
Citation: Zhou, Y.; Yu, L.; Zhi, C.;

Huang, C.; Wang, S.; Zhu, M.; Ke, Z.;

Gao, Z.; Zhang, Y.; Fu, S. A Survey of

Multi-Focus Image Fusion Methods.

Appl. Sci. 2022, 12, 6281. https://

doi.org/10.3390/app12126281

Academic Editor: Seokwon Yeom

Received: 27 May 2022

Accepted: 18 June 2022

Published: 20 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

A Survey of Multi-Focus Image Fusion Methods
Youyong Zhou 1, Lingjie Yu 1 , Chao Zhi 1, Chuwen Huang 1, Shuai Wang 1, Mengqiu Zhu 1, Zhenxia Ke 1,
Zhongyuan Gao 1, Yuming Zhang 2,* and Sida Fu 3,*

1 School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
zhouyouyong@stu.xpu.edu.cn (Y.Z.); lingjie.yu@xpu.edu.cn (L.Y.); zhichao@xpu.edu.cn (C.Z.);
cptbtptpr7bo@163.com (C.H.); wangshuai_xpu@163.com (S.W.); zhumengqiu@stu.xpu.edu.cn (M.Z.);
kezhenxia@stu.xpu.edu.cn (Z.K.); gaozhongyuan@stu.xpu.edu.cn (Z.G.)

2 School of Textile, Apparel & Art Design, Shaoxing University Yuanpei College, Shaoxing 312000, China
3 China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
* Correspondence: lunwenzhuanyou@126.com (Y.Z.); sidafu@zjxu.edu.cn (S.F.)

Abstract: As an important branch in the field of image fusion, the multi-focus image fusion technique
can effectively solve the problem of optical lens depth of field, making two or more partially focused
images fuse into a fully focused image. In this paper, the methods based on boundary segmentation
was put forward as a group of image fusion method. Thus, a novel classification method of image
fusion algorithms is proposed: transform domain methods, boundary segmentation methods, deep
learning methods, and combination fusion methods. In addition, the subjective and objective
evaluation standards are listed, and eight common objective evaluation indicators are described in
detail. On the basis of lots of literature, this paper compares and summarizes various representative
methods. At the end of this paper, some main limitations in current research are discussed, and the
future development of multi-focus image fusion is prospected.

Keywords: image fusion; multi-focus image; fusion method; evaluation indicators

1. Introduction

Image fusion is a process of generating an image superior to the original image and
using a special application based on the study of multiple image features in the same
scene by using redundant and complementary information among image data [1]. Using
specific algorithms to extract useful feature information from two or more images, image
fusion technique can generate a new image with more comprehensive and accurate details.
According to the types of input source images, the image fusion can be divided into remote
sensing image fusion, medical image fusion, multi-focus image fusion, multi-exposure
image fusion, infrared and visible image fusion, etc. [2]. Image fusion technology has been
developed for more than 40 years, with more and more research methods and applications
rising. Among them, multi-focus image fusion technology has a very broad application
prospect in digital photography, computer vision, target tracking, and monitoring, micro-
scopic imaging, and other fields [3,4].

The so-called multi-focus problem can be explained as follows: due to the limited
focus range of visible-light imaging systems, it is difficult to clearly capture all objects in
the same scene [3,5]. As shown in Figure 1, a point in the scene is projected onto a single
point in the focal plane to form a focused image. However, if the sensor plane does not
coincide with the focal plane, the image formed on the sensor plane will be a fuzzy disk
with a diameter of 2R, which could be called a defocused image.

Appl. Sci. 2022, 12, 6281. https://doi.org/10.3390/app12126281 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12126281
https://doi.org/10.3390/app12126281
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4101-5885
https://orcid.org/0000-0003-0656-3915
https://doi.org/10.3390/app12126281
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12126281?type=check_update&version=2


Appl. Sci. 2022, 12, 6281 2 of 15

Figure 1. The basic principle of optical imaging characteristics.

According to the above principles, multi-focus images can be divided into two parts,
namely the focusing region and the defocusing region. Objects are clearly sharp in the focusing
area, while relatively blurred in the defocusing region. Figure 2 shows 14 groups of images,
including both gray and color. Each group of images were captured for the same scene but at
a different focusing position, forming a multi-focus result, as exhibited in Figure 2.

