampler is a fundamental algorithm for

parameter estimation in many signal processing and

machine learning problems. Indeed, it may be the only

choice for some models, because it is well-defined even

on discrete state spaces where gradients are not avail-

able and good Metropolis-Hastings proposals are difficult

to construct. Therefore, it has been extensively used in

practical applications either as a stand-alone method or

combined with the MH algorithm as described in the

following section.

3.1.4 MH-within-Gibbs

The Gibbs sampler requires sampling from the full uni-

variate conditional PDFs. Unfortunately, although this

should be a much easier task than sampling from the

multi-variate posterior PDF, in many real-world applica-

tions these conditional PDFs have non-standard forms

and we cannot sample directly from them. Initially, some

authors tackled this problem by using the RS algorithm

(e.g., see [172]), and the adaptive RS (ARS) algorithm

was specifically designed for this task [141]. However, as

already mentioned before, both the RS and ARS algo-

rithms require finding a bounding constant C such that

Cq(θ) ≥ π(θ), a task that may be difficult for compli-

cated targets and lead to very inefficient sampling if C is

large. In this section, we briefly discuss a widely used tech-

nique developed to address this problem, the MH-within-

Gibbs algorithm (often also called Component-wise MH

method), as well as two related methods: the griddy Gibbs

sampler and the fast universal self-tuned sampler (FUSS).

In order to sample from non-standard full conditional

PDFs, Ritter and Tanner proposed the so called griddy

Gibbs sampler [173, 174]. Their basic idea was using a

set of evaluations from the desired full conditional PDF

to build a piecewise approximation from which sampling

is straightforward. The tth iteration of the griddy Gibbs

sampler for the dth coordinate (1 ≤ d ≤ Dθ ) proceeds as

follows:

1. Evaluate the target at some pre-specified set of

parameters, S
(t)
d = {θ (t)

d,1, . . . , θ
(t)
d,K }, obtaining

P
(t)
d,1 = π

(
θ

(t)
d,1|θ

(t−1)
¬d

)
, . . . ,P

(t)
d,K = π

(
θ

(t)
d,K |θ (t−1)

¬d

)
.

2. Construct an approximate inverse cumulative

distribution function (CDF) of the target,

�̂−1
(
θd|θ (t−1)

¬d ,S
(t)
d

)
, using P

(t)
d,1, . . . ,P

(t)
d,K and a

piecewise constant (PWC) or piecewise linear (PWL)

approximation.
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3 Draw u ∼ U([ 0, 1)) and apply the inverse method
[119] to obtain a sample drawn approximately from

the target as θ
(t)
d = �̂−1(u|θ (t−1)

¬d ,S
(t)
d ).

The griddy Gibbs sampler can be easily implemented for

univariate full conditional PDFs, and its performance can

be improved by using an adaptive grid and allowing the

grid to grow if necessary (using the so called grid grower),

as described in [173, 174]. However, the samples obtained

are only approximately distributed according to the tar-

get, and building an effective approximation of the inverse

CDF in the multi-variate case (e.g., for its use within the

block Gibbs sampler) is a challenging task. The first issue

can be addressed by using the Gibbs stopper [174], where

an IS weight is assigned to the drawn samples in order to

ensure that they come exactly from the target PDF, but the

second one is much more difficult to solve.

In order to sample virtually from any full conditional

PDF, the MH algorithm can be used within the Gibbs

sampler. This results in a hybrid sampler [104], where

an internal Monte Carlo method (the MH algorithm) is

used within another external Monte Carlo technique (the

Gibbs sampler). Apparently, Geweke and Tanizaki were

the first ones to suggest using the MH algorithm within

the Gibbs sampler in order to provide a general solution

to nonlinear and/or non-Gaussian state space modeling in

a Bayesian framework [175, 176]. The MH-within-Gibbs

sampler is detailed in Algorithm 7. Note that TMH iter-

ations of the internal MH algorithm are performed per

iteration of the external Gibbs sampler and only the last

sample drawn from the MH algorithm is typically used

for the integral approximation in Eq. (14). Furthermore,

usually TMH = 1 for the sake of efficiency, but several

authors have shown that this is often not the best alter-

native from the point of view of reducing the variance of

the desired estimators for a given computational budget

[177]. Note also that the internal MH algorithm should be

used to sample only those parameters that cannot be sam-

pled directly (Algorithm 7 assumes that all the parameters

require it), and that it can also be easily applied within

the block and collapsed Gibbs samplers. Finally, note that

Neal and Roberts have shown that the optimal scaling rate

for the MH algorithm (which leads to an average accep-

tance rate of 0.234) also holds for the MH-within-Gibbs

sampler regardless of the dimensionality of the update

rule [178].

Noting that the piecewise proposal built by the griddy

Gibbs sampler could be used to construct very good pro-

posals for the MH-within-Gibbs sampler, Martino et al.

recently proposed the fast universal self-tuned sampler

(FUSS) within Gibbs algorithm [179]. Essentially, the idea

is starting with a very dense grid that roughly covers the

whole effective support of the corresponding full condi-

tional PDF and then applying a pruning strategy in order

Algorithm 7MH-within-Gibbs algorithm.

1 Initialization: Choose a set of proposal PDFs,

{q̄(θd|θ (t−1)
d , θ¬d)}Dθ

d=1, an initial state θ (0), the total

number of iterations (T), the number of iterations of

the internal MH algorithm (TMH ), and the burn-in

period (Tb).

2 FOR t = 1, . . . ,T :

(a) Select the coordinate to be sampled,

dt ∈ {1, . . . ,Dθ }, and set θ̃
(0)
dt

= θ
(t−1)
dt

.

(b) FOR t′ = 1, . . . ,TMH :

i. Draw θ ′
dt

∼ q̄(θdt |θ̃
(t′−1)
dt

, θ
(t−1)
¬dt

) and

u ∼ U([ 0, 1)).

ii. Compute the acceptance probability

(αt):

α(θ ′ , θ
(t−1)
¬dt

, θ̃
(t′−1)
dt

) = min

⎡
⎣1,

π(θ ′
dt

|θ (t−1)
¬dt

)q(θ̃
(t′−1)
dt

|θ ′
dt
, θ

(t−1)
¬dt

)

π(θ̃
(t′−1)
dt

|θ (t−1)
¬dt

)q(θ ′
dt

|θ̃ (t′−1)
dt

, θ
(t−1)
¬dt

)

⎤
⎦

iii. If u ≤ αt , accept θ ′
dt
and set θ̃

(t′)
dt

= θ ′
dt
.

Otherwise (i.e., if u > αt), reject θ ′
dt
and

set θ̃
(t′)
dt

= θ̃
(t′−1)
dt

.

(c) Set θ
(t)
dt

= θ̃
(TMH )

dt
.

3 Approximate the integral in Eq. (2) using Eq. (14).

to obtain a sparse grid that contains most of the probabil-

ity mass of the conditional PDF. The steps performed by

the FUSS algorithm, at the tth step of the Gibbs sampler

for the dth parameter, are the following:

1. Initialization: Choose a large set of support points,

S̃
(t)
d = {θ (t)

d,1, . . . , θ
(t)
d,L}, that densely cover the whole

effective support of the target.

2. Pruning: Remove support points according to a

pre-specified and efficient criterion, attaining a final

sparse set of support points, S
(t)
d = {θ (t)

d,1, . . . , θ
(t)
d,K }

with K ≪ L.

3. Construction: Build a proposal function

q(θd|θ (t−1)
¬d ,S

(t)
d ) using some appropriate pre-defined

mechanism, typically a PWC or PWL approach.

4. MH steps: Perform TMH steps of the internal MH

algorithm, as in Algorithm 7, using q(θd|θ (t−1)
¬d ,S

(t)
d )

as the proposal PDF.

Since the FUSS algorithm builds a proposal tailored to

the target, the acceptance rate of the internal MH algo-

rithm is usually very high and the correlation among

the drawn samples very small. This leads to estimators

with a reduced variance, especially for very peaky propos-

als, where other Monte Carlo methods fail (see [179] for
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further details). Finally, note that it is again possible to

employ all the TMH samples generated by the internal MH

algorithm in the final estimators, as shown in [168].

3.1.5 Other classical MCMC techniques

In this section, we describe other classical approaches for

sampling from non-standard multi-variate densities: data

augmentation, slice sampling, the hit-and-run algorithm,

and adaptive direction sampling. We also discuss briefly

the issue of thinning or subsampling the Markov chain,

which is often used in signal processing applications to

reduce the computational cost and the correlation among

the generated samples.

Data augmentation (DA) The data augmentation

method was originally devised by Tanner and Wong in

order to compute posterior distributions for Bayesian

inference [180]. The basic idea of data augmentation (DA)

is the same one that underlies the well-known and widely

used expectation-maximization (E-M) algorithm [181]:

in many practical problems, augmenting the observed

dataset (y) with a set of latent data (z) leads to an eas-

ier analysis of the problem. In the Bayesian inference

case, the DA algorithm is based on the assumption that

π(θ |y, z) is straightforward to analyze, whereas π(θ |y)
is intractable. Another important assumption regards

the generation of the latent data (z): they should be easy

to draw given the parameters and the observed data.

Under these two assumptions, drawing samples from

the desired target can be easily accomplished following

the iterative approach shown in Algorithm 8. Note that

the DA procedure shown in Algorithm 8 is equivalent

to the application of the Gibbs sampler of Algorithm 4

on the augmented parameter vector θa =[ θ , z1, . . . , zK ]

[170]18. Note also that data augmentation is the opposite

of integrating out parameters from a model in closed

form, as done in the collapsed Gibbs sampler described

in Section 3.1.3. Finally, let us remark that, just like it

happens with the collapsed Gibbs sampler (cf. the pre-

viously mentioned discussion of Liu et al. in Section

3.1.3), DA can either increase or reduce the mixing

efficiency.

Slice sampling Several Monte Carlo techniques, like

directmethods (e.g., the inverse-of-densitymethod) [119],

the rejection sampler (see Section 2.2), and some MCMC

algorithms (e.g., the so-called slice sampler) rely on a

simple result, known as the fundamental theorem of simu-

lation.

18In fact, Algorithm 8 corresponds to the block Gibbs sampler with K + 1
groups: ϑ1 = θ , ϑ2 = z1 , . . . , ϑK+1 = zK . However, it can be easily converted
into a component-wise Gibbs algorithm (with KDy + Dθ components) by
decomposing steps 2(a) and 2(b) into Dθ and KDy draws from the
corresponding univariate full conditional PDFs, respectively.

Algorithm 8 Basic Data Augmentation (DA) algorithm.

1 Initialization: Select the number of latent data

generated per iteration (K ), the total number of

iterations (T) and the burn-in period (Tb). Obtain an

initial set of latent data (z
(0)
1 , . . . , z

(0)
K ) and construct an

initial approximation of the target,

π̂ (0)(θ |y, z(0)
1 , . . . , z

(0)
K ) = 1

K

∑K
k=1 π(θ |y, z(0)

k ).

2 FOR t = 1, . . . ,T :

(a) Draw θ (t) ∼ π̂ (t−1)(θ |y, z(0)
1 , . . . , z

(0)
K ).

(b) Draw z
(t)
k ∼ p(z|θ (t), y) for k = 1, . . . ,K .

(c) Update the approximation of the target:

π̂ (t)(θ |y, z(0)
1 , . . . , z

(0)
K ) = 1

K

K∑

k=1

π(θ |y, z(t)
k ).

(23)

3 Approximate the integral in Eq. (2) using Eq. (14).

Theorem 1 Drawing samples from a random variable

θ with density π̄(θ) ∝ π(θ) is equivalent to sampling

uniformly on the region defined by

Aπ = {(θ , z) ∈ R
2 : 0 ≤ z ≤ π(θ)}. (24)

Namely, considering a realization (θ ′, z′), if it is distributed
uniformly onAπ , then θ ′ is a sample from π̄(θ) [104, 119].

Therefore, if we are able to draw a vector (θ ′, z′) uni-

formly onAπ (i.e., the area below the unnormalized target

function π(θ)), then the coordinate θ ′ is marginally dis-

tributed according to π̄(θ). The variable z plays the role of

an auxiliary variable which is introduced in order to ease

the sampling procedure, just like the latent data in the data

augmentation algorithm.

The slice sampler is precisely a Gibbs sampling method

that can be applied for drawing samples uniformly from

Aπ . Let us define the set

O(z) = {all θ ∈ R
Dθ such that π(θ) ≥ z}. (25)

The slice sampler is given in Algorithm 9.

Algorithm 9 The slice sampler.

1 Initialization: Choose an initial state θ (0), the total

number of iterations (T), and the burn-in period (Tb).

2 FOR t = 1, . . . ,T :

(a) Draw z(t) uniformly in the interval

[ 0,π(θ (t−1))] ,

(b) Draw θ (t) uniformly in the setO(z(t)).

3 Approximate the integral in Eq. (2) using Eq. (14).
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The slice sampling algorithm generates a Markov chain

overAπ , producing samples uniformly distributed inAπ

after the burn-in period. However, performing step 2b is

often virtually impossible (even for unidimensional target

PDFs), since it requires the inversion of π(θ) in order to

determine the set O(z). The difficulty of this inversion is

due to the fact that π(θ) is usually a non-monotonic func-

tion, implying that the setO(z) is typically formed by the

union of disjoint sets which are difficult to determine. For-

tunately, several practical procedures have been suggested

for this purpose. See [182] for further information on this

issue.

Hit-and-run Another important class of methods that

can be used both for global optimization and Bayesian

inference are the so called hit-and-run algorithms, which

are a collection of efficient sampling techniques that use

random walks to explore the parameter space. Sampling

through random walks was independently proposed by

Boneh and Golan [183] and Smith [184, 185], and this

class of methods were later renamed as hit-and-run algo-

rithms [186]. The generic hit-and-run algorithm is shown

in Algorithm 10. The basic idea is determining a random

direction in the Dθ -dimensional parameter space using

the proposal q(θ) and then selecting a random point along

that direction with a probability proportional to the target

PDF evaluated along the chosen direction.

Algorithm 10 Hit-and-run algorithm.

1 Initialization: Choose a proposal function over the

unit hypersphere,

q(θ) 	= 0 ⇐⇒ θ ∈ B = {θ ∈ � ⊆ R
Dθ : ‖θ‖ = 1},

the initial state, θ (0), the total number of iterations (T)

and the burn-in period (Tb).

2 FOR t = 1, . . . ,T :

(a) Draw θ ′ ∼ q̄(θ).

(b) Find the set

�t = {λ ∈ R : θ (t−1) + λθ ′ ∈ � ⊆ R
Dθ }.

(c) Draw λt ∼ p(t)(λ) ∝ π(θ (t−1) + λθ ′) with

λ ∈ �t .

(d) Set θ (t) = θ (t−1) + λtθ
′.

3 Approximate the integral in Eq. (2) using Eq. (14).

Different hit-and-run algorithms are obtained depend-

ing on the proposal function q(θ). For instance, the orig-

inal hypersphere directions (HD) hit-and-run algorithm

considered a uniform proposal q(θ) and a uniform tar-

get on some bounded region � ⊂ R
Dθ [183–185],

whereas the coordinate directions (CD) hit-and-run ran-

domly chooses one of theDθ coordinates of the parameter

space [187]. Regarding the connections with other meth-

ods, the hit-and-run algorithm has similarities both with

the MH algorithm and the Gibbs sampler. On the one

hand, the hit-and-run algorithm resembles the random

walk MH algorithm, but the generated samples are always

accepted, since they are drawn from the target19. On the

other hand, the CD hit-and-run algorithm is equivalent

to the random scan Gibbs sampler. However, note that

the generic hit-and-run algorithm is more flexible than

the Gibbs sampler, since it can choose any arbitrary direc-

tion, not only one of the directions corresponding to the

different parameters.

Adaptive direction sampling (ADS) A third important

family of methods that attempt to improve the conver-

gence speed of the Gibbs sampler is adaptive direction

sampling (ADS) [189, 190]. The basic idea of ADS is main-

taining a set of support points that are constantly updated,

with the current support set being used to determine

the sampling direction. The general adaptive direction

sampler is shown in Algorithm 11.

Algorithm 11 Adaptive direction sampling (ADS).

1. Initialization: Choose an initial support set,

S(0) = {θ (0)
1 , . . . , θ

(0)
K } with K > Dθ , the total number

of iterations (T), and the burn-in period (Tb).

2. FOR t = 1, . . . ,T :

(a) Draw i ∼ U({1, . . . ,K}) and set θ (t)
c = θ

(t−1)
i .

(b) Select a second vector ϑ(t) according to some

pre-specified scheme, depending on the specific

ADS algorithm to be implemented (see below).

(c) Draw r′ ∼ p(r) ∝
π(θ (t)

c + r(ϑ(t) + λtθ
(t)
c )) × |1 + rλt|Dθ−1.

(d) Set θ
(t)
i = θ (t)

c + r′(ϑ(t) + λtθ
(t)
c ).

3. Approximate the integral in Eq. (2) using Eq. (14).

The procedure shown in Algorithm 11 is very gen-

eral and many different algorithms can be obtained by

considering different choices for ϑ(t) and λt [189]:

• Snooker algorithm: Important special case of the

general ADS algorithm obtained by setting

ϑ(t) = θ (t)
a ∼ U(S(t−1) \ {θ (t)

c }) and λt = −1. In this

specific algorithm, θ (t)
a sets the direction along which

θ (t)
c is moved in order to obtain the new sample.

• Parallel ADS: Obtained by setting ϑ(t) = θ (t)
a − θ

(t)
b ,

with θ (t)
a ∼ U(S(t−1) \ {θ (t)

c }) and

19Note that drawing samples directly from the target for an arbitrary direction
of the parameter space may be unfeasible in many problems. In these cases,
the Metropolised hit-and-run sampler proposed in [188] can be used.
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θ
(t)
b ∼ U(S(t−1) \ {θ (t)

a , θ (t)
c }), and λt = 0. In this case,

the direction for the movement of θ (t)
c is set by the

two auxiliary points drawn from S(t−1), θ (t)
a and θ

(t)
b .

• Hit-and-run: Obtained as a particular case of the

general ADS algorithm by setting λt = 0 and ϑ(t) to

some random direction uniformly selected in the

parameter space.
• Random scan Gibbs sampler: Obtained by setting

λt = 0 and ϑ(t) to be some randomly chosen

parameter out of the Dθ available, i.e.,

ϑ(t) =[ 0, . . . , 0, θ
(t)
d , 0, . . . , 0]).

Subsampling or thinning of Markov chains Finally, let

us briefly discuss the issue of thinning or subsampling a

Markov chain, which is often used to reduce the corre-

lation among the generated samples of MCMC methods

and also serves to decrease the computational/storage

burden. Thinning consists of discarding K−1 out of every

K outputs of the obtained Markov chain (i.e., downsam-

pling or decimating by a factor K in signal processing

terminology), thus resulting in the following estimator:

ÎMthin = 1

Mthin

Mthin−1∑

m=0

g(θ (Tb+1+mK)), (26)

with Mthin =
⌊
T−(Tb+1)

K

⌋
and ⌊·⌋ denoting the integer

part approximated from below. It is well-known that the

estimator in Eq. (26) has a larger variance than the estima-

tor of Eq. (14), see [191] for a formal proof for reversible

Markov chains or [192] for a simpler justification which

does not rely on reversibility. Hence, many authors have

warned practitioners against subsampling, which should

be used only when strictly required due to computa-

tion/storage constraints [193]. However, Owen has shown

very recently that thinning can actually be advantageous

in some cases [194]. Assuming that it costs one unit of

time to advance a Markov chain and �t > 0 units of time

to compute a sampled quantity of interest, he shows that

thinning will improve the statistical efficiency (as quan-

tified by the variance of the resulting estimator) when

�t is large and the autocorrelations decay slowly enough.

Hence, even when practical restrictions do not apply, sig-

nal processing practitioners should check the correlation

structure of their problems in order to determine whether

thinning can be advantageous or not, and which is the

optimal thinning factor (see [194] for further details).

3.2 Adaptive MCMC

The MH algorithm produces samples distributed accord-

ing to any desired target distribution after the burn-in

period by using an arbitrary proposal density that ful-

fills some mild regularity conditions. However, the choice

of the proposal PDF is crucial for the practical opera-

tion of the algorithm. In order to sample from a given

target distribution efficiently, we must carefully choose

the proposal distribution in such a way that we obtain

independent-enough samples with a high-enough rate so

that we achieve a good approximation of the distribution

in a reasonable time (e.g., in minutes or hours instead

of hundreds of years). The manual tuning of the pro-

posal distribution can be a tedious task. For that reason,

researchers have developed adaptive MCMC methods

(e.g., see [195]), which aim at tuning the algorithm’s per-

formance automatically, typically by adapting the proposal

distribution based on the already seen samples. In the

following, we review some of the most relevant adaptive

MCMC approaches.

3.2.1 Parametric approaches

The history of adaptive MCMC methods can probably

be considered to start with the adaptive Metropolis (AM)

algorithm [196], where the idea is to adapt the covariance

of a random-walk Metropolis algorithm using previous

samples drawn by the same algorithm. Let us recall that

the random-walk MH algorithm typically uses a Gaussian

proposal PDF of the form

q(θ |θ (t−1)) = N (θ |θ (t−1),C), (27)

where C is some suitable covariance matrix. The tuning

of this algorithm is then reduced to the selection of the

covariance matrix C.

One way to approach the tuning problem is to con-

sider an idealized case where we actually know the true

covariance � of the target distribution. It turns out that

the optimal covariance matrix is C∗ = λ� under certain

idealized conditions. Furthermore, in the Gaussian case,

we can compute the optimal λ∗ = 2.382/Dθ [197]. This

result can now be used to adapt the proposal’s covari-

ance by replacing the target distribution covariance with

its empirical counterpart.

The adaptive Metropolis (AM) [196] uses an adapta-

tion rule where the covariance of the target distribution is

estimated via

�t = Cov[ θ (0), . . . , θ (t−1), θ (t)]+ǫI, (28)

where ǫ is a small positive constant which is used to ensure

that �t is not ill-conditioned. In practice, this amounts

to adding an extra step to the MH Algorithm 3, just after

the acceptance step, to update the current estimate of the

covariance. Furthermore, the adaptation rule can be easily

implemented recursively [198]. Numerous modifications

and improvements to this rule have been proposed. For

example, Gaussian mixture approximations are consid-

ered in [199, 200], the combination with early rejection

is proposed in [198], and adaptive Kalman filter based

covariance estimation is considered in [201].
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Because the identity for the optimal λ∗ only applies to

Gaussian target PDFs, it is often also desirable to adapt

the λ-parameter as well [195, 202–204]. In this case, the

optimization criterion consists typically in trying to reach

“an optimal” acceptance rate of α∗ = 0.234. Note that this

optimal acceptance rate also corresponds to certain ideal-

ized conditions, but still provides a good rule of thumb. A

typical rule for the adaptation then has the form

log λt = log λt−1 + γt (αt − ᾱ), (29)

where γt is a suitable gain sequence, αt is the accep-

tance probability at the current step, and ᾱ is the target

acceptance rate (e.g., ᾱ = α∗).
The general AM algorithm, including both covariance

and acceptance rate adaptation, is shown in Algorithm 12.

