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Abstract. MRI-based medical image analysis for brain tumor studies is gaining

attention in recent times due to an increased need for efficient and objective evaluation

of large amounts of data. While the pioneering approaches applying automated

methods for analysis of brain tumor images date back almost two decades, the current

methods are becoming more mature and coming closer to routine clinical application.

This review article aims at providing a comprehensive overview by giving a brief

introduction to brain tumors and imaging of brain tumors first. Then we review

the state of the art in segmentation, registration and modeling related to tumor-

bearing brain images with a focus on gliomas. The objective in segmentation is

outlining the tumor including its sub-compartments and surrounding tissues, while the

main challenge in registration and modeling is the handling of morphological changes

caused by the tumor. The qualities of different approaches are discussed with a focus

on methods that can be applied on standard clinical imaging protocols. Finally, a

critical assessment of the current state is performed and future developments and

trends are addressed, giving special attention to recent developments in radiological

tumor assessment guidelines.
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1. Introduction

This review is intended to give an overview of the state of the art in MRI-based

medical image analysis for brain tumor studies. It also provides a brief background

on brain tumors in general and non-invasive imaging of brain tumors in order to give a

comprehensive insight into the field.

1.1. Brain Tumors

With a prevalence of less than 1h in the western population, brain tumors are not very

common, however they are among the most fatal cancers (DeAngelis (2001)). A recent

study estimated the US incidence rate for primary tumors of the brain or nervous system

to be around 25 per 100,000 adults with approximately one-third of the tumors being

malignant and the rest either benign or borderline malignant (Kohler et al. (2011)). The

word “tumor” is of latin origin and means swelling. Today, it is frequently associated

with a neoplasm, which is caused by uncontrolled cell proliferation.

Brain tumors can be classified according to their origin or degree of aggressiveness.

Primary brain tumors arise in the brain, while metastatic brain tumors frequently

originate from other parts of the body. The most widely used grading scheme today has

been introduced by the World Health Organization (WHO) (Kleihues et al. (1993)). It

classifies brain tumors into grades I to IV with increasing aggressiveness.

Gliomas are the most frequent primary brain tumors in adults and account for

70% of adult malignant primary brain tumors. They arise from glial cells and they

can be classified into the four WHO grades, where high-grade gliomas are of grade III

or IV. Grade I and grade II tumors may be considered as semi-malignant tumors that

carry a better prognosis, while grade III and grade IV tumors are malignant tumors

that almost certainly lead to a subject’s death. The WHO grade IV gliomas are

also called glioblastoma multiforme (GBM). They are the most common malignant

primary brain tumors in humans, exhibiting very rapid growth (Deimling (2009)).

These tumors are infiltrative and spread mostly along the white matter fiber tracts

(Giese et al. (2003)). They form abnormal vessels and exhibit a necrotic core. This

and the surrounding edema leads to a mass-effect, which they exert on the healthy

tissues of the brain. Regarding tumor angiogenesis, current understanding is based

on the fact that low-grade gliomas are moderately vascularized tumors, whereas high-

grade gliomas show prominent microvascular proliferations and areas of high vascular

density (Plate and Risau (1995)). Average survival time for GBM is one year (Krex

et al. (2007)). Treatment options for gliomas include surgery, radiation therapy or

chemotherapy, including combinations of all these (DeAngelis (2001)).

Meningiomas are the most common extra-axial intracranial neoplasms. They

account for 15-20% of intracranial neoplasms. They are non-glial neoplasms that

originate from the arachnoid cap cells of the meninges. Treatment is usually performed

by surgery and/or radiation therapy (Greenberg et al. (1999)).

Primary brain tumors must be differentiated from metastatic brain tumors that
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originate most frequently from lung, breast, melanoma, renal and colon cancers and

account for approximately 40% of intracranial neoplasms.

Due to clinical relevance and the amount of prior work in MRI-based medical image

processing, the focus of this article will be on gliomas.

1.2. Imaging of Brain Tumors

The standard technique for brain tumor diagnosis is magnetic resonance imaging (MRI)

(DeAngelis (2001); Wen et al. (2010)). MRI is a non-invasive technique, which provides

good soft tissue contrast (Liang and Lauterbur (2000)) and is widely available in clinics.

It is used in combination with other imaging modalities, such as computed tomography

(CT), Positron Emission Tomography (PET) and Magnetic Resonance Spectroscopy

(MRS) to provide the most exact information about tumor morphology and metabolism.

Especially PET imaging can provide additional information (Chen (2007)), however

so far MRI remains the accepted standard and therefore we will focus on MRI-based

methods.

MRI makes it possible to produce markedly different types of tissue contrast

by varying excitation and repetition times, which makes it a very versatile tool for

imaging different structures of interest. Due to the nature and appearance of brain

tumors, one MRI sequence is not sufficient to fully segment the tumor including all

its subregions. In current clinical routine, different MRI sequences are employed

for diagnosis and delineation of tumor compartments (Drevelegas and Papanikolaou

(2011)). These sequences include T1-weighted MRI (T1), T1-weighted MRI with

contrast enhancement (T1c), T2-weighted MRI (T2) and T2-weighted MRI with fluid

attenuated inversion recovery (T2FLAIR), however acquisition parameters of these

modalities are not standardized. Patients with gliomas are usually examined by the

previously described MR imaging protocols according to the RANO guidelines with a

slice thickness of ≤ 5mm without a gap between the slices (Pope and Hessel (2011)). For

volumetry, high-resolution 3D volume images are performed, including at least contrast-

enhanced T1-weighted images with isotropic resolution. Figure 1 shows an axial slice

of the four standard sequences for a glioma patient including manually drawn tumor

regions.

T1-weighting is the most commonly used sequence for structural analysis, it

also allows for an easy annotation of the healthy tissues. In T1-weighted contrast-

enhanced images (Gadolinium-DTPA), the tumor borders appear brighter because the

contrast agent accumulates there due to the disruption of the blood-brain barrier in the

proliferative tumor region. In this sequence, the necrotic and the active tumor region

can be distinguished easily. In T2-weighted MRI, the edema region, which surrounds the

tumor appears bright. T2FLAIR (FLAIR) is a special sequence, which helps in separating

the edema region from the cerebrospinal fluid (CSF) because the free water signal is

suppressed. The radiological definition of the tumor margins in the clinical context

are often manually determined by the radiologist on the T2 and post-gadolinium T1
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Figure 1. One axial slice of an MR image of a high-grade glioma patient. From left to

right: T1-weighted image, T1-weighted image with contrast enhancement, T2-weighted

image, T2FLAIR-weighted image and manual segmentation into necrotic (yellow), active

(green), edema (pink) tumor compartments. Necrosis and active tumor region were

segmented based on the T1-weighted image with contrast enhancement, whereas the

edema region was segmented based on the registered T2FLAIR-weighted image.

images by thresholding boundaries between T2 hyperintense / T1 contrast-enhanced

lesions and the surrounding healthy tissue to define the outer margins of a tumor.

Clinical measurements of the tumor size traditionally incorporate either the product

of the major and minor axis (2D measures) or of the three main axes of a tumor (3D

measures).

Despite all the advantages that non-invasive imaging offers, it should be noted that

a final diagnosis can only be made after biopsy and histology. It must also be emphasized

that in gliomas, in contrast to metastatic brain tumors, the imageable component of the

tumor is only part of the complete extent of the tumor. The imageable component and

physiological information of the tumor depends on the tumor cell distribution and the

image modality (Kelly et al. (1987), Tovi (1993)).

1.3. Image Analysis for Brain Tumors

This review is focused on image analysis for brain tumor studies. Image analysis deals

with automatic or semi-automatic methods to help interpret the acquired images. Due

to the large amount of data, that is currently being generated in the clinics, it is not

possible to manually annotate and segment the data in a reasonable time. Usually,

the domain of medical image analysis is divided into segmentation and registration,

as well as into several further areas like enhancement, visualization, quantification and

modeling (Bankman (2008)). For brain tumor studies, segmentation, registration and

modeling appear to be the most important and the most challenging, so the remainder

of this article focuses on these aspects.

Image segmentation (Pham et al. (2000)) aims at partitioning an image into several

segments. These segments can be chosen according to structures of interest, tissue types,

functional areas, etc. Balafar et al. (2010) presented a recent review targeted at brain

segmentation specifically. Image registration (Maintz and Viergever (1998)) aims at

aligning two different images in a common reference space. This is especially important

for aligning images taken at different points in time during longitudinal studies or for

aligning images from different modalities taken from the same patient, but also for brain
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morphometry. Klein et al. (2009) compared non-linear algorithms for brain registration

specifically. Finally, image-based modeling and simulation (Neal and Kerckhoffs (2010))

can help in disease understanding, treatment planning and decision making.

The primary use of MRI-based medical image analysis for brain tumor studies

is in diagnosis, patient monitoring and treatment planning, but it could also be

useful in clinical trials. Segmentation is crucial for monitoring of tumor growth or

shrinkage in patients during therapy, for tumor volume measurements and it also plays

an important role in surgical planning or radiotherapy planning, where not only the

tumor has to be outlined, but also surrounding healthy structures are of interest. In

current clinical practice, segmentation is usually still done manually, which is time-

consuming and tedious for the radiologists and is also of limited use for an objective

quantitative analysis. Concrete application areas for registration include multi-modal

and longitudinal alignment of intra-patient images, but also aligning pre-, intra- and

post-operative images as well as deformable registration for atlas-based segmentation or

position mapping of gliomas for statistical analysis.