Figure 2. Multi-focus images in the same scene.

Traditional classification methods include the spatial domain method and the trans-
form domain method [6,7]. With the soaring new multi-focus image fusion methods, it
is difficult for the existing classification methods to accurately position all image fusion
algorithms. Therefore, the existing multi-focus fusion methods cannot reasonably clas-
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sify and summarize the pixel level fusion methods. For instance, the pixel level image
fusion method can be simultaneously divided into spatial domain and transform domain
according to the choice of the domain [8]. Therefore, this paper innovatively proposes
the fusion method type based on boundary segmentation, and classifies the pixel level
fusion methods into the fusion method of boundary segmentation. In this paper, the
existing multi-focus image fusion methods are reviewed, sorted, and classified, and eight
commonly used objective evaluation methods are summarized. Based on a large number
of literature, the typical algorithm, fusion process, and key technologies of multi-focus
image fusion are discussed, and the fusion results and fusion efficiency are compared and
summarized. The image fusion can be divided into four categories: transform domain
method, boundary segmentation method, deep learning method, and combination fusion
method. The applicability of various methods is summarized. Finally, we analyzed and
discussed the challenges faced by this field and proposed the solutions, and the future
development of multi-focus image fusion technology has prospected.

The first part of this paper is the introduction, which introduces the concepts of multi-
focus image fusion, and summarizes the content of this paper; The second part is the
fusion method and analysis, which analyzes and classifies a variety of multi-focus fusion
methods; The third part is the evaluation indicators, which introduces the commonly used
subjective evaluation and objective evaluation; The fourth part is the limitations, and gives
the corresponding solutions according to the common fusion problems; The fifth part is the
conclusion, which analyzes the application and development of multi-focus fusion.

2. Fusion Methods and Analysis

As shown in Figure 3, image fusion can be divided into pixel-level image fusion,
feature-level image fusion, and decision-level image fusion according to the information
representation layer [6]. For the image source classification, image fusion can be divided
into remote sensing image fusion, medical image fusion, multi-focus image fusion, multi-
exposure image fusion and infrared, and visible image fusion [7]. Referring to the fusion
method, image fusion can be divided into spatial domain image fusion and transform
domain image fusion [8].

Figure 3. Image fusion classification.
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This paper proposes a new classification method, that is boundary segmentation
method, dividing the current mainstream multi-focus fusion methods into four categories:
transform domain method, boundary segmentation method, deep learning method, and
combinatorial fusion method. Table 1 lists the classification method and the current main-
stream algorithms.

Table 1. Classification and mainstream algorithms of multi-focus image fusion.

Method Mainstream Algorithm

Transformation domain

Laplacian pyramid (LP) [9]; gradient pyramid (GD) [10]; contrast pyramid (CP) [11]; region
mosaicking on Laplacian pyramids (RMLP) [12]; fast discrete curvelet transform (FDCT) [5];
dual-tree complex wavelet transform (DT-CWT) [13]; nonsubsampled contourlet transform

(NSCT) [14]; nonsubsampled shearlet transform (NSST) [15]; cross sparse representation
(CSP) [16]; independent component analysis (ICA) [17]; discrete cosine transform (DCT) [18]

Boundary segmentation
adaptive region-segmentation (ARS) [19]; morphology-based focus measure (MBFM) [20];
content adaptive blurring (CAB) [21]; robust principal component analysis (RPCA) [22];

Markov random field (MRF) [23]; optimal defocus estimation (ODE) [24]

Deep learning convolutional neural networks (CNN) [25]; CNN based [26]; PCNN-Pulse Coupled Neural
Network (PCNN) [27]; PCNN based [28]; Generative Adversarial Networks (GAN) [29]

Combination CTD+SR [30]; NSCT+SR [31]; SF-PAPCNN+NSST+ ISML [32]; CNN+SR [33]

2.1. Multi-Focus Fusion Methods Based on Transform Domain

Most traditional fusion methods in multi-focus image fusion are based on the trans-
form domain [34]. As shown in Figure 4, the transformation domain method mainly
operates the decomposition coefficient after image transformation, which mainly includes
three fusion stages: image transformation, coefficient decomposition, and inverse transfor-
mation reconstruction. Firstly, the source image is transformed into the transform domain
by an image decomposition algorithm; then various fusion strategies are used to fuse differ-
ent coefficients; finally, the corresponding inverse transformation of the fusion coefficient
is processed to obtain the final fusion image. The more layers of decomposition are used,
the more detailed the information will be however, the efficiency will decrease. Therefore,
the fusion effect will be greatly improved by properly handling the relationship between
decomposition layers and execution efficiency. In terms of the different transformations,
the transform domain method is further divided into the method based on multi-scale
decomposition (MSD), the method based on sparse representation (SR), and the method
based on gradient domain (GD) in this paper.