Comparing Algorithms 3 and 12, we note that the dif-

ference simply lies in the introduction of two additional

steps (steps 2(d) and 2(e)), where the empirical covariance

matrix �t and the scale factor λt are computed. However,

these two simple steps can lead to a substantially improved

proposal w.r.t. the initial one and thus to a much better

performance of the resulting MH algorithm.

Algorithm 12 General Adaptive Metropolis (AM) Algo-

rithm.
1. Initialization: Choose an initial covariance �0, an

initial adaptation parameter λ0, a target acceptance

rate ᾱ, an initial state θ (0), the total number of

iterations (T) and the burn-in period (Tb).

2. FOR t = 1, . . . ,T :

(a) Set Ct = λt−1�t−1. Draw θ ′ ∼ N (θ (t−1),Ct)

and u ∼ U([ 0, 1)).

(b) Compute the acceptance probability:

αt ≡ α(θ ′, θ (t−1)) = min

[
1,

π(θ ′)

π(θ (t−1))

]
.

(30)

(c) If u ≤ αt , accept θ ′ and set θ (t) = θ ′. Otherwise

(i.e., if u > αt), reject θ ′ and set θ (t) = θ (t−1).

(d) Obtain a new estimate of the target’s covariance

�t , e.g., by using the estimator of Eq. (28).

(e) Compute a new λt , e.g., by applying the rule of

Eq. (29).

3. Approximate the integral in Eq. (2) using Eq. (14).

3.2.2 Non-parametric approaches

Designing parametric adaptive MCMC approaches that

attain a good performance directly in high-dimensional

parameter spaces can be a very challenging task. For this

reason, some authors have concentrated on developing

very efficient non-parametric adaptive MH algorithms

in low-dimensional parameter spaces (typically one-

dimensional spaces). These adaptive schemes can then be

used within the Gibbs sampler (see Section 3.1.3) in order

to perform estimations in higher dimensional spaces. In

this section, we review the most widely known approach,

Adaptive Rejection Metropolis Sampling (ARMS), as well

as some very recent extensions.

Adaptive rejection Metropolis sampling (ARMS) The

adaptive rejection Metropolis sampling (ARMS) tech-

nique combines the ARS method and the MH algorithm

in order to sample virtually from any univariate PDF

[205]. ARMS is summarized in Algorithm 13 for a one-

dimensional parameter θ . For multi-dimensional parame-

ter spaces, ARMS can simply be embedded within a Gibbs

sampler in a similar way as done in the MH-within-Gibbs

algorithm (see Algorithm 7). Essentially, ARMS performs

first an RS test, and the rejected samples are used to

improve the proposal PDF with the aim of constructing

a proposal that becomes closer and closer to the target.

Then, the accepted samples from the RS test go through

an MH test, where they can still be rejected. This MH

step removes the main limitation of rejection sampling

approaches: requiring that Cqt(θ) ≥ π(θ) for some con-

stant C and all the possible values of θ ∈ �. This allows

ARMS to generate samples from a wide variety of target

densities, becoming virtually a universal sampler from a

theoretical point of view.

The mechanism used to construct the proposal is crit-

ical for the good performance of ARMS [205]. Let us

consider the set of support points at the mth iteration of

the algorithm, S(m) = {θ (m)
1 , θ

(m)
2 , . . . , θ

(m)
Km

}, and define

the intervals I
(m)
0 = (−∞, θ

(m)
1 ], I

(m)
j = (θ

(m)
j , θ

(m)
j+1 ]

for j = 1, ...,Km − 1, and I
(m)
Km

= (θ
(m)
Km

,+∞). More-

over, let us denote as L
(m)
j,j+1(θ) the line passing through

(θ
(m)
j ,V (θ

(m)
j )) and (θ

(m)
j+1 ,V (θ

(m)
j+1 )), with V = log(π(θ))

and j = 1, ...,Km − 1. Then, a PWL potential function

Wm(x) is constructed in ARMS as

Wm(θ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L
(m)
1,2 (θ), θ ∈ I

(m)
0 ,

max
{
L

(m)
1,2 (θ), L

(m)
2,3 (θ)

}
, θ ∈ I

(m)
1 ,

ϕ
(m)
j (θ), θ ∈ I j,

max
{
L

(m)
Km−2,Km−1(θ), L

(m)
Km−1,Km

(θ)
}
, θ ∈ I

(m)
Km−1,

L
(m)
Km−1,Km

(θ), θ ∈ I
(m)
Km

,

(32)

where

ϕ
(m)
j (θ) = max

{
L

(m)
j,j+1(θ), min

{
L

(m)
j−1,j(θ), L

(m)
j+1,j+2(θ)

}}
,

and j = 2, . . . ,Km − 1. Hence, the proposal PDF, qm(θ) ∝
exp(Wm(θ)), is formed by exponential pieces. However,
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Algorithm 13 Adaptive Rejection Metropolis Sampling

(ARMS).

1. Initialization: Set t = 0 (chain’s iteration) andm = 0

(algorithm’s iteration). Choose an initial state (θ (0)), an

initial number of support points (K0), an initial support

set S(0) = {θ (0)
1 , . . . , θ

(0)
K0

}, the total number of

iterations (T) and the burn-in period (Tb).

2. WHILE t ≤ T :

(a) Build a proposal function, qm(θ), given a set of

support points S(m) = {θ (m)
1 , θ

(m)
2 , . . . , θ

(m)
Km

},
according to Eq. (32).

(b) Draw θ ′ ∼ q̄m(θ) and u ∼ U([ 0, 1)).

(c) If u >
π(θ ′)
qm(θ ′) , then reject θ ′, update

S(m+1) = S(m) ∪ {θ ′}, Km+1 = Km + 1, and set

m = m + 1. Go back to step 2(a).

(d) Otherwise (i.e., if u ≤ π(θ ′)/qm(θ ′)), draw
u′ ∼ U([ 0, 1)) and compute the acceptance

probability:

αt ≡ α(θ ′ , θ (t−1)) = min

[
1,

π(θ ′)min{π(θ (t−1)), qm(θ (t−1))}
π(θ (t−1))min{π(θ ′), qm(θ ′)}

]
.

(31)

(e) If u′ ≤ αt , accept θ ′ and set θ (t) = θ ′. Otherwise

(i.e., if u′ > αt), reject θ ′ and set θ (t) = θ (t−1).

(f) Set S(m+1) = S(m), Km+1 = Km,m = m + 1,

t = t + 1 and return to step 2(a).

3. Approximate the integral in Eq. (2) using Eq. (14).

note that the number of linear pieces that form the pro-

posal with this construction is larger than Km in general,

since the proposal can be formed by two segments rather

than one in some intervals. Hence, the computation of

intersection points among these two segments is also

required to implement the algorithm. More sophisticated

approaches to build Wm(θ) (e.g., using quadratic seg-

ments when possible [206]) have been proposed, but none

of them solves the structural problem of ARMS that is

briefly described next.

Independent doubly adaptive rejection Metropo-

lis sampling (IA2RMS) Unfortunately, ARMS cannot

always guarantee the convergence of the sequence of

proposals to the target, since the proposal PDF is only

updated when a sample θ ′ is rejected by the RS test, some-

thing that can only happen when qm(θ ′) > π(θ ′). When a

sample is initially accepted by the RS test, as it always hap-

pens when qm(θ ′) > π(θ ′), the proposal is never updated.
Thus, the satisfactory performance of ARMS depends on

two issues:

1 Wm(θ) should be constructed in such a way that

Wm(θ) ≥ V (θ) almost everywhere (a.e.), i.e.,

qm(θ) ≥ π(θ) a.e., so that support points can be

added a.e.

2 The addition of a support point inside an interval

must entail a change of the proposal PDF inside

other neighbor intervals when buildingWm+1(θ).

This allows the proposal to improve inside regions

where qm(θ) < π(θ).

These two conditions can be relaxed by allowing support

points to be added inside regions where qm(θ) < π(θ) in

a controlled way. The independent doubly adaptive rejec-

tion Metropolis sampling (IA2RMS) algorithm achieves

this task by introducing a second control test that allows

rejected samples from the MH stage to be incorporated

to the support set with a certain non-null probability

[177, 207]. The IA2RMS algorithm is shown in Algo-

rithm 14. Note that the only difference w.r.t. ARMS lies in

step 2(f ). However, this crucial step allows samples to be

added to the support set everywhere regardless of whether

the proposal is below or above the target, and guarantees

that qm(θ) → π(θ) as t → ∞. Moreover, this allows

IA2RMS to effectively decouple the proposal construction

from the algorithm’s evolution, thus allowing the use of

simpler proposals than the one used in ARMS (see [177]

for further details).

Finally, let us remark that the mechanism used to

accept/reject samples and to build the support set can be

generalized further, as shown in [208], where the adaptive

procedure is also extended to the framework of multiple-

try Metropolis (MTM) algorithms (see Section 5.1.1).

3.2.3 Convergence of adaptiveMCMC algorithms

Note that, since the adaptation can depend on all past

samples in adaptive MCMC algorithms, the Markovian

nature of classical MCMC methods is lost. Therefore,

ensuring the convergence of these techniques is much

more complicated, as it cannot rely on standard tools

and usually it has to be analyzed on a case by case

basis depending on the method. Furthermore, note that

adaptive MCMC methods do not always converge, even

if the adaptation itself converges. A cautionary example

about this issue is provided by Roberts and Rosenthal in

[209]. For these reasons, it is advisable either to follow a

finite adaptation policy (i.e., adapting only during a finite

number of initial iterations) or to adapt increasingly less

often20. Indeed, Chimisov et al. [210] have recently ana-

lyzed this second scenario, showing that a central limit

theorem can be proven for such chains.

20In some methods, the adaptation rate is automatically controlled by the
algorithm. For instance, this happens in the parametric methods (ARMS,

IA2RMS and its variants) described in Section 3.2.2: as new samples are
incorporated to the support set, the probability of adding new samples to this
set decreases and so the adaptation is performed more and more rarely.
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Algorithm 14 Independent Doubly Adaptive Rejection

Metropolis Sampling (IA2RMS).

1 Initialization: Set t = 0 (chain’s iteration) andm = 0

(algorithm’s iteration). Choose an initial state (θ (0)), an

initial number of support points (K0), an initial support

set S(0) = {θ (0)
1 , . . . , θ

(0)
K0

}, the total number of

iterations (T) and the burn-in period (Tb).

2 WHILE t ≤ T :

(a) Build a proposal function, qm(θ), given a set of

support points S(m) = {θ (m)
1 , θ

(m)
2 , . . . , θ

(m)
Km

},
using some simple non-parametric approach

(see [177] for several possibilities).

(b) Draw θ ′ ∼ q̄m(θ) and u ∼ U([ 0, 1)).

(c) If u >
π(θ ′)
qm(θ ′) , then reject θ ′, update

S(m+1) = S(m) ∪ {θ ′}, Km+1 = Km + 1, and set

m = m + 1. Go back to step 2(a).

(d) Otherwise (i.e., if u ≤ π(θ ′)/qm(θ ′)), draw
u′ ∼ U([ 0, 1)) and compute the acceptance

probability:

αt ≡ α(θ ′ , θ (t−1)) = min

[
1,

π(θ ′)min{π(θ (t−1)), qm(θ (t−1))}
π(θ (t−1))min{π(θ ′), qm(θ ′)}

]
.

(33)

(e) If u′ ≤ αt , accept θ ′, setting θ (t) = θ ′ and
ϑ = θ (t−1). Otherwise (i.e., if u′ > αt), reject θ ′,
setting θ (t) = θ (t−1) and ϑ = θ ′.

(f) Draw u′′ ∼ U([ 0, 1)). If u′′ > qm(ϑ)/π(ϑ), set

S(m+1) = S(m) ∪ {ϑ} and Km+1 = Km + 1.

Otherwise (i.e., if u′′ ≤ qm(ϑ)/π(ϑ)), set

S(m+1) = S(m) and Km+1 = Km.

(g) Setm = m+ 1, t = t+ 1 and return to step 2(a).

3 Approximate the integral in Eq. (2) using Eq. (14).

3.3 Gradient-based techniques

In this section, we consider MCMC methods which use

the gradient of the log-posterior, ∇ logπ(θ), to enhance

the efficiency of the sampling procedure. The intuition is

that, by using the gradient, we can form proposal distri-

butions that allow for longer jumps without pushing the

acceptance ratio of the method too low.

3.3.1 Metropolis adjusted Langevin algorithm

TheMetropolis adjusted Langevin algorithm (MALA) is an

MH algorithm [211, 212] which uses a stochastic differ-

ential equation (SDE) to form the proposal distribution.

Let us consider the following Langevin diffusion type

of SDE:

dθ(τ ) = f(θ(τ )) dτ + db(τ ), (34)

where b(τ ) is a Dθ -dimensional Brownian motion. The

Fokker–Planck equation giving the probability density

p(θ , τ) of the diffusion state is

∂p(θ , τ)

∂τ
= −∇·[ f(θ) p(θ , τ)]+1

2
∇2p(θ , τ). (35)

If we now select the drift of the diffusion as

f(θ) = 1

2
∇ logπ(θ), (36)

then the stationary solution ∂p(θ , τ)/∂τ = 0 is given by

p(θ , τ) = π̄(θ). (37)

By starting from a value θ (0) ∼ π̄(θ) and solving the SDE

for τ > 0 we can “generate” more samples from π̄(θ),

because the marginal distribution of the SDE solution θ (t)

is π̄(θ) for all t ≥ 0.

MALA uses an SDE of the kind described above as

the proposal distribution in an MH algorithm. Unfor-

tunately, we cannot solve or simulate the SDE exactly.

Hence, we typically approximate its solution using the

Euler–Maruama method [213]:

θ (τn+1) ≈ θ (τn) + �τ

2
∇ logπ(θ (τn)) +

√
�τ zn, (38)

where zn ∼ N (0, I) and �τ = τn+1 − τn. Neverthe-

less, let us remark that it would also be possible to use

other numerical solution methods for SDEs in MALA as

well [213]. Algorithm 15 summarizes the resulting MALA

algorithm with one step of the Euler–Maruyama method

for the numerical integration.

Algorithm 15 Metropolis adjusted Langevin algorithm

(MALA).

1 Initialization: Choose an initial state θ (0), the

discretization step �τ , the total number of iterations

(T), and the burn-in period (Tb).

2 FOR t = 1, . . . ,T :

(a) Draw z ∼ N (0, I), u ∼ U([ 0, 1)) and simulate

a new sample from the Langevin diffusion:

θ ′ = θ (t−1) + �τ

2
∇ logπ(θ (t−1)) +

√
�τ z,

(39)

(b) Compute the acceptance probability (αt):

α(θ ′ , θ (t−1)) = min

[
1,

π(θ ′)N (θ (t−1)|θ ′ + �τ
2 ∇ logπ(θ ′),�τ I)

π(θ (t−1))N (θ ′|θ (t−1) + �τ
2 ∇ logπ(θ (t−1)),�τ I)

]

(40)

(c) If u ≤ αt , accept θ ′ and set θ (t) = θ ′. Otherwise

(i.e., if u > αt), reject θ ′ and set θ (t) = θ (t−1).

3 Approximate the integral in Eq. (2) using Eq. (14).
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It would be tempting to use more than one step of the

Euler–Maruyama (or other SDE simulation method) in

order to improve the proposal distribution. Unfortunately,

this is not possible, because with multiple steps the eval-

uation of the transition density becomes intractable. This

limits the proposal to very local moves, and hence the

algorithm only provides a small improvement w.r.t. the

random walk MH algorithm. A related algorithm which

allows for larger jumps (and thus a greater improvement)

is the Hamiltonian Monte Carlo (HMC) algorithm which

we discuss next.

However, before we describe the HMC algorithm, let us

make a short remark regarding the scaling of MALA. The

seminar work of Roberts and Rosenthal [214] concluded

that the optimal asymptotic AR (i.e., as Dθ → ∞) for

MALA is approximately 0.574. Furthermore, they showed

that the proposal variance should scale as D
−1/3
θ , and thus

O(D
1/3
θ ) are required to ensure the algorithm’s conver-

gence. Pillai et al. also studied the efficiency of MALA on

a natural class of target measures supported on an infinite

dimensional Hilbert space, confirming that the optimal

scaling AR is 0.574 [160]. Intuitively, this increased opti-

mal AR w.r.t. the random walk MH algorithm (whose

optimal AR is around 0.234) is due to the incorporation of

additional information about the target into the sampling

through the use of the SDE.

3.3.2 HamiltonianMonte Carlo

The Hamiltonian Monte Carlo (HMC) or the hybrid

Monte Carlo (HMC) method [215, 216], uses a statistical

physical simulation of a physical system to form the pro-

posal distribution for the MH algorithm. It is based on

considering a particle system with the following Hamilto-

nian:

H(θ , ρ) = − logπ(θ) + 1

2
ρTρ, (41)

where θ can be interpreted as the generalized coordinate

and ρ is the corresponding momentum. Assuming a suit-

able temperature, the distribution of the particles is then

given by

p(θ , ρ) = 1

Z
exp(−H(θ , ρ)) = π̄(θ)N (ρ|0, I), (42)

which has the target density, π̄(θ), as its marginal PDF.

The Hamiltonian equations for the dynamics of the

particles in fictious time τ are now given by

dθ

dτ
= ∇ρH = ρ, (43a)

dρ

dτ
= −∇θH = ∇ logπ(θ). (43b)

The HMC algorithm constructs the proposal distribu-

tion by simulating trajectories from the Hamiltonian

equations. Because an exact simulation is not possible, we

need to use again numerical methods to simulate the tra-

jectories. In order to construct a valid MH algorithm, a

symplectic integrator such as the Leapfrog method (e.g.,

see [217]) needs to be used. Then, we can ensure both the

preservation of the volume element as well as the time-

reversibility of the simulation, which enables us to correct

for the numerical solution inaccuracy by using a single

MH acceptance step.

One step of the Leapfrog method for the Hamiltonian

equations starting from τ with step size �τ is given as

ρ̃(τ+�τ/2) = ρ̃(τ ) + �τ

2
∇ logπ

(
θ̃

(τ )
)
, (44a)

θ̃
(τ+�τ) = θ̃

(τ ) + �τ ρ̃(τ+�τ/2), (44b)

ρ̃(τ+�τ) = ρ̃(τ+�τ/2) + �τ

2
∇ logπ

(
θ̃

(τ+�τ))
)
.

(44c)

The resulting HMCmethod is shown in Algorithm 16.

Algorithm 16 Hamiltonian Monte Carlo (HMC) Algo-

rithm.

1 Initialization: Choose an initial state θ (0), the

discretization step �τ , the number of integration steps

L, the total number of iterations (T), and the burn-in

period (Tb).

2 FOR t = 1, . . . ,T :

(a) Draw u ∼ U([ 0, 1)), numerically solve the

Hamiltonian equations, (43a) and (43b), using L
steps of a Leapfrog method (44) starting from

θ̃
(0) = θ (t−1) and ρ̃(0) ∼ N (0, I), setting

θ ′ = θ̃
(L�τ)

and ρ′ = −ρ̃(L�τ).

(b) Compute the acceptance probability:

αt = α(θ ′ , ρ′; θ (t−1), ρt−1)

= min
[
1, exp

(
−H(θ ′ , ρ′) + H(θ (t−1), ρt−1)

)] (45)

(c) If u ≤ αt , accept θ ′ and set θ (t) = θ ′. Otherwise

(i.e., if u > αt), reject θ ′ and set θ (t) = θ (t−1).

3 Approximate the integral in Eq. (2) using Eq. (14).

As discussed, for example, in [212], a single-step of

the HMC algorithm is equivalent to MALA, and hence

the two methods are closely related. There are numerous

improvements andmodifications to this basic algorithm—

for example, we do not need to randomize the momenta

fully at each time step, we can use preconditioning to

improve the numerical stability and the mixing rate, and

we can adapt the step sizes as well as the number of steps.

Finally, the optimal scaling of the HMC algorithm has

been analyzed by Beskos et al. In [218], they prove that it
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requiresO(d1/4) steps to traverse the state space and that

the asymptotically optimal AR for the HMC is 0.651, even

higher than the optimal AR forMALA (0.574). This shows

that HMC is more efficient than MALA in the incorpo-

ration of information about the target into the sampling

approach.

3.3.3 RiemannmanifoldMALA and HMC

A practical challenge in both MALA and HMC methods

is that their performance heavily depends on the particu-

lar parameterization chosen for θ . Although this problem

can be diminished by using a preconditioning matrix to

compensate for the uneven scaling of the parameters, its

manual selection can be hard. Fortunately, a more general

automatic selection procedure is provided by the Riemann

manifold Monte Carlo methods that we briefly discuss

here.

The idea of the Riemann manifold Langevian and

Hamiltonian Monte Carlo methods is to perform the

Langevin or Hamiltonian simulations in a suitable Rie-

mann manifold instead of the Euclidean space [212, 219].

Although the idea was already proposed by [219], the

introduction of proper symplectic integrators by [212]

led to an exact MCMC algorithm. Let us recall that the

squared distance between two locations θ and θ + dθ

in Euclidean space is given by d2 = dθTdθ . In the Rie-

mann manifold, the distance is generalized to be d2 =
dθTG−1(θ)dθ , where G(θ) is the metric tensor, which is

a positive definite matrix for any given θ . A particularly

useful metric tensor in the context of probability distribu-

tions is the one arising from information geometry, which

is given as

G(θ) = Ey|θ [∇ logπ(θ |y)∇ logπ(θ |y)T ] . (46)

We can now modify the MALA method such that the

SDE evolves along the Riemann manifold instead of the

Euclidean space as follows:

dθ(τ ) = f̃(θ(t))dτ + db̃(τ ), (47)

where

f̃(θ) = 1

2
G−1(θ)∇ logπ(θ), (48a)

db̃i = |G(θ)|−1/2
∑

j

∂

∂θj
[G−1(θ)]ij |G(θ)|−1/2dt

+[G−1/2(θ)db]i . (48b)

The Riemann manifold Langevian Monte Carlo

(MMALA) algorithm can now be constructed by replac-

ing the SDE in the basic MALA (see Algorithm 15) with

the SDE defined above in Eqs. (48a) and (48b). For further

details, the reader is referred to [212].