Although high-grade gliomas are not the most common cancers, they are among

the most deadly. Novel therapies have improved patients’ prognosis and novel clinical

trial designs have gained in importance to further investigate the response of gliomas to

different treatment regimens. A most accurate description of changes in tumor size and

physiology is therefore mandatory. For many years now, treatment response of gliomas

has been evaluated by MR and CT imaging; and a set of guidelines, usually referred

to as the Macdonald criteria (Macdonald et al. (1990)) is available to monitor the

assessment of tumor response after treatment. These criteria include changes in tumor

size and new or increasing enhancement. However, this approach carries some important

limitations (Clarke and Chang (2009)). Although the Macdonald criteria represented an

important step in neuro-oncology research, it is now clear that evaluation of gadolinium

enhancement alone is not adequate to characterize tumor growth or response. The

RANO (Response Assessment in Neuro-Oncology) working group has defined novel

criteria for tumor progression dependent on measurable or non-measurable lesions in

at least two directions (Wen et al. (2010)). Automatic 3-D volumetric assessment

of gliomas would offer the next important step forward to better understand tumor

dynamics and response to treatment.

A previous review of the field was done by Angelini et al. (2007). In the meantime

however, there has been significant progress, with the most important methods having

been developed after 2007, mostly due to the rapid advancements in machine learning

(Wang and Summers (2012)). Therefore, this review article aims at providing an update

on the state of the art in image analysis for brain tumor studies.

The methods presented here have been collected mostly from Pubmed and Google

scholar. We included more than 150 journal papers and conference papers from the most

important conferences in the field (MedIA, IEEE TMI, NeuroImage, MRI, MRM, JMRI,

PMB; MICCAI, IPMI, IEEE ISBI; and others). For the time before 2007, we included

only the historically most relevant contributions, for the rest we refer to Angelini et al.



A Survey of MRI-based Medical Image Analysis for Brain Tumor Studies 6

(2007).

The remainder of this review article is structured as follows: in the methods &

results section (section 2), we present the different approaches and briefly summarize

their results. The section is subdivided into methods for evaluation of accuracy and

validation (2.1), segmentation (2.2), registration (2.3) and integrated approaches (2.4).

Within each subsection we tried to group related methods together. Finally, in the

discussion & outlook section (section 3) we review the state of the art in general,

compare it to the clinical requirements and conclude about the applicability of the

current methods, before we give an outlook on possible future directions and trends.

2. Methods & Results

2.1. Evaluation and Validation Methods

Validation and comparison against the state of the art is crucial for any newly developed

method. Therefore, before diving into the presentation of the different approaches we

would like to briefly cover the possibilities and challenges for evaluating and validating

methods in brain tumor image analysis.

It would be optimal to compare any method against the real case. However, this is

a big challenge in this field, if not impossible. In lack of a well-accepted ground-truth,

the current gold standard for evaluation is to compare with manual segmentations by

an expert. However, this is an extremely time-consuming and tedious task, additionally

it is not objective. Mazzara et al. (2004) reported intra-rater volume variabilities of

20%±15% and inter-rater volume variabilities of 28%±12% for manual segmentations

of brain tumor images. Weltens et al. (2001) found even larger values for inter-observer

variability. One way to overcome this problem would be to use an algorithm that

combines several expert segmentations in an optimal way like STAPLE (Warfield et al.

(2004)). This method was applied for the evaluation of brain tumor segmentations by

Archip et al. (2007b), however in most cases there are not enough expert segmentations

available for using that method. Recently, Xu et al. (2012) suggested to use web-based

collaborative manual tumor labeling by a large number of briefly trained non-experts

to address this problem and they reported encouraging results. A more subjective,

but occasionally used way is to employ a semi-automatic segmentation with a different

well-accepted method as an intermediate result (e.g. Kikinis and Pieper (2011); Gao

et al. (2012); Egger et al. (2013)), which is manually corrected by a human expert where

necessary. This approach still lacks in objectivity, but it alleviates the burden from the

clinician to spend a large amount of time for segmentation.

Another possibility for a first sanity check is to assess results on a synthetic dataset

including ground-truth. Although synthetic data lacks important characteristics of real

images, it has been used by many groups for initially assessing both segmentation and

registration methods on healthy datasets with the BrainWeb phantoms (Cocosco et al.

(1997)). For brain tumor studies, Prastawa et al. (2009) made a similar attempt to
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provide simulated multi-sequence tumor image data including an objective ground truth,

which was also based on the BrainWeb phantom and combined with a well-defined and

accepted tumor growth model.

The most common way to quantitatively evaluate segmentation or registration

results is to calculate the overlap with the ground truth. Usually, Dice similarity

coefficient (DSC) or Jaccard coefficient (JC) are used (Crum et al. (2006)). They

can range from 0 to 1 with 0 indicating no overlap and 1 indicating perfect overlap.

Other possibilities for registration evaluation include manual landmark definition and

calculation of landmark errors or surface distances. For a more qualitative assessment,

checkerboard images can be shown or the outline of a structure can be analyzed visually.

Zou et al. (2004) compared the three different validation metrics: area under the receiver

operating characteristics (ROC) curve, mutual information (MI) and Dice similarity

coefficient (DSC) for probabilistic brain tumor segmentation. They concluded that for

overall classification accuracy the area under the ROC curve should be used, when

interested in sensitivity to changes in tumor size MI is the metric of choice and for

spatial alignment evaluation the Dice coefficient is best.

In the lack of a brain tumor database with ground-truth segmentations, that is

available to a broad community of clinicians and researchers, so far most authors

validated their algorithms on a limited number of cases from their own data. This makes

it difficult to compare the performance of different methods against each other in an

unbiased way. Therefore, and due to the different metrics used, the accuracy and speed

of the individual methods, which have been collected from the respective publications,

can not be directly compared with each other. Until recently, the only data available,

which could serve such a purpose of general comparison, was the synthetic data of

Prastawa et al. (2009), but so far only few groups tested their methods on these images.

For the related topic of MS lesion segmentation from brain MRI (Garćıa-Lorenzo et al.

(2013)), an open database has been available for some time (Styner et al. (2008)). Such

an open image database has long been missing for an objective comparison of brain

tumor segmentation algorithms, however an effort in this direction has finally been

undertaken by the BraTS challenge at MICCAI 2012 §.

2.2. Segmentation of Brain Tumor Images

Segmentation of tumor-bearing brain images is a challenging task for several reasons.

Firstly, high-grade gliomas usually exhibit unclear and irregular boundaries with

discontinuities. Contrast uptake and image acquisition time after contrast injection can

vary, which changes tumor appearance significantly and it is debatable if and how the

non-imageable component of the tumor should be handled by segmentation algorithms.

Additionally, tumor subregions can only be separated when several modalities are

combined, which requires accurate registration as a pre-processing step. Finally, clinical

datasets are usually acquired in a highly anisotropic way, leading to a much higher intra-

§ http://www2.imm.dtu.dk/projects/BRATS2012/
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Figure 2. Illustration of the main blocks used for building up the segmentation

pipeline of most algorithms included in this review.

slice resolution than inter-slice resolution. This causes problems with partial-volume

effects for segmentation, but also registration and resampling of the different modalities

in a common space of reference. A diagram illustrating the major steps during the

segmentation pipeline of most algorithms is shown in figure 2. In the following, the

different algorithms are discussed according to the major blocks of this pipeline.

2.2.1. Image Pre-processing Most algorithms rely on some kind of preprocessing

for image preparation and image enhancement. Image denoising is a standard pre-

processing task for MRI. Many approaches have been suggested, the most popular ones

being based on anisotropic diffusion filtering (Weickert (1998)). Diaz et al. analyzed

different denoising algorithms for the specific task of brain tumor segmentation (Diaz

et al. (2011)). They concluded that, although image noise was reduced, many algorithms

introduced artefacts which had a negative effect on segmentation.

Intensity normalization (Nyúl and Udupa (1999)) is a very critical task for

MRI, especially when classification methods are used for segmentation. However,

for tumor-bearing images, this is more challenging than for healthy images due to

the confounding effects caused by the differences in tumor appearance. Ekin (2011)

developed an intensity-normalization technique for MRI, which they claimed was robust
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to pathologies. Most approaches employ a bias-field correction (Vovk et al. (2007))

before the segmentation is applied, in order to compensate for the effect of magnetic

field inhomogeneities during image acquisition.

When operating on multi-modal images, pre-processing always includes registration

of all modalities in a common space of reference. In most cases, this is performed

using a linear transformation model with mutual information similarity metric (Mang

et al. (2008)) and resampling in order to ensure voxel-to-voxel correspondence across all

modalities.

Most approaches for brain tumor segmentation rely on a skull-stripping step

(Fennema-Notestine et al. (2006)) before the actual segmentation is performed. Speier

et al. (2011) recently presented a skull-stripping method dedicated to glioma images,

which was able to handle images containing resection cavities.

