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Abstract—Wireless sensor networks (WSNs) have attracted
substantial research interest, especially in the context of perform-
ing monitoring and surveillance tasks. However, it is challenging
to strike compelling trade-offs amongst the various conflicting
optimization criteria, such as the network’s energy dissipation,
packet-loss rate, coverage and lifetime. This paper provides a
tutorial and survey of recent research and development efforts
addressing this issue by using the technique of multi-objective
optimization (MOO). First, we provide an overview of the
main optimization objectives used in WSNs. Then, we elaborate
on various prevalent approaches conceived for MOO, such as
the family of mathematical programming based scalarization
methods, the family of heuristics/metaheuristics based optimiza-
tion algorithms, and a variety of other advanced optimization
techniques. Furthermore, we summarize a range of recent studies
of MOO in the context of WSNs, which are intended to provide
useful guidelines for researchers to understand the referenced
literature. Finally, we discuss a range of open problems to be
tackled by future research.

Index Terms—Wireless sensor networks (WSNs), multi-
objective optimization, trade-offs, Pareto-optimal solution.

GLOSSARY

2D two-dimensional.
3D three-dimensional.
ABC artificial bee colony.
ACO ant colony optimization.
AHP analytical hierarchy process.
AI artificial intelligence.
ANN artificial neural network.
APF artificial potential field.
BER bit-error rate.
BOA Bayesian optimization algorithm.
CIVA centralized immune-Voronoi deployment algorithm.
CR cognitive radio.
CR-WSN cognitive radio aided WSN.
DE differential evolution.
DoS denial-of-service.
DPAP deployment and power assignment problem.
DSA dynamic spectrum access.
DSC disjoint set cover.
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EA evolutionary algorithm.
EDLA energy-density-latency-accuracy.
EMOCA evolutionary multi-objective crowding algorithm.
FA firefly algorithm.
FL fuzzy logic.
FRMOO fuzzy random multi-objective optimization.
GA genetic algorithm.
GP goal programming.
HBOA hierarchical Bayesian optimization algorithm.
ICA imperialist competitive algorithm.
IoT Internet of Things.
ISM industrial, scientific, and medical.
MA memetic algorithm.
MAC medium access control.
MDP Markov decision process.
MODA multi-objective deployment algorithm.
MODE multi-objective differential evolution.
MOEA multi-objective evolutionary algorithm.
MOEA/D multi-objective evolutionary algorithm based on decomposi-

tion.
MOEA/DFD multi-objective evolutionary algorithm based on decomposi-

tion with fuzzy dominance.
MOGA multi-objective genetic algorithm.
MOGLS multi-objective genetic local search.
MOICA multi-objective imperialist competitive algorithm.
MOMGA multi-objective messy genetic algorithm.
MOMGA-II multi-objective messy genetic algorithm-II.
MOO multi-objective optimization.
MOP multi-objective optimization problem.
MOSS multi-objective scatter search.
MOTS multi-objective tabu search.
NPGA niched Pareto genetic algorithm.
NSGA non-dominated sorting genetic algorithm.
NSGA-II non-dominated sorting genetic algorithm-II.
NUM network utility maximization.
OSI open systems interconnection.
PAES Pareto archive evolution strategy.
PESA Pareto envelope-based selection algorithm.
PESA-II Pareto envelope-based selection algorithm-II.
PF Pareto front.
PHY physical layer.
PS Pareto set.
PSO particle swarm optimization.
QoS quality-of-service.
RL reinforcement learning.
SDD subgradient dual decomposition.
SINR signal-to-interference-plus-noise ratio.
SIOA swarm intelligence based optimization algorithm.
SPEA strength Pareto evolutionary algorithm.
SPEA2 strength Pareto evolutionary algorithm-2.
WBAN wireless body area network.
WLAN wireless local area network.
WSN wireless sensor network.

I. INTRODUCTION

A. Motivation

http://arxiv.org/abs/1609.04069v1
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W IRELESS sensor networks (WSNs) consist of a

large number of compact, low-cost, low-power, multi-

functional sensor nodes that communicate wirelessly over

short distances [1], [2]. In WSNs, the sensor nodes are

generally deployed randomly in the field of interest, which are

extensively used for performing monitoring and surveillance

tasks [3]–[5]. Depending on the specific application scenarios,

WSNs may rely on diverse performance metrics to be opti-

mized. For example, the energy efficiency and network lifetime

are among the major concerns in WSNs, since the sensor nodes

are typically powered by battery, whose replacement is often

difficult. Furthermore, the network coverage, latency and the

fairness among sensor nodes are important for maintaining

the quality-of-service (QoS) [6], [7]. In practice, these metrics

often conflict with each other, hence the careful balancing of

the trade-offs among them is vital in terms of optimizing the

overall performance of WSNs in real applications.