In the Riemann manifold Hamiltonian Monte Carlo

(RMHMC) we construct the particle system dynamics

in the Riemann manifold. This results in the following

Hamiltonian:

H(θ , ρ) = − logπ(θ)+1

2
log |2πG(θ)|+1

2
ρTG−1(θ)ρ,

(49)

and the Hamiltonian equations are now given as

dθ

dτ
= ∇ρH = G−1(θ)ρ, (50a)

dρ

dτ
= −∇θH = ∇ logπ(θ) + h(θ), (50b)

where the additional term in Eq. (50b) is given by

hi(θ) = −1

2
tr

{
G−1(θ)

∂G(θ)

∂θi

}
+ 1

2
ρTG−1(θ)

∂G(θ)

∂θi
G−1(θ)ρ.

(51)

Although the construction of the RMHMC is analogous

to that of the HMC, the selection of integration method

requires much more care. The simple Leapfrog method is

no longer enough now, and we need to use a more general

symplectic integrator. For further details on this issue, see

again [212].

3.3.4 Step-size and trajectory-length adaptationmethods

Selecting the step size of the Leapfrog method is impor-

tant for the performance of bothMALA- and HMC-based

methods. As discussed in [217], fortunately, the step size

selection does not have a huge impact on the error in the

Hamiltonian provided that it is small enough to make the

discrete dynamics stable. For analysis on practical selec-

tion of step sizes as well as the lengths of trajectories

see [217]. In [220] the authors propose no-U-turn sam-

pler (NUTS) method which approaches the problem by

limiting the trajectory to a length where it would change

the direction. In NUTS, the step length is adapted using

a stochastic optimization method. Some step size esti-

mation methods for Leapfrog and HMC have also been

provided in [221, 222]. Finally, the optimal step size scal-

ing with the number of dimensions as well as the optimal

acceptance rate of HMC has also been analyzed (e.g., see

[223, 224]).

3.3.5 The geometric foundations of HMC and further

considerations

Before concluding this section, let us remark that

gradient-based algorithms have obtained a wide success

in many applications. For instance, in high-dimensional

problems, where the probability mass is typically concen-

trated in a very small portion of the space, they should

probably be the first choice for practitioners. Recently,

several researchers have developed a rigorous under-

standing of the reasons for their good performance on
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difficult problems, as well as suggestions about their prac-

tical application. Intuitively, in high dimensional appli-

cations, exploiting the gradient information is crucial to

make large jumps away from the current state and, at

the same time, ensure that they are highly likely to be

accepted. In [225], the authors have suggested that, in

order to build a good proposal mechanism in anMH-type

method, it is required to define a family of transformations

preserving the target measure which form a Lie group on

composition, as this ensures that proposals generated are

both far away from the previous point and highly likely

to be accepted. They also show that HMC emerges natu-

rally when attempting to construct these transformations

using ideas from differential geometry [225, 226]. How-

ever, it is also important to emphasize that gradient-based

methods suffer from some important problems, as noted

by Nishimura and Dunson [227]: one is the efficient tun-

ing and/or adaptation of the parameters of the algorithm

(which is not an easy task, in general), and another one is

their application in multimodal scenarios; see [227, 228]

and the discussion in [212] for further information about

this issue.

More generally, note that deterministic procedures have

been included within the sampling algorithms in order

to reduce the computational demand of the MC methods

and the variance of the resulting estimators. In this section

we have explored one widely used possibility: exploiting

the gradient information. Another idea, employed in quasi

Monte Carlo methods, is using deterministic sequences of

points based on the concept of low-discrepancy [229].

3.4 Other advanced schemes

In this section, we briefly discuss other impor-

tant topics and relevant methodologies which are

related to the algorithms described in the rest of this

work.

3.4.1 Parallel schemes and implementations

A long run of a single chain can remain trapped in a

local mode (e.g., when the parameters of the proposal PDF

are not well-tuned) or the convergence can be very slow.

In some cases (e.g., when the posterior density is multi-

modal), the use of shorter parallel MCMC chains can be

advantageous. Thus, in order to speed up the exploration

of the state space, and especially in order to deal with

high-dimensional applications, several schemes employ-

ing parallel chains have been proposed [230–232], as well

as multiple try and interacting schemes (see Section 5.1.1).

Several other population-based techniques can also be

found in the literature [233–238]. Finally, the use of non-

reversible parallel MH algorithms has been also proposed

[239, 240].

In addition, the interest in the parallel computation

can also be due to other motivations. For instance,

several authors have studied the parallelization of

MCMC algorithms, that have traditionally been imple-

mented in an iterative non-parallel fashion, in order to

reduce their computation time [241]. Furthermore, par-

allel MCMC schemes are required in big data prob-

lems, where one possible approach consists of split-

ting the complete posterior distribution into several

partial sub-posteriors [242–245]. Moreover, in the lit-

erature there is a great interest in the parallel imple-

mentation of MCMC algorithms so that the computa-

tion is distributed across a bunch of parallel processors

[246–249].

Finally, note that the optimal parallelization strategy

for an MCMC algorithm may differ depending on the

properties of the parallel system under consideration. For

instance, on GPUs parallelizing the individual MCMC

steps can yield large performance improvement [250].

On the other hand, on distributed systems a better

approach can consist in parallelizing the MCMC algo-

rithm itself [251].

3.4.2 Delayed rejectionMetropolis sampling

In Section 5.1, we will describe several multiple try

schemes which extend the classical MH method, using

(and comparing) different candidates at each iteration.

Here, we show an alternative use of different candi-

dates in one iteration of an MH-type method [252].

The idea behind the so called delayed rejection Metropo-

lis (DRM) algorithm is the following. In the stan-

dard MH algorithm, one sample is proposed at each

iteration, θ̃
(1) ∼ q1(θ |θ (t−1)),21 and accepted with

probability

α1(̃θ
(1)
, θ (t−1)) = min

[
1,

π(̃θ
(1)

)q1(θ
(t−1) |̃θ (1)

)

π(̃θ
(t−1)

)q1(̃θ
(1)|θ (t−1))

]
.

(52)

If θ̃
(1)

is accepted, then θ (t) = θ̃
(1)

and the chain is

moved forward, as in the standard MH algorithm. How-

ever, if θ̃
(1)

is rejected, the DRMmethod suggests drawing

another sample, θ̃
(2) ∼ q2(θ |θ (t−1), θ̃

(1)
), from a different

proposal PDF, q2, which takes into account the previous

candidate, θ̃
(1)

, and accepting it with a suitable acceptance

probability:

α
(t)
2 ≡ α2(̃θ

(2)
, θ (t−1)) = min

[
1,

ρ(̃θ
(2)
, θ (t−1) |̃θ (1)

)

ρ(θ (t−1), θ̃
(2) |̃θ (1)

)

]
,

(53)

21Note that the θ̃
(1)

and q1(θ |θ (t−1)) used here play the role of θ ′ and

q(θ |θ (t−1)), respectively, in Algorithm 3.
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where

ρ
(
θ (t−1), θ̃

(2) |̃θ (1)
)

=π
(
θ (t−1)

)
q1

(
θ̃

(1)|θ (t−1)
)(

1 − α1

(
θ̃

(1)
, θ (t−1)

))

π
(
θ̃

(2)
)
q2

(
θ̃

(2)|θ (t−1), θ̃
(1)
)
. (54)

The acceptance function of Eq. (53), α2(̃θ
(2)
, θ (t−1)), is

designed in order to ensure the ergodicity of the chain.

Indeed, the kernel of the DRM algorithm satisfies the

detailed balance condition [252]. If θ̃
(2)

is rejected, then

we can either set θ (t) = θ (t−1) and perform another iter-

ation of the algorithm or continue with the sequential

strategy, drawing θ̃
(3) ∼ q3(θ |θ (t−1), θ̃

(1)
, θ̃

(2)
) and test-

ing it with a proper acceptance probability α3(̃θ
(3)
, θ (t−1)).

The DRMmethod with two sequential steps is outlined in

Algorithm 17. Unlike the multiple try schemes described

in Section 5.1, in the DRM sampler the candidates are not

compared together at the same time, but each candidate

is drawn from a proposal PDF and then tested with an

MH-type acceptance probability.

3.4.3 Non-reversible chains

The MCMC techniques described so far fulfill the so-

called detailed balance condition. In this case, the gener-

ated chain is reversible. Denoting as K(θ ′|θ) the transition

density of a specific MCMC method, the detailed balance

condition is given by the Eq. 18 in Section 3.1.2, i.e.,

π̄(θ)K(θ ′|θ) = π̄(θ ′)K(θ |θ ′). (56)

However, recent studies have shown that non-reversible

chains can provide better performance [253–258]. Non-

reversible chains can be generated using different proce-

dures. For instance, defining a vorticity density γ (θ , θ ′),

such that

γ (θ , θ ′) = −γ (θ ′, θ),
∫

A×�

γ (θ , θ ′)dθ ′dθ = 0, A ∈ B(�),

whereB(�) is a Borel σ -algebra generated by open sets in

� and, additionally,

γ (θ , θ ′) + π(θ ′)q(θ |θ ′) ≥ 0,

for all θ , θ ′ ∈ � for which π(θ ′)q(θ |θ ′) 	= 0. Moreover,

in the case that π(θ ′)q(θ |θ ′) = 0, we need γ (θ , θ ′) = 0.

In this scenario, we can run an MH-type algorithm with

acceptance probability

α = min

[
1,

γ (θ , θ ′) + π(θ ′)q(θ |θ ′)

π(θ)q(θ ′|θ)

]
.

It is possible to show that the generated chain by the MH

method with the α above still has π̄ as invariant density,

although is non-reversible [253, 254].

Algorithm 17 Delayed Rejection Metropolis with two

acceptance steps.

1 Initialization: Choose two proposal functions, q1(θ)

and q2(θ), an initial state θ (0), and the total number of

iterations (T).

2 FOR t = 1, . . . ,T :

(a) Draw θ̃
(1) ∼ q1(θ |θ (t−1)) and u1 ∼ U([ 0, 1] ).

(b) Compute the acceptance probability of θ̃
(1)
:

α
(t)
1 ≡ α1 (̃θ

(1)
, θ (t−1)) = min

[
1,

π(̃θ
(1)

)q1(θ
(t−1) |̃θ (1)

)

π(θ (t−1))q1 (̃θ
(1)|θ (t−1))

]
,

(55)

(c) If u1 ≤ α
(t)
1 , accept θ̃

(1)
, set θ (t) = θ̃

(1)
and go

back to step 2(a).

(d) Otherwise (i.e., if u1 > α
(t)
1 ):

i. Draw θ̃
(2) ∼ q2(θ |θ (t−1), θ̃

(1)
) and

u2 ∼ U([ 0, 1)).

ii. Compute the acceptance probability of

θ̃
(2)
:

α
(t)
2 ≡ α2(̃θ

(2)
, θ (t−1)) = min

[
1,

ρ(̃θ
(2)
, θ (t−1) |̃θ (1)

)

ρ(θ (t−1), θ̃
(2) |̃θ (1)

)

]
,

with ρ(θ (t−1), θ̃
(2) |̃θ (1)

) given by

Eq. (54).

iii. If u2 ≤ α
(t)
2 , accept θ̃

(2)
and set

θ (t) = θ̃
(2)
. Otherwise (i.e., if u2 > α

(t)
2 ),

reject θ̃
(2)

and set θ (t) = θ (t−1).

3 Approximate the integral in Eq. (2) using Eq. (14).

Many non-reversible MCMC methods have recently

been proposed, and some authors have also developed

general frameworks to construct different irreversible MC

algorithms [259, 260]. However, the amount of improve-

ment provided by these schemes in complex practical

problems still remains to be seen.

3.5 MCMC convergence diagnostics

Properly designed MCMC algorithms automatically pro-

duce samples from the target distribution after an initial

transitory period. However, theoretically determining the

length of this transitory period may be very difficult.

Hence, during the finite running time of a simulation the

Markov chain could fail to converge to its stationary distri-

bution. In this case, the generated samples might not well

represent the target PDF and any inference performed

using them is bound to produce erroneous results. For
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this reason it is important to study the output of the algo-

rithm to determine if the MCMC simulation has properly

converged. Methods and good practices for convergence

diagnostics can be found, for example, in Chapter 11 of

Gelman et al. (2013) [261] or Chapter 6 of Brooks et al.

(2011) [216].

3.5.1 General principles of convergence diagnostics

Gelman and Shirley, in Chapter 6 of Brooks et al. (2011)

[216], summarize the recommended convergence diag-

nostics as follows:

1. Run three or more chains in parallel with varying

starting points. The starting points can be selected

randomly around or within a simpler approximation.

2. The chains should be then split to two halves, where

only the second half is retained. Diagnosis methods

for between-chain and within-chain analysis can be

then used to monitor the mixing of the chain in the

second half.

3. After approximate convergence is obtained, the

second halves of the chains should be then mixed

together to summarize the target distribution. The

autocorrelations should not matter at this stage any

more.

4. Adaptive Markov chain Monte Carlo (AMCMC)

methods can be used for tuning the proposal densities

and other properties of the MCMCmethod. Provided

that we always restart the MCMC method after

adaptation, any adaptation method can be applied.

Additionally, the algorithm can be debugged by running

it on a model with known parameters and checking that

the posterior distributions are consistent with the true

values.

3.5.2 Between-chain andwithin-chain diagnostics

Given a set of simulated MCMC samples—such as the

second halves of the chains from step 2 in the previ-

ous section—it is then possible to investigate whether

the samples have converged to the target distribution.

Although there are a number of possible approaches for

the convergence diagnostics (see, e.g., [262, 263]), the

potential scale reduction factor (PSRF) [261, 264] is the

diagnostic tool that is often recommended for practical

use [216, 261].

Gelman et al. (2013) [261] define the PSRF (R̂) as fol-

lows. Let us denote the chain consisting of samples from

a scalar variable θ as θ (i,j), where i = 1, . . . ,M is the sam-

ple index and j = 1, . . . , S is the chain index. Compute

then B and W, which correspond to the between-chain

and within-chain variances:

B = M

S − 1

S∑

j=1

(θ̄ (·,j) − θ̄ (·,·))2, (57a)

W = 1

S

S∑

j=1

s2j = 1

S(M − 1)

S∑

j=1

M∑

i=1

(θ (i,j) − θ̄ (·,j))2,

(57b)

where

θ̄ (·,j) = 1

M

M∑

i=1

θ (i,j), (58a)

θ̄ (·,·) = 1

S

S∑

j=1

θ̄ (·,j), (58b)

s2j = 1

M − 1

M∑

i=1

(θ (i,j) − θ̄ (·,j))2. (58c)

The PSRF can then be defined as [261]

R̂ =

√
v̂ar+(θ)

W
, (59)

where

v̂ar+(θ) = M − 1

M
W + 1

M
B (60)

is an estimator for the posterior variance. In the multi-

variate case the PSRF values can be computed for each

dimension separately.

The PSRF value should approach 1 when the conver-

gence occurs. If the value is significantly higher than 1,

then convergence has probably not occurred. Although in

PSRF we should use multiple independent chains, a sin-

gle chain can also be analyzed by splitting it into two or

more parts and computing the PSRF as if the splits where

independent chains.

3.5.3 Effective number of samples

Generally, theMCMC algorithms present a positive corre-

lation among the generated samples. This clearly implies

a loss of efficiency with respect to the case of independent

samples, i.e., with respect to the classical Monte Carlo

approach. Namely, positively correlated samples provide

less statistical information than independent samples,

meaning that the corresponding estimators will be less

efficient in general, i.e., with a higher variance for a given

sample size. The concept of effective sample size (ESS) has

been introduced to measure this loss of efficiency [105],

[208, Section 9.1]. If T is the length of the chain (without

removing any burn-in period) and denoting as ρ(τ) the
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autocorrelation at lag τ , the effective sample size for an

MCMC algorithm is defined as

ESS = T

1 + 2
∑∞

τ=1 ρ(τ)
. (61)

Clearly, positive correlations ρ(τ) decrease the ESS value,

and hence ESS < T . If the correlation is zero (i.e., ρ(τ) =
0 for all τ ), then ESS = T , as in the classical Monte Carlo

scheme using independent samples. In a similar fashion,

it is also possible to define ESS measures for other Monte

Carlo approaches, as shown in Section 4.5.

3.5.4 Other recent approaches

More recently, alternative approaches to the method

described in the previous sections have been proposed to

measure the convergence of MCMC algorithms. On the

one hand, Gorham et al. have introduced a novel family

of discrepancy measures based on Stein’s method [265].

These measures bound the discrepancy between sample

and target expectations over a large class of test functions,

and some specific members of this family can be com-

puted by solving a linear program [266]. Finally, using zero

mean reproducing kernel theory, several authors have

shown that other members of the Stein discrepancy fam-

ily have a closed-form solution involving the sum of kernel

evaluations over pairs of sample points [267–270]. On the

other hand, Johndrow et al. have applied computational

complexity theory to analyze how the computational effi-

ciency of MCMC algorithms degrades with the problem’s

size [271]. Their goal is determining whether an MCMC

algorithm will perform well in a given context/problem,

rather than providing performance bounds which are

often very loose to be of any practical use. Note that the

aforementioned techniques are still notmature enough for

their widespread use in practical applications (especially

in high-dimensional problems), but this is a very active

research field where we can expect new contributions in

coming years.

4 Importance sampling
Importance sampling (IS) is a Monte Carlo methodol-

ogy that can be used to characterize virtually any target

PDF and to approximate its moments. Like any other

MC method, IS techniques proceed by drawing sam-

ples from one or several proposal PDFs. However, unlike

MCMC methods, that accept or discard the drawn sam-

ples according to some appropriate test, IS approaches

accept all the samples and assign them a weight according

to their quality in approximating the desired target distri-

bution. Regarding the number of proposals, IS methods

can be divided into classical or standard IS, where a sin-

gle proposal is used to draw all the samples, and multiple

IS (MIS), where a collection of proposals are used to draw

the samples.With respect to the temporal evolution of the

proposals, IS methods can be classified as non-adaptive or

“static,” where the proposals are fixed (i.e., their parame-

ters are selected a priori and remain fixed for the whole

simulation), and adaptive, where the parameters of the

proposals are adapted iteratively in order to better approx-

imate the desired target density. In the following section,

we briefly review “static” IS (both using a single and

multiple proposals), whereas in Section 4.2 we consider

adaptive IS (AIS). Then, some remarks on the convergence

of IS and AIS are provided in Section 4.3. This is followed

by a discussion on the optimal proposal choice and the

variance of the IS estimators in Section 4.4, and the defini-

tion of the effective sample size in Section 4.5. Afterwards,

the concept of proper weights is introduced in Section 4.6

and this leads naturally to the group importance sampling

(GIS) approach described in Section 4.7. Finally, a short

introduction to sequential importance sampling (SIS) for

the estimation of dynamic parameters is also provided in

Section 4.8.

4.1 Standard andmultiple importance sampling

4.1.1 Importance sampling with a single proposal

Let us consider a single proposal PDF, q̄(θ), with heav-

ier tails than the target, π̄(θ)22. The proposal is used to

draw a set ofM IID samples, {θ (m)}Mm=1 with θ (m) ∼ q̄(θ).

An importance weight is then associated to each sample

according to

wm = w(θm) = π(θm)

q̄(θm)
, m = 1, . . . ,M. (62)

If the normalizing constant of the target, Z, is known, then

we can approximate the targeted integral of Eq. (2) by the

so-called unnormalized estimator:

ÎM = 1

MZ

M∑

m=1

wmg(θ
(m)). (63)

Unfortunately, Z is unknown in many practical problems,

and we have to resort to the alternative self-normalized

estimator, which is given by

ĨM = 1

MẐ

M∑

m=1

wmg(θ
(m)), (64)

where Ẑ = 1
M

∑M
m=1 wm is an unbiased estimator of Z

[104]. Note that both ĨM and ÎM are consistent estima-

tors of I, i.e., both ĨM → I and ÎM → I as M → ∞
(see Section 4.3 for further details). However, their per-

formance (as measured by their variance) is highly related

to the discrepancy between π̄(θ)|g(θ)| and the proposal

22Note that one of the main disadvantages of IS is the fact that the variance of
the IS estimator becomes infinite when the tails of the proposal, q̄(θ), decay

faster than π̄(θ)2 due to the appearance of q̄(θ) in the denominator of the
weights in (62) [91]. Therefore, in order prevent this situation, which leads to
the complete failure of the IS sampler, a common restriction is selecting a
proposal with heavier tails than the target.
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q̄(θ) [104]. Indeed, with a properly selected proposal IS

methods can provide a lower variance than the direct

application of the MC method, whereas a poor selec-

tion can easily lead to infinite variance estimators. In

practice, since IS approaches are often used to simulta-

neously approximate several functions (g1(θ), g2(θ), . . .),

a common approach is simply minimizing the mismatch

between the proposal q̄ and the target π̄ [93, Section 3.2].

4.1.2 Importance sampling withmultiple proposals

Several reasons justify the use of more than one proposal.

On the one hand, the target can be multimodal and there-

fore it can be better fitted with a mixture of proposals. On

the other hand, choosing a single good proposal a priori is

usually very difficult, and adaptive processes must be per-

formed (as described in Section 4.2) in order to tailor the

proposal to the target. In this situation, the exploration

of the parameter space, �, is more efficient when multi-

ple proposals, {qn(θ)}Nn=1, are available [91, 272]. The use

of several proposals is usually known as multiple impor-

tance sampling (MIS) in the IS literature, and it is a key

feature of most state-of-the-art adaptive IS algorithms

(e.g., [95, 98, 99, 273, 274]). A generic MIS framework has

been recently proposed in [275], where it is shown that

several sampling and weighting schemes can be used. For

the sake of conciseness, here, we present a single sampling

scheme with two different common weighting schemes

that evidence the flexibility of MIS. Let us consider a sam-

pling scheme where exactly one sample per proposal (i.e.,

M = N) is drawn,

θ (m) ∼ q̄m(θ), m = 1, ...,M. (65)

Several proper weighting strategies for this sampling

approach have been proposed in the literature (e.g., see

[275] and the references therein for a review of different

valid weighting schemes), but the two most common ones

are the following:

• Standard MIS (s-MIS) [95]:

wm = π(θ (m))

q̄m(θ (m))
, m = 1, . . . ,M; (66)

• Deterministic mixture MIS (DM) [91]:

wm = π(θ (m))

ψ(θ (m))
= π(θ (m))

1
N

∑N
j=1 q̄j(θ

(m))
, m = 1, . . . ,M,

(67)

where ψ(θ) = 1
N

∑N
j=1 q̄j(θ) is the mixture PDF,

composed of all the proposal PDFs with equal

weights in the mixture.