2.2.2. Image Features for Segmentation Algorithms The features used for segmentation

of brain tumors largely depend on the type of tumor and its grade because different

tumor types and grades can vary a lot in appearance (e.g. contrast uptake, shape,

regularity, location, etc.). Additionally, feature selection will also depend on the sub-

compartment of the tumor, which is to be segmented.

The most common feature used for brain tumor segmentation are the image

intensities. This is based on the assumption that different tissues have different

graylevels. Another type of features frequently used are local image textures because

it has been observed that different tumor areas exhibit different textural patterns

(Kassner and Thornhill (2010)). Textures can be computed according to different

strategies (Tuceryan and Jain (1998)). Alignment-based features make use of spatial

prior knowledge, which is often encoded by registration of a standard atlas to the patient

image or by making use of symmetries between left and right brain hemisphere. Intensity

gradients or edge-based features can be used for evolving a contour towards the tumor

border. Recently, context-aware features modeling mid- or long-range spatial contexts

similar to Lepetit et al. (2005) and Shotton et al. (2011) are becoming more popular.

Depending on the data available, all these features can either be computed from one

single modality or from multi-modal images. Researchers have also combined different

features from different modalities in order to improve their segmentation results.

For the task of brain tumor image analysis, Schmidt et al. (2005) explored

different features for voxel-based classification and concluded that combining textural

and alignment-based features allowed for substantial performance increases. Ahmed

et al. (2011) investigated the efficacy of different image features and feature fusion

strategies for pediatric brain tumor images. They argued that in multi-modal images,

texture features had advantages over intensity or shape features.

2.2.3. Segmentation Algorithms Based on the previous section, we categorize

segmentation algorithms according to the features they use. Therefore, we distinguish

region- or edge-based methods, which mostly rely on deformable models, and
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Table 1. Segmentation methods for brain tumor images using deformable methods

or region-based methods. Evaluation was performed on different datasets, empty cells

indicate no reported information. Dim stands for dimensionality, S for supervision. SA

means semi-automatic, FA fully-automatic. Type describes the tumor type, which can

be: G - glioma, HGG - high grade glioma, LGG - low grade glioma, M - meningioma,

Met - metastasis.
Authors Modalities Method Accuracy Speed Dim S Type

Edge-based methods

Wang et al. (2009) T1 Fluid vector flow 0.6 (Tani-
moto)

5s 2D SA

Sachdeva et al. (2012) T1, T1c, T2 Content-based active contour
model

0.72-0.98 2.5D SA G, M

Region-based methods

Ho et al. (2002) T1, T1c Level-set evolution with region
competition

0.85-0.93
(Jaccard)

3D FA G, M

Rexilius et al. (2007) T1c, T2,
T2flair

Multispectral histogram model
adaptation for region-growing

0.73 (Jac-
card)

10min 3D SA G

Harati et al. (2011) T1c Fuzzy connectedness >0.9 (simi-
larity index)

2.5min FA G, M

classification or clustering methods, which make use of voxel-wise intensity and texture

features. Many methods employ additional constraints for regularization, this is

discussed in a separate section. Another group of methods is based on atlas-based

segmentation. Atlas-based methods will be described later in sections 2.3 and 2.4

because the segmentation relies on registration methods.

Region- or Edge-based Methods

Deformable models make use of regional characteristics or edge detection in the images

(McInerney and Terzopoulos (1996)). In most cases, a level-set is evolved towards the

tumor boundary by searching for the largest gradient in the image or by employing

region properties. Wang et al. (2009) employed a fluid vector flow model to evolve a

contour towards the tumor boundary edge in T1-weighted images. Sachdeva et al. (2012)

made use of content-based intensity and texture patterns to evolve an active contour

towards the tumor boundary in different MRI modalities.

Ho et al. (2002) derived a tumor probability map from the difference image between

T1 and T1c, which formed the basis for the evolution of a region-competition level-set

algorithm applied. Rexilius et al. (2007) initialized a region-growing algorithm with

a tumor map, which was obtained from a multi-spectral histogram model adaptation.

Harati et al. (2011) suggested a fuzzy-connectedness algorithm, which made use of region

properties but had no spatial constraints. Seeding was automatically performed on T1-

weighted images with a so-called tumor detector matrix. Characteristics of each method

are summarized in table 1.

Classification and Clustering

In fact, most of the segmentation algorithms proposed so far, are based on

classification or clustering approaches. This is mostly owed to the fact that with

these methods, multimodal datasets can be handled easily because they can operate

on any chosen feature vector. In most cases, the features on which these algorithms
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operate include voxel-wise intensities and frequently also local textures. The general

idea is to decide for every single voxel individually, to which class it belongs based on

its feature vector. Classification requires training data to learn a classification model,

based on which new instances can be labeled. Clustering, on the other hand, works in

an unsupervised way and groups data based on certain similarity criteria (Wang and

Summers (2012)).

Clustering was introduced into the brain tumor segmentation community by

Schad et al. (1993) who analyzed texture patterns of different tissues. Phillips et al.

(1995) employed fuzzy c-means clustering and Vaidyanathan (1995) compared this

to kNN-clustering for tumor volume determination during therapy on multispectral

2D image slices. Clark et al. (1998), from the same group, further developed this

approach to incorporate knowledge-based techniques. Later, Fletcher-Heath et al.

(2001) also combined fuzzy clustering with knowledge-based techniques for brain tumor

segmentation from multi-sequence MRI.

Lately, there have been tremendous advances in developing more powerful

discriminative classification methods and these new methods have also found their way

into the field of medical image analysis. Cai et al. (2007) and later Verma et al. (2008)

from the same group, used a high number of MRI modalities (DTI channels in addition

to the conventional ones) to create voxel-wise intensity-based feature vectors, which they

classified with support vector machines (SVM) (Schoelkopf and Smola (2002)). They

were able to not only segment the healthy tissues, but also segment sub-compartments

of healthy and tumor regions. Ruan et al. (2007) used a very similar approach based on

SVMs, but with a lower number of modalities and they only segmented one tumor region.

Later, they claimed that feature selection using kernel class separability, could slightly

improve the results compared to their previous approach (Ruan et al. (2011)). Jensen

and Schmainda (2009) explored different neural networks to detect brain tumor invasion

from multi-parametric MRI (structural, diffusion and perfusion images). Kanaly et al.

(2011) chose a simpler approach by thresholding the voxels of the difference image

of pre- and post-contrast T1-weighted MRI after intensity normalization. Zikic et al.

(2012) lately proposed a computationally efficient approach based on decision forest

classification (Criminisi et al. (2011)) with context-aware features and an additional

generative model as an input, which is able to identify tumor sub-compartments

from multi-modal images (see figure 3). They claimed that context-aware features

eliminate the need for a post-processing step imposing smoothness constraints by spatial

regularization. Geremia et al. (2012) had the idea to generate synthetic tumor images,

which can be used to train a discriminative regression forest algorithm using different

groups of features. They argued that this approach allowed them not only to segment

patient images, but also to estimate latent tumor cell densities. Characteristics of each

method are summarized in table 2.

Classification and Clustering with Additional Constraints

It has been remarked that simple voxel-wise classification or clustering methods do
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Figure 3. Segmentation results generated from multi-sequence 3D MR images, shown

on T1c-weighted axial slices of different patients. The second row shows the manually

defined ground truth, the last row the results of a fully automatic algorithm, which

used T1, T1c, T2, T2flair and DTI MRI sequences as an input. The pathologic tissues

are separated into active, necrotic and edema compartments. Example from Zikic et al.

(2012).

Table 2. Segmentation methods for brain tumor images using classification or

clustering, grouped by different approaches. Evaluation was performed on different

datasets, empty cells indicate no reported information. Dim stands for dimensionality,

S for supervision. SA means semi-automatic, FA fully-automatic. Type describes the

tumor type, which can be: G - glioma, HGG - high grade glioma, LGG - low grade

glioma, M - meningioma, Met - metastasis.
Authors Modalities Method Accuracy Speed Dim S Type

Classification or clustering methods

Schad et al. (1993) T1, T2 Texture analysis and clustering 2D HGG,
Met

Phillips et al. (1995) T1, T2, PD Clustering HGG
Vaidyanathan (1995) T1, T2, PD Clustering 2-

5min
2D HGG,

M
Clark et al. (1998) T1, T2, PD Knowledge-based techniques 0.69-0.99 (%

match)
2D FA HGG

Fletcher-Heath et al.
(2001)

T1, T2, PD Fuzzy clustering + knowledge-
based techniques

0.53-0.91 (%
match)

2.5D FA

Cai et al. (2007) T1, T1c, T2,
T2flair, DTI

Probabilistic segmentation
based on multi-modality MRI

0.73-0.98
(classifica-
tion rate)

3D FA HGG

Ruan et al. (2007) T1, T2,
T2flair, PD

SVM Classification 0.99 (TP) 3D FA

Verma et al. (2008) T1, T1c, T2,
T2flair, DTI

Multiparametric tissue classifi-
cation

0.34-0.93
(classifica-
tion rate)

3D FA HGG

Jensen and
Schmainda (2009)

T1, T1c,
T2, T2flair,
DWI, DTI,
DSC

Different classifiers on multi-
parametric MRI

0.78-0.86
(overlap)

3D SA HGG,
M

Ruan et al. (2011) T2, T2flair,
PD

Image fusion for brain tumor
follow-up

5min 3D FA

Kanaly et al. (2011) T1, T1c Difference image for volumetric
tumor assessment

3D SA

Zikic et al. (2012) T1, T1c, T2,
T2flair, DTI

Decision forests for tissue-
specific segmentation

0.7-0.9
(Dice)

2-
3min

3D FA HGG

Geremia et al. (2012) T1, T1c, T2,
T2flair

Tumor cell density estimation
for discriminative segmenta-
tion

0.55-0.83
(Dice)

3D FA G
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not make use of the complete information contained in an image. Therefore, there

have been numerous attempts to use additional information to further improve the

segmentation result by adding additional constraints, which can be based on some form

of neighborhood regularization or on imposing shape or localization constraints for the

tumor. Neighborhood constraints are often imposed using a random field regularization

method, while shape constraints are mostly handled by deformable models. Atlases can

be used to restrict the tumor location and also for generative classification models.