Figure 4. The general schematic diagram of transform domain methods.

2.1.1. Multi-Scale Decomposition (MSD)-Based Methods

Multi-scale decomposition (MSD)-based methods have always been the mainstream of
image fusion. Pyramid transform and wavelet transform are the first-used MSD methods
in image fusion. In addition, the multi-scale geometric analysis method (the improved
wavelet transform method) also achieves an excellent fusion effect in multi-focus image
fusion, superior to pyramid transform and wavelet transform in feature representation.
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(1) Pyramid transformation

The Laplacian pyramid is the earliest multiscale decomposition method [9]. In this
method, the absolute value of the decomposition coefficient is measured by its activity level,
and the fusion coefficient is obtained by the choosing-Max rule. The greater the absolute
value of the coefficient is, the more information it contains. In 2018, Sun et al. [12] proposed
a Region Mosaic (RMLP) method based on The Laplace pyramid to fuse microscopically
captured multi-focus images. The method firstly used The Laplacian operator to measure
the focus level of multi-focus images. Then, a density-based region growth algorithm was
used to segment the focused region mask of each image. Finally, the mask was decomposed
into a mask pyramid to supervise the regional stitching of the Laplacian pyramid.

Due to the different forms of the tower structure, pyramid transformation can be divided
into gradient pyramid [10], contrast pyramid [11], morphological pyramid [35], etc. The
fusion method based on pyramid transformation has the advantages of high fusion efficiency
while retaining sufficient original information. However, the decomposition method and the
decomposition layer number have a great influence on the final result. The greater number of
decomposition layers, the more blurred the fusion image boundary would be.

(2) The wavelet transforms

The wavelet transform can decompose the original image into high frequency co-
efficient and low frequency coefficient. The high frequency coefficient includes vertical,
horizontal, and diagonal information. The fusion effect of wavelet transform is better than
that of pyramid transform. However, the wavelet transform is not displacement invariant
for the feature representation; thus, the fusion effect is not satisfactory for the image with
poor registration. To solve this problem, many improved wavelet transform methods are
proposed. Yang et al. [5] introduced a multi-focus image fusion method based on fast
discrete curve-wave transform (FDCT), which solved the problem of block effect in texture
selection and spatial fusion. Yu et al. [13] extracted the six-dimensional feature vectors
of the source image using the dual-tree complex wavelet transform (DT-CWT) coefficient
sub-bands and then projected them onto the class tags by training a two-class (focused and
unfocused) support vector machine (SVM).

The common methods based on wavelet transform include contour wave [36], shear
wave [37], non-subsampled contour wave transform (NSCT) [14], and non-subsampled
shear wave transform (NSST) [15], etc. NSCT method and NSST method are two widely
used methods at present. Figure 5 shows the image decomposition process of NSCT.

Figure 5. Image decomposition process of NSCT [38]. Reprinted/adapted with permission from
Ref. [38]. 2019, MDPI.

In general, the advantage of the MSD method lies in extracting more accurate feature
information and having a better fusion effect. However, the decomposition information is
too much, leading to a large amount of calculation.
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2.1.2. Sparse Representation (SR)-Based Methods

Sparse representation is a new image fusion method. By processing the natural sparsity
of image signals, a signal is approximately represented as a linear combination of several
atoms in a redundant dictionary. Atomic libraries of sparse representations are provided
by over-complete dictionaries. By selecting some atoms in the over-complete dictionary
and using a linear combination to reconstruct the image, the dependence between data
dimensions and feature vectors can be reduced. Figure 6 shows a multi-focus image fusion
framework based on sparse representation.

Figure 6. A multi-focus image fusion framework based on sparse representation. Image A and Image
B are tow images captured of the same scene; The right area of Image A is focused while the left area
of Image B is focused.