In conventional WSN designs, typically the most salient

performance metric is chosen as the optimization objective,

while the remaining performance metrics are normally treated

as the constraints of the optimization problem. Such single-

objective optimization approaches, however, may be unfair

and unreasonable in real WSN applications, since it artificially

over-emphasizes the importance of one of the metrics to the

detriment of the rest [8]. Hence, a more realistic optimization

is to simultaneously satisfy multiple objectives, such as the

maximal energy efficiency, the shortest delay, the longest

network lifetime, the highest reliability, and the most balanced

distribution of the nodes’ residual energy, or the trade-offs

among the above objectives [9], [10]. Accordingly, multi-

objective optimization (MOO) can be naturally adopted for

solving the above problem, since it may be more consistent

with the realistic scenarios [11].

MOO algorithms have been a subject of intense interest

to researchers for solving diverse multi-objective optimization

problems (MOPs), in which multiple objectives are treated

simultaneously subject to a set of constraints [12]. However,

it is infeasible for multiple objectives to achieve their re-

spective optima at the same time, thus there may not exist

a single globally optimal solution, which is the best with

respect to all objectives. Nevertheless, there exists a set of

Pareto-optimal or non-dominated solutions generating a set

of Pareto-optimal outcomes/objective vectors, which is called

Pareto front/frontier (PF) or Pareto boundary/curve/surface.

Explicitly, the PF is generated by the specific set of solutions,

for which none of the multiple objectives can be improved

without sacrificing the other objectives [13]. This set of Pareto-

optimal or non-dominated solutions constitutes the focus of

our interest, and it is also called the Pareto-efficient set or

Pareto set (PS) that is mapped to the PF in the objective

function space [14].

Diverse approaches, such as mathematical programming

based scalarization methods and nature-inspired metaheuris-

tics, may be used for finding the PSs of MOPs. Scalarizing

an MOP means formulating a single-objective optimization

problem such that optimal solutions to the single-objective

optimization problem are Pareto-optimal solutions to the MOP

[15]. In addition, it is often required that every Pareto-optimal

solution can be reached with the aid of specific parameters

of the scalarization. Representatives of scalarization methods

include the linear weighted-sum method, the ε-constraints

method [15] and goal programming (GP) based methods.

MOPs are more often solved by bio-inspired metaheuristics,

such as multi-objective evolutionary algorithms (MOEAs)

[16], [17] and swarm intelligence based optimization algo-

rithms (SIOAs) [18]. MOEAs aim for finding a set of represen-

tative Pareto-optimal solutions in a single run [14], [19], [20].

As a subset of MOEAs, the multi-objective genetic algorithms

(MOGAs), such as the strength Pareto evolutionary algorithm

(SPEA) [16] and the non-dominated sorting genetic algorithm-

II (NSGA-II) [21], have been particularly widely researched in

the family of MOO algorithms [22], because they are capable

of efficiently constructing an approximate PF. This is mainly

due to the fact that MOGAs accommodate a diverse variety

of bio-inspired operators to iteratively generate a population

of feasible solutions. Compared to genetic algorithms (GAs)

that rely on the interplay between genetics and biological

evolution, SIOAs seek to understand the collective behavior of

animals, particularly insects, and to use this understanding for

solving complex, nonlinear problems. One of the most widely

used SIOAs is the ant colony optimization (ACO) algorithm

[23], which has indeed been invoked for solving the MOPs in

WSNs [24]. Several other bio-inspired algorithms related to

swarm intelligence will be surveyed in Section IV.

B. Contributions of This Survey

In this paper, we focus our attention on various basic con-

cepts, conflicting performance criteria/optimization objectives,

as well as the MOO techniques conceived for striking a trade-

off in the context of WSNs. The contributions of our work are

four-fold, which are listed as follows:

• We provide in-depth discussions on the basics, metrics

and relevant algorithms conceived for MOO in WSNs.

• We present a comprehensive coverage and clear classi-

fication of various prevalent MOO algorithms conceived

for solving MOPs, and clarify the strengths and weak-

nesses of each MOO algorithm in the context of WSNs.

• We provide an exhaustive review of the up-to-date re-

search progress of MOO in WSNs according to different

trade-off metrics.

• We highlight a variety of open research challenges and

identify possible future trends for MOO in WSNs, ac-

cording to the latest developments of WSNs.

C. Paper Organization

The reminder of this paper is organized as follows. In

Section II, we summarize the related surveys of MOO in

WSNs. In Section III, we commence with an overview of

WSNs in terms of their system model and applications.