Atlases have been used by a number of methods to incorporate spatial prior

knowledge into the classification task. Kaus et al. (2001) suggested to use a brain

atlas for guiding a kNN-classifier in their adaptive template-moderated classification

algorithm. Other researchers used atlases not only to impose spatial constraints, but

also to provide probabilistic information about the tissue model. Moon et al. (2002)

and also Prastawa et al. (2003) employed a probabilistic tissue model and used an

expectation maximization (EM) method (Dempster (1977)), which segmented tumor

images by modifying an atlas with patient-specific information about tumor location

from different MRI modalities. Later, Prastawa et al. (2004) extended this to work

on mono-modal images. Menze et al. (2010) combined a healthy atlas with a latent

tumor atlas to segment brain tumors from multi-sequence images using a generative

probabilistic model and spatial regularization. Weizman et al. (2012) used localization

based on an atlas for their multimodal segmentation of optic pathway gliomas, which

performed classification with a probabilistic tissue model.

Deformable models (McInerney and Terzopoulos (1996)) can be used to impose

shape constraints after previous tissue classification. Cobzas et al. (2007) and Cobzas

and Schmidt (2009) combined tissue classification using a high-dimensional feature

set with level-set evolution. Popuri et al. (2012) added a Dirichlet prior to the

previous approach to better disambiguate tumor from healthy tissues. Khotanlou et al.

(2009) combined fuzzy clustering and brain symmetry features with level-set evolution.

Hamamci et al. (2011) introduced the tumor-cut algorithm, which combines tumor

segmentation using cellular automata with a level-set evolving on the tumor probability

map to impose spatial smoothness.

Neighborhood relationships are often used for spatial regularization after initial

voxel-wise classification. In most cases this is performed with a random field method,

either Markov Random Fields (MRF) (Kindermann and Snell (1980)) or Conditional

Random Fields (CRF) (Lafferty et al. (2001); Kumar and Hebert (2006)). In the

last years, algorithms based on some form of graph-cuts for segmentation (Boykov

and Funka-Lea (2006)) have become increasingly popular. These algorithms make

use of region-based properties by formulating neighborhood relationships as an energy

minimization problem, which is solved by a graph-cut optimization method and the

result is interpreted as a segmentation. In many cases, these methods require user-

provided seeds, this is why the approaches are often semi-automatic. Lee et al.

(2008) used conditional random fields for spatial regularization after previous voxel-

wise SVM classification from multiple modalities. Wels et al. (2008) integrated a
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probabilistic boosting tree classifier with a graph-cuts approach for considering the

spatial relationships in pediatric brain tumor images. Birkbeck et al. (2009) proposed an

interactive semi-automatic approach, which was able to include online user corrections

and they argued that this method could not only reduce operator time, but also increased

repeatability compared to manual segmentation. Hamamci et al. (2010) proposed

a variation of the original graph-cut method using cellular automata for solving the

shortest-path problem iteratively. Nie et al. (2009) used an EM algorithm, which was

coupled with a spatial accuracy-weighted hidden Markov Random Field. This allowed

them to consider anisotropic resolutions of different modalities. Zhu et al. (2012) also

combined EM segmentation with MRF regularization, but added a post-processing

pipeline including thresholding and morphological operations. Bauer et al. (2011a)

claimed to be able to segment tumor and healthy tissues including sub-compartments

based on SVM classification with integrated hierarchical CRF regularization. They also

made use of prior knowledge about tissue adjacency probabilities. Hsieh et al. (2011)

chose a simple region-growing and knowledge-based post-processing after fuzzy tissue

classification to impose spatial coherence. Corso et al. (2007) took a different approach

and suggested an extended graph-shifts algorithm, which performed energy minimization

on a dynamic hierarchical representation of the image. In a later publication, they

employed a multi-level approach for fusing Bayesian tissue classification with affinity

assignments to perform segmentation by weighted aggregation (Corso et al. (2008)).

Characteristics of each method are summarized in table 3.

2.2.4. Tumor Detection Algorithms In contrast to segmentation algorithms, detection

algorithms only try to decide if tumor is present and output the approximate tumor

location instead of providing a complete segmentation. Saha et al. (2011) located the

tumor and drew a bounding box, instead of segmenting it. This could help in quickly

analyzing large amounts of data. It was done with the help of a fast unsupervised change

detection method searching for dissimilar regions across the symmetry line of the brain

using Bhattacharya coefficient score. Ambrosini et al. (2010) employed a template-

matching method to detect metastases on conventional MRI for screening purposes.

Farjam et al. (2012) chose a similar approach, but improved on the spherical template

generation process by considering variations in tumor size, lesion shape and intensities

to achieve more accurate detection rates. Although these approaches do not perform a

segmentation, the tumor detection could be used for initializing a segmentation method.

2.2.5. Summary and Conclusion - Segmentation Table 1, 2 and 3 present an overview

of all the segmentation algorithms discussed and compare their most important

characteristics and results. Most algorithms that have been suggested so far, rely

on multi-modal MR images for tumor segmentation. The most promising approaches

perform fully automatic segmentation based on voxel-wise classification in combination

with spatial regularization to take the neighborhood information into account. They

have the advantage of being very flexible and provide robust results within a
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Table 3. Segmentation methods for brain tumor images using classification or

clustering with additional constraints, grouped by different approaches. Evaluation

was performed on different datasets, empty cells indicate no reported information.

Dim stands for dimensionality, S for supervision. SA means semi-automatic, FA fully-

automatic. Type describes the tumor type, which can be: G - glioma, HGG - high

grade glioma, LGG - low grade glioma, M - meningioma, Met - metastasis.
Authors Modalities Method Accuracy Speed Dim S Type

Classification or clustering with global constraints based on atlases

Kaus et al. (2001) T1 Adaptive template-moderated
classification

>95% (ac-
curacy)

5-
10min

3D FA LGG,
M

Moon et al. (2002) T1, T1c, T2 Statistical classification with
geometric prior

>0.9 (over-
lap ratio)

3D FA G, M

Prastawa et al. (2003) T1, T1c, T2 Subject-specific modification of
atlas priors

0.49-0.71
(Jaccard)

3D FA

Prastawa et al. (2004) T2 Outlier detection 0.59-0.89
(Jaccard)

1.5h 3D FA G, M

Menze et al. (2010) T1, T1c, T2,
T2flair

Generative model for multi-
modal segmentation

0.4-0.7
(Dice)

3D FA G

Weizman et al. (2012) T1, T2,
T2flair

Classification and follow-up for
optic pathway gliomas

0.69 (Dice) 20min 3D FA G

Classification or clustering with constraints based on deformable models

Cobzas et al. (2007) T1, T1c, T2 Variational segmentation with
high-dimensional feature set

0.16-0.76
(Jaccard)

3D FA G

Khotanlou et al.
(2009)

T1 Fuzzy classification and spa-
tially constrained deformable
models

0.92 (simi-
larity index)

4.5min 3D FA HGG,
M

Cobzas and Schmidt
(2009)

T1c, T2flair Level-set with embedded CRF 0.5-0.75
(Jaccard)

3D FA G

Popuri et al. (2012) T1, T1c, T2 Variational segmentation on a
clustered feature set

0.58 (Jac-
card)

3D FA G

Hamamci et al. (2011) T1c Tumor-Cut 0.8-0.89
(Dice)

1s-
16min

3D SA G,M,
Met

Classification or clustering with local constraints based on neighborhood regularization

Corso et al. (2007) T1, T1c, T2,
T2flair

Extended graph-shifts algo-
rithm

0.87 (Jac-
card)

1min 3D FA HGG

Corso et al. (2008) T1, T1c, T2,
T2flair

Segmentation by weighted ag-
gregation

0.62-0.69
(Jaccard)

<1min 3D FA HGG

Lee et al. (2008) T1, T1c, T2 Pseudo conditional random
fields

0.84-0.9
(Jaccard)

2D FA G

Wels et al. (2008) T1, T1c, T2 Discriminative model-
constrained graph-cuts

0.78 (Jac-
card)