In 2010, Yang et al. [39] introduced SR into multi-focus image fusion for the first time.
In this method, sliding window technology was used to segment each source image into
multiple overlapping small blocks, and orthogonal matching pursuit (OMP) algorithm was
used to perform sparse decomposition for each small block. The sparse coefficient vectors
after fusion were obtained by using the maximum selection fusion rule. Subsequently, a
variety of improved algorithms based on sparse representation follow. Ma et al. [40] obtained
an adaptive dictionary based on rough k-means singular value decomposition. Then the fixed
dictionary was combined with the adaptive dictionary to obtain the joint dictionary. The final
joint dictionary was used to sparsely encode the source image to separate the complementary
and redundant components. In addition, there are also cross sparse representation [16], group
sparse representation [41], K-SVD [42], and other methods.

Sparse representation can better solve the problem of fused image noise. However, the
processing effect of image details (edge, texture, etc.) is not ideal and easy to blur. In addition,
the method has high complexity, low computational efficiency, and poor real-time performance.

2.1.3. Gradient Domain (GD)-Based Methods

The gradient domain (GD)-based method is to fuse the gradient representation of the
source image, limiting the gradient of the fused image within a particular threshold. There-
fore, it is crucial to obtain gradient information of the image for this method. Paul et al. [43]
input the gradient of the image component at each image pixel. They solved the Pois-
son equation at each resolution to achieve boundary continuity in the gradient domain.
Wang et al. [44] proposed a gradient domain image fusion method based on the structure
tensor, in which source images were stacked into a multi-valued image, and the structure
tensor of each source image was calculated according to its gradient graph.

The method of gradient domain image fusion can improve the image’s visual effect,
retaining the details and structural information of the source image. This method can be
applied not only to multi-focus image fusion but also to multi-exposure image fusion.

Despite the above fusion methods, many other multi-focus image fusion methods
based on transform domain, such as independent component analysis (ICA) [17], high
order singular value decomposition (HOSVD) [45], discrete cosine transform (DCT) [18],
compressed sensing (CS) [46], cartoon-texture decomposition (CTD) [47] and other methods
have been successfully applied to multi-focus image fusion.
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2.2. Multi-Focus Fusion Methods Based on Boundary Segmentation

This paper proposes a new classification method named the boundary segmentation
method. According to the spatial characteristics of the source image, this method mainly
generates a weight map for each source image by processing the region of pixels. It
then calculates the fused image by the weighted average method or maximum method.
This method has high operation efficiency, and the fused image can retain the image
information of each local section. However, due to the improper boundary segmentation,
many algorithms based on boundary segmentation often lost the edge, contour, and other
image details. Therefore, strengthening the extraction of image boundary can effectively
improve the quality of fusion. In this paper, the boundary segmentation method is further
divided into block-based fusion method, region-based fusion method, and pixel-based
fusion method.

2.2.1. Block-Based Methods

The earliest block-based segmentation scheme is to divide the source image into several
fixed-size blocks, obtain the fused block by using the threshold based adaptive fusion rule,
and finally use the consistency test method to achieve the fused image. Due to the fixed block
size, the boundary of the multi-focus fusion image is prone to the fuzzy phenomenon.

Zhang et al. [19] proposed a multi-focus image fusion method based on adaptive
region segmentation, which decomposed pre-registered source images into approximate
coefficients and detail coefficients using the Laplace pyramid transform. In order to avoid
the defect of fixed block size, an adaptive differential evolution algorithm is designed to
calculate the optimal block size. Figure 7 shows a fusion framework for this approach. This
method can effectively reduce the noise with high computational efficiency. De et al. [20]
adopted the quadtree structure realized adaptive segmentation to fuse multi-focus images.
The varied block sizes were determined by each specific content, which effectively solved
the problem of the block effect.

Figure 7. Multi-focus image fusion framework based on adaptive region segmentation [19].
Reprinted/adapted with permission from Ref. [19]. 2019, WSPC.

It can be seen from the above that the size of the block has a crucial influence on the
final fusion effect, and it is prone to the phenomenon of fuzzy boundary. In addition, the
compatibility between adjacent blocks needs to be considered.