Furthermore, we introduce the main optimization objectives

of interest in WSNs. In Section IV, we present the family of

MOO techniques that can in principle be used for solving this

kind of problems. In Section V, we provide an overview of

the existing studies dedicated to multi-objective methods in

WSNs. Finally, in Section VI we describe a range of open
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Sec. II � Related Surveys and Tutorials

Sec. III � Fundamentals of WSNs

System Model

Applications

MOO Metrics

Coverage

Network Connectivity

Network Lifet ime

Energy Consumption

Energy Efficiency

Network Latency

Differentiated Detection Levels

Number of Nodes

Fault Tolerance

Fair Rate Allocation

Detection Accuracy

Network Security

Sec. IV � Techniques of MOO

Optimization Strategies

MOO Algorithms

Sec. V � Existing Literature on Using MOO in WSNs

Coverage-versus-Lifet ime Trade-offs

Energy-versus-Latency Trade-offs

Lifet ime-versus-Applicat ion-Performance Trade-offs

Trade-offs Related to the Number of Nodes

Reliabili ty-Related Trade-offs

Trade-offs Related to Other Metrics

Sec. VI � Open Problems and Discussions

Sec. VII � Conclusions

Sec. I � Introduction

Software Tools

Fig. 1: The organization of this paper.
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problems and possible future research directions, followed by

our conclusions in Section VII. For the sake of explicit clarity,

the organization of this paper is shown in Fig. 1.

II. RELATED SURVEYS AND TUTORIALS

A range of surveys have been dedicated to diverse single-

objective research domains in WSNs, such as their energy

efficiency [25], routing [26], congestion control [27], their

MAC protocols [28], data collection [6], privacy and security

[29], localization [30], [31], cross-layer QoS guarantees [32],

sink mobility management [33], and network virtualization

[34].

In recent years, several surveys and tutorials advocated

MOO methods for optimizing the conflicting performance

objectives of WSNs. Specifically, the authors of [35] provided

a review of recent studies on multi-objective scheduling and

discussed its future research trends. In [36], the MOO criteria

and strategies conceived for node deployment in WSNs were

surveyed. Performance trade-off mechanisms of the routing

protocols designed for energy-efficient WSNs were reviewed

in [37], where various artificial intelligence techniques and

the related technical features of the routing protocols were

discussed. The authors of [38] surveyed the most representa-

tive MOEAs and their major applications from a historical

perspective. Konak et al. [39] presented a comprehensive

survey and tutorial of MOGAs. Furthermore, Adnan et al.

[40] provided a holistic overview of bio-inspired optimization

techniques, such as particle swarm optimization (PSO), ACO

and GA. In particular, the authors of [41] presented a brief

survey of how to apply PSO in WSN applications, while

bearing in mind the peculiar characteristics of sensor nodes.

They also presented a state-of-the-art survey of computa-

tional intelligence in the context of WSNs and highlighted

numerous challenges facing each of the MOPs discussed [42].

Additionally, the authors of [43] reviewed the optimization

in biological systems and discussed bio-inspired optimization

of non-biological systems. In contrast to other surveys, the

authors of [44] provided a classification of algorithms pro-

posed in the literature for planned deployment of WSNs. They

discussed and compared diverse WSN deployment algorithms

in terms of their assumptions, objectives and performance.

Additionally, in a more recent study [45], [46] the authors

reviewed the MOO techniques and simulation tools conceived

for solving different problems related to the design, operation,

deployment, placement, planning and management of WSNs.

The above-mentioned surveys related to MOO in WSNs are

outlined at a glance in Table I, which allows the readers to

capture the main contributions of each of the existing surveys.

III. FUNDAMENTALS OF WSNS

A. System Model

WSNs generally consist of hundreds or potentially even

thousands of spatially distributed, low-cost, low-power, multi-

functional, autonomous sensor nodes and communicate over

short distances [1]. Each node is usually equipped with a

sensor unit, a processor, a radio transceiver, an A/D converter,

Sensors

ProcessorMemory
A/D 

Converter

Radio Transceiver

Power Supply

Fig. 2: Typical architecture of a WSN node.

a memory unit, and a power supply (battery). The typical ar-

chitecture of a WSN node is illustrated in Fig. 2. A WSN node

may also have additional application-dependent components

attached, such as the location finding system and mobilizer.

By combining these different components into a miniaturized

device, these sensor nodes become multi-functional. In other

words, the structure and characteristics of sensor nodes depend

both on their electronic, mechanical and communication lim-

itations, as well as on their application-specific requirements.

One of the great challenges facing WSNs is to use such

resource-constrained sensor nodes to meet certain application

requirements, including sensing coverage, network lifetime

and end-to-end delay.