On the one hand, the unnormalized estimator using any

of those two sets of weights (i.e., Eq. (66) or Eq. (67))

is consistent and unbiased. On the other hand, the self-

normalized estimator is consistent and asymptotically

unbiased using both sets of weights. However, the perfor-

mance of the estimators may differ substantially depend-

ing on which set of weights is used. For instance, the

performance of the unnormalized estimator ÎM with the

DM approach is superior (in terms of attaining a reduced

variance) w.r.t. the s-MIS approach [275]. Finally, note that

both weighting alternatives require the same number of

target evaluations, but the DM estimator is computation-

ally more expensive w.r.t. the number of proposal evalu-

ations (N2 evaluations for the DM weights vs. N evalua-

tions for the s-MIS ones). Several efficient approaches to

reduce the variance of the estimators, while limiting the

computational complexity, have been proposed [276, 277].

4.2 Adaptive importance sampling

An adaptive importance sampler is an iterative algorithm

where the proposals are iteratively improved using either

the previously drawn samples or some other independent

mechanism. In particular, here, the focus is on the more

general case of adaptive MIS, where the set of N propos-

als {q̄n(θ)}Nn=1 are adapted over the subsequent iterations

of the algorithm. Introducing the time-step into the nota-

tion, the set of available proposals becomes {q̄n,t(θ)}Nn=1,

where t indicates the tth iteration. Therefore, not only the

parameters of the proposals can be updated, but even the

family of distributions can be changed. For the sake of

simplicity, in this review, we only consider location-scale

densities, such that each proposal, q̄n,t , is completely char-

acterized by a mean vector, µn,t , and a covariance matrix,

Cn,t .

Algorithm 18 describes a generic AIS algorithm, where

only the location parameters are adapted (i.e., Cn,t = Cn

for all t)23. At the tth iteration,M independent samples are

drawn from each proposal (step 1 of Algorithm 18), i.e.,

θ
(m)
n,t ∼ qn,t(θ |µn,t ,Cn). (68)

Each sample is then associated with an importance weight

of the form

w
(m)
n,t =

π(θ
(m)
n,t )

�n,t(θ
(m)
n,t )

, (69)

for m = 1, . . . ,M and n = 1, . . . ,N (step 2). Note

that we use a generic function �n,t at the denominator

of the weight. Similarly to the static MIS methodology,

different weighting schemes are possible (in the adaptive

setup there is an even larger selection of valid weighting

schemes). In particular, a basic requirement is choosing

23Adapting the scale parameters is dangerous and must be done with a lot of
care, since it can lead to ill conditioned proposals that result in estimators with
huge variances (potentially infinite). For this reason, many AIS algorithms use
multiple proposals with different scales and only adapt their locations.
However, several algorithms that adapt the scale parameter have also been
proposed [96, 98, 278].
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Table 3 Examples of �n,t (function used in the denominator for
the estimation) and �n,t (function used in the denominator for
the adaptation) that can be found in the literature

Weight den. PMC [95] AMIS (N = 1) [98] APIS [99]

�n,t(θ) qn,t(θ) 1
t

∑t
τ=1 qτ (θ) 1

N

∑N
n=1 qn,t(θ)

�n,t(θ) qn,t(θ) 1
t

∑t
τ=1 qτ (θ) qn,t(θ)

the set of functions {�n,t}N ,T
n=1,t=1 in such a way that the

estimator of Eq. (63) is unbiased [106, Section 2.5.4], [273,

275]. Different choices of �n,t available in the literature

can be found in Table 3. Finally, the location parameters

of the multiple proposals are adapted in step 3. Regarding

the adaptation of the location parameter, here, we divide

the methods that can be found in the literature into two

main groups:

1. Algorithms that employ the previous samples for the

adaptation. This approach is summarized in Table 4,

and includes the possible application of resampling

steps over a subset of these weighted samples [95,

274, 279] or fitting the moments of the proposals [98,

280].

2. Algorithms with independent adaptive procedures

(detached from the sampling procedure), e.g., the

gradient of π̄ used in [278, 281], or the MCMC

techniques applied to adapt the location parameters

in [273, 282–285]. While these approaches usually

present a superior performance, they tend to be

computationally more expensive. Table 5

summarizes them.

4.3 Convergence of IS and AIS methods

In this section, we briefly discuss the convergence of IS

and AIS estimators. We consider both the unnormalized

Table 4 Adaptation based on weighted samples

Let us compute the set of IS weights (potentially different from those of
Eq. (71)),

ρ
(m)
n,t =

π(θ
(m)
n,t )

�n,t(θ
(m)
n,t )

,

where �n,t are chosen in such a way that they do not jeopardize the

consistency of the IS estimators, and they can be equal to w(m)
n,t in

Eq. (71) or not

(see Table 3). Two different procedures are used in literature:

P1 Apply some resampling strategy to {µn,t−1}Nn=1 , with probabilities

according to the weights ρ
(m)
n,t , to obtain {µn,t}Nn=1 [95, 274, 286].

Nonlinear transformations of ρ(m)
n,t can also be applied [279].

P2 Build estimators of some moments of π employing ρ
(m)
n,t , and use

this information to obtain {µn,t}Nn=1 [96, 98, 287].

Table 5 More sophisticated adaptation procedures

P3 Adaptation by using MCMC transitions to obtain {µn,t}Nn=1 given

{µn,t−1}Nn=1 , as in [273, 283–286].

P4 Adaptation by using stochastic gradient search of π for moving
{µn,t−1}Nn=1 to {µn,t}Nn=1 [278, 281].

estimator of Eq. (63) and the self-normalized estimator of

Eq. (64).

First of all, let us consider a fixed set of proposals, qn(θ)

for n = 1, . . . ,N . Then, it can be easily shown that the

unnormalized estimator of Eq. (63) is an unbiased estima-

tor of the desired integral, i.e., E(̂IM) = I for any value

of M. On the other hand, the strong law of large numbers

guarantees that the self-normalized estimator is asymp-

totically unbiased, i.e., ĨM → I a.s. as M → ∞. These

two results hold, regardless of whether the s-MIS or the

DM-MIS weights are used, as long as q(θ) > 0 whenever

π(θ) > 0 [288]. Furthermore, under some additional mild

regularity conditions (see [288]), the following CLTs can

be established:

ÎM − I√
V̂M

d→ N (0, 1), (75a)

ĨM − I√
ṼM

d→ N (0, 1), (75b)

where

V̂M = 1

M
Eπ̄ ((g(θ) − I)2w(θ)), (76a)

ṼM = 1

M
Eπ̄ ((g(θ) − I)2w̄(θ)), (76b)

w(θ) is the weighting function used to construct ÎM and

w̄(θ) is its normalized counterpart, which is used in the

formulation of ĨM. Hence, ÎM
d→ N (I, V̂M) and ĨM

d→
N (I, ṼM) as M → ∞. Note that, even though the con-

vergence of both estimators to the desired integral for

any proper weighting scheme is ensured, the differences

in convergence rate can be quite large (e.g., see [275] for

variance proofs and a discussion on this issue).

Now, let us briefly consider adaptive IS schemes, where

the proposals are iteratively updated. First of all, note that

the previous results also hold for AISmethods. However, a

second question that arises in this case is the convergence

of the estimators as the proposals are adapted. This issue

is tackled by Oh and Berger in [287], where they analyze

the estimator obtained by aggregating weighted samples

produced through several consecutive iterations using dif-

ferent proposal PDFs. More precisely, they consider the

estimator in Eq. (74a) and prove, under fairly general con-

ditions, that ĨMNT → I a.s. and ĨMNT
d→ N (I, ṼMNT )

(with the decay of ṼMNT proportional to 1
MNT , the opti-

mal Monte Carlo approximation rate) asMNT → ∞. See

[287] for further details.
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Algorithm 18 Generic Adaptive Population Importance

Sampler.

1. Initialization: Choose the number of proposals (N),

the number of samples drawn per proposal and

iteration (M), the initial proposals, qn,0(θ |µn,0,Cn) for

n = 1, . . . ,N with appropriate values of µn,0 and Cn,

and the total number of iterations (T).

2. FOR t = 1, . . . ,T :

(a) Sampling: DrawM samples θ
(1)
n,t , . . . , θ

(M)
n,t

from each of the N proposal PDFs in the

population
{
q̄1, . . . , q̄N

}
, i.e.,

θ
(m)
n,t ∼ qn,t(θ |µn,t ,Cn), (70)

form = 1, . . . ,M.

(b) Weighting:Weight the samples, {θ (m)
n,t }Nn=1,

using

w
(m)
n,t =

π(θ
(m)
n,t )

�n,t(θ
(m)
n,t )

(71)

(c) Adaptation of the means: Apply some suitable

procedure to update the mean vectors,

{µn,t−1}Nn=1 −→ {µn,t}Nn=1, (72)

without jeopardizing the consistency of the IS

estimators.

3. Output: Approximate the integral in Eq. (2) using

either the unnormalized estimator when the

normalizing constant is known,

ÎMNT = 1

MNTZ

T∑

t=1

N∑

n=1

M∑

m=1

w
(m)
n,t g(θ

(m)
n,t ), (73)

or the self-normalizing estimator when the

normalizing constant is unknown,

ĨMNT = 1

MNTẐ

T∑

t=1

N∑

n=1

M∑

m=1

w
(m)
n,t g(θ

(m)
n,t ), (74a)

Ẑ = 1

MNT

T∑

t=1

N∑

n=1

M∑

m=1

w
(m)
n,t . (74b)

4.4 Variance of the IS estimators and optimal proposal

In this section, we analyze the variance of the IS estima-

tors, briefly discussing which is the optimal proposal in

terms of variance minimization. Assume first that Z is

known. Recalling that I =
∫
�
g(θ)π̄(θ)dθ , the variance of

the IS estimator ÎM in Eq. (63) is V̂M = varq[ ÎM]= σ 2
q

M ,

where

σ 2
q =

∫

�

(
g(θ)π̄(θ)

q̄(θ)

)2

q̄(θ)dθ − I2,

=
∫

�

(
g(θ)π̄(θ)

)2

q̄(θ)
dθ − I2=

∫

�

(
g(θ)π̄(θ) − Iq̄(θ)

)2

q̄(θ)
dθ ,

(77)

where we have used that

∫

�

(
g(θ)π̄(θ) − Iq̄(θ)

)2

q̄(θ)
dθ

=
∫

�

(
g(θ)π̄(θ)

)2 + I2q2(θ) − 2Ig(θ)π̄(θ)q̄(θ)

q̄(θ)
dθ

=
∫

�

(
g(θ)π̄(θ)

)2

q̄(θ)
dθ + I2 − 2I2,

=
∫

�

(
g(θ)π̄(θ)

)2

q̄(θ)
dθ − I2. (78)

For a specific function g(θ), the optimal proposal PDF is

qopt(θ) = |g(θ)|π̄(θ)

I
= g(θ)π̄(θ)∫

�
g(θ)π̄(θ)dθ

∝ |g(θ)|π̄(θ).

(79)

However, in many applications practitioners are not inter-

ested in estimating a specific integral I, but in approximat-

ing the measure of π̄ . In this case, an appropriate choice

for the proposal is q̄(θ) = π̄(θ) ∝ π(θ), which leads

to wn = 1
Z and w̄n = 1

N for all n = 1, . . . ,N , i.e., we

come back to the original Monte Carlo scheme described

in Section 2.1. Furthermore, the variance of the random

variable w(θ) = π(θ)
q̄(θ)

, with θ ∼ q̄(θ), is given by

varq [w(θ)] =
∫

�

(
π(θ)

q̄(θ)

)2

q̄(θ)dθ −
(∫

�

(
π(θ)

q̄(θ)

)
q̄(θ)dθ

)2

,

=
∫

�

π2(θ)

q̄(θ)
dθ − Z2,

=
∫

�

(π(θ) − Zq̄(θ))2

q̄(θ)
dθ

= Z2
∫

�

(π̄(θ) − q̄(θ))2

q̄(θ)
dθ = Z2χ2(π̄ , q̄),

(80)

where we have used π̄(θ) = 1
Zπ(θ) in the last step of the

derivation, and χ2(π̄ , q̄) =
∫
�

(π̄(θ)−q̄(θ))2

q̄(θ)
dθ is the Pear-

son divergence between π̄ and q̄ [289]. Finally, the vari-

ance of Ẑ = 1
M

∑M
m=1 w(θ (m)) is varq[ Ẑ]= Z2

M2 χ
2(π̄ , q̄).

4.5 Effective sample size

Let us denote in this section the standard Monte Carlo

estimator as
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IM = 1

M

M∑

m=1

g(θ (m)), (81)

where the samples θ (1), . . . , θ (M) are directly drawn from

π̄(θ). Moreover, let us define the normalized IS weights,

w̄m = 1

MẐ
wm = wm∑M

i=1 wi

, m = 1, . . . ,M, (82)

then the self-normalized IS estimator can be written as

ĨM =
∑M

m=1 w̄mg(θ
(m)). In general, the estimator ĨM is

less efficient than IM in Eq. (81). In several applications of

importance sampling, it is required to measure this loss

in efficiency, when ĨM is used instead of IM. The idea

is to define the ESS as the ratio of the variances of the

estimators [290],

ESS = M
varπ̄ [ Î]

varq̄[ Ĩ]
. (83)

The ESS value represents the number of samples from

π̄ required to obtain a Monte Carlo estimator Î with the

same efficiency of the IS estimator Ĩ, considering q̄ as

the proposal density. Finding a useful expression of ESS

derived analytically from the theoretical definition above

is not straightforward. Different derivations proceed by

using several approximations and assumptions to yield an

expression which is useful from a practical point of view

[290, 291], [292, Chapter 11], [293, Chapter 4]. A well-

known ESS approximation, widely used in the literature

[106, 292, 293], is

ÊSS = 1
∑M

m=1 w̄
2
m

. (84)

An interesting property of the ÊSS in (84) is that 1 ≤
ÊSS ≤ M. Although Eq. (84) is often considered a suit-

able approximation of the theoretical ESS definition, its

derivation [290, 293, 294],[289, Section 3] contains several

approximations and strong assumptions [295]. As a con-

sequence, ÊSS can differ substantially from the original

definition of the ESS in many scenarios. In [295], different

alternative approximations are discussed. For instance,

ÊSS = 1

max w̄m
(85)

results again in 1 ≤ ÊSS ≤ M: the minimum is obtained

when all the samples have zero weight except only one,

whereas the maximum is reached when all the weights are

equal to w̄m = 1
M [295]. Other related discussions and

results can be found in [296–298].

4.6 Proper weighting

Although widely adopted, the standard IS weights in

Eq. (62) are not the unique possibility. The definition of

a properly weighted sample can be extended as suggested

in [104, Section 14.2], [106, Section 2.5.4] and in [275].

More specifically, given a set of samples, they are properly

weighted with respect to the target π̄ if, for any integrable

function g,

EQ[w(θ (m))g(θ (m))]= cEπ̄ [ g(θ
(m))] , ∀m ∈ {1, . . . ,M},

(86)

where c > 0 is a constant value, independent from the

index m, and the expectation of the left hand side is per-

formed w.r.t. to the joint PDF of w(θ) and θ , i.e., Q(θ ,w).

Thus, in order to obtain consistent estimators, one has

to design a joint PDF Q(θ ,w) which guarantees that the

restriction of Eq. (86) is fulfilled. An example is provided

below.

4.6.1 Proper weighting of a resampled particle

Let us consider the particle approximation of the measure

of π̄ obtained by the IS approach drawingM IID particles

θ (m) ∼ q(θ),

π̂(θ |θ1:M) = 1

MẐ

M∑

m=1

w(θ (m))δ(θ − θ (m)), (87)

where w(θ (m)) = wm = π(θ (m))

q(θ (m))
and δ(θ) is the Dirac delta

function. Therefore, given the set of weighted samples

{θ (m),wm}Mm=1, a resampled particle θ̃ is a sample drawn

from {θ (m)}Mm=1 according to the probability mass wm

MẐ
, i.e.,

θ̃ ∼ π̂(θ |θ1:M). (88)

Let us denote the joint PDF Q̃(θ , θ1:M) =
π̂(θ |θ1:M)

[∏M
i=1 q(θ

(i))
]
. The marginal PDF q̃(θ) of a

resampled particle θ̃ , integrating out θ1:M, i.e., θ̃
′ ∼ q̃(θ),

is

q̃(θ) =
∫

XM
Q̃(θ , θ1:M)dθ1:M

=
∫

XM
π̂(θ |θ1:M)

[
M∏

i=1

q(θ (i))

]
dθ1:M,

= π(θ)

M∑

j=1

⎛
⎜⎜⎝
∫

XM−1

1

MẐ

⎡
⎢⎢⎣

M∏

i=1
i	=j

q(θ (i))

⎤
⎥⎥⎦ dθ¬j

⎞
⎟⎟⎠ ,

= π(θ)

∫

XM−1

1

Ẑ

⎡
⎢⎢⎣

M∏

i=1
i	=j

q(θ (i))

⎤
⎥⎥⎦ dθ¬j, (89)

and the standard IS weight of a resampled particle θ̃ is

w(̃θ) = π(̃θ)

q̃(̃θ)
. (90)

However, usually q̃(θ) in Eq. (89) cannot be evaluated,

and thus the standard IS weight cannot be computed

[299–302] [273, App. C1] [232, App. B3]. An alternative is
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to use Liu’s definition of proper weighting in Eq. (86) and

look for a weight function ρ(̃θ) = ρ(̃θ , θ1:M) such that

EQ̃(θ ,θ1:M)[ ρ(θ , θ1:M)h(θ)]= cEπ̄ [ h(θ)] , (91)

where Q̃(θ , θ1:M) = π̂(θ |θ1:M)
[∏M

i=1 q(θ
(i))

]
. A suitable

choice is

ρ(̃θ , θ1:M) = Ẑ = 1

M

M∑

i=1

w(θ (i)), (92)

since it holds in Eq. (91). For the proof and further

discussions, see [301, 303, 304]. The proper weighting

of a resampled particle is used in several Monte Carlo

approaches, like the group IS described in Section 4.7.

4.7 Group importance sampling

Here, we use the results of the previous section to assign

one single weighted sample to a set of weighted samples to

summarize all the statistical information. Let us consider

L sets of weighted samples, S1 = {θ (m)
1 ,w1,m}M1

m=1, S2 =
{θ (m)

2 ,w2,m}M2
m=1, ...., SL = {θ (m)

L ,wL,m}ML
m=1, where θ

(m)
ℓ ∼

qℓ(θ), i.e., a different proposal PDF can be used to generate

each set Sℓ and in general Mi 	= Mj for all i 	= j, i, j ∈
{1, ..., L}.
In different Monte Carlo applications, it is convenient

(and often required) to compress the statistical infor-

mation contained in all these sets by using a summary

sample, θ̃ℓ, and summary weight,Wℓ, ℓ = 1, . . . , L, in such

a way that

ĨL = 1
∑L

j=1Wj

L∑

ℓ=1

Wℓg (̃θℓ) (93)

is still a consistent estimator of I, for a generic integrable

function g(θ) [303]. Thus, although the compression is

lossy, we still have a suitable particle approximation by

the set of weighted samples {̃θℓ,Wℓ}Lℓ=1 of the target π̄ , as

shown in the following. Let us denote the IS of the mth

sample in the ℓth group as wℓ,m = π(θℓ,m)

qm(θℓ,m)
, and Ẑℓ =

1
Mℓ

∑Mℓ

m=1 wℓ,m. Then, it is possible to show that, with the

choice

θ̃ℓ ∼ 1
∑Mℓ

i=1 wi,ℓ

Mℓ∑

m=1

wℓ,mδ
(
θ − θ

(m)
ℓ

)
(94)

and

Wℓ = MℓẐℓ, (95)

then ĨL in Eq. (93) is a consistent estimator of I. Note that

θ̃ℓ is a resampled particle within the ℓth group and Wℓ

takes into account the proper weight of a resampled par-

ticle, Ẑℓ, and the number of samples in the ℓth set, Mℓ.

Let us consider the normalized weights w̄ℓ,m = wm,ℓ∑Mℓ
i=1 wi,ℓ

.

Since w̄ℓ,m = wℓ,m

MℓẐℓ
= wℓ,m

Wℓ
, the unnormalized weight of

the particle θ
(m)
ℓ can be expressed as wℓ,m = Wℓw̄ℓ,m. This

confirms that after a particle is resampled according to

w̄ℓ,m, in order to represent the ℓth group of Mℓ weighted

samples, it must be weighted as Wℓ. The idea of a sum-

mary sample/weight has been implicitly used in different

SMC schemes proposed in literature, for instance, for the

communication among parallel particle filters [305–307],

and in the particle island methods [297, 308, 309]. GIS

also appears indirectly in particle filtering for model selec-

tion [304, 310, 311], and in the so-called Nested Sequen-

tial Monte Carlo techniques [302, 312, 313]. For further

observations and applications of GIS see [301, 303].

4.8 Sequential importance sampling (SIS)

In this section, we describe the sequential importance

sampling (SIS) scheme. In some applications, the param-

eters of interest θ can be split in two disjoint groups,

θ =[ x,λ], where the first one, x, is related to a dynam-

ical system (for instance, x can be the hidden state in a

state-space model) and the other, λ, is a static parame-

ter (for instance, an unknown parameter of the model).

The strategies for making inference about x and λ should

take into account the different nature of the two parame-

ters. In the previous sections, we have considered θ = λ.

In Section 5.2.2, we tackle the general case θ =[ x,λ],

whereas here we address the case θ = x. Namely, we

assume that the variable of interest is a dynamical variable,

i.e., θ = x = x1:D =[ x1 . . . , xD]
⊤ with xd ∈ R for the sake

of simplicity, and the target can be factorized as

π̄(x) ∝ π(x) = γ1(x1)

D∏

d=2

γd(xd|xd−1). (96)

Given a proposal q(x) = q1(x1)
∏D

d=2 qd(xd|xd−1), and

a sample x(m) = x
(m)
1:D ∼ q(x) with x

(m)

d ∼ qd(xd|x(m)

d−1), we

assign the importance weight

w(x(m)) = w
(m)
D = π(x(m))

q(x(m))
=

γ1(x
(m)
1 )γ2(x

(m)
2 |x(m)

1 ) · · · γD(x
(m)
D |x(m)

D−1)

q1(x
(m)
1 )q2(x

(m)
2 |x(m)

1 ) · · · qD(x
(m)
D |x(m)

D−1)
.