2.2.2. Region-Based Methods

In order to improve the flexibility of source image segmentation, the region-based
image fusion method came into being. The zone-based approach is similar to the block-
based approach. The main difference is that the activity level is measured in each irregularly
sized segmented area rather than a block. Li et al. [48] initially proposed a region-based
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multi-focus image fusion method. Farid et al. [21] proposed a multi-focus image fusion
method based on content adaptive fuzzy (CAB), in which the absolute difference between
the original image and the CAB blurred image was used to generate the initial segmentation
graph, and morphological operators and graph cutting techniques were used to improve
the segmentation accuracy. Xiao et al. [49] proposed an adaptive initialization method for
image depth estimation. The image depth was approximated by the iterative solution of the
partial differential equation. The target image was adaptively divided into three regions: clear
region, fuzzy region, and transition region. Finally, the multi-focus image fusion was realized
by extracting the pixels of the clear region and fusing the pixels of the transition region.

2.2.3. Pixel-Based Methods

Beyond 2012, the pixel-based fusion method has become a popular direction of multi-
focus image fusion. The main reason is that this method can obtain accurate pixel-weighted
images. Most pixel-based approaches’ core problem is obtaining a weight map for each
source image. In these methods, the activity level measurement is first adopted, and then
the focus values obtained from different source images are compared to generate pixel-level
weight maps. Weight graphs are also known as decision graphs because multi-focus image
fusion can be viewed as a classification problem in which each pixel’s focus attributes
(focusing and defocusing) are determined. In some methods, the source image is also
divided into regions with different points (such as focus/defocus/border, texture/smooth).
Different fusion rules are applied according to their characteristics.

Du et al. [50] proposed a more focused image fusion algorithm based on image
segmentation; the task of decision graph detection was regarded as the image segmentation
between the focus region and the defocus region, and the feature images on the boundaries
of the focus region and the defocus region were obtained by the multi-scale convolutional
neural network. Then the initial segmentation, morphological operation, and watershed
processing were performed on the fused image to get the segmentation graph and decision
graph. This method proved that the decision graph obtained by a multi-scale convolutional
neural network is reliable and can produce high-quality fusion images. Ma et al. [51]
proposed a dual-scale multi-focus image fusion algorithm based on an enhanced random
walk. Using the complementary characteristics of dual-scale measurement can better align
boundaries and solve noise problems, thus achieving a more robust fusion.

Other pixel-based fusion methods involve robust principal component analysis (RPCA) [22],
random field [23], morphological filtering [24], etc. The pixel-level fusion method has fast fusion
speed and real-time solid performance. However, operating pixels are susceptible to noise,
which will reduce the signal-to-noise ratio and contrast of the image.

2.3. Multi-Focus Fusion Method Based on Deep Learning

Beyond 2014, deep learning methods have developed rapidly with special effects and
excellent applications. In general, deep learning models mainly use the learnability of the
network to extract features from multi-focus images and separate focused and defocused
regions to generate full-focus fusion images. At present, convolutional neural networks
(CNNs) are one of the popular models in this field. In addition, pulse-coupled neural
networks (PCNN) and generative adversarial networks (GAN) also have many applications.

2.3.1. Convolutional Neural Network Model

The convolutional neural network is one of the most popular deep learning models. It
can realize parallel computing and has high speed and high efficiency characteristics [52,53].
CNN is widely used in medical image analysis, remote sensing image analysis, noise signal
analysis, and other fields. Javed Awan et al. [54] used a customized 14-layer convolutional
neural network resnet-14 architecture to automatically detect and evaluate ACL injuries
of athletes. Zhang et al. [55] proposed a new method more suitable for farmland vacancy
segmentation, using the improved RESNET network as the backbone of signal transmission.
Lopac et al. [56] proposed a method for the classification of noisy non-stationary time-series
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signals based on Cohen’s class of their time-frequency representations (TFRs) and deep
learning algorithms. The proposed approach combining deep CNN architectures with
Cohen’s class TFRs yields high values of performance metrics and significantly improves
the classification performance compared to the base model.

In the field of image fusion, CNN can learn the feature representation mechanism of
different abstraction levels for source images, and it is trainable. CNN extracts the features
of input images by learning filters to obtain different feature maps of each level. Each unit
or coefficient in the feature maps is called a neuron. Generally, three calculation methods,
filtering convolution activation function and pooling, are used to connect feature maps
between adjacent levels [57]. The typical structure diagram of CNN is shown in Figure 8.