Typically, sensor nodes are grouped into clusters, and each

cluster has a node that acts as the cluster head, which has

more resources and computational power than the other cluster

nodes. All nodes gather and deliver their sensed information

to the cluster head, which in turn forwards it to a specialized

node, namely the sink node or base station, via a hop-by-hop

wireless communication link. In indoor scenarios, a WSN is

typically rather small and consists of a single cluster supported

by a single base station. Multiple clusters relying on multiple

base stations are possible in a large-scale deployment of

WSNs. Fig. 3 shows the relationship between WSNs and

the infrastructure-based networks. Typically, a sink node or

base station is responsible for gathering the uplink information

gleaned from sensor nodes through either single-hop or multi-

hop communications. Then, the sink node sends the collected

information to the interested users via a gateway, often using

the internet or any other communication path [47]. It should

be noted that with the development of machine-to-machine

communications, it is possible to have sensors and machines

directly connected to cellular network based mobile Internet.

At the time of writing, the most common way of construct-

ing WSNs relies on the ZigBee communications protocol,

which complies with the IEEE 802.15.4 standard, outlining

the specifications of both the physical layer (PHY) and the

medium access control (MAC) layer. This is widely regarded

as the de facto standard for WSNs [48]. A WSN operates in

the unlicensed industrial, scientific, and medical (ISM) band,

in which it coexists with many other successful communication
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TABLE I: Existing Surveys Relating to MOO in WSNs.

Reference Focus Topics Reference Focus Topics

[35] multi-objective scheduling [41] a brief survey of PSO

[36] sensor node deployment [42] computational intelligence paradigms

[37] artificial intelligence methods for routing pro-
tocols

[43] analogy between optimization in biological systems
and bio-inspired optimization in non-biological sys-
tems

[38] MOEAs [44] multi-objective node deployment algorithms

[39] MOGAs [45] MOO techniques associated with the design, operation,
deployment, placement, planning and management

[40] bio-inspired optimization techniques [46] engineering applications and simulation tools

User

Proxy Server

Gateway

Sink

User

User

User

Gateway

Sensors

Sink

Sensors

Fig. 3: Wireless sensor networks and their relationship to infrastructure-based networks.

systems, such as the IEEE 802.11 standard based wireless

local area network (WLAN) and the 802.15.1 standard based

Bluetooth communication systems. Therefore, a WSN may

face the challenge of co-channel interferences imposed by

both other WSNs and other co-existing heterogeneous wireless

systems. This coexistence problem may substantially affect the

performance of WSNs.

B. Applications

In WSNs, sensor nodes are generally deployed randomly in

the majority of application domains. When the sensor nodes

are deployed in hostile remote environments, they may be

equipped with high-efficiency energy harvesting devices (e.g.

solar cells) for extending the network lifetime [49]. Numerous

practical applications of WSNs have been rolled out with the

advancement of technologies. In general, the applications of

WSNs can be classified into two types: monitoring and track-

ing. Monitoring is used for analyzing, supervising and care-

fully controlling operation of a system in real-time. Tracking is

generally used for following the change of an event, a person,

an animal, and so on. Existing monitoring applications in-

clude indoor/outdoor environmental monitoring [50], industrial

monitoring [51], precision agriculture (e.g., irrigation manage-

ment and crop disease prediction) [52], biomedical or health

monitoring [53], electrical network monitoring [54], military

location monitoring [55], and so forth. Tracking applications

include habitat tracking [56], traffic tracking [57], military

target tracking [58], etc. We summarize their classification in

Fig. 4.

A more detailed portrayal of WSN applications is given in

Fig. 5. For instance, in environmental monitoring, WSNs can

help us perform forest fire detection, flood detection, forecast

of earthquakes and eruptions, pollution monitoring, etc. [50],

[59]. In industry and agriculture, WSNs can sense and detect

farming and wildlife, monitor equipment and goods, protect

commercial property, predict crop disease and production qual-

ity, control pests and diseases, etc. [51], [52]. In healthcare and

biomedical applications, WSNs can be utilized for diagnostics,

distance-monitoring of patients and their physiological data,

as well as for tracking the medicine particles inside patients’

body, etc. [53]. In particular, WSN based wireless body area

networks (WBANs) can help monitor human body functions

and characteristics (e.g., artificial retina, vital signs, automatic

drug delivery, etc.), acting as an in vitro or in vivo diagnostic

system [60]. In the infrastructure, WSNs have been widely
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WSNs

Applications

Monitoring

Tracking

Environment:

Agriculture:

Industry:

Health care:

Ecology:

Urban:

Smart house:

Military:

Industry:

Public health:

Ecology:

Military:

(sense and detect the environment to forecast impending disasters, such

as water quality, weather, temperature, seismic, forest fires)

(irrigation management, humidity monitoring)

(monitoring animals)

(supply chain, industrial processes, machinery, productivity)

(transport and circulation systems, self-identification, parking management)

(organ monitoring, wellness, surgical operation)

(intrusion detection)

(monitoring any addressable device in the house)

(traffic monitoring, fault detection)

(tracking the migration of animals)

(monitoring of doctors and patients in a hospital)

(sensor nodes can be deployed on a battlefield or enemy zone to track,

monitor and locate enemy troop movements)

Fig. 4: Taxonomy of WSN applications.