1-
2min

3D FA G

Birkbeck et al. (2009) T1c, T2flair Interactive graph-cuts 2min 2.5D SA
Nie et al. (2009) T1, T2,

T2flair

Spatial accuracy-weighted hier-
archical MRF

0.72-0.76
(Jaccard)

20-
25min

3D FA G

Hamamci et al. (2010) T1contrast Cellular automata segmenta-
tion

0.74-0.87
(Dice)

3D SA G,M,
Met

Hsieh et al. (2011) T1, T2 Fuzzy clustering plus region-
growing

0.73 (%
match)

3D FA M

Bauer et al. (2011a) T1, T1c, T2,
T2flair

Hierarchical SVM+CRF 0.77-0.84
(Dice)

<2min 3D FA G

Zhu et al. (2012) T1c, T2 EM + MRF + Post-processing 0.25-0.81
(Jaccard)

4min 3D SA HGG

reasonable computation time. Imposing shape or localization constraints after previous

classification is an effective approach too, but less flexible in handling different data and

different kinds of tumors. However, fully automatic methods are subject to differences in

MRI acquisitions, which can cause difficulties. Fewer examples rely on semi-automatic

methods that incorporate user interaction. The interactive methods often rely on graph-

cuts or deformable models with a user-defined initialization, which makes them very

flexible, but eliminates the advantage of being completely objective. It is not possible

to draw general conclusions about the accuracy of different methods, because so far they

have all been evaluated on different datasets.

While preparing this review, it became apparent that many papers focus on

segmentation algorithms and not on the features extracted from the image. Features

might be more important especially when considering the variance in appearance of

different tumor types and grades. In the future, it might be worthwile to take a closer
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Figure 4. Illustration of the main blocks, which are used for building up the

registration pipeline of most algorithms discussed in this article. We distinguish

between algorithms, which are only based on registration and integrated algorithms

combining tumor-growth modeling with registration. Most algorithms perform a linear

registration for initial alignment before a non-rigid transformation is applied. The non-

rigid transformation can be standard or tumor-specific.

look at relevant and meaningful features, and it would be interesting to explore how new

features can be designed to obtain better results. This could be added to improvements

in pre-processing for image standardization and in constraints for increased robustness.

2.3. Registration of Brain Tumor Images

Image registration of tumor-bearing brain images mainly focuses on two different

objectives: intrapatient multi-modal or longitudinal registration (alignment) of images

on the one hand, and interpatient spatial normalization of brain tumor images to a brain

atlas on the other hand. The latter is commonly used for atlas-based segmentation

purposes (Cabezas et al. (2011)) or for statistical analysis and functional/structural

mapping of brain tumor images. It can also be applied for constructing statistical tumor

atlases from multiple patients (Davatzikos et al. (2011)). A diagram illustrating the

major blocks of most registration pipelines is shown in figure 4. The pre-processing steps

are very similar to those discussed in section 2.2.1 and are therefore not repeated here.

We decided to separate registration methods and methods integrating tumor-modeling

with registration. Again, both can be sub-grouped into intra- or interpatient methods,

which can use either standard or tumor-specific registration algorithms. Usually, an

initial rigid alignment is followed by a non-rigid transformation step (Sotiras et al.

(2012)). The feature metric, which is used by most of the discussed approaches is

intensity-based registration thanks to its general applicability.
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2.3.1. Standard Intrapatient Registration In the case of intrapatient multi-modal or

longitudinal registration of images, the aim is to geometrically transform the images into

a common reference space for simultaneous analysis of the different modalities, or for

tumor growth monitoring over time. The problem of simply aligning the images without

specifically considering any growth or deformation effects by the tumor was extensively

studied by Mang et al. (2008), who concluded that in general, affine registration

with a mutual information metric performed best. Another problem, which frequently

occurs in registration of tumor-bearing brain images is the anisotropic voxel spacing.

The individual modalities are usually acquired with different anisotropic resolutions,

sometimes even in different orientations. The resulting interpolation problem has been

addressed for the general case in Thévenaz et al. (2000). Nevertheless, in practice the

inherent partial-volume effects still pose significant challenges for resampling all images

in a common reference space. Characteristics of the method are summarized in table 4.

2.3.2. Advanced longitudinal Intrapatient Registration to handle Resections The

problem of intrapatient registration is much more difficult when effects of surgery are

considered because then, non-linear effects have to be included and in most cases it

is not sufficient to apply standard registration algorithms. One application area for

this is registration of pre-operative images to intra-operative images or post-resection

tumor images. Clatz et al. (2005a) tackled the problem of non-rigidly registering intra-

operative MR images to pre-operative scans. They were able to handle the mechanical

brain deformation during surgery with a patient-specific finite element method (FEM)

and a non-rigid block-matching method. Strict constraints on the computation time

could be handled by a parallelized implementation and pre-computation of a large part

of the processing pipeline. Archip et al. (2007a) extended this approach, but they

registered additional pre-operatively acquired MRI modalities, so that this information

could be exploited during surgery. They achieved near real-time computational speed

and were able to provide enhanced visualization during neurosurgery. Wittek et al.

(2007) presented a patient-specific bio-mechanical model of brain deformation and its

application to image registration. In their method, they were able to make use of

patient-specific non-linear bio-mechanical tissue properties for integrating FEM analysis

into non-rigid registration of pre- and intra-operative images. Chitphakdithai and

Duncan (2010) relied on non-rigid registration for considering changes after brain tumor

treatment. They formulated registration as a maximum a posteriori (MAP) problem

and solved it in an EM framework. This way, the probability term of the transformation

could be seen as a similarity metric, for which an indicator map could model different

correspondence assumptions for different tissue classes. Characteristics of each method

are summarized in table 4.

2.3.3. Advanced longitudinal Intrapatient Registration for Tumor Growth Monitoring

Another area where advanced intrapatient registration strategies are necessary is

tumor growth monitoring from longitudinal image acquisitions. Konukoglu et al.
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Table 4. Overview of registration methods for brain tumor images, grouped by

different approaches for intrapatient registration. Evaluation was performed on

different datasets, empty cells indicate no reported information. Dim stands for

dimensionality, S for supervision, Transf. for the transformation model. SA means

semi-automatic, FA fully-automatic, L linear transformation model and NL non-linear

transformation model. Type describes the tumor type, which can be: G - glioma, HGG

- high grade glioma, LGG - low grade glioma, M - meningioma, Met - metastasis.
Authors Method Accuracy Speed Dim S Transf. Type

Standard intrapatient registration

Mang et al. (2008) Consistency of parametric reg-
istration

sub-voxel
accuracy

3D FA L G

Advanced longitudinal intrapatient registration to handle resections

Clatz et al. (2005a) Non-rigid registration to cap-
ture brain shift

<2.5mm <35s
(clus-
ter)

3D FA NL

Archip et al. (2007a) Pre- and intra-operative align-
ment of MRI

<3.6mm 179s
(clus-
ter)

3D NL G

Wittek et al. (2007) Model of brain deformation for
image registration

1-30mm 15min 3D NL

Chitphakdithai and Dun-
can (2010)

MAP registration estimation
framework

1.3 mm
(AE)

3D FA NL

Advanced longitudinal intrapatient registration for tumor growth monitoring

Konukoglu et al. (2008) Tumor monitoring <38% (er-
ror)

3D SA NL M

Niethammer et al. (2011) Geometric metamorphosis 0.975 (over-
lap)

3D FA NL

Pohl et al. (2011) Detecting change in slowly
evolving brain tumors

<23% (vol.
diff.)

<5min 3D SA L M

Angelini et al. (2012) Differential analysis for tumor
growth quantification

9-23% (er-
ror)

2D/3DFA NL LGG

(2008) suggested a registration method for monitoring slowly evolving meningiomas,

which performed semi-automatic tumor segmentation, non-rigid registration and change

detection consecutively. They argued that their volume-change measurements were

less user-biased than manual measurements. Niethammer et al. (2011) suggested a

metamorphosis model, which jointly estimated a deformation in space and a change

in image appearance for smooth transformation. Changes in image appearance were

modeled by a global geometric deformation, and local matching was based on an image

composition model in a large displacement diffeomorphic metric mapping (LDDMM)

framework. Pohl et al. (2011) proposed to detect changes in slowly evolving meningiomas

by semi-automatic segmentation, subsequent registration and final analysis of changes in

local intensity patterns. Differential MRI analysis for quantification of low-grade glioma

growth was applied by Angelini et al. (2012). They used a standard affine registration,

but implemented a non-linear midway-based histogram mapping, which allowed them

to compare and compute intensity difference maps directly. Glioma growth was finally

quantified with a statistical analysis framework of the mapped intensity distributions.

Characteristics of each method are summarized in table 4.

2.3.4. Standard Interpatient Registration The case of interpatient registration of

tumor-bearing brain images is even more challenging than the alignment of images from

the same patient because intersubject variations have to be integrated with topological

changes. Isambert et al. (2008) circumvented this problem by using a general method for

registering an atlas of a standard brain to the patient image using a multi-affine block-
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matching strategy. Organs at risk in a clinical radiotherapy context were delineated

from the registered atlas. Later, Deeley et al. (2011) did an extensive comparison of

manual and automatic segmentation methods for brain structures in presence of space-

occupying lesions. As an automatic method, they used a combination of multi-affine and

non-rigid registration with final level-set refinement. They claimed that the accuracy of

automatic and manual segmentations were in a similar range when compared against

the STAPLE ground-truth, but the manual segmentations were still slightly better.