Figure 8. The typical structure diagram of CNN [58]. Reprinted/adapted with permission from
Ref. [58]. 2020, MDPI.

In 2017, Liu et al. [25] successfully applied CNN to the field of image fusion for the
first time. By extending the classification idea of artificial neural networks, a convolutional
neural network is used instead of an artificial neural network to classify the pixels of source
images. According to the mapping value, the score graph of the source image can be
obtained. Then the decision graph can be built by the consistency verification of the score
graph. Amin-Naji et al. [26] proposed a new CNN-based integrated learning approach
to pursue data diversity to reduce the over-fitting problem. This fusion method based on
CNN integration is better than the single CNN fusion method. Zhang et al. [59] proposed
a full end-to-end convolution layer network model. This model chose the feature level
fusion, canceled all pooling layers, adopt the strategy of full connection layer directly, gave
up on the mapping of the source image pixel resolution, and judged the fusion result loss,
thus achieving the purpose of the end-to-end output of fusion image. This method is more
concise and effective and avoids the complicated follow-up processing problems of the
CNN model.

The advantages of the multi-focus image fusion method based on CNN lie in the ability
of layered learning features, more diversity of feature expression, strong discrimination
ability, and better generalization performance. The disadvantage is that the training takes a
long time, and there is no special training set, which usually requires particular training
and image preprocessing.

2.3.2. Pulse Coupled Neural Network

The pulse coupled neural network model [60] is proposed based on the analysis of
synchronous pulse oscillations of visual cortex neurons in cats and has been widely used in
image fusion. Each neuron in the PCNN model corresponds to a pixel, whose definition is
determined by the firing times of the neuron. The more the firing times are, the clearer the
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corresponding pixel points would be. As shown in Figure 9, PCNN consists of three parts:
feeding input field, modulation field, and firing subsystem. The stimulus is received by the
feeding input field and fed back to the firing subsystem through modulation field.

Figure 9. Typical structure diagram of PCNN [61]. Reprinted/adapted with permission from
Ref. [61]. 2022, MDPI.

To make the fused image clearer, Wang et al. [27] proposed a multi-focus image fusion
method based on PCNN and random walk. The technique used PCNN to measure the
sharpness of the source image and constructed an initial fusion image. The random walk
method was then used to improve the accuracy of fusion region detection, and the final
fusion image was generated according to the probability calculated by a random walk. An
improved PCNN method [28] was proposed to fuse the source image with the guide filter.
The improved PCNN was excited by the intermediate fusion image to generate the fusion
image. This method created fusion images several times and fused the fusion images with
PCNN to make the fusion results more accurate.

The PCNN model can extract local details effectively and recognize image content
well. However, the massive iterative calculation and configuration parameters make this
method high coupling and time-consuming.

In addition to the above two models, a generative adversarial network (GAN) has also
been used in multi-focus image fusion. Guo et al. [29] proposed a multi-focus image fusion
method based on least square GAN. In the fusion process, the final fusion decision graph
was obtained by binary segmentation and the refinement of the focus graph.

2.4. Combinatorial Fusion Method

As seen from the above, different fusion methods have different fusion characteristics.
The combination fusion method combines two or more methods to take their strengths. For
example, the transform domain method can be combined with the region segmentation
method, which can extract more details and enhance the fusion efficiency.

Zhu et al. [30] proposed an image fusion scheme based on image cartoon texture
decomposition and sparse representation. Aiming at the proposed sparse representation-
based fusion method, they trained a dictionary with a strong representation ability to
fuse the animation and texture components. Yang et al. [31] proposed a multi-focus
image fusion framework based on non-subsampled contourlet transform form (NSCT) and
sparse representation (SR). Li et al. [32] proposed a multi-focus image fusion algorithm
based on spatial frequency-driven parameter adaptive pulse-coupled neural network
(SF-PAPCNN) and an improved non-subsampled Shear-wave transform (NSST) domain
summing modified Laplace Transform (ISML).
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3. Evaluation Indicators
3.1. Subjective Evaluation

The subjective evaluation depends on the observer to evaluate the quality of the image,
including the edge, whether the content is clear and whether it contains noise, etc. However,
subjective evaluation is not applicable for the following reasons: observers need to possess
relevant professional knowledge, and it is difficult to observe the details of the image with
naked eyes. Equipment environment, such as lighting, display brightness, etc., affects
the observer’s judgment; In order to evaluate the accuracy, it usually needs to organize
evaluation meetings, and is time-consuming and labor-consuming.