Wireless Sensor Network 

Applications

EnvironmentIndustry and Agriculture Military

Body Area Network (Health) Infrastructure

Farming and 

Wildlife
Equipment and goods 

monitoring

Commercial 

property protection 

and  recovery

Self-healing 

minefield

PinPtr-Sniper 

detection

CenWits-search 

and rescue

VigiNet

Flood

detection
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Landslide 

monitoring

Tsunami

monitoring
Pollution

monitoring

Volcanic 

monitoring

Vineyard 

monitoring

Artificial 

retina

Patient

monitoring
Emergency 

response

SHIMMER 

devices Sports
Assisted 

living
Roads and 

Railway

Smart 

buildings

Smart energy 

metering
Smart 

infrastructure Water 

monitoring

Fig. 5: Overview of WSN applications in real environments. Here, SHIMMER represents the Intel digital health group’s

“sensing health with intelligence, modularity, mobility, and experimental re-usability” [47].

used for monitoring the railway systems and their components,

such as bridges, rail tracks, track beds, track equipment, as

well as chassis, wheels, and wagons that are closely related to

rolling stock quality [61]. WSNs also allow users to manage

various appliances both locally and remotely for building

automation applications [62]. In military target tracking and

surveillance, a WSN can assist in intrusion detection and

identification. Specific examples include enemy troop and

tank movements, battle damage assessment, detection and

reconnaissance of biological, chemical and nuclear attacks, etc.

[58].

Furthermore, several novel WSN application scenarios, such

as the Internet of Things [63], cyber-physical systems [64]

and smart grids [65], among others, have adopted new design

approaches that support multiple concurrent applications on

the same WSN. The applications of WSNs are not limited

to the areas mentioned in this paper. The future prospects of

WSN applications are promising in terms of revolutionizing

our daily lives.

C. MOO Metrics

In this subsection, a succinct overview of the most popular

optimization objectives of WSNs is provided. Over the past

years, a number of research contributions have addressed di-

verse aspects of WSNs, including their protocols [66], routing

[67], energy conservation [25], lifetime [68] and so forth. The

QoS, as perceived by the users or applications, was given

insufficient attention at the beginning. However, at the time

of writing, how to provide the desired QoS is becoming an

increasingly important topic for researchers. Different appli-

cations may have their own specific QoS requirements, but

some of the more commonly used metrics for characterizing

QoS are the coverage area and quality, the delay, the number
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of active nodes, the bit-error rate (BER) and the overall WSN

lifetime.

There are many other QoS metrics worth mentioning, and

a range of factors affecting the QoS in WSNs are portrayed

in Fig. 6, which was directly inspired by [69] and reflects

the application requirements of a WSN. It is indeed plausible

that the network’s performance can be quantified in terms

of its energy conservation, lifetime, and QoS-based metrics

in specific applications. However, multiple metrics usually

conflict with each other. For example, when more energy is

consumed by the nodes, the operating lifetime of the network

reduces. Similarly, if more active nodes are deployed in a given

region, a lower per-node power is sufficient for maintaining

connectivity, but the overall delay is likely to be increased

due to the increased number of hops. Hence, an application-

specific compromise has to be struck between having more

short hops imposing a lower power dissipation but higher delay

and having more longer hops, which reduces the delay but may

increase the transmit-power dissipation.

1) Coverage: “Coverage” is one of the most important

performance metrics for a sensor network. In other wireless

communication networks, coverage typically means the radio

coverage. By contrast, coverage in the context of WSNs cor-

responds to the sensing range, while connectivity corresponds

to the communication range. WSN coverage can be classified

into three types: area coverage, point coverage and barrier

coverage [44]. In area coverage, the coverage quality of an

entire two-dimensional (2D) region is considered, where each

point in the region is observed by at least one sensor node.

In point coverage, the objective is to simply guarantee that a

finite set of points in the region are observed by at least one

sensor node. Barrier coverage usually deals with the detection

of movement across a barrier of sensor nodes. The most

richly studied coverage problem in the WSN literature is the

area coverage problem. The characterization of the coverage

varies depending both on the underlying models of each

node’s field of view and on the metric used for appraising the

collective coverage. Several coverage models [70]–[72] have

been proposed for different application scenarios. A coverage

model is normally defined with respect to the sensing range

of a sensor node. The most commonly used node coverage

model is the so-called sensing disk model, where all points

within a disk centered at the node are considered to be covered

by the node [73]. More specifically, a point p is regarded to

be covered/monitored by at least a node v if their Euclidean

distance is less than the sensing range Rs of node v.