(97)

The weight above can be computed efficiently by fol-

lowing a recursive procedure to compute the importance

weights: starting with w
(m)
1 = π(x

(m)
1 )

q(x
(m)
1 )

and then obtaining

w
(m)

d = w
(m)

d−1β
(m)

d =
d∏

j=1

β
(m)
j , d = 1, . . . ,D, (98)

where

β
(m)
1 = w

(m)
1 (99a)

β
(m)

d =
γd(x

(m)

d |x(m)

d−1)

qd(x
(m)

d |x(m)

d−1)
, (99b)
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4.8.1 Sequential importance resampling (SIR)

Sequential importance resampling, a.k.a., standard par-

ticle filtering, is a SIS scheme where resampling steps

are incorporated during the recursion, as shown in Algo-

rithm 19 [304, 314–316]. Resampling consists in drawing

particles from the current cloud according to the normal-

ized importance weights. In general, the resampling steps

are applied only in certain iterations in order to avoid the

path degeneration, taking into account an ESS approxi-

mation, such as ÊSS = 1∑M
m=1(w̄

(m)

d
)2

or ÊSS = 1

max w̄
(m)

d

with w̄
(m)

d = w
(m)

d∑M
i=1 w

(i)
d

[295]. If 1
M ÊSS is smaller than

a pre-established threshold η ∈[ 0, 1], the particles are

resampled. Thus, the condition for the adaptive resam-

pling can be expressed as ÊSS < ηM. When η = 1, the

resampling is applied at each iteration and in this case

SIR is often called bootstrap particle filter [314, 315]. If

η = 0, no resampling steps are applied, and we have the

SIS method described above. Consider the Algorithm 19.

Let us define

Ẑd = 1

M

M∑

m=1

w
(m)

d = 1

M

M∑

m=1

d∏

j=1

β
(m)
j , (100)

where we have used the recursion for the weights

in Alg. 19. Note that in Algorithm 19 we have

employed a proper weighting for resampling particles (see

Section 4.6.1 and [301]),

w
(1)
d = w

(2)
d = . . . = w

(M)

d = Ẑd. (101)

In many works regarding particle filtering it is noted

that the unnormalized weights of the resampled parti-

cles, w
(1)
d = w

(2)
d = . . . = w

(M)

d , but a specific value is

not given. if a different value c 	= Ẑd is employed, i.e.,

w
(1)
d = . . . = w

(M)

d = c, the algorithm is still valid (if

the resampling is applied considering all the particles), but

the weight recursion loses some statistical meaning. In the

case of the standard SIR scheme, i.e., when the resam-

pling is performed considering all the M particles, the

normalized weights of the resampled particles are

w̄
(1)
d = w̄

(2)
d = . . . = w̄

(M)

d = 1

M
,

for any possible choice of c. Moreover, people usually

employs a different marginal likelihood estimator

Ẑalt
d =

d∏

j=1

[
M∑

m=1

w̄
(m)
j−1β

(m)
j

]
, (102)

which involves only the normalized weights, w̄
(m)

d , instead

of the unnormalized ones, w
(m)

d . Hence, this is a suitable

and consistent estimator, in this scenario. However, the

standard marginal likelihood estimator

Ẑ = ẐD = 1

M

M∑

m=1

w
(M)
D =

M∑

m=1

D∏

j=1

β
(m)
j , (103)

is consistent only if a proper weighting after resampling

is used [301, 303, 304]. Moreover, if the resampling is

performed considering only a subset of the particles of

cardinality R < M (instead over all the M particles), the

proper weighting is strictly needed.

Algorithm 19 Sequential importance resampling (SIR).

1 Initialization: Choose the number of particles (M ),

the initial particles x
(m)
0 form = 1, . . . ,M, an ESS

approximation, and a constant value η ∈[ 0, 1].
2 FOR d = 1, . . . ,D:

(a) Propagation: Draw x
(m)

d ∼ qd(xd|x(m)

d−1), for

m = 1, . . . ,M.

(b) Weighting: Compute the weights

w
(m)

d = w
(m)

d−1β
(m)

d =
d∏

j=1

β
(m)
j , m = 1, . . . ,M,

(104)

where β
(m)

d = γd(x
(m)

d
|x(m)

d−1)

qd(x
(m)

d
|x(m)

d−1)
.

(c) IF ÊSS < ηM THEN:

i. Resampling: ResampleM times within

the set {x(m)

d−1}
M
m=1 according to the

probabilities w̄
(m)

d = w
(m)

d∑M
j=1 w

(j)
d

, obtaining

M resampled particles {x̄(m)

d }Mm=1. Then,

set x
(m)

d = x̄
(m)

d , form = 1, . . . ,M.

ii. Proper weighting: Compute

Ẑd = 1
M

M∑
m=1

w
(m)

d and set w
(m)

d = Ẑd for

m = 1, . . . ,M.

3 Return {x(m) = x
(m)
1:D ,w

(m) = w
(m)
D }Mm=1.

4.8.2 Conditional particle filter

The conditional particle filter (CPF) is a modification of

the particle filter algorithm which takes a reference state

sequence x∗ = x∗
1:D as input [317, 318]. Namely, the CPF

is a standard particle filter (e.g., the SIR in Algorithm 19)

setting as the first particle x
(1)
1:D = x∗

1:D, the reference path.

Hence, the implementation of the CPF algorithm is exactly

like a standard particle filter, except for the following two

points:
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1. The first path x
(1)
1:D is not sampled, i.e., it is not

randomly generated but fixed in advance. Indeed,

each component of the first path x
(1)
1:D is copied from

the reference path x∗
1:D.

2. In the resampling step, the first particle is guaranteed

to survive.

Considering a resampling step at each iteration (just for

the sake of simplicity), the CPF is outlined in Algo-

rithm 20. It is important to remark that the procedure (a)

picking a reference path x∗, (b) running the CPF, (c) pick-
ing a path x′ = x′

1:D by resampling once with probabilities

proportional to the final weights wm for m = 1, . . . ,M,

and (d) repeating from (a) considering x∗ = x′, leaves
invariant the target density π̄(x). Indeed, this procedure

virtually coincides with the Ensemble MCMC method

that will be described in Section 5.1.4 (see [232, Appendix

C] for a proof). For this reason, the CPF method is often

applied within sophisticated MCMC techniques, called

Particle Gibbs algorithms (see Section 5.2.3 for further

details). The CPF provides a particle approximation of the

target measure given the reference path x′, i.e.,

π̂(x|x′) =
M∑

m=1

w̄
(m)
D δ(x − x(m)). (105)

Finally, note that we have considered a CPF method that

is slightly different from the technique proposed in [317].

Indeed, here we have described the CPF version given in

[318, 319].

5 MC-within-MCMCmethods
In this section, we describe several MCMC techniques

that use other inner MC estimators at each iteration24.

The resulting hybrid methods are still MCMC algorithms,

since they rely on a Markov chain to sample from the tar-

get PDF, but they require these inner MC techniques for

different reasons. They can be divided into two classes.

The methods in the first class (see Sections 5.1 and 5.2)

use IS and a resampling step to generate better candi-

dates for the MH acceptance test. The methods in the

second class need some inner MC algorithm (either IS or

MCMC) to obtain unbiased estimators of the likelihood

function (see Sections 5.3 and 5.4). There is a connection

between these two classes of algorithms which is appar-

ent between the methods in Sections 5.2.2 and 5.3. We

also split the first class in two sub-families. In the first

one (Section 5.1), we describe the MCMC techniques that

propose multiple candidates at each iteration and work in

a batch way (i.e., directly in the entire space of θ ). The

methods contained in the second sub-family (Section 5.2)

also generate several candidates at each iteration, but they

24Note that we have already described an MC-within-MCMC method in
Section 3.1.4: the MH-within-Gibbs algorithm.

Algorithm 20 Conditional particle filter (CPF).

1 Initialization: Determine the reference path x∗
1:D.

Choose the number of particles (M ) and otherM − 1

initial particles x
(m)
0 form = 2, . . . ,M.

2 FOR d = 1, . . . ,D:

(a) Propagation: Set x
(1)
d = x∗

d and draw

x
(m)

d ∼ qd(xd|x(m)

d−1), form = 2, . . . ,M.

(b) Weighting: Compute the weights

w
(m)

d = w
(m)

d−1β
(m)

d =
d∏

j=1

β
(m)
j , m = 1, . . . ,M,

(106)

where β
(m)

d = γd(x
(m)

d
|x(m)

d−1)

qd(x
(m)

d
|x(m)

d−1)
.

(c) Conditional Resampling:

i. Set x̄
(1)
d = x

(1)
d .

ii. ResampleM − 1 times within the set of

M samples {x(m)

d−1}
M
m=1 according to the

probabilities w̄
(m)

d = w
(m)

d∑M
j=1 w

(j)
d

,

m = 1, . . . ,M, obtainingM − 1

resampled particles {x̄(m)

d }Mm=2.

iii. Set x
(m)

d = x̄
(m)

d , form = 1, . . . ,M.

(d) Proper weighting: Compute Ẑd = 1
M

M∑
m=1

w
(m)

d

andsetw
(m)

d = Ẑd for allm = 1, . . . ,M [301,303]

3 Return {x(m) = x
(m)
1:D ,w

(m) = w
(m)
D }Mm=1.

assume that a factorization of the target density is avail-

able. This assumption allows the sequential generation of

the candidates (via particle filtering, for instance).

5.1 MCMCwith multiple candidates for the estimation of

a static parameter

In the MH algorithm, at each iteration, one new sample,

θ ′, is generated and tested w.r.t. the previous state, θ (t−1),

by using the acceptance probability αt = α(θ ′, θ (t−1)).

Other generalized MH schemes generate several candi-

dates at each iteration to be tested as the new possible

state with the aim of increasing the acceptance rate of

candidate samples. In all these schemes, an extended

acceptance probability, αt , has to be properly designed in

order to guarantee the ergodicity of the chain. Below we

describe the most important examples of this kind of gen-

eralizedMH algorithms [122]. Furthermore, most of these
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techniques use an AIS approximation of the target den-

sity (see Section 4.2) in order to improve the proposal

procedure within an MH-type algorithm. Namely, they

build an IS approximation adaptively and then draw one

sample from this approximation (resampling step). Finally,

the selected sample is compared with the previous state

of the chain, θ (t−1), according to a suitable generalized

acceptance probability αt .

5.1.1 Multiple-try Metropolis (MTM)

Themultiple-try Metropolis (MTM) algorithms are exam-

ples of this class of methods [122, 320–324]. In this case,

N samples (a.k.a. “tries” or “candidates”) are drawn from

the proposal PDF, one of them is selected according to

some suitable weights, and the selected candidate is finally

accepted or rejected according to a generalized probability

function αt .

The standard MTM scheme is shown in Algorithm 21.

For the sake of simplicity, we have considered the use

of the standard importance weights w(θ) = π(θ)
q(θ)

(see

Section 4.2), but other more sophisticated alternatives are

also possible [320, 321, 325]. In its general form, when

the proposal depends on the previous state of the chain,

q(θ |θ (t−1)), MTM requires the generation of N − 1 aux-

iliary samples, v(1), . . . , v(N−1), which are employed in the

computation of the acceptance probability αt . These sam-

ples are required in order to guarantee the ergodicity of

the underlying Markov chain. Indeed, it can be proved

the resulting MTM kernel satisfies the detailed balance

condition, implying that the chain is reversible.

Note that, for N = 1, we have θ̃
(j) = θ̃

(1)
, v(1) = θ (t−1),

and the acceptance probability of the MTM method

becomes

αt = α(̃θ
(1)

, θ (t−1)) = min

[
1,

w(̃θ
(1)

)

w(v(1))

]
,

= min

[
1,

w(̃θ
(1)

)

w(θ (t−1))

]
,

= min

[
1,

π(̃θ
(1)

)q(θ (t−1) |̃θ (1)
)

π(θ (t−1))q(̃θ
(1)|θ (t−1))

]
,

(111)

which is the acceptance probability of the classical MH

technique shown in Algorithm 3 with θ̃
(1)

playing the

role of θ ′. Several variants of the standard MTM method

shown in Algorithm 21 have been studied. For instance,

some authors have considered the use of correlated tries

or different proposal PDFs [231, 321].

5.1.2 Independentmultiple-tryMetropolis (I-MTM) schemes

The MTM method described in Algorithm 21 requires

drawing 2N − 1 samples at each iteration (N candidates

Algorithm 21Multiple Try Metropolis (MTM) method.

1 Initialization: Choose a proposal function q(θ |θ (t−1)),

an initial state θ (0), the total number of iterations (T),

and the number of tries (N ).

2 FOR t = 1, . . . ,T :

(a) Draw θ̃
(1)
, θ̃

(2)
, . . . , θ̃

(N) ∼ q(θ |θ (t−1)).

(b) Compute the importance weights:

w(̃θ
(n)

) = π(̃θ
(n)

)

q(̃θ
(n)|θ (t−1))

, for n = 1, . . . ,N .

(107)

(c) Select one sample θ̃
(j) ∈ {̃θ (1)

, . . . , θ̃
(N)},

according to the probability mass function

w̄n = w(̃θ
(n)

)
∑N

i=1 w(̃θ
(i)

)
. (108)

(d) Draw N − 1 auxiliary samples

v(1), . . . , v(j−1), v(j+1), . . . , v(N) ∼ q(θ |̃θ (j)
), and

set v(j) = θ (t−1).

(e) Compute the weights of the auxiliary samples,

w(v(n)) = π(v(n))

q(v(n) |̃θ (j)
)
, for n = 1, . . . ,N ,

(109)

and the acceptance probability of θ̃
(j)
:

αt ≡ α(̃θ
(j)
, θ (t−1)) = min

[
1,

∑N
n=1 w(̃θ

(n)
)

∑N
n=1 w(v(n))

]
,

(110)

(f) Draw u ∼ U([ 0, 1)). If u ≤ αt , accept θ̃
(j)

and

set θ (t) = θ̃
(j)
. Otherwise (i.e., if u > αt), reject

θ̃
(j)

and set θ (t) = θ (t−1).

3 Approximate the integral in Eq. (2) using Eq. (14).

andN −1 auxiliary samples) and onlyN −1 of those sam-

ples are used in the acceptance probability function. The

generation of the auxiliary points,

v(1), . . . , v(j−1), v(j+1), . . . , v(N) ∼ q(θ |̃θ (j)
),

can be avoided if the proposal PDF is independent from

the previous state, i.e., q(θ |θ (t−1)) = q(θ). In this case, we

should draw N − 1 samples again from q(θ) at step 2(d)

of Algorithm 21. However, since we have already drawn N

samples from q(θ) at step 2(a) of Algorithm 21, we can set
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v(1) = θ̃
(1)
, . . . , v(j−1) = θ̃

(j−1)
, v(j) = θ (t−1), v(j+1)

= θ̃
(j+1)

. . . v(N−1) = θ̃
(N)

,
(112)

without jeopardizing the ergodicity of the chain. Hence,

we can avoid step 2(d) in Algorithm 21, and the acceptance

probability becomes

αt ≡ α(̃θ
(j)
, θ (t−1)) = min

⎡
⎣1,

w(̃θ
(j)

) +
∑N

n=1,n	=j w(̃θ
(n)

)

w(θ (t−1)) +
∑N

n=1,n	=j w(̃θ
(n)

)

⎤
⎦ . (113)

The I-MTM technique is shown in Algorithm 22. Note

that Eq. (113) can be expressed alternatively as

α(̃θ
(j)
, θ (t−1)) = min

[
1,

Ẑ1

Ẑ2

]
, (114)

where we have denoted

Ẑ1 = 1

N

N∑

n=1

w(̃θ
(n)

), (115a)

Ẑ2 = 1

N

⎡
⎢⎢⎣w(θ (t−1)) +

N∑

n=1
n	=j

w(̃θ
(n)

)

⎤
⎥⎥⎦ . (115b)

From the IS theory (see Section 4), we know that both

Ẑ1 and Ẑ2 are unbiased estimators of the normalizing con-

stant (a.k.a, partition function or marginal likelihood) of

the target, Z. Moreover, Eq. (115b) suggests that other

more sophisticated unbiased estimators of Z could be

used without jeopardizing the ergodicity of the I-MTM

algorithm. For instance, instead of recycling the samples

generated in the same iteration as the auxiliary points in

Eq. (112), we could reuse samples generated in the pre-

vious iteration. This alternative version of the I-MTM

method (I-MTM2) is described in Algorithm 23. The

I-MTM2 method is related to the well-known particle

Metropolis-Hastings (PMH) algorithm [317] (see [303,

326] for further considerations). The ergodicity of I-

MTM2 is thus ensured, since it can be interpreted as a

PMH algorithm where no resampling is applied (implying

that the resulting candidates are independent from each

other).

5.1.3 GroupMetropolis sampling

The auxiliary weighted samples in the previous I-MTM

schemes (i.e., the N − 1 samples drawn at each iter-

ation which are not selected for comparison with the

previous state θ (t−1)) can be recycled in order to pro-

vide a final Monte Carlo estimator [301, 303]. This leads

to Algorithm 24, known as group Metropolis sampling

(GMS). GMS can be considered an extension (for N > 1

candidates) of the algorithm described in [327], where

the authors show how to recycle and include the sam-

ples rejected in one run of a standard MH method (i.e.,

Algorithm 22 Independent Multiple Try Metropolis (I-

MTM).

1 Initialization: Choose a proposal function q(θ), an

initial state θ (0), the total number of iterations (T), and

the number of tries (N ).

2 FOR t = 1, . . . ,T :

(a) Draw θ̃
(1)
, θ̃

(2)
, . . . , θ̃

(N) ∼ q(θ).

(b) Compute the importance weights:

w(̃θ
(n)

) = π(̃θ
(n)

)

q(̃θ
(n)

)
, for n = 1, . . . ,N .

(116)

(c) Select one sample θ̃
(j) ∈ {̃θ (1)

, . . . , θ̃
(N)},

according to the following probability mass

function:

w̄n = w(̃θ
(n)

)
∑N

i=1 w(̃θ
(i)

)
.

(d) Compute the acceptance probability of θ̃
(j)
:

αt ≡ α(̃θ
(j)
, θ (t−1)) = min

⎡
⎣1,

w(̃θ
(j)

) +
∑N

n=1,n	=j w(̃θ
(n)

)

w(θ (t−1)) +
∑N

n=1,n	=j w(̃θ
(n)

)

⎤
⎦ ,

(117a)

= min

[
1,

Ẑ1

Ẑ2

]
, (117b)

where Ẑ1 and Ẑ2 are given by (115a) and

(115b), respectively.

(e) Draw u ∼ U([ 0, 1)). If u ≤ αt , accept θ̃
(j)

and

set θ (t) = θ̃
(j)
. Otherwise (i.e., if u > αt), reject

θ̃
(j)

and set θ (t) = θ (t−1).

3 Approximate the integral in Eq. (2) using Eq. (14).

N = 1 in this case) into a unique consistent estima-

tor. GMS yields a sequence of sets of weighted samples,

St = {θ (t,n), ρ(t,n)}Nn=1 for t = 1, . . . ,T , where we have

denoted as ρ(t,n) the importance weights assigned to the

samples θ (t,n). All the samples are then employed to obtain

a joint particle approximation of the target. This approxi-

mation can then be used to compute any desired moment

of the target PDF as

ÎN(T−Tb) = 1

T − Tb

T∑

t=Tb+1

N∑

n=1

ρ(t,n)

∑N
i=1 ρ(t,i)

g(θ (t,n))

= 1

T − Tb

T∑

t=Tb+1

Î
(t)
N , (121)
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Algorithm 23 Alternative version of I-MTM method (I-

MTM2)

1 Initialization: Choose a proposal function q(θ), an

initial state θ (0), an initial estimate of the normalizing

constant of the target Ẑ0, the total number of iterations

(T), and the number of tries (N ).

2 FOR t = 1, . . . ,T :

(a) Draw θ̃
(1)
, θ̃

(2)
, . . . , θ̃

(N) ∼ q(θ).

(b) Compute the importance weights:

w(̃θ
(n)

) = π(̃θ
(n)

)

q(̃θ
(n)

)
, for n = 1, . . . ,N .

(118)

(c) Select one sample θ̃
(j) ∈ {̃θ (1)

, . . . , θ̃
(N)},

according to the following probability mass

function:

w̄n = 1

NẐ′w(̃θ
(n)

), (119a)

Ẑ′ = 1

N

N∑

i=1

w(̃θ
(i)

). (119b)

(d) Compute the acceptance probability of θ̃
(j)
:

αt ≡ α(̃θ
(j)
, θ (t−1)) = min

[
1,

Ẑ′

Ẑt−1

]
.

(120)

(e) Draw u ∼ U([ 0, 1)). If u ≤ αt , accept θ̃
(j)
,

setting θ (t) = θ̃
(j)

and Ẑt = Ẑ′. Otherwise (i.e.,

if u > αt), reject θ̃
(j)
, setting θ (t) = θ (t−1) and

Ẑt = Ẑt−1.

3 Approximate the integral in Eq. (2) using Eq. (14).

where Î
(t)
N =

∑N
n=1

ρ(t,n)

∑N
i=1 ρ(t,i)

g(θ (t,n)) and Tb is the burn-in

period, as usual.

GMS is related to the MTM schemes previously

described [321, 326], even though no resampling steps are

applied at each iteration in GMS. Nevertheless, we can

recover an MTM chain from the GMS output by applying

one resampling step when St 	= St−1, i.e.,

θ (t) =

⎧
⎨
⎩

θ ′ ∼
∑N

n=1
ρ(t,n)

∑N
i=1 ρ(t,i)

δ(θ − θ (t,n)), if St 	=St−1,

θ (t−1), if St =St−1,

(125)

for t = 1, . . . ,T . More specifically, {θ (t)}Tt=1 is equivalent

to the Markov chain obtained in one run of the I-MTM2

Algorithm 24 Group Metropolis Sampling (GMS).

1 Initialization: Choose a proposal function q(θ), an

initial state θ (0), an initial estimate of the normalizing

constant of the target Ẑ0, the total number of iterations

(T), and the number of tries (N ).

2 FOR t = 1, . . . ,T :

(a) Draw θ̃
(1)
, θ̃

(2)
, . . . , θ̃

(N) ∼ q(θ).

(b) Compute the importance weights:

w(̃θ
(n)

) = π(̃θ
(n)

)

q(̃θ
(n)

)
, for n = 1, . . . ,N .

(122)

Define S ′ = {̃θ (n)
,w(̃θ

(n)
)}Nn=1 and compute

Ẑ′ = 1
N

∑N
n=1 w(̃θ

(n)
).