Characteristics of each method are summarized in table 5.

2.3.5. Interpatient Registration with Lesion Masking Approaches In a comparison

study, Andersen et al. (2010) showed that non-rigid registration approaches which

masked out the lesion area from the similarity metric, achieved superior results compared

to conventional registration taking the whole image region into account. Variations

of these masking methods, which gave a different weight to tumor regions have been

suggested by a number of groups.

Brett et al. (2001) masked the cost function of a combined affine and non-rigid

registration method. The lesion had to be manually pre-segmented, to be used as

a mask for the similarity criterium during registration. They experimented with

different thresholds for the cost function mask. Stefanescu et al. (2004) chose a

similar approach. They created a confidence map for the similarity metric used during

registration and assigned zero confidence to all voxels inside the pre-segmented tumor

mask. Additionally, they allowed adaptive regularization in different tissue regions.

Dawant et al. (2002) introduced small tumor seeds in the atlas at the approximate

patient tumor location. Subsequently, they performed non-rigid registration, which also

deformed the seed in the atlas to match the shape of the pre-segmented tumor in the

patient approximately. Commowick et al. (2005) used statistical measures of anatomical

variability to guide the regularization during the registration process. Regions of low

variability were regularized more strongly. Lamecker and Pennec (2010) took up the idea

of using confidence weights. They added an inpainting step to a Demons registration

algorithm, which modeled a zero confidence within the pathologic region. Li et al.

(2011) chose a Riemannian embedding for their registration algorithm, which was able

to handle topological changes. The method required an a priori estimation of topological

changes as an input. Parisot et al. (2011) did not take the tumor voxels into account for

deformable registration of a dataset of images from different patients. The registration

output has been used for graph-based spatial position mapping of low-grade gliomas.

Later, they proposed a graph-based joint segmentation and registration framework

(Parisot et al. (2012)). In the tumor region, which was identified by an Adaboost

classifier, the registration criterion was relaxed to produce a smooth solution of the

segmentation. Characteristics of each method are summarized in table 5.

2.3.6. Interpatient Registration with Two Distinct Deformation Models Another idea

for interpatient registration is to incorporate a lesion model directly into the registration
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Figure 5. Registration based on two distinct deformation models. From left to right:

atlas image, atlas label map and the segmented patient image (from Bach Cuadra et al.

(2006)). The atlas is modified using a lesion-growth model to mimic the tumor-induced

deformation and the segmented structures from the atlas are transferred to the patient

image by non-rigid registration.

method. This allows for a decoupling of the deformations due to tumor growth and

inter-subject variations, without having to model the complex tumor growth behavior

explicitly. Bach Cuadra et al. (2004) suggested a model of lesion growth for atlas-based

segmentation of tumor-bearing brain images. They incorporated a simplistic radial

tumor growth model into a Demons-based non-rigid registration method. The lesion

growth model modified a healthy atlas and adapted it to the tumor-bearing patient

image, however the method was completely based on registration methods and did not

include any kind of bio-mechanical tumor growth simulation. Later, Pollo et al. (2005)

from the same group conducted more qualitative evaluation of the method. Finally,

they further improved it by replacing the SSD-based Demons algorithm with an optical

flow method based on mutual information (Bach Cuadra et al. (2006)). They reported

better results for this method because the assumption of linear intensity correspondence

between both images could be dropped (see figure 5 for results). Characteristics of each

method are summarized in table 5.

2.3.7. Summary and Conclusion - Registration Most registration methods make use

of a combination of rigid/affine and non-rigid registration with specific adaptations

for tumor-bearing images. While non-rigid methods are obviously more accurate

than standard rigid registration, they also carry additional risks of mis-registrations,

especially when topological changes due to the tumor are involved. This risk can be

reduced by tumor-specific adaptations, however these methods are in general more

difficult to handle than standard registration approaches. It is not possible to draw

a general conclusion about the accuracy and performance of different methods because

different data has been used for validation, but we will briefly summarize the qualities

of the different approaches.

The case of intra-subject alignment of longitudinal / multi-modal images can be

easily solved by standard registration methods if tumor effects are neglected. The
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Table 5. Overview of pure registration methods for brain tumor images, grouped

by different approaches for interpatient registration. Evaluation was performed on

different datasets, empty cells indicate no reported information. Dim stands for

dimensionality, S for supervision, Transf. for the transformation model. SA means

semi-automatic, FA fully-automatic, L linear transformation model and NL non-linear

transformation model. Type describes the tumor type, which can be: G - glioma, HGG

- high grade glioma, LGG - low grade glioma, M - meningioma, Met - metastasis.
Authors Method Accuracy Speed Dim S Transf. Type

Standard interpatient registration

Isambert et al. (2008) Atlas-based segmentation in
radio-therapy clinical context

0.3-0.85
(Dice)

7-
8min
(clus-
ter)

3D FA NL G, M

Deeley et al. (2011) Comparison of manual and au-
tomatic segmentation methods

0.4-0.9
(Dice)

3D FA NL HGG

Interpatient registration with lesion masking approaches

Brett et al. (2001) Cost function masking 0.5-2.6mm
(RMS)

3D SA NL

Dawant et al. (2002) Seeded atlas deformation 3D SA NL G, M
Stefanescu et al. (2004) Confidence map for non-rigid

registration
5-
10min
(clus-
ter)

3D FA NL

Commowick et al. (2005) Statistical measures of anatom-
ical variability for registration

0.84-0.94
(spec)

1h 3D FA NL

Lamecker and Pennec
(2010)

Demons and deformation in-
painting

9min 3D SA NL G

Li et al. (2011) Riemannian embedding 3D SA NL M
Parisot et al. (2011) Graph-based spatial position

mapping
3D SA NL LGG

Parisot et al. (2012) Joint tumor segmentation &
dense deformable registration

0.8 (Dice) 6min 3D FA NL LGG

Interpatient registration with two distinct deformation models

Bach Cuadra et al. (2004) Model of lesion growth for
atlas-based segmentation

37.2mm3

(MSE)
3D SA NL M

Pollo et al. (2005) Model of lesion growth for
atlas-based segmentation

3D SA NL M

Bach Cuadra et al. (2006) Deformation field estimation
for atlas-based segmentation
using MLG and MI

0.89-1.0
(TP)

3D SA NL M

problem is much more difficult if registration is used for longitudinal tumor growth

monitoring or when registering pre- and post-resection images. Methods for registering

images during surgery often make use of FEM models for considering the effect of

brain-shift, while in longitudinal registration methods usually a special way of handling

the tumor-induced appearance changes is employed. For intra-operative images,

computation time is crucial and therefore emphasized by all authors. An overview

and comparison of the presented techniques can be found in table 4.

The inter-subject normalization task is also very challenging due to the effects of the

tumor mass in combination with inter-subject variations. It appears that masking out

the tumor area from the calculation of the similarity metric is too simplistic and more

sophisticated methods, which assign different confidence weights to different areas during

registration, or which allow for a composition of two different kinds of deformations are

a more promising way to solve the problem, however this also affects computation time.

An overview and comparison of the presented techniques can be found in table 5.
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2.4. Integrated Approaches for Tumor Growth Modeling and Registration /

Segmentation

The major problem when registering a brain tumor image with a healthy atlas is

the missing correspondence between pathologic patient image and healthy atlas. One

idea to circumvent this problem is to seed the atlas with a tumor prior and simulate

tumor growth in the atlas according to the patient image, followed by a final non-rigid

registration step.

2.4.1. Types of Tumor Growth Models Tumor growth simulation approaches used in

image-based modeling can fall into three different categories: on the microscopic level,

cellular growth models are used, while on the macroscopic scale diffusion-reaction models

or bio-mechanical models are employed.

Cellular growth models focus on cell-to-cell interactions and are able to model

proliferation or apoptosis of individual cells using rule-based cellular automata (Kansal

et al. (2000), Stamatakos et al. (2007), Stamatakos et al. (2010)).

Reaction-diffusion models simulate the proliferation and spread of the tumor based

on a reaction-diffusion partial differential equation model. The general assumption is

that the cancer cells spread along the fiber direction with different diffusion coefficients

in gray matter and white matter (Swanson et al. (2000), Swanson et al. (2002)).

Bio-mechanical models take into account the mass-effect of large tumors and model

the deformation of the surrounding tissues based on their material properties, usually

employing a finite element method (Davatzikos et al. (2001), Zacharaki et al. (2008a),

Chen et al. (2010)). For the challenge of handling the large-scale deformations occurring

in brain tumor growth, it has been suggested to use an Eulerian instead of a Lagrangian

formulation (Hogea et al. (2007a)).