Given a set of nodes, finding the optimal positions of these

nodes to achieve maximum coverage is in general an NP-

complete problem [11]. There are many different ways of

solving the coverage optimization problem suboptimally. Here,

in order to make the coverage problem more computationally

manageable, we consider an area A represented by a rectan-

gular grid, which is divided into G = xy rectangular cells of

identical size, and let (xj , yj) denote the coordinate of node

j. As a result, the network coverage Cv(x) is defined as the

percentage of the adequately covered cells over the total cells

of A and it is evaluated as follows [11], [74]:

Cv(x) =

∑x

x′=0

∑y

y′=0 g(x
′, y′)

xy
, (1)

and

g(x′

, y
′) =

{

1, if ∃ j ∈ {1, . . . , N}, d(xj,yj),(x
′,y′) ≤ Rs,

0, otherwise,
(2)

where N is the number of nodes, g(x′, y′) is the monitoring

status of the cell centered at (x′, y′), Rs is the sensing range

of a node, and d(xj ,yj),(x′,y′) is the distance from the location

of node j to the cell centered at (x′, y′). Having a better

coverage also leads to a higher probability of detecting the

event monitored [75].
2) Network Connectivity: Another issue in WSN design

is the network connectivity that is dependent on the selected

communication protocol [76]. Two sensor nodes are directly

connected if the distance of the two nodes is smaller than

the communication range Rc. Connectivity only requires that

the location of any active node is within the communication

range of one or more active nodes, so that all active nodes

can form a connected communication network. The most

common protocol relies on a cluster-based architecture, where

all nodes in the same cluster can directly communicate with

each other via a single hop and all nodes in the same cluster

can communicate with all nodes in the neighboring clusters

via the cluster head. In a given cluster only a single node

acts as the cluster head, which has to be active in terms of

collecting all information gleaned by the other nodes for the

sake of maintaining connectivity. In cluster-based WSNs, the

connectivity issues tend to hinge on the number of nodes in

each cluster (because a cluster head can only handle up to

a specific number of connected nodes), as well as on the

coverage issues related to the ability of any location to be

covered by at least one active sensor node.

For an area represented by a rectangular grid of size x× y,

let Rci and Rsi denote the communication range and sensing

range of the ith sensor node, respectively. To guarantee each

sensor node is placed within the communication range of at

least another sensor node and to prevent sensor nodes from

becoming too close to each others, the objective function

associated with the network connectivity can be expressed as

[77]

fcon =

x×y
∑

i=1

1− e−(Rci
−Rsi

), (3)

where Rci −Rsi > 0 has to be satisfied for achieving network

connectivity.

Maintaining the network’s connectivity is essential for en-

suring that the messages are indeed propagated to the appropri-

ate sink node or base station, and the loss of connectivity is

often treated as the end of the network’s lifetime. Network

connectivity is closely related to the coverage and energy

efficiency of WSNs. To elaborate a little further, substantial

energy savings can be achieved by dynamic management

of node duty cycles in WSNs having high node density.

In this method, some nodes can be scheduled to sleep (or

enter a power-saving mode), while the remaining active nodes
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Fig. 6: The interplay of factors affecting the QoS in WSNs.

provide continuous service. As far as this approach is con-

cerned, a fundamental problem is to minimize the number

of nodes that remain active while still achieving acceptable

QoS. In particular, maintaining an adequate sensing coverage

and network connectivity with the active nodes is a critical

requirement in WSNs. The relationship between coverage

and connectivity hinges on the ratio of the communication

range to the sensing range. A connected network may not

be capable of guaranteeing adequate coverage regardless of

the ranges. By contrast, in [78], [79] the authors presented

a sufficient condition for guaranteeing network connectivity,

which states that for a set of nodes that cover a convex

region, the network remains connected if Rc ≥ 2Rs. There

exist tighter relationships between Rc and Rs for achieving

network connectivity, provided that adequate sensing coverage

is guaranteed [80]–[82]. Intuitively, if the communications

range of sensor nodes is sufficiently large, then maintaining

connectivity is not a problem, because in this case there always

exists a node to communicate with. A more in-depth discussion

of the relationship between coverage, connectivity and energy

efficiency of WSNs can be found in [78]–[82].

3) Network Lifetime: Another important performance met-

ric in WSNs is their lifetime. Tremendous research efforts have

been invested into solving the problem of prolonging network

lifetime by energy conservation in WSNs. Indeed, the energy

source of each node is generally limited, while recharging or

replacing the battery at the sensors may be impossible. Hence,

both the radio transceiver unit and the sensor unit of each

node have to be energy-efficient, and it is vitally important to

maximize the attainable network lifetime [83], defined as the

time interval between the initialization of the network and the

depletion of the battery of any of the sensor nodes.