(c) Compute the acceptance probability:

αt ≡ α(S ′,St−1) = min

[
1,

Ẑ′

Ẑt−1

]
. (123)

(d) Draw u ∼ U([ 0, 1)). If u ≤ αt , accept S
′,

setting Ẑt = Ẑ′ and

St =
{
θ (t,n) = θ̃

(n)
, ρ(t,n) = w(̃θ

(n)
)
}N
n=1

.

(124)

Otherwise (i.e., if u > αt), reject S
′, setting

Ẑt = Ẑt−1 and St = St−1.

3 Approximate the integral in Eq. (2) using Eq. (121).

technique shown in Algorithm 23. GMS can also be inter-

preted as an iterative importance sampling scheme, where

an IS approximation using N samples is built at each iter-

ation and compared with the previous IS approximation.

This procedure is iterated T times, and all the accepted IS

estimators, Î
(t)
N , are finally combined to provide a unique

global approximation usingN(T −Tb) samples. Note that

the temporal combination of the IS estimators is obtained

dynamically by the random repetitions due to the rejec-

tions in the MH test. Therefore, the complete procedure

for weighting the samples generated by GMS can be inter-

preted as the composition of two weighting schemes: (a)

by an importance sampling approach building {ρ(t,n)}Nn=1
and (b) by the possible random repetitions due to the

rejections in the MH test.

5.1.4 EnsembleMCMC

Another alternative procedure, called ensemble MCMC

and involving several tries at each iteration, has been

proposed in [232, 241, 328]. In this section, we present

the simplest version, which employs a proposal PDF,
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q(θ), independent of the previous state of the chain.

At each iteration, the ensemble MCMC method (sum-

marized in Algorithm 25) generates N new samples,

θ̃
(1)
, θ̃

(2)
, . . . , θ̃

(N)
and then draws the new state θ (t) from

a set of N + 1 samples that includes the previous state,

{̃θ (1)
, . . . , θ̃

(N)
, θ̃

(N+1) = θ (t−1)}, according to the follow-

ing probabilities:

w̄j = w(̃θ
(j)

)
∑N

i=1 w(̃θ
(i)

) + w(θ (t−1))
, j = 1, . . . ,N + 1,

(126)

where w(θ) = π(θ)
q(θ)

denotes again the standard IS weight.

Note that, for N = 1, Eq. (126) becomes

w̄j = w(̃θ
(j)

)

w(̃θ
(i)

) + w(θ (t−1))

=
π(̃θ

(j)
)

q(̃θ
(j)

)

π(̃θ
(j)

)

q(θ (j))
+ π(θ (t−1))

q(θ (t−1))

= π(̃θ
(j)

)q(θ (t−1))

π(̃θ
(j)

)q(θ (t−1)) + π(θ (t−1))q(̃θ
(j)

)
, (127)

which is Barker’s acceptance function, as given by

Eq. (12b), with an independent proposal density and θ̃
(j)

playing the role of θ ′ in (12b). See [232, Appendix C] for a

proof of the ergodicity.

5.2 MCMCwith multiple candidates for the estimation of

a dynamic parameter

In this section, we consider that the parameter of inter-

est to be estimated (or at least part of it) is a dynam-

ical variable, such as the state in a state-space model.

In Section 5.2.1, the parameter of interest consists of a

dynamical variable x, i.e., θ = x. In Section 5.2.2, we con-

sider the more general scenario where the parameter of

interest is formed by both a dynamical variable x and static

variable λ, i.e., θ =[ x,λ]⊤.

5.2.1 Particle Metropolis-Hastings (PMH) algorithms

Let us assume that the variable of interest is a dynamical

variable, i.e., θ = x = x1:D =[ x1 . . . , xD]
⊤. This is the

case of inferring a hidden state in state-space model, for

instance. More generally, let assume that we are able to

factorize the target density as

π̄(x) ∝ π(x) = γ1(x1)

D∏

d=2

γd(xd|xd−1). (130)

The particle Metropolis-Hastings (PMH) method [317–

319, 329] is an efficientMCMC technique, proposed inde-

pendently from theMTM algorithm, specifically designed

Algorithm 25 Ensemble MCMC with an independent

proposal PDF.

1 Initialization: Choose a proposal function q(θ), an

initial state θ (0), the total number of iterations (T), and

the number of tries (N ).

2 FOR t = 1, . . . ,T :

(a) Draw θ̃
(1)
, θ̃

(2)
, . . . , θ̃

(N) ∼ q(θ).

(b) Compute the importance weights:

w(̃θ
(n)

) = π(̃θ
(n)

)

q(̃θ
(n)

)
, for n = 1, . . . ,N .

(128)

(c) Select one sample

θ̃
(j) ∈ {̃θ (1)

, . . . , θ̃
(N)

, θ̃
(N+1) = θ (t−1)},

according to the probability mass function

w̄j = w(̃θ
(j)

)
∑N

i=1 w(̃θ
(i)

) + w(θ (t−1))
. (129)

Set θ (t) = θ̃
(j)
.

3 Approximate the integral in Eq. (2) using Eq. (14).

for being applied in this framework. Indeed, we can take

advantage of the factorization of the target PDF and con-

sider a proposal PDF decomposed in the same fashion

q(x) = q1(x1)

D∏

d=2

qd(xd|xd−1).

Then, as in a batch IS scheme, given an nth sample x(n) =
x
(n)
1:D ∼ q(x) with x

(n)

d ∼ qd(xd|x(n)

d−1), we assign the

importance weight

w(x(n)) = w
(n)
D = π(x(n))

q(x(n))

=
γ1(x

(n)
1 )γ2(x

(n)
2 |x(n)

1 ) · · · γD(x
(n)
D |x(n)

D−1)

q1(x
(n)
1 )q2(x

(n)
2 |x(n)

1 ) · · · qD(x
(n)
D |x(n)

D−1)
.

(131)

The structure above suggests the use of a sequen-

tial approach. Thus, PMH uses an SIR approach (see

Section 4.8) to provide the particle approximation

π̂(x|x(1:N)) =
∑N

i=1 w̄
(i)
D δ(x − x(i)), where w̄

(i)
D = w

(i)
D∑N

n=1 w
(n)
D

and w
(i)
D = w(x(i)) is given by Eq. (131). Then, one particle

is drawn from this approximation, i.e., with a probability

proportional to the corresponding normalized weight.
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Estimation of the marginal likelihood Z SIR combines

the SIS approach with the application of resampling pro-

cedures. In SIR, a consistent estimator of Z is given by

Z̃ =
D∏

d=1

[
N∑

n=1

w̄
(n)

d−1β
(n)

d

]
, (132)

where

w̄
(i)
d−1 =

w
(i)
d−1∑N

n=1 w
(n)

d−1

.

Due to the application of the resampling, in SIR the

standard estimator

Ẑ = 1

N

N∑

n=1

w
(n)
D = 1

N

N∑

n=1

w(x(n)), (133)

is a possible alternative only if a proper weighting of

the resampled particles is applied [301, 303]. If a proper

weighting of a resampled particle is employed, both Z̃ and

Ẑ are equivalent estimators of Z [301, 303, 326]. Without

the use of resampling steps (i.e., in SIS), Z̃ and Ẑ are also

equivalent estimators [303].

The complete description of PMH is provided in Algo-

rithm 26 considering the use of Z̃. At each iteration, a

particle filter is run to obtain an approximation of the

measure of the target with N weighted samples. Then,

a sample among the N weighted particles is chosen by

applying a single resampling step. This selected sample is

then accepted or rejected as the next state of the chain

according to an MH-type acceptance probability, which

involves two estimators of the marginal likelihood Z.

Relationship betweenMTMand PMH schemes A sim-

ple look at I-MTM2 and PMH shows that they are closely

related [326]. Indeed, the structure of the two algorithms

coincides. Themain difference lies in the fact that the can-

didates in PMH are generated sequentially using an SIR

scheme. If no resampling steps are applied, then I-MTM2

and PMH are exactly the same algorithm, with candidates

being drawn either in a batch setting or in a sequential

way. Indeed, both PMH and I-MTM2 can be interpreted

as a standard MH method with an independent proposal

PDF and a proper weighting of a resampled particle [301,

303]. See [122, 303, 326] for further discussions on this

issue.

5.2.2 Particlemarginal Metropolis-Hastings (PMMH)

method

Assume now that the variable of interest is formed by

both dynamical and static variables, i.e., θ =[ x,λ]⊤.

Algorithm 26 Particle Metropolis-Hastings (PMH).

1 Initialization: Choose a initial state x0 and obtain an

initial estimation Z̃0 ≈ Z.

2 For t = 1, . . . ,T :

(a) Employ an SIR approach to draw N particles

and weight them, {x(i),w
(i)
D }Ni=1, i.e., sequentially

obtain a particle approximation

π̂(x) =
∑N

i=1 w̄
(i)
D δ(x − x(i)) where

x(i) =[ x
(i)
1 , . . . , x

(i)
D ]⊤. Furthermore, also obtain

Z̃∗ as in Eq. (132).

(b) Draw x∗ ∼ π̂(x|x(1:N)), i.e., choose a particle

x∗ = {x(1), . . . , x(N)} with probability w̄
(i)
D ,

i = 1, ...,N .

(c) Set xt = x∗ and Z̃t = Z̃∗ with probability

α = min

[
1,

Z̃∗

Z̃t−1

]
, (134)

otherwise set xt = xt−1 and Z̃t = Z̃t−1.

3 Return: {xt}Tt=1 with xt =[ x1,t , . . . , xD,t]
⊤.

For instance, this is the case of inferring both the hid-

den state x in state-space model and the static parame-

ters λ of the model. The particle marginal Metropolis-

Hastings (PMMH) technique is an extension of PMH

which addresses this problem [317, 319, 329].

Let us consider x = x1:D =[ x1, x2, . . . , xD]∈ R
dx , and

an additional model parameter λ ∈ R
dλ to be inferred

as well (θ =[ x,λ]⊤ ∈ R
D, with D = dx + dλ). Assum-

ing a prior PDF gλ(λ) over λ, and a factorized complete

posterior PDF π̄(θ) = π̄(x,λ),

π̄(x,λ) ∝ π(x,λ) = gλ(λ)π(x|λ), (135)

where π(x|λ) = γ1(x1|λ)
∏D

d=2 γd(xd|x1:d−1,λ). For a spe-

cific value of λ, we can use a λ and we can use a particle

filter approach, obtaining the approximation π̂(x|λ) =∑N
n=1 w̄

(n)
D δ(x−x(n)) and the estimator Z̃(λ), as described

above. The PMMH technique is then summarized in

Algorithm 27. The PDF qλ(λ|λt−1) denotes the proposal

density for generating possible values of λ. Observe that,

with the specific choice qλ(λ|λt−1) = gλ(λ), the accep-

tance function becomes

α = min

[
1,

Z̃(λ∗)

Z̃(λt−1)

]
. (136)

Note also that PMMHw.r.t. to λ can be interpreted asMH

method where the posterior cannot be evaluated point-

wise. Indeed, Z̃(λ) approximates the marginal likelihood

p(y|λ), i.e., it can also be interpreted as a special case of

the pseudo-marginal approach described below [330].
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Algorithm 27 Particle Marginal MH (PMMH).

1 Initialization: Choose the initial states x0, λ0, and an

initial approximation Z̃0(λ) ≈ Z(λ) ≈ p(y|λ).

2 FOR t = 1, . . . ,T :

(a) Draw λ∗ ∼ qλ(λ|λt−1).

(b) Given λ∗, run a particle filter obtaining

π̂(x|λ∗) =
∑N

n=1 w̄
(n)
D δ(x − x(n)) and Z̃(λ∗), as

in Eq. (132).

(c) Draw x∗ ∼ π̂(x|λ∗, x(1:N)), i.e., choose a particle

x∗ = {x(1), . . . , x(N)} with probability w̄
(i)
D ,

i = 1, ...,N .

(d) Set λt = λ∗ and xt = x∗ with probability

α = min

[
1,

Z̃(λ∗)gλ(λ∗)qλ(λt−1|λ∗)

Z̃(λt−1)gλ(λt−1)qλ(λ∗|λt−1)

]
.

(137)

Otherwise, set λt = λ∗ and xt = xt−1.

3 Return: {xt}Tt=1 and {λt}Tt=1.

5.2.3 Particle Gibbs algorithm

Note that, in order to draw from π̄(x,λ) ∝ π(x,λ) =
π(x1:D,λ) in Eq. (135), we could use a simple Gibbs sam-

pling approach: draw first from the conditional PDF λ′ ∼
π̄(λ|x′) given a reference path x′, and then sample a new

path from the other conditional x′′ ∼ π̄(x|λ′). This pro-
cedure continues iteratively, drawing λ′′ ∼ π̄(λ|x′′) and

x′′′ ∼ π̄(x|λ′′), in a Gibbs sampling fashion. We can draw

approximately the paths x = x1:D from the conditional

PDF π̄(x|λ) by running a particle filter and then resam-

pling once within the cloud of paths, as described in the

sections above (exactly as in PMMH). However, note that

is this procedure does not take into account the previ-

ous path xt−1 in order to generate the next sample xt ,

but only the λt−1. Namely, x′′ is drawn from π̄(x|λ′) that
does not depend on x′. The particle Gibbs (PG) technique
is an extension of the simple Gibbs approach previously

described that also considers the last sample generated,

xt−1, to draw the next path xt [317–319, 329]25. Algo-

rithm 28 summarizes the PG algorithm, which is guaran-

teed to generate a Markov chain with π̄(x,λ) as invariant

density [317–319].

5.3 Pseudo-marginal MCMCmethods

There are numerous applications where the target density

π̄ is not available in closed form and cannot be evaluated

pointwise exactly but only approximately. For instance, in

some situations we can evaluate the joint target π̄(λ, x),

25Related ideas about taking into account the previous path have been also
discussed in [326].

Algorithm 28 Particle Gibbs (PG).

1 Initialization: Choose the initial states x0, λ0, the

number of particles N and the total number of Gibbs

iterations T.
2 FOR t = 1, . . . ,T :

(a) Run the Conditional Particle Filter (CPF)

described in Section 4.8.2 (only N − 1 particles

are randomly generated), given λt−1 and the

reference path xt−1. Thus, we obtain

π̂(x|λt−1, xt−1) =
∑N

n=1 w̄
(n)
D δ(x − x(n)).

(b) Draw xt ∼ π̂(x|λt−1, xt−1), i.e., choose a

particle x∗ = {x(1), . . . , x(N)} with probability

w̄
(i)
D , i = 1, ...,N .

(c) Draw λt ∼ π̄(λ|xt), as in a standard Block

Gibbs sampling [48,49]

3 Return: {xt}Tt=1 and {λt}Tt=1.

but we are actually only interested on the marginal tar-

get PDF, π̄(λ) =
∫
X

π̄(λ, x)dx. If we cannot compute this

integral, we cannot evaluate π̄(λ). One simple possibility

is to run anMCMC algorithm in the extended space [λ, x]

and then consider only the first component. However,

this approach can be very inefficient in many cases. An

alternative is to run an MCMC algorithm in the subspace

of λ, addressing π̄(λ) but using an unbiased estimator

π̂(λ) of π̄(λ). This unbiased estimator can be provided

by another Monte Carlo method. This is exactly the case

of the PMMH algorithm described in Algorithm 27. Note

that, if we are interested only in making inference about λ,

then the variable x can be considered integrated out using

a Monte Carlo approximation [317].

In other related scenarios, the likelihood function ℓ(y|θ)

cannot be evaluated and, fixing a generic value θ , an unbi-

ased estimator ℓ̂(y|θ) of the probability ℓ(y|θ) is available,

i.e.,

E
[
ℓ̂(y|θ)

]
= ℓ(y|θ), ∀θ ∈ �. (138)

Note that this estimator must be unbiased and valid for all

possible values of θ ∈ �. If ℓ̂(y|θ) is available, then differ-

ent Monte Carlo algorithms, such as MCMC techniques,

can be applied considering the approximated posterior

density [330]

π̂(θ) = π̂(θ |y) ∝ ℓ̂(y|θ)p0(θ), (139)

where p0(θ) represents the prior PDF. Since the ISmethod

is often used to provide the unbiased estimator ℓ̂(y|θ)

[330], usually we have IS-within-MCMC algorithms in the

pseudo-marginal setup. The generic pseudo-marginalMH

method is summarized in Algorithm 29. This method is

also known in the literature as group independence MH

(GIMH) and a variant of this method is calledMonte Carlo
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within Metropolis (MCWM) [330]. They differ in the esti-

mator, π̂(θ (t−1)), used in the denominator of the accep-

tance probability α: in MCWM, π̂(θ (t−1)) is recomputed

at each iteration, whereas in GIMH the value estimated in

the previous iteration is recycled (as in Algorithm 29).

Algorithm 29 Generic Pseudo-Marginal MH method

1 Initialization: Choose a proposal function q(θ |θ (t−1)),

an initial state θ (0), the total number of iterations (T),

and the burn-in period (Tb).

2 FOR t = 1, . . . ,T :

(a) Draw θ ′ ∼ q(θ |θ (t−1)).

(b) Build an unbiased estimator ℓ̂(y|θ ′) of the
likelihood function ℓ(y|θ ′) and
π̂(θ ′) ∝ ℓ̂(y|θ ′)p0(θ ′).

(c) Set θ (t) = θ ′ with probability,

α = min

[
1,

π̂(θ ′)q(θ (t−1)|θ ′)

π̂(θ (t−1))q(θ ′|θ (t−1))

]
,(140)

otherwise, with probability 1 − α, set

θ (t) = θ (t−1).

3 Return: θ (t) for t = 1, . . . ,T .

In the following subsections, we describe four differ-

ent frameworks where the pseudo-marginal approach

is either required or indirectly used. However, before

describing potential applications of the pseudo-marginal

approach, let us remark that the variance of the unbi-

ased estimator used needs to be small in order to obtain

a useful output. Otherwise, pseudo-marginal methods

can result in very slowly-mixing chains even if they con-

verge asymptotically in the limit. This emphasizes the

importance of ensuring the geometric convergence of any

MCMC algorithm to guarantee that it converges with a

non-arbitrarily-slow rate.

5.3.1 Latent variablemodels

In latent variable models, the likelihood is often only

available as an intractable integral

ℓ(y|θ) =
∫

Z

ψ(y, z|θ)dz,

and hence π(θ |y) ∝ p0(θ)
[∫

Z
ψ(y, z|θ)dz

]
, which is also

intractable. The simplest solution is to apply an MCMC

algorithm for generating vectors [ θ ′, z′] from the joint

target PDF, π(θ , z|y), and then considering only the first

component of the drawn vectors [104]. More generally, an

approximation of the integral
∫
Z

ψ(y, z|θ)dz is required.

In some cases, this can be obtained using another Monte

Carlo technique such as the IS technique.

5.3.2 Doubly-intractable likelihoods

Another scenario where the posterior PDF cannot be

completely evaluated is the case of the so-called “doubly-

intractable” likelihood functions. In this situation, a “por-

tion” of the likelihood is unknown or cannot be evaluated,

e.g.,

ℓ(y|θ) = 1

C(θ)
φ(y|θ), (141)

where φ(y|θ) can be evaluated, but

C(θ) =
∫

�

φ(y|θ)dy (142)

is unknown. Hence, the value C(θ) must be approximated

[331]. A first algorithm for handling this kind of distribu-

tions was proposed in [332]. As an example, The single

variable exchange (SVE) algorithm is described in Algo-

rithm 30 (see [331]). If we denote as ytrue the actual

observed data, the posterior PDF is

π̄(θ |ytrue) ∝ π(θ |ytrue) = ℓ(ytrue|θ)p0(θ),

= 1

C(θ)
φ(ytrue|θ)p0(θ).

(143)

Note that, if we are able to draw samples y(k) ∼ ℓ(y|θ) ∝
φ(y|θ) for k = 1, ..., L, then we can approximate the

constant C(θ) via Monte Carlo approximation, i.e.,

C(θ) =
∫

�

φ(y|θ)dy ≈ 1

L

L∑

k=1

φ(y(k)|θ). (144)

If we are able to draw from ℓ(y|θ), we can use the IS

method, i.e., y(k) ∼ qy(y) and then we have

C(θ) =
∫

�

φ(y|θ)dy ≈ 1

L

L∑

k=1

φ(y(k)|θ)

qy(y(k))
. (145)

For the sake of simplicity, let us assume that we are able

to draw from ℓ(y|θ). Moreover, we set L = 1 and denote

y′ = y(1) ∼ ℓ(y|θ). Hence, we have C(θ) ≈ φ(y′|θ). Then,

we can write the approximate posterior function as

π(θ |ytrue) ≈ π̂(θ |ytrue, y′)

= 1

φ(y′|θ)
φ(ytrue|θ)p0(θ), y′ ∼ ℓ(y|θ).

(146)

The SVE algorithm is an MH method with the target

function π̂(θ |ytrue, y′). Note that

C(θ (t−1))

C(θ ′)
≈ φ(y(t−1)|θ (t−1))

φ(y′|θ ′)
,

where y(t−1) ∼ ℓ(y|θ (t−1)) and y′ ∼ ℓ(y|θ ′).
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Algorithm 30 Single Variable Exchange (SVE) algorithm.

1 Initialization: Choose a proposal function q(θ |θ (t−1)),

an initial state θ (0), the total number of iterations (T),

and the burn-in period (Tb).

2 FOR t = 1, . . . ,T :

(a) Draw θ ′ ∼ q(θ |θ (t−1)).

(b) Draw y′ ∼ ℓ(y|θ ′) ∝ φ(y|θ ′).
(c) Set θ (t) = θ ′ and y(t) = y′ with probability,

α = min

[
1,

π̂(θ ′|ytrue, y′)q(θ (t−1)|θ ′)

π̂(θ (t−1)|ytrue, y(t−1))q(θ ′|θ (t−1))

]
,

= min

[
1,

φ(ytrue|θ ′)

φ(ytrue|θ (t−1))

p0(θ
′)

p0(θ
(t−1))

q(θ (t−1)|θ ′)

q(θ ′|θ (t−1))

φ(y(t−1)|θ (t−1))

φ(y′|θ ′)

]

otherwise, with probability 1 − α, set θ (t) = θ (t−1)

and y(t) = y(t−1).