Multi-scale models integrate the methods mentioned previously in order to gain

a more precise formulation. Most models simulate proliferation based on a reaction-

diffusion equation and couple this with a bio-mechanical model for the mass-effect (Clatz

et al. (2005b), Hogea et al. (2007b), Hogea et al. (2008b), Hogea et al. (2008a), Prastawa

et al. (2009)). An exception is May et al. (2011), where a cellular proliferation model

is coupled to an Eulerian FEM model to simulate the mass-effect. Marias et al. (2011)

recently made a first attempt to integrate all three levels of complexity: cellular, diffusion

and bio-mechanical into one single multiscale model.

Personalization of these models is difficult, especially for registration purposes when

only limited data is available for this task. Most authors employ image-based modeling,

making ad-hoc assumptions about the connection between image intensities and cell

densities, which again rely on segmentations of tumor and healthy tissues. Other model

parameters are either initialized with standard values from literature, or optimization

methods are employed for personalizing the models by choosing individual parameters.

2.4.2. Purely Bio-mechanical Growth Models combined with Registration Kyriacou
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et al. (1999) were the first ones to introduce the concept of combining bio-mechanical

tumor growth modeling with non-rigid registration in order to adapt a patient image

to a healthy atlas. They assumed a uniform strain of the tumor and a non-linear

elastic behavior of the surrounding tissues. First, shrinkage of the tumor in the patient

image was performed to obtain an artificial healthy patient image. A healthy atlas was

then registered to the tumor-free patient image with an elastic registration method.

Subsequently, tumor growth was performed on the registered atlas using a regression

method to invert the tumor shrinkage process from the previous step. Finally, they

obtained a patient-adapted atlas including pathology. The concept was demonstrated

on 2D image slices.

Later, Mohamed et al. (2006) from the same group chose a different approach.

Instead of shrinking the patient tumor, they grew the tumor in the atlas image according

to the pathologic patient image and applied a non-rigid registration to adapt the

modified atlas to the patient image. In order to handle the significant computational

cost of the tumor growth modeling in 3D, they employed an approach based on a

statistical model of tumor-induced deformation using principal component analysis

(PCA). For each case, the most likely parameters were estimated and the deformation

could be applied based on the pre-built statistical model. Zacharaki et al. (2008b)

further developed this approach as a multi-resolution framework for registration of

brain tumor images. In their approach, they also used a statistical model of tumor

induced deformation, but in a hierarchical framework for parameter optimization.

Local information was incorporated into the tumor growth model and the registration

methodology was improved. In a next step, Zacharaki et al. (2009a) improved the tumor

growth model compared to their previous method. They employed a piecewise Eulerian

simulator with a uniform outward pushing pressure model for the bulk tumor, which did

not require the simplified PCA model for tumor growth while still being computationally

efficient. Additionally, parameter optimization was performed in a parallelized fashion

for further speed improvements.

Bauer et al. (2011b) proposed a more simplistic model for tumor growth, which

they combined with a non-rigid Demons registration. A healthy atlas was seeded

automatically and bio-mechanical tumor growth was modeled assuming a radial

expansion force. The expansion was propagated over the image by means of a Markov

Random Field method on the deformation field. Characteristics of each method are

summarized in table 6.

2.4.3. Diffusion-based Bio-mechanical Growth Models combined with Registration

Gooya et al. (2011a) employed a more sophisticated diffusion-reaction model for tumor

growth, which was coupled with an Eulerian method to simulate the mass-effect. They

operated on multi-sequence images to obtain a probability map of the different tissue

classes using SVM classification techniques. The patient specific tumor was grown

in the atlas and a Demons like algorithm was employed for the localized atlas-to-

patient transformation for which the tissue probability maps from the multi-sequence
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Figure 6. Integrated tumor-growth modeling and non-rigid registration. Axial slices

of the three modalities (FLAIR, T2, T1contrast), which were used, are shown on the

left. The segmentation result of the GLISTR method is shown in the center. The

images on the right depict the obtained probability maps for tumor (color), CSF and

gray matter (grayscales) respectively after the combined tumor growth simulation and

registration. From Gooya et al. (2012).

classifier were considered for the cost function. The whole process was formulated

in an expectation maximization framework to jointly estimate tumor growth and the

spatial transformations for adapting the atlas to the patient image. In an extension,

Gooya et al. (2011b) dropped the requirement for a pre-classification and proposed

a joint segmentation and registration model including tumor growth. To this end,

they used again an expectation maximization algorithm to jointly estimate tumor

growth parameters and registration deformation field to obtain the tissue posterior

probabilities in the patient image derived from the atlas. The approach was recently

further improved and extended (Gooya et al. (2012), see figure 6), where the authors

also reported on employing the method for the construction of statistical atlases for

gliomas. Characteristics of each method are summarized in table 6.

2.4.4. Bio-mechanical Growth Method Based on a Cellular Model combined with

Registration Bauer et al. (2012) suggested to use a bio-physio-mechanical tumor growth

model for atlas-based segmentation of tumor-bearing brain images. They seeded the

atlas with a patient specific prior and simulated tumor growth with a cellular automaton

modeling tumor cell proliferation, which was coupled to an Eulerian FEM method to

handle the tumor mass-effect. The modified atlas was registered to the patient image

with a Demons algorithm and the label map was propagated for segmentation. Recently,

they extended this to be applicable to radiotherapy and neurosurgery (Bauer et al.

(2013)). The tumor outline was defined using classification methods and important

structures were segmented by warping a subcortical label map with an enhanced

registration metric. Characteristics of the methods are summarized in table 6.

2.4.5. Summary and Conclusion - Integrated Approaches Several authors have

proposed integrated approaches that combine tumor growth modeling with segmentation

methods based on registration of an atlas (see table 6 for a summary). To this end,

initial correspondence between healthy atlas and pathologic patient image is established

with the help of tumor growth simulation. It has been observed that the initially

proposed purely bio-mechanical methods, modeling the tumor-mass effect only, were
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Table 6. Overview of combined tumor growth modeling and registra-

tion/segmentation methods, grouped by different approaches. Evaluation was per-

formed on different datasets, empty cells indicate no reported information. Dim stands

for dimensionality, S for supervision, Transf. for the transformation model. SA means

semi-automatic, FA fully-automatic, L linear transformation model and NL non-linear

transformation model. Type describes the tumor type, which can be: G - glioma, HGG

- high grade glioma, LGG - low grade glioma, M - meningioma, Met - metastasis.
Authors Method Accuracy Speed Dim S Transf. Type

Purely bio-mechanical growth model

Kyriacou et al. (1999) Bio-mechanical tumor shrink-
age and growth for registration

<3.5mm <100min2D SA NL Met

Mohamed et al. (2006) Statistical model for tumor-
induced deformation

<19mm 35min 3D SA NL G

Zacharaki et al. (2008b) ORBIT <42mm 14h 3D SA NL
Zacharaki et al. (2009a) Non-diffeomorphic registration

with tumor growth
0.67-0.74
(Dice)

<6h
(clus-
ter)

3D SA NL G,
Met

Bauer et al. (2011b) MRF lesion growth model 0.7-0.95
(Dice)

<30min
(GPU)

3D SA NL G

Diffusion-based bio-mechanical growth methods

Gooya et al. (2011a) Registration with EM algo-
rithm and diffusion modeling

0.29-0.63
(Jaccard)

6-
14h
(clus-
ter)

3D FA NL G

Gooya et al. (2011b) Joint Segmentation and Regis-
tration

0.76-0.85
(Dice)

3D FA NL G

Gooya et al. (2012) GLISTR: Glioma image seg-
mentation & registration

0.75-0.84
(Dice)

3-6h 3D FA NL G,
Met

Cellular-based bio-mechanical growth methods

Bauer et al. (2012) Multi-scale modeling for atlas-
based segmentation

0.56-0.95
(Dice)

10-
36h

3D SA NL G

Bauer et al. (2013) Integrated segmentation for ra-
diotherapy & neurosurgery

0.41-0.72
(Dice)

6-
48h

3D FA NL G

not satisfactory. Therefore, the more realistic models simulate the mass-effect coupled

to either a microscopic cellular proliferation model or a macroscopic diffusion model.

A logical next step would be to integrate all three levels: cellular, diffusion and

bio-mechanical layer to obtain a more meaningful model. The non-rigid registration

methods applied after tumor growth simulation, are mostly standard algorithms which

are well-known in the medical image analysis community. It would be interesting to

see if additional knowledge about tissue distributions and characteristics in brain tumor

images could be useful. However, before the approaches presented in this section can

become clinically relevant, computation time has to be drastically reduced.

3. Discussion & Outlook

3.1. Critical Review of the Current State of the Art

In this review article, we gave an overview of the state of the art in MRI-based medical

image analysis for brain tumor studies. The focus was on segmentation and registration,

whereas some of the registration methods also included tumor growth modeling. The

first attempts in this field were made almost two decades ago, but it can be observed

that in recent years the methods are becoming mature and an increase of their use in

clinical practice is expected.