For the simplicity of exposition, typically all sensor nodes

are assumed to be of equal importance, which is a reasonable

assumption, since the “death” of one sensor node may result

in the network becoming partitioned, or some area requiring

monitoring to be uncovered. Thus, the network’s lifetime

is defined as the time duration from the application’s first

activation to the time instant when any of the sensor nodes

in the cluster fails due to its depleted energy source.

More explicitly, this objective can be formulated as

Tnet = minTj , (4)

where j = 1, 2, · · · , N .

The lifetime of a sensor node is generally inversely pro-

portional both to the average rate of its own information

generated and to the information relayed by this node. Hence,

the network’s lifetime is also partially determined by the

source rates of all the sensor nodes in the network.

4) Energy Consumption: Sensor nodes are equipped with

limited battery power and the total energy consumption of the

WSN is a critical consideration. Each node consumes some

energy during its data acquisition, processing and transmission

phases. For instance, in a heterogeneous WSN, different sensor

nodes might have diverse power and data processing capabil-

ities. Hence, the energy consumption of a WSN depends both

on the Shannon capacity of the channels among the nodes

and on these nodes’ functionality. The energy consumption of

a path P is the sum of the energy expended at each node along

the path, hence the total energy consumption E(P ) of a given

path is given by [84]

E(P ) =

L
∑

i=0

(tai + tpi )× P o
i + P t

i × tm, (5)

where tai and tpi indicate the time durations of data acquisition

and data processing taking place at node i, respectively. L is

the number of nodes on the given path. Furthermore, tm is

the message transmission time, while P o
i and P t

i denote the

operational power and transmission power dissipation of node

i, respectively.

5) Energy Efficiency: Energy efficiency is a key concern in

WSNs, and this metric is closely related to network lifetime in
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the particular context of WSNs1 [90]. As an example, herein

the energy efficiency of node i is defined as the ratio of the

transmission rate to the power dissipation. Explicitly, it is

formulated as

ηi =
W log2(1 + γi)

pi
, (6)

where W denotes the communication bandwidth, pi is the

transmission power of node i and γi denotes the signal-to-

interference-plus-noise ratio (SINR) at the destination receiver

relative to node i, respectively.

Due to the limited energy resources of each node, we have to

utilize these nodes in an efficient manner so as to increase the

lifetime of the network [91]. There are at least two approaches

to deal with the energy conservation problem in WSNs. The

first approach is to plan a schedule of active nodes while

enabling the other nodes to enter a sleep mode. The second

approach is to dynamically adjust the sensing range of nodes

for the sake of energy conservation.

6) Network Latency: For a WSN, typically a fixed band-

width is available for data transfer between nodes. Again,

having an increased number of nodes results in more paths

becoming available for simultaneously routing packets to their

destinations, which is beneficial for reducing the latency.

Meanwhile, this may also degrade the latency that increases

proportionally to the number of nodes on the invoked paths.

This is due to additional contention for the wireless channel

when the node density increases, as well as owing to routing

and buffering delays.

The delay between source node uso and sink node usi,

denoted as Duso,usi
, is defined as the time elapsed between

the departure of a collected data packet from uso and its arrival

to usi, and is given by [92], [93]

Duso,usi
= (Tq + Tp + Td)×N(uso, usi)

= c×N(uso, usi)

∝ N(uso, usi), (7)

where Tq is the queue delay per intermediate forwarder, Tp

is the propagation delay and Td is the transmission delay. All

of them are, for the sake of simplicity, regarded as constants

and collectively denoted by c. Finally, N(uso, usi) denotes the

total number of data disseminators between uso and usi. As

a consequence, the minimization of the delay corresponds to

minimizing the number of intermediate forwarders between

the source and the sink. It is worth noting that Haenggi

et al. [94] astutely argued that long-hop based routing is a

very competitive strategy compared to short-hop aided routing

in terms of latency, albeit this design dilemma also has

ramifications as to the scarce energy resource of the nodes.

1Note that the concept of energy efficiency is also widely used in
green communications [85]–[89]. The definition of energy efficiency has
several variants. It is typically defined as the ratio of the spectral efficiency
(bits/second/Hz) to the power dissipation of the system considered. Hence,
its unit is bits/second/Hz/Watt or equivalently bits/Hz/Joule. Alternatively, it
can be defined as the power-normalized transmission rate, and hence its unit
becomes bits/second/Watt or bits/Joule.

7) Differentiated Detection Levels: Differentiated sensor

network deployment is also an important issue. In many real

WSN applications, such as underwater sensor deployments

or surveillance applications, certain parts of the supervised

region may require extremely high detection probabilities if

these parts constitute safety-critical geographic area. However,

in the less sensitive geographic area, relatively low detection

probabilities have to be maintained for reducing the number

of nodes deployed, which corresponds to reducing the cost

imposed. Therefore, different geographic areas require differ-

ent densities of deployed nodes, and the sensing requirements

are not necessarily uniformly distributed within the entire

supervised region.
Let us use d((m,n), (i, j)) to denote the Euclidean distance

between the coordinates (m,n) and (i, j). A probabilistic node
detection model can be formulated as [95]–[97]

p((m,n), (i, j)) =

{

e−ad((m,n),(i,j)), d((m,n), (i, j)) ≤ Rs,

0, d((m,n), (i, j)) > Rs,
(8)

where a is a parameter associated with the physical character-

istics of the sensing device and Rs is the sensing range.