3 Return: θ (t) for t = 1, . . . ,T .

5.3.3 Approximate Bayesian computation (ABC)

In many applications, the likelihood cannot be evaluated

for several different reasons: (a) it is to costly and/or (b)

it is unknown analytically. However, in some of these sce-

narios it is possible to generate artificial data according

to the likelihood, i.e., we can simulate synthetic data from

the observation model [333–335]. Namely, in the Approx-

imate Bayesian Computation (ABC) framework, we can

draw samples [ θ ′, y′] from the joint target density,

p(θ , y) = ℓ(y|θ)p0(θ),

with the following procedure:

1. Draw θ ′ ∼ p0(θ) (i.e., draw θ ′ from the prior).

2. Draw y′ ∼ ℓ(y|θ ′) (i.e., draw y′ from the observation

model given θ ′).

However, we are interested in having samples from the

posterior density,

π̄(θ |ytrue) ∝ p(θ , ytrue), (147)

where ytrue represents the actual observed data. To solve

this issue, the underlying idea in ABC is to apply Monte

Carlo techniques considering the generalized posterior

PDF,

π̄ǫ(θ , y|ytrue) ∝ πǫ(θ , y|ytrue) = hǫ(||y − ytrue||)ℓ(y|θ)p0(θ), (148)

where ||·|| denotes a norm, and hǫ(ξ) ∈[ 0, 1] is a weighting
function defined for ξ ≥ 0 (with a parameter ǫ) which

satisfies the following conditions: the maximum value is

reached at 0 (i.e., hǫ(0) > hǫ(ξ) for any ξ > 0), and the

two following limits must be fulfilled, lim
ǫ→0

hǫ(ξ) = δ(ξ)

and lim
ǫ→∞

hǫ(ξ) = 0. For instance, one possible choice is

hǫ(||y − ytrue||) = exp

[
−||y − ytrue||2

2ǫ2

]
, (149)

whereas another common alternative is

hǫ(||y − ytrue||) =
{
1 if ||y − ytrue|| ≤ ǫ,

0 if ||y − ytrue|| > ǫ.
(150)

Considering the weighting function of Eq. (150), it is

straightforward to see that, as ǫ → 0, then the general-

ized target π̄ǫ(θ , y|ytrue) becomes more and more similar

to π̄(θ |ytrue), and indeed

lim
ǫ→0

π̄ǫ(θ , y|ytrue) = π̄(θ |ytrue). (151)

A Metropolis-Hastings ABC (MH-ABC) algorithm

addressing the target density π̄ǫ(θ , y|ytrue) defined in

Eq. (148) with weighting function defined in Eq. (150), can

be described as in Algorithm 31. Note that the extended

proposal PDF in this case is

qe(θ , y|θ (t−1)) = ℓ(y|θ)q(θ |θ (t−1)). (152)

Drawing a [ θ ′, y′]∼ qe(θ , y|θ (t−1)), the acceptance prob-

ability of the MHmethod in this case is

α = min

[
1,

πǫ(θ
′, y′|ytrue)qe(θ (t−1), y(t−1)|θ ′)

πǫ(θ
(t−1), y(t−1)|ytrue)qe(θ ′, y′|θ (t−1))

]
.

(153)

Then, replacing the expressions of πe an qe, we have

α=min

[
1,

hǫ (||y′ − ytrue||)ℓ(y′|θ ′)p0(θ ′)ℓ(y(t−1)|θ (t−1))q(θ (t−1)|θ ′)

hǫ (||y(t−1) − ytrue||)ℓ(y(t−1)|θ (t−1))p0(θ
(t−1))ℓ(y′|θ ′)q(θ ′|θ (t−1))

]
,

=min

[
1,

hǫ (||y′ − ytrue||)p0(θ ′)q(θ (t−1)|θ ′)

hǫ (||y(t−1) − ytrue||)p0(θ (t−1))q(θ ′|θ (t−1))

]
.

It is important to remark that in the previous expression

we do not need to evaluate the likelihood function. Finally,

note that, if hǫ is given by Eq. (150), in order to avoid

zeros in the denominator, the acceptance test involving

the probability α can be split in two parts [334, 335],

α =

⎧
⎨
⎩

min

[
1,

p0(θ
′)q(θ (t−1)|θ ′)

p0(θ
(t−1))q(θ ′|θ (t−1))

]
if ||y − ytrue|| ≤ ǫ,

0 if ||y − ytrue|| > ǫ.

(154)

Algorithm 31 uses the acceptance probability in

Eq. (154) [333–335].

5.3.4 Big data context

The ABC method completely avoids the evaluation of

the likelihood. As a counterpart, ABC requires the abil-

ity of drawing artificial data from the observation model.

Clearly, ABC fits very well in applications where evalu-

ating the likelihood is expensive. The likelihood function

can be costly due to the complexity of the model or
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Algorithm 31 Metropolis-Hastings ABC (MH-ABC)

algorithm

1 Initialization: Choose a proposal function q(θ |θ (t−1)),

an initial state θ (0), the total number of iterations (T),

and the burn-in period (Tb).

2 FOR t = 1, . . . ,T :

(a) Draw θ ′ ∼ q(θ |θ (t−1)).

(b) Draw y′ ∼ ℓ(y|θ ′).
(c) If ||y − ytrue|| > ǫ, set θ (t) = θ (t−1) and

y(t) = y(t−1).

(d) If ||y − ytrue|| ≤ ǫ, then:

• Set θ (t) = θ ′ and y(t) = y′ with probability,

α = min

[
1,

p0(θ
′)q(θ (t−1)|θ ′)

p0(θ
(t−1))q(θ ′|θ (t−1))

]
.

(155)

• Otherwise, with probability 1 − α, set

θ (t) = θ (t−1) and y(t) = y(t−1).

(e) Return: θ (t) for t = 1, . . . ,T .

because the size of the full dataset prohibits many eval-

uations of the likelihood. Specific methodologies have

been designed for this second scenario, i.e., when a big

number of data is available. All these techniques con-

sider a cheaper likelihood function including only a subset

of data at each iteration. One possible strategy, often

known as adaptive subsampling, consists in computing

the approximate acceptance probability α of the stan-

dard MH method, obtained considering only a random

subset of data. Namely, an approximate implementation

of the MH test is performed in some suitable way, in

order to guarantee that the performance of the result-

ing technique is not jeopardized (e.g., the total varia-

tion distance between the perturbed invariant distribu-

tion and the desired target distribution is controlled)

[336–339]. Other methods are based on the so-called

delayed acceptance approach: divide the acceptance MH

test into several parts involving likelihood functions with

an increasing number of data [336, 337, 339]. A related

strategy, called early rejection, was proposed in [340].

However, in the early rejection MCMC technique the

acceptance of a new proposed state still requires the eval-

uation of the full-likelihood, whereas the rejection may

require only the evaluation of a partial likelihood based

on a subset of data26. Another simple approach consists

26Despite their denominations, this kind of methods (called “delayed
acceptance” or “early rejection”) are not directly related to the delayed
rejection MH algorithm described in Section 3.4.2, which always considers the
complete likelihood.

in dividing the full dataset into mini-batches, running

different parallel Monte Carlo algorithms and combin-

ing all the partial estimators to obtain the global one

[242, 243, 341–344].

5.4 Noisy and approximate likelihoodmethods

5.4.1 NoisyMCMCmethods

The aforementioned methods can be grouped in the

unique framework shown in Algorithm 32 (e.g., see

[345–347]). Let us assume that we are not able to evaluate

the standard acceptance probability function of the MH

method,

α = min
[
1, ρ(θ (t−1), θ ′)

]
,

where ρ(θ (t−1), θ ′) = π(θ ′)q(θ (t−1)|θ ′)
π(θ (t−1))q(θ ′|θ (t−1))

. Then, an approxi-

mation

α̂ = min
[
1, ρ̂(θ (t−1), θ ′, y′)

]
,

where y′ ∼ ℓ(y|θ ′), can be used [346]. It is possi-

ble to show that, if ρ̂(θ (t−1), θ ′, y) fulfills the following

condition,

∫

Y

∣∣ρ̂(θ (t−1), θ ′, y)−ρ(θ (t−1), θ ′)
∣∣ℓ(y|θ ′)dy ≤ δ(θ (t−1), θ ′),

∀θ (t−1), θ ′ ∈ �

the stationary density of the generated chain will

approximate the desired posterior PDF [346]. Namely,

ρ̂(θ (t−1), θ ′, y′) with y′ ∼ ℓ(y|θ ′) is a randomized ver-

sion of ρ(θ (t−1), θ ′), and it is reasonable to require∣∣ρ̂(θ (t−1), θ ′, y) − ρ(θ (t−1), θ ′)
∣∣ be small in order to obtain

a useful approximation [346, 347].

Algorithm 32 Noisy MH method

1 Initialization: Choose a proposal function q(θ |θ (t−1)),

an initial state θ (0), the total number of iterations (T),

and the burn-in period (Tb).

2 FOR t = 1, . . . ,T :

(a) Draw θ ′ ∼ q(θ |θ (t−1)).

(b) Draw y′ ∼ ℓ(y|θ ′).
(c) Build an estimator ρ̂(θ (t−1), θ ′, y′) of the

standard acceptance probability of the MH

method, ρ(θ (t−1), θ ′).
(d) Set θ (t) = θ ′ with probability

α̂ = min
[
1, ρ̂(θ (t−1), θ ′, y′)

]
,

Otherwise, with probability 1 − α̂, set

θ (t) = θ (t−1).

3 Return: θ (t) for t = 1, . . . ,T .
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5.4.2 Approximate likelihoodmethods

In state-space models, and especially in models involv-

ing non-linear stochastic differential equations, the

(marginal) likelihood ℓ(y|θ) often cannot be evaluated

exactly, but we may have a simple approximation ℓ̂(y|θ)

available. For example, in non-linear state-space models

we might have a non-linear Kalman filter-based Gaussian

approximation of the system [348], which also provides us

with an approximation of the likelihood.

As discussed above, if ℓ̂(y|θ) is unbiased in the sense of

Eq. (138), then using the corresponding posterior distri-

bution (139) in anMH algorithm leads to a valid algorithm

for sampling the parameters. In the case of non-linear

Kalman filter approximations (like extended, unscented,

or cubature Kalman filters) the estimate is not unbiased,

but this has not prevented researchers from using them.

Indeed, several researchers have shown that Kalman fil-

ters can provide good approximations of the true poste-

rior distribution in non-linear discrete-time state-space

models [348], as well as in non-linear models involving

stochastic differential equations [349, 350].

5.4.3 Analysis of noisy/approximate likelihoodmethods

Note that, if we have a Markov chain M, and another

Markov chain M′ close to M in some sense, the sta-

tionary distribution π ′ of M′ need not exist, and if it

does, it need not be close to the stationary distribu-

tion of M. Consequently, studying noisy/approximate

MCMC methods is a rather delicate task. In this sense,

it is worth mentioning the work of Johndrow et al. [351],

which includes a general perturbation bound for uni-

formly ergodic chains, as well as Negrea and Rosenthal’s

work [352], which presents a more complicated bound for

geometrically ergodic chains.

6 Numerical simulations
In this section, we present several examples where the

performance of many of the previously described algo-

rithms is evaluated. We start with two simple examples

(univariate and bivariate Gaussians), where the true esti-

mators can be computed analytically, and thus we can

gauge exactly the performance of the different methods.

Then, we address a challenging problem that appears in

several scientific fields: the estimation of the parameters

of a chaotic system. Finally, we also tackle two classical sig-

nal processing problems: localization in a wireless sensor

network and a spectral analysis example.

6.1 Illustrative example for adaptive MCMC algorithms

For the sake of simplicity, in this first example we consider

a univariate target density which is a mixture of Gaussian

PDFs. More specifically, the target PDF is formed by M

Gaussians, i.e.,

π̄(θ) = 1

M

M∑

i=1

N (θ |ηi, ρ2
i ), (156)

with variances ρ2
i = 4 for all i = 1, ...,M. We consider

three different cases, with M ∈ {2, 3, 6}. The means are

η1 = −10 and η2 = 10 for M = 2; η1 = −10, η2 = 0,

and η3 = 10 for M = 3; η1 = −15, η2 = −10, η3 = −5,

η4 = 5, η5 = 10, and η6 = 15 forM = 6.

We test the adaptive Metropolis (AM) scheme, that

uses an adaptive random walk Gaussian proposal [196],

qt(θ |θ (t−1), σ 2
t ) = N (θ |θ (t−1), σ 2

t ), and the Adaptive

Gaussian Mixture Metropolis-Hastings (AGM-MH) algo-

rithm of [200], that uses the following proposal PDF:

qt(θ |μ1,t , . . . ,μN ,t , σ
2
t,1, . . . , σ

2
t,N ) =

N∑

n=1

w(t)
n ϕi(θ |μ(t)

i , σ 2
i,t),

(157)

formed by N Gaussian which are independent from

the previous state of the chain, i.e., ϕi(θ |μ(t)
i , σ 2

i,t) =
N (θ |μ(t)

i , σ 2
i,t). Moreover, we also compare the correla-

tions obtained by the adaptive MH schemes with those

obtained using a non-adaptive standard MH algorithm

with a random walk proposal PDF. In AGM-MH, we set

N = M Gaussians and each initial mean is chosen uni-

formly in [−20, 20]. The initial variances and weights are

set as σ 2
i,0 = 10 and wi,0 = 1/N for all i = 1, ...,N . The

same initialization of the variance is employed for the sin-

gle component of AM: σ 2
0 = 10. The goal of this example

is to show that performing Monte Carlo estimation on

multi-modal targets without specialized algorithms (like

adiabatic MC [353]) is challenging, but can still be tack-

led by properly designed adaptive algorithms withmixture

proposals.

We perform T = Ttot = 5000 iterations of the chain,

setting Ttrain = 200 (the number of iterations for the ini-

tial training period) and Tstop = Ttot (i.e., the adaptation is

never stopped) for the AGM-MH algorithm (see [200] for

a detailed description of these two parameters). The initial

state of the chain is randomly chosen as θ (0) ∼ N (θ |0, 1)
in all cases. Then, we use all the generated samples (i.e.,

Tb = 0) to estimate the normalizing constant of the target.

Table 6 shows the mean squared error (MSE), averaged

over 1000 independent runs, for the AM and AGM-MH

Table 6 Mean squared error (MSE) for the univariate Gaussian
target in Section 6.1

Algorithm M = 2 M = 3 M = 6

AM 2 × 10−2 2 × 10−2 6 × 10−3

AGM-MH 1.6 × 10−4 1.1 × 10−4 2 × 10−5
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Table 7 Normalized auto-correlation (at lag one) for the
univariate Gaussian target in Section 6.1

Algorithm M = 2 M = 3 M = 6

Standard MH 0.81 0.72 0.46

AM 0.33 0.26 0.20

AGM-MH 0.13 0.14 0.16

algorithms in the estimation of the expected value of the

target PDF, whereas Table 7 shows the auto-correlation (at

lag one) of AM, AGM-MH, and a standard MH algorithm

without adaptation. Note the improvement, both in terms

orMSE and auto-correlation, attained by both of the adap-

tive MH algorithms (especially by AGM-MH) even in this

simple example. Finally, Fig. 1 depicts the averaged values

of the acceptance probability, αt , of the AGM-MH algo-

rithm as function of t and for different values of M. Note

the increase in the averaged values of αt for t > Ttrain as a

result of the adaptation.

This example shows that a classical adaptive algorithm

(AM) fails, as clearly shown by the large MSE and auto-

correlation values, whereas a properly designed adaptive

MC method (AGM-MH) with an adequate proposal can

attain very good results: an MSE two orders of magnitude

lower and an auto-correlation up to 2.5 times smaller. The

performance of the random walk MH largely depends on

the variance of the proposal, which should be optimized

in order to attain a 25–40% average acceptance rate, as

discussed earlier. Note that this can be easily achieved in

this simple example but becomes a much more challeng-

ing task for more complex problems. Therefore, properly

Fig. 1 Averaged values of the acceptance probability, αt , as function
of the iteration index t and different values ofM ∈ {2, 3, 6}, for the
univariate Gaussian target in Section 6.1, using the AGM-MH
algorithm. For t > Ttrain , αt grows as a result of the adaptation of the
proposal, which becomes closer to the target

Fig. 2 Trace plots for the univariate Gaussian target in Section 6.1
withM = 3. a AGM-MH algorithm. b AM algorithm. The red dashed
line in (a) and (b) marks the beginning of the adaptation period. c
Random walk MH with σ = 2. d Random walk MH with σ = 5
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designed adaptive algorithms should be preferred when

applicable.

In order to further illustrate the behavior of the three

considered algorithms (RWMH, AM, and AGM-MH),

Fig. 2 shows typical trace plots for M = 3 of the

two adaptive techniques (AGM-MH and AM), as well

as the RWMH algorithm with two different values of σ .

From Fig. 2a, we see that the chain’s state for AGM-

MH constantly switches to locations around the three

modes of the target (placed at η1 = −10, η2 = 0,

and η3 = 10 for M = 3), showing that the chain is

frequently exploring all the modes. Then, Fig. 2b shows

that the chain attained by AM also explores the three

modes, but the jumps from one mode to another occur

less frequently. Finally, Fig. 2c, d show that the perfor-

mance of the RWMH algorithm critically depends on

the variance: for σ = 2 the resulting chain in the

example completely fails to explore one of the modes,

whereas for σ = 5 all the three modes are properly

covered.

Table 8 MSE in the estimation of E(θ), keeping the total number of evaluations of the target fixed to L = KNT = 2 · 105 in all
algorithms, for the bivariate target in Section 6.2

L = NKT = 2 · 105

N Algorithm σ= 1 σ= 2 σ= 5 σ= 10 σ= 20 σ= 70

5

Standard PMC [95]

92.80 38.71 12.65 0.38 0.047 37.44

100 75.17 59.42 14.24 0.25 0.028 0.18

5 · 104 68.29 37.44 7.01 0.25 0.033 0.17

100

DM-PMC (K = 1) 72.48 36.21 5.34 0.036 0.029 0.21

GR-PMC (K = 2) 69.41 26.23 3.09 0.022 0.028 0.17

LR-PMC (K = 2) 2.68 0.007 0.010 0.018 0.102 32.88

GR-PMC (K = 5) 67.04 17.44 0.11 0.013 0.023 0.15

LR-PMC (K = 5) 8.04 0.012 0.008 0.016 0.027 2.00

GR-PMC (K = 20) 61.58 15.13 0.42 0.012 0.024 0.14

LR-PMC (K = 20) 9.51 1.16 0.011 0.013 0.023 0.22

GR-PMC (K = 100) 64.94 12.50 0.08 0.015 0.026 0.18

LR-PMC (K = 100) 9.60 1.21 0.022 0.015 0.026 0.20

GR-PMC (K = 500) 58.49 9.63 0.08 0.014 0.024 0.16

LR-PMC (K = 500) 14.79 6.72 0.10 0.010 0.024 0.20

100 M-PMC [96] 71.39 81.33 18.14 0.058 0.031 0.14

10 84.14 81.68 6.49 0.76 0.024 4.60

100 SMC [286] 77.00 76.5 15.98 0.79 0.068 0.86

5 · 104 69.08 51.29 20.48 0.22 0.038 0.68

DM-SMC (K = 1) 70.95 42.40 1.91 0.039 0.027 0.19

GR-SMC (K = 5) 66.64 41.54 0.16 0.015 0.024 0.19

100 LR-SMC (K = 5) 8.16 2.32 0.007 0.015 0.027 2.19

GR-SMC (K = 20) 65.48 37.91 0.10 0.013 0.025 0.19

LR-SMC (K = 20) 8.88 4.15 0.010 0.014 0.026 0.20

100

APIS (T = 100) 0.0318 0.0011 0.0054 0.0129 0.0211 0.1794

APIS (T = 50) 0.0144 0.0007 0.0051 0.0131 0.0221 0.1772

APIS (T = 20) 0.0401 0.0006 0.0047 0.0136 0.0245 0.1732

APIS (T = 5) 0.0008 0.0005 0.0064 0.0149 0.0270 0.2076

APIS (T = 2) 0.0017 0.0116 0.0103 0.0182 0.0387 0.1844

1
AMIS (best) 112.70 107.85 44.93 0.7404 0.0121 0.0141

AMIS (worst) 115.62 111.83 70.62 9.43 0.0871 18.62

The best results for each value of σ are highlighted in bold-face
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6.2 Illustrative example for adaptive importance

sampling

As a second simple example, let us consider a multi-

modal target PDF consisting of a mixture of five bivariate

Gaussians, i.e.,

π̄(θ) = 1

5

5∑

i=1

N (θ ; νi,�i), (158)

with θ ∈ R
2, means ν1 =[−10,−10]⊤, ν2 =[ 0, 16]⊤,

ν3 =[ 13, 8]⊤, ν4 =[−9, 7]⊤ and ν5 =[ 14,−14]⊤, and
covariances �1 =[ 2, 0.6; 0.6, 1], �2 =[ 2, −0.4;−0.4, 2],

�3 =[ 2, 0.8; 0.8, 2], �4 =[ 3, 0; 0, 0.5], and �5 =
[ 2, −0.1;−0.1, 2]. Since we can analytically compute the

moments of the target, this example is very useful to

validate the performance of different Monte Carlo tech-

niques. In particular, we consider the computation of the

mean of the target, E(θ) =[ 1.6, 1.4]⊤, and the normaliz-

ing constant, Z = 1. We use the MSE (averaged over both

components in the computation of E(θ)) as the figure of

merit of the different estimators.

For simplicity, we use again Gaussian proposal densities

for all the MC methods. The proposals are “poorly” ini-

tialized on purpose in order to test the robustness and the

adaptation capabilities of the methods. More specifically,

the location parameters of the proposals are initialized

uniformly within the [−4, 4]×[−4, 4] square, i.e., μ
(1)
i ∼

U([−4, 4]×[−4, 4] ) for i = 1, . . . ,N . Note that none

of the modes of the target falls within the initialization

square. We test all the alternative methods using the same

isotropic covariance matrices for all the Gaussian propos-

als, Ci = σ 2I2 with σ ∈ {1, 2, 5, 10, 20, 70}. All the results
have been averaged over 500 independent experiments,

where the computational cost of the different techniques

(in terms of the total number of evaluations of the target

distribution, which is usually the most costly step in prac-

tice) is fixed to L = KNT27. We compare the following

schemes:

• Standard PMC [95]: The standard PMC algorithm

proposed in [95] with N = 100 proposals and

T = 2000 iterations. The total number of samples

drawn is L = NT = 2 · 105.
• M-PMC [96]: The M-PMC algorithm proposed in

[96] with N = 100 proposals,M = 100 samples per

iteration, and T = 2000 iterations. The total number

of samples drawn is L = MT = 2 · 105.
• SMC [286]: A sequential Monte Carlo (SMC) scheme

combining resampling and MCMC steps. More

precisely, we consider MH steps as forward reversible

kernels. In this example, we do not employ a

27Note that L = KNT also corresponds to the total number of samples
generated in all the schemes.