3.2. Objective Evaluation

Objective evaluation is to calculate the image quality through some algorithm, and the
calculation results are used as evaluation criteria. Liu et al. [62] divided 12 popular image
fusion evaluation indexes into four categories: evaluation indexes based on information
theory, evaluation indexes based on image features, evaluation indexes based on image
structure similarity, and evaluation indexes based on human perception. Many researchers
welcome this classification method.

The commonly used objective evaluation indexes are shown in Table 2. When eval-
uating the quality of fused images, multiple evaluation indexes are often needed to be
calculated. The better the evaluation effect, the better the corresponding fusion effect is.

Table 2. Common evaluation indicators.

Evaluation Indicators Evaluation of the Effect

Information entropy (EN) Reflect the amount of information the image carries; the larger the value, the richer
the amount of information, the better the quality.

Mean gradient (AG) Measure the clarity of the image, the greater the value, the higher the clarity, the
better the quality.

MEAN Measure the average brightness of the image, the average is moderate, the better
the quality.

Standard deviation (STD) Reflect the richness of image information, the larger the value, the more scattered the
gray level distribution, the better the quality.

Mean square error (RMSE) Reflect the spatial details of the image, the smaller the value, the smaller the
difference, the better the quality.

Signal to noise (SNR) To measure the proximity between fusion image and ideal image, the greater the
value, the higher the similarity.

Normalized mutual information (QMI) Reflects the amount of information retained by the source image in the fusion image,
the larger the value, the better the quality.

Structural similarity (SSIM) By comparing the structural similarity between source image and fusion image, the
closer the value is to 1, the better the quality is.

4. Limitations

In the last ten years, multi-focus image fusion technology has been developed. How-
ever, there are still some urgent problems that need to be addressed.

(1) Image registration

Most of the current fusion methods focus on feature extraction of source images,
paying little attention to the image scene consistency, content deformation, and other
registration problems. The actual source images are not as accurate as the experimental
samples. Thus, the fusion effect would be greatly affected.

In our view, the multi-view registration method can be studied to address the above
problem. To be specific, capturing images of similar objects or scene from multiple perspec-
tives can obtain a better representation of the scanned object. The multi-view registration
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can realized by various algorithms such as image mosaic, 3D model reconstruction from
2D image, etc.

(2) Fusion efficiency

Many scholars pursue the applicability and quality of fusion methods, but ignore the
efficiency of fusion. However, we believe the fusion efficiency is of great value in practical
application. The difficulty may be alleviated by immerging several fusion stages into a
one-stop rapid stage, thus simplifying the sophisticated fusion process.

(3) Application scenarios

Although there are many multi-focus image fusion methods, most of them are studied
and tested in public image libraries. We think it is helpful to collect and build image
libraries in many specific industrial fields. Based on the specific image library, with the
help of state-of-the-art mathematical theory or models, researchers can develop multi-focus
image fusion methods suitable for actual application.

5. Conclusions

This paper describes four kinds of multi-focus image fusion methods: transform
domain method, boundary segmentation method, deep learning method, and combinatorial
fusion method. Each method is deeply classified and the advantages and disadvantages of
each method are compared. For different scenarios, it is necessary to choose the appropriate
method. In addition, the commonly used evaluation indicators are listed, and the objective
evaluation is more accurate than the subjective evaluation, which takes less energy and
time. Finally, the solution is discussed based on the analysis of the shortcomings of current
applications and methods.

Multi-focus image fusion can effectively solve the depth of field problem in optical
lens areas and has a wide application space in many fields, such as medicine, security,
photography, etc. It has been successfully applied in the areas of microscopic imaging [63],
image deblurring [64], focusing shape [65], and information forensics [66].

To sum up, multi-focus image fusion needs further development. Solving the problem
of image registration will improve the universality of the method and expand the scope
of fusion. In the pursuit of fusion quality, it is necessary to pursue time efficiency, taking
real-time fusion as the ultimate goal.
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