The majority of segmentation approaches operate on multi-sequence MRI data,

employing classification methods using different features and taking spatial information



A Survey of MRI-based Medical Image Analysis for Brain Tumor Studies 26

in a local neighborhood into account. The trend is not to segment the tumor only,

but also to delineate tumor sub-compartments and different healthy regions on images

from standard clinical acquisition protocols. This provides the physician with a more

comprehensive information, on which diagnosis, tumor monitoring and therapy planning

can be based. Apart from the evaluation of accuracy and robustness, an important

criterium is computation time. Processing times of a few minutes are the current

standard. Performing a better problem-oriented selection of the segmentation technique

instead of choosing the technique first and then try to make it work on the current

problem, could be accomplished in the future by paying more attention to feature

selection than the segmentation algorithm.

The registration methods can be separated into intra- and inter-patient registration.

In intra-patient registration, the main challenge is to handle effects of tumor growth

or resection, which is mostly done by tumor image-specific extensions to standard

registration algorithms. The majority of inter-patient registration approaches focus

on registration of tumor-bearing brain images with a normal atlas. This can be used

for atlas-based segmentation or for constructing statistical brain tumor atlases. One

attempt to handle the missing correspondence between healthy atlas and pathologic

patient image is solely based on registration methods, a different idea is to combine

tumor growth modeling with registration methods. While the registration approaches

are more general, the integrated approaches tend to be more accurate, however the

tumor-growth model adds additional complexity, which also introduces additional

risks. A major problem, especially for the integrated approaches, is their tremendous

computation time. Therefore, these methods should be considered as pure research

methods at the moment, and will not reach clinical use until improvements in

computational speed are attained.

Comparing the traditional segmentation techniques and the atlas-based segmen-

tation methods, which rely on registration, it is clear that the traditional segmenta-

tion techniques are more flexible and can be more easily adapted to handle multiple

modalities simultaneously. Additionally, it is possible to treat individual tumor sub-

compartments more easily. Atlas-based methods have advantages when segmenting

tissues and structures surrounding the tumor, especially subcortical structures or func-

tional areas. These structures can be segmented more easily if there is atlas-encoded

information about spatial localization available. This can have important implications

for surgery or radiation therapy. However, many of the approaches incorporating tumor-

growth modeling have difficulties in handling multifocal lesions.

While preparing this article, it became apparent that some papers in the literature

lack in precision, describing what exactly is being done, what type and grade of tumor is

being considered, what image data is being used or how the algorithm performs in terms

of robustness, accuracy and speed. This can be easily seen from the many empty fields

in the presented tables. Particularly in the case of medical image analysis for brain

tumor studies, better attention should be paid to differences according to the tumor

type and grade, but also to robustness of the algorithm. Eventually, it would be useful
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to test any new method on a standard database of brain tumor images to allow for a

fair comparison against the state of the art. The MICCAI BraTS dataset ‖ would be

one candidate for such a database (see also section 2.1).

3.2. Clinical Requirements and Applicability

Although a lot of research has been done in this field in the last years, application in

the clinics is still limited. Despite the huge amount of work involved and the limited

objectiveness, in many cases clinicians still rely on manual tumor delineations. This

is probably mostly due to a lack of communication between researchers and clinicians.

Many of the tools developed so far are pure research tools, which are not easy to handle

for clinicians. Therefore, a major effort should be spent on embedding the developed

tools into more user-friendly environments in the future. So far, in most commercial

workstations, only very simple methods are implemented (e.g. thresholding). One

reason for this might be, that the technology transfer from the bench to the bedside is

still a major challenge because the performance achieved in a well controlled research

environment can often not be reproduced in clinical routine. Recently, more researchers

have tried to consider standard clinical acquisition protocols when developing their

methods, instead of focusing on feasibility studies that employ pure research data as

image material. This will hopefully aid in spreading the application more quickly.

Another important aspect is computation time: real-time segmentation will be hard

to achieve, but computation times which are beyond a few minutes, are unacceptable

in clinical routine. For everyday use, robustness is crucial. This includes robustness

against slight changes in the acquisition protocol, but also the flexibility to handle new

acquisition protocols. If a method tends to fail completely on some cases, doctors will

lose their trust in the automatic approach and will not be willing to change their habits.

Therefore, thorough demonstration of the robustness should be one of the major steps

for each new method.

Currently, image acquisition protocols are not completely standardized. In order to

be able to make the best possible use of automatic methods for medical image analysis,

it is essential to have image data, which has been acquired according to a well-defined

protocol across different clinical sites. We expect such a standardization would aid

significantly in improving the applicability and spread the use of automatic methods

because the need for fine-tuning according to specific imaging characteristics will be

eliminated.

Standard therapeutic procedures for brain tumors include resection, followed by

fractionated radiation therapy combined with temozolomide (TMZ) chemotherapy

(Stupp et al. (2009)). Due to recent changes in glioma treatment, the traditional

Macdonald criteria (Macdonald et al. (1990)) for tumor response evaluation are

increasingly recognized to be not adequate any more, as effects of pseudo-progression

and pseudo-response are not covered by these criteria. Since the formulation of the

‖ http://www2.imm.dtu.dk/projects/BRATS2012/
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Macdonald criteria, many novel MR-techniques have become available, now widely used

in clinical routine, that allow for the non-invasive retrieval of morphological, functional

and metabolic properties of brain tumors (e.g. diffusion weighted imaging, dynamic

susceptibility contrast enhanced perfusion imaging, MR-spectroscopy (MRS)). These

techniques may be able to fill the gap in the proper evaluation of tumor progression in

the future, together with improvements in tumor volume estimation from medical image

analysis by forming an integrated platform for advanced tumor assessment.

Eventually, a dialogue should be initiated to convince practitioners that although a

software tool might lack in accuracy compared to the manual method in certain cases,

it offers more objectiveness, which is very important in longitudinal studies. However,

while being objective, the automatic segmentation obviously has to be sufficiently close

to what a radiologist perceives as the correct tumor segmentation. If this cannot be

achieved by fully automatic methods, it might be worthwhile to consider an interactive

method that is initialized or corrected by the user. In practice, the variability introduced

by interactive user input is usually much smaller than the variability of completely

manual segmentation results. In this case, ease of use for the clinician is crucial for any

method to be accepted. It should also not be neglected that for automatic tumor image

analysis methods to be used as a routine diagnosis tool, certification is mandatory. This

probably means that the application will not reach a breakthrough in the clinics before

commercial software packages are being offered. Current clinical viewing systems are

often not even well equipped yet for visualizing changes in multiple image classes over

time.

3.3. Publicly Available Toolboxes

Only very few implementations of the presented methods are publicly available. This

impedes comparison of new methods to existing approaches and also hinders large-scale

evaluation with clinical data from different sites. To the best of our knowledge, at

the moment there are only three methods publicly available for download, which are

dedicated to the analysis of brain tumor images:

Prastawa et al. (2009) provide their “TumorSim” software for simulation of

synthetic brain tumor images ¶. Bauer et al. (2011a) offer the “DoctorNo” suite of

tools (Bauer and Reyes (2011)) as a plugin for the GUI-based “DoctorEye” software

platform (Skounakis et al. (2010)) for download +. Gooya et al. (2011a) provide the

“GLISTR” toolkit on their website ∗.

3.4. Future Directions and Trends

It can be expected that the current efforts for registration and segmentation of tumor-

bearing brain images on standard MRI protocols will enter routine clinical procedures in

¶ www.nitrc.org/projects/tumorsim
+ www.istb.unibe.ch/content/research/medical image analysis/software
∗ www.rad.upenn.edu/sbia/software/glistr
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the next years (Levy and Rubin (2011)). In order for this to happen, proof of robustness

and sufficient speed of the methods is mandatory, as outlined before. This development

is likely to be pushed with the anticipated shift from the diameter-based MacDonald

(Macdonald et al. (1990)) and RECIST (Therasse et al. (2000)) criteria to volume-

based criteria for assessment of tumor response to treatment as suggested by the RANO

group (Wen et al. (2010)). However, it remains to be investigated how well automatic

methods can handle the impact of treatment effects and related pseudo-progression or

pseudo-response on the segmentation outcome, which will also be interesting for clinical

trials (Henson et al. (2008)). Nevertheless, the objectiveness of automatic methods in

tumor segmentation is undisputed and Angelini et al. (2012) have made use of this in

a first comprehensive study on longitudinal brain tumor data. It is likely that this line

of research will be exploited more in the future.

Apart from the standard imaging methods, recently more advanced MRI modalities

like perfusion imaging, diffusion tensor imaging (DTI) and magnetic resonance

spectroscopy (MRS) are getting more attention (Cha (2006), Law (2009)) in brain tumor

analysis. These modalities are mostly used for tumor grading and for localization of the

most active areas of the tumor. Researchers have started to apply machine learning

approaches for tumor grading from perfusion images (Slotboom et al. (2008), Zacharaki

et al. (2009b), Emblem et al. (2009), Zöllner et al. (2010), Zacharaki et al. (2011))

and also for analysis of combined MRI/MRS data (Luts et al. (2007), Fayed et al.

(2008), Georgiadis et al. (2011)). PET imaging has the potential to provide better

prognostic information and distinguish recurrent tumor from radiation necrosis (Chen

(2007); Dhermain et al. (2010)).

Another area, which is likely to get increased attention is patient-specific image-

based modeling of brain tumor growth (Konukoglu et al. (2010), Menze et al. (2011)).

This research could help to predict tumor progression and optimize treatment options

on an individual basis.
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