Fig. 3 Example of Section 6.2. aMSE of several algorithms as a
function of σ for N = 100. bMSE as a function of K for σ = 10. cMSE
as a function of T for σ = 10
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Table 9 MSEs in estimation of R and � using FUSS and MH inside a Gibbs sampler, with δ = 10−3 , K = 10, and NG = 50, for the
example of Section 6.3

λ = 0.001 λ = 0.005 λ = 0.01 λ = 0.05 λ = 0.08 λ = 0.10

FUSS
MSE(R) 0.0071 0.0089 0.0093 0.0138 0.0150 0.0778

MSE(�) 5.01 10−5 6.15 10−5 6.15 10−5 5.26 10−5 7.33 10−5 1.78 10−4

MH (σ p=1)
MSE(R) 0.6830 0.7264 0.7067 1.1631 1.3298 1.3293

MSE(�) 0.0373 0.0402 0.0423 0.0399 0.0471 0.0440

MH (σ p=2)
MSE(R) 1.3566 1.4906 1.4247 2.0015 2.3042 2.2401

MSE(�) 0.0897 0.1117 0.1041 0.0989 0.1089 0.1125

The observed sequence, z1:T , is generated with R = 3.7, � = 0.4, and N = 20 and different values of λ

sequence of tempered target PDFs, i.e., we consider

always the true target density. The proposal PDFs for

the MH kernels coincide with the Gaussian proposals

employed in the propagation resampling steps, with

the scale parameters Ci of the other tested methods.

Due to the application of the MH steps, in this case,

L > 2 · 105.
• K-PMC [274]: The standard PMC scheme using

N = 100 proposals, but drawing K > 1 samples per

proposal at each iteration and performing global

resampling (GR). In order to keep the total number of

samples constant, the number of iterations of the

algorithm is now T = 2 · 105/(KN).
• DM-PMC [274]: The standard PMC using the

weights of Eq. (67) (i.e., the mixture of all proposals at

each iteration), N = 100 proposals, T = 2000

iterations, and drawing K = 1 samples per proposal

(i.e.,M = N = 100 samples per iteration). The total

number of samples drawn is again L = MT = 2 · 105.
• GR-PMC [274]: The standard PMC scheme with

multiple samples per proposal (K ), weights computed

as in DM-PMC, and global resampling (GR). We use

N = 100 proposals and T = L/(KN) iterations with

L = 2 · 105 again. In particular, we test the values

K ∈ {2, 5, 20, 100, 500}, and thus

T ∈ {1000, 400, 100, 20, 4}.
• LR-PMC [274]: The standard PMC scheme with

multiple samples per proposal (K ) and local

resampling (LR). All the parameters are selected as in

the GR-PMC scheme.
• Improved SMC [274, 286]: The SMC scheme with

the improvements proposed in those two papers. In

all cases, we use the importance weights as in

DM-PMC (deterministic mixture of the proposals at

each iteration), and we try the GR-SMC and LR-SMC

variants. We test K ∈ {5, 20}
• APIS [99]: The adaptive population importance

sampling (APIS) scheme with N = 100 proposals and

T = 2000 iterations. The IS weights are again the

spatial deterministic mixture weights.

• AMIS [98]: The adaptive multiple importance

sampling (AMIS) algorithm, which uses a single

proposal, drawing K samples per iteration and

running for T iterations. We use values of K and T
such that L = KT = 2 · 105, for a fair comparison.

Specifically, we have run different simulations using

K ∈ {500, 1000, 2000, 5000} and, as a consequence,
T ∈ {40, 20, 10, 4}. Since the samples are reweighted

using the whole set of past temporal proposals in the

denominator (i.e., a sort of temporal deterministic

mixture), AMIS becomes more costly when T
increases. In Table 8, we show the best and worst

performance for each value of σ .

Table 8 shows the full results for the MSE in the esti-

mation of E(θ) averaged over both components, whereas

Fig. 3 graphically displays some selected cases. We can

see that the compared schemes outperform the standard

PMC for any value of σ . In general, the local resam-

pling (LR-PMC) works better than the global resampling

(GR-PMC). APIS obtains a good performance for several

intermediate values of σ , while AMIS behaves well with

large values of σ . Moreover, we note that the optimum

value of K in GR-PMC and LR-PMC depends on the value

of σ , the scale parameter of the proposals: for small val-

ues of σ (e.g., σ = 1 or σ = 2) small values of K lead to

better performance, whereas a larger value of K (and thus

less iterations T) can be used for larger values of σ (e.g.,

σ = 10 or σ = 20).

6.3 Parameter estimation in a chaotic system

In this numerical experiment, we address the estima-

tion of the parameters of a chaotic system, which is

considered a very challenging problem in the literature

[354, 355], since the resulting PDFs typically present

very sharp full-conditionals. This type of systems is

often utilized for modeling the evolution of popula-

tion sizes, for instance in ecology [354]. Let us con-

sider a logistic map [356] perturbed by multiplicative

noise,
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Fig. 4 Example of Section 6.3. a, b Examples of (unnormalized)
conditional log-PDFs with λ = 0.1 and considering N = 20
observations. a Fixing � = 4. b Fixing R = 0.7. c The (unormalized)
conditional PDF corresponding to b

Fig. 5 Trace plots for R in the example of Section 6.3. a
FUSS-within-Gibbs. b–dMH-within-Gibbs for σ = 0.2 (b), σ = 1 (c)
and σ = 2
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Fig. 6 Location of the sensors and the target for the example in
Section 6.4

zt+1 = R
[
zt

(
1 − zt

�

)]
exp(ǫt), (159)

with ǫt ∼ N (0, λ2), z1 ∼ U([ 0, 1] ), and unknown param-

eters R > 0 and � > 0. Let us assume that a sequence

z1:T =[ z1, . . . , zT ] is observed and, for the sake of sim-

plicity, that λ is known. Under these circumstances, the

likelihood function is given by

p(z1:T |R,�) =
T−1∏

t=1

p(zt+1|zt ,R,�),

where, defining g(zt ,R,�) = R
[
zt
(
1 − zt

�

)]
, we have

p(zt+1|zt ,R,�) ∝
∣∣∣∣
g(zt ,R,�)

zt+1

∣∣∣∣ exp

⎛
⎜⎝−

log
(

zt+1
g(zt ,R,�)

)2

2λ2

⎞
⎟⎠ ,

if g(zt ,R,�) > 0, and p(zt+1|zt ,R,�) = 0, if g(zt ,R,�) ≤
0. Considering uniform priors, R ∼ U([ 0, 104] ) and

� ∼ U([ 0, 104] ), our goal is computing the mean of the

bivariate posterior PDF,

π̄(θ |z1:T ) = π̄(R,�|z1:T ) ∝ p(z1:T |R,�), (160)

which corresponds to the minimum mean squared error

(MMSE) estimate of the parameters. Note that the param-

eter vector to be inferred in this example is θ =[ θ1 =
R, θ2 = �].

In the experiments, we set R = 3.7,� = 0.4 and T = 20.

Furthermore, we take into account different values of λ

of the same order of magnitude as considered in [354].

Then, we apply FUSS-within-Gibbs [179] (with δ = 10−3,

K = 10 and an initial grid S̃M = {10−4, 2 · 10−4, . . . , 20}),
using only NG = 50 iterations of the Gibbs sampler. We

also consider an MH-within-Gibbs approach with a ran-

dom walk proposal, q̄(θ
(t)
i |θ (t−1)

i ) ∝ exp

(
−(θ

(t)
i −θ

(t−1)
i )2

2σ 2
p

)
,

with i ∈ {1, 2}, and two different values of σp ∈ {1, 2}.

The initial states of the chains are chosen randomly from

U([ 1, 5] ) and U([ 0.38, 1.5] ), respectively. In order to

compare the performance of both approaches, we also

perform an approximate computation of the true value

of the mean via an expensive deterministic numerical

integration procedure.

The results, averaged over 1000 independent runs, are

shown in Table 9. It can be clearly seen that FUSS-within-

Gibbs achieves a very small MSE in the estimation of the

two desired parameters (especially in the case of �) for

any value of λ. Comparing with the MSE obtained by

the MH algorithm, the benefit of building a proposal tai-

lored to the full-conditionals (as done by FUSS) becomes

apparent. Figure 4a, b provide two examples of conditional

log-PDFs, whereas Fig. 4c shows the “sharp” conditional

density corresponding to Fig. 4b. This PDF resembles a

delta function: even using sophisticated adaptive tech-

niques it is difficult to recognize the mode of this kind of

target PDF. However, by constructing a proposal which is

adapted to the full conditionals using the FUSS algorithm,

very good results can be obtained even in this extreme

case.

Finally, Fig. 5 shows the trace plots for this example

using the FUSS andMH algorithms, both within the Gibbs

sampler, for the parameter R28. On the one hand, note the

small variance of the chain’s state around the true value

of the target R in Fig.5a when using the FUSS algorithm.

Let us remark that the conditional distribution of R in this

example is univariate and with a very narrow peak, so hav-

ing all the samples concentrated around the true value of

R is the desired behaviour. On the other hand, the variance

of the chain’s state is much larger when using MH-within-

Gibbs, Fig. 5b–d, and the mean value is not equal to the

true value of R (especially when σ increases). This explains

the poor performance shown in Table 9.

6.4 Localization in WSN and tuning of the network

In this second practical example, we consider the problem

of localizing a target in R
2 using range-only measure-

ments in a wireless sensor network (WSN) [357, 358].

We assume that the measurements are contaminated by

noise with an unknown power, which can be different for

each sensor. This situation is common in several prac-

tical scenarios. The noise perturbation of each of the

sensors can vary with the time and depends on the loca-

tion of the sensor (due tomanufacturing defects, obstacles

in the reception, different physical environmental con-

ditions, etc.). More specifically, let us denote the target

position using the random vectorZ =[Z1,Z2]
⊤. The posi-

tion of the target is then a specific realization z. The

range measurements are obtained from NS = 6 sensors

located at h1 =[ 3,−8]⊤, h2 =[ 8, 10]⊤, h3 =[−4,−6]⊤,

28The behaviour of the trace plots for the other parameters (not shown) is
similar.
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Table 10 Results of the GMS algorithm for the example in Section 6.4

MSE 1.30 1.24 1.22 1.21 1.22 1.19 1.31 1.44

N 10 20 50 100 200 500 1000 2000

T 1000 500 200 100 50 20 10 5

E MT = 104

MSE range MinMSE= 1.19 ——— MaxMSE= 1.44

h4 =[−8, 1]⊤, h5 =[ 10, 0]⊤ and h6 =[ 0, 10]⊤, as shown
in Fig. 6.

The observation model is

Yj = 20 log
(
||z − hj||

)
+ Bj, j = 1, . . . ,NS, (161)

where the Bj are independent Gaussian random vari-

ables with PDFs N (bj; 0, λ
2
j ) for j = 1, . . . ,NS. We use

λ =[ λ1, . . . , λNS ] to denote the vector of standard devi-

ations. Given the position of the target, z∗ =[ z∗1 =
2.5, z∗2 = 2.5]⊤, and setting λ∗ =[ λ∗

1 = 1, λ∗
2 = 2, λ∗

3 =
1, λ∗

4 = 0.5, λ∗
5 = 3, λ∗

6 = 0.2], we generate NO = 20

observations from each sensor according to the model in

Eq. (161). Then, we finally obtain a measurement matrix

Y =[ yk,1, . . . , yk,NS
]∈ R

Dy , where Dy = NONS = 120

for k = 1, . . . ,NO. We consider a uniform prior U(Rz)

over the position [ z1, z2]
⊤ with Rz =[−30 × 30]2, and

a uniform prior over λj, so that λ has prior U(Rλ) with

Rλ =[ 0, 20]NS . Thus, the posterior PDF is

π̄(θ |Y) = π̄(z,λ|Y)

=

⎡
⎢⎣
NO∏

k=1

NS∏

j=1

1√
2πλ2j

exp

⎛
⎝− 1

2λ2j

(yk,j + 10 log
(
||z − hj||

)2
⎞
⎠

⎤
⎥⎦ Iz(Rz)Iλ(Rλ),

(162)

where θ =[ z,λ]⊤ is the parameter vector to be inferred,

of dimension Dθ = NS + 2 = 8, and Ic(R) is an indicator

function: Ic(R) = 1 if c ∈ R, Ic(R) = 0 otherwise.

Our goal is computing the minimummean square error

(MMSE) estimator, i.e., the expected value of the posterior

π̄(θ |Y) = π̄(z,λ|Y). Since the MMSE estimator cannot

be computed analytically, we apply Monte Carlo methods

to approximate it. We compare the GMS algorithm, the

correspondingMTM scheme, the AMIS technique, andN

parallel MH chains with a random walk proposal PDF. For

all of them we consider Gaussian proposal densities. For

GMS and MTM, we set qt(θ |μn,t , σ
2I) = N (θ |μt , σ

2I)

where μt is adapted by considering the empirical mean of

the generated samples after a training period, t ≥ 0.2T

[200], μ0 ∼ U([ 1, 5]Dθ ) and σ = 1. For AMIS, we

have qt(θ |μt ,Ct) = N (θ |μt ,Ct), where μt is as previ-

ously described (with μ0 ∼ U([ 1, 5]Dθ )) and Ct is also

adapted using the empirical covariance matrix, starting

withC0 = 4I. We also test the use ofN parallel MH chains

(including the case N = 1, which corresponds to a sin-

gle chain), with a Gaussian random-walk proposal PDF,

qn(μn,t|μn,t−1, σ
2I) = N (μn,t|μn,t−1, σ

2I), and μn,0 ∼
U([ 1, 5]D ) for all n and σ = 1.

We fix the total number of evaluations of the posterior

density as E = MT = 104. Note that the evaluation of the

posterior is usually the most costly step in MC algorithms

(AMIS has the additional cost of re-weighting all the

samples at each iteration according to the deterministic

mixture procedure [98]). Let us recall that T denotes the

total number of iterations and M the number of samples

drawn from each proposal at each iteration. We consider

θ∗ =[ z∗,λ∗]⊤ as the ground-truth and compute the MSE

in the estimation obtained with the different algorithms.

The results, averaged over 500 independent runs, are pro-

vided in Tables 10, 11, and 12, as well as Fig. 7. Note that

GMS outperforms AMIS for each a pair {M,T} (keeping
E = MT = 104 fixed) and also provides smaller MSE

values than N parallel MH chains (the case N = 1 corre-

sponds to a single longer chain). Figure 6b shows the MSE

versus N for GMS and the corresponding MTM method.

This figure confirms again the advantage of recycling the

samples in an MTM scheme.

6.5 Spectral analysis

Many problems in science and engineering require dealing

with a noisy multi-sinusoidal signal, whose general form

is given by

yc(τ ) = A0 +
Dθ∑

i=1

Ai cos(2π fiτ + φi) + r(τ ), τ ∈ R,

Table 11 Results of the AMIS method for the example in Section 6.4

MSE 1.58 1.57 1.53 1.48 1.42 1.29 1.48 1.71

N 10 20 50 100 200 500 1000 2000

T 1000 500 200 100 50 20 10 5

E NT = 104

MSE range MinMSE= 1.29 ——— MaxMSE= 1.71
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Table 12 Results of N parallel MH chains with a random-walk proposal PDF for the example in Section 6.4

MSE 1.42 1.31 1.44 2.32 2.73 3.21 3.18 3.15

N 1 5 10 50 100 500 1000 2000

T 104 2000 1000 200 100 20 10 5

E NT = 104

MSE range MinMSE= 1.31 ——— MaxMSE=3.21

where A0 is a constant term, Dθ is the number of sinu-

soids, {Ai}Dθ

i=1 is the set of amplitudes, {2π fi}Dθ

i=1 are the

frequencies, {φi}Dθ

i=1 their phases, and r(τ ) is an additive

white Gaussian noise (AWGN) term. The estimation of

the parameters of this signal is required by many appli-

cations in signal processing [359, 360], in control (where

a multi-harmonic disturbance is often encountered in

industrial plants) [361, 362] or in digital communications

(where multiple narrowband interferers can be roughly

modeled as sinusoidal signals) [363, 364]. Let us assume

that we have L equispaced samples from yc(τ ), obtained

discretizing yc(τ ) with a period Ts < π
max1≤i≤Dθ

2π fi
(in

order to fulfill the sampling theorem [365]):

y[ k]= A0+
Dθ∑

i=1

Ai cos(�ik + φi)+r[ k] , k = 1, . . . , L,

where y[ k]= yc(kTs) for k = 0, 1, . . . , L − 1, �i = 2π fiTs

for i = 1, . . . ,Dθ , and r[ k]∼ N (0, σ 2
w). We apply paral-

lel MH algorithms to provide an accurate estimate of the

set of unknown frequencies, {�i}Dθ

i=1 or merely {fi}Dθ

i=1. In

order to maintain the notation used throughout the paper,

we denote the vector of frequencies to be inferred as

θ ∈ R
Dθ . Thus, considering the hyper-rectangular domain

� =
[
0, 12

]Dθ
(it is straightforward to note the periodic-

ity outside �), and a uniform prior on �, the posterior

distribution given K data is π̄(θ) ∝ exp (−V (θ)), where

V (θ1, . . . , θDθ
) = 1

2σ 2
w

L∑

k=1

(
y[ k]−A0 −

Dθ∑

i=1

Ai cos(θik + φi)

)2

I�(θ),

and we have used I�(θ) to denote the indicator function

such that I�(θ) = 1 if θ ∈ � and I�(θ) = 0 if θ /∈ �. More-

over, for the sake of simplicity we have also assumed that

S and σ 2
w are known. , we set A0 = 0, Ai = A = 1 and φi = 029.

Note that the problem is symmetric with respect to the

hyperplane θ1 = θ2 = . . . = θDθ
(and, in general, multimodal).

Bidimensional examples of V (θ) = logπ(θ) are depicted in

Fig. 8. We apply the OMCMCmethod [232], where N par-

allel interacting MH chains are used, comparing it with

N independent parallel MH chains (IPCs). The proposal

densities are all Gaussian random-walks proposal PDFs

with diagonal covariance matrices C = σ 2I.

29Let us remark that the estimation of all these parameters would make the
inference harder, but can be easily incorporated into our algorithm.

We set f =[ f1 = 0.1, f2 = 0.3]⊤ and generate L = 10 synthetic

data from the model. Moreover, we set the total num-

ber of target evaluations for OMCMC to ET = M(N + 1) ∈
{2730, 5450, 10.9 · 103}. For a fair comparison, we consider N

independent parallel chains (IPCs) choosing T such that

E′
T = NT is equal to ET , i.e., E′

T = ET . We test different

values of σ ∈[ 0.05, 0.5] and N ∈ {2, 5, 10}. We test several com-

binations of the number of chains (N) and epochs (M for

OMCMC and T for IPCs), always keeping ET fixed. The

relative error (RE) in the estimation, averaged over 500

independent runs, is shown in Fig. 9. We can observe that

O-MCMC (solid line) outperforms IPCs (dashed line),

attaining lower REs. The performance becomes similar as

the computational effort ET grows, since the state space in

the first experiment, � =
[
0, 12

]2, is small enough to allow

for an exhaustive exploration of � by independent chains.

Finally, Fig. 10 shows two typical examples of trace plots

for the estimation of frequency f2 = 1
3 , as in Fig. 8a. In both

cases, we use the OMCMC-MTM algorithm with Tv = 2

vertical steps of an MH algorithm, Th = 1 horizontal steps

of the MTM algorithm, and ET = 700 target evaluations.

Note the fast convergence of the algorithm to frequencies

close to the true one. This is a particularly good result,

Fig. 7MSE (log-scale) versus the number of candidates,
N ∈ {50, 200, 500, 1000, 2000}, obtained by GMS and the
corresponding MTM algorithm, for the example in Section 6.4. The
total number of evaluations of the posterior PDF is fixed to
E = MT = 104 , so that T ∈ {200, 50, 20, 10, 5}
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Fig. 8 Several examples of the function V(θ) = logπ(θ) with Dθ = 2,
L = 10, given different realizations of the measurements
y[ 1] , . . . , y[ K]. Black dotted points shows all the states generated
throughout an O-MCMC run (N = 10 and T = 500)

Fig. 9 Relative error (averaged over 500 runs) for OMCMC (solid line)
and IPCs (dashed line) with different computational effort ET
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Fig. 10 Two typical trace plots for f2 = 1
3 in the example of

Section 6.5 using the OMCMC-MTM algorithm with Tv = 2 vertical
steps of an MH algorithm, Th = 1 horizontal steps of the MTM
algorithm, and ET = 700 target evaluations

since the peaks of the target PDF in this case were very

narrow.

7 Conclusion
In this paper, we have performed a review of Monte Carlo

(MC) methods for the estimation of static parameters

in statistical signal processing problems. MC methods

are simulation-based techniques that are extensively used

nowadays to perform approximate inference when analyt-

ical estimators cannot be computed, as it happens in many

real-world signal processing applications. We have con-

centrated on the description of some of the most relevant

methods available in the literature, rather than focusing on

specific applications. Many different algorithms are pro-

vided throughout the text in a clear and unified format,

so that signal processing practitioners can directly apply

them in their specific problems.

In order to make the paper as self-contained as pos-

sible, we have started from scratch, describing first the

MC method altogether with its convergence properties.

Markov chain Monte Carlo (MCMC) techniques are con-

sidered first, starting with three classical MC methods

(theMetropolis-Hastings (MH) algorithm, the Gibbs sam-

pler, andMH-within-Gibbs) that are widely used by signal

processing practitioners and can be considered as the

basic building blocks of more recent approaches. Then,

we detail several advanced MCMC algorithms, focus-

ing on adaptive MCMC schemes (both using parametric

and non-parametric proposals) andMCMCmethods with

multiple candidates. Although the focus of the paper is

on MCMC methods, a brief description of importance

sampling (IS) and adaptive importance sampling (AIS)

methods is also included for the sake of completeness.

Two simple problems (where the analytical estimators

can be computed and used to evaluate the performance of

several MC methods), a challenging example that appears

in several scientific fields (the estimation of the parame-

ters of a chaotic system), and two classical signal process-

ing applications (localization in a wireless sensor network

and the spectral analysis of multiple sinusoids) are used to

test many of the algorithms described.

Finally, let us remark that Monte Carlo methods can

result in infinite variance estimators if not properly

applied. As a cautionary note, let us mention Newton and

Raftery’s weighted likelihood bootstrap [366]. Although

their approach leads to asymptotically unbiased estima-

tors, it is also well-known that the variance of these esti-

mators is infinite and thus practitioners may end up with

estimated values which are very far away from the correct

ones.
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