8) Number of Nodes: Each sensor node imposes a certain

cost, including its production, deployment and maintenance.

As a result, the total cost of the WSN increases with the num-

ber of sensor nodes. When deploying a WSN in a battleground,

sensor nodes have to operate as stealthily as possible to avoid

being detected by the enemy. This implies that the number

of nodes has to be kept at a minimum in order to reduce

the probability of any of them being discovered. [98]–[103]

are dedicated to optimal node deployment by considering the

accomplishment of the specified goals at a minimum cost.

Minimizing the number of active nodes is equivalent to

maximizing the following objective [104]:

f(K ′) = 1−
|K ′|

|K|
, (9)

where |K ′| is the number of active nodes and |K| is the total

number of nodes.

9) Fault Tolerance: Sensor nodes may fail, for example,

due to the surrounding physical conditions or when their

energy runs out. It may be difficult to replace the existing

nodes, hence the network has to be fault tolerant in order to

prevent individual failures from reducing the network lifetime

[36], [105]. In other words, fault tolerance can be viewed as an

ability to maintain the network’s operation without interruption

in the case of a node failure, and it is typically implemented

in the routing and transport protocols. The fault tolerance or

reliability Rk(t) of a sensor node can be modeled using the

Poisson distribution in order to capture the probability of not

having a failure within the time interval (0, t) as [1]:

Rk(t) = e−λkt, (10)

where λk is the failure rate of sensor node k and t is the time

period.

Numerous studies have been focused on forming k-

connected WSNs [78], [79], [106]. The k-connectivity implies

that there are k independent paths in the full set of the pair

of nodes. For k ≥ 2, the network can tolerate some node
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and link failures. Due to the many-to-one interaction pattern,

k-connectivity is a particularly important design factor in the

neighborhood of base stations and guarantees maintaining a

certain communication capacity among the nodes [106].

10) Fair Rate Allocation: It is important to guarantee that

the sink node receives information from all sensor nodes in

a fair manner when the bandwidth is limited. The accuracy

of the received source information depends on the allocated

source rate. Simply maximizing the total throughput of the

network is insufficient for guaranteeing the specific applica-

tion’s performance, since this objective may only be achieved

at the expense of sacrificing the source rate supposed to be

allocated to some nodes [107]. For example, in a sensor

network that tracks the mobility of certain objects in a large

field of observation, lower rates impose a reduced location

tracking accuracy and vice versa. By simply maximizing

the total throughput instead of additionally considering the

above fairness issues among sources, we may end up with a

solution that shuts off many sources in the network and enables

only those sources whose transport energy-cost to the sink is

the lowest. Hence, considering the fairness of rate allocation

among different sensor nodes is of high significance.

An attractive methodology of achieving this goal is to

adopt a network utility maximization (NUM) framework [107],

in which a concave, non-decreasing and twice differentiable

utility function Ui(xi) quantifies the grade of satisfaction

of sensor node i with the assigned rate xi, and the goal

is to maximize the sum of individual utilities. A specific

class of utility functions that has been extensively used for

achieving fair resource allocation in economics and distributed

computing [108] is formulated as:

Uα(x) =

{

logx α = 1,
1

1−α
x
1−α α > 1,

(11)

where x = (xi, ∀i) and the functional operations are elemen-

twise. When we have α = 1, the above utility function leads

to the so-called proportional fairness, whereas when α → ∞,

this utility function leads to max–min fairness2.

11) Detection Accuracy: Having a high target detection

accuracy is also an important design goal for the sake of

achieving accurate inference about the target in WSNs. Target

detection accuracy is directly related to the timely delivery of

the density and latency information of the WSN. Assume that

a node k receives a certain amount of energy ek(u) from a

target located at location u and Ko is the energy emitted by

the target. Then, the signal energy ek(u) measured by node k

2The max-min criterion constitutes one of the most commonly used fairness
metrics [108], in which a feasible flow rate vector x = (xi,∀i) can be
interpreted as being max-min fair if the rate xi cannot be increased without
decreasing some xj that is smaller than or equal to xi, ∀i 6= j. The concept
of proportional fairness was proposed by Kelly [109]. A vector of rates x

∗ =
(x∗

i , ∀i) is proportionally fair if it is feasible (that is, x∗ ≥ 0 and ATx∗ ≤ c)
and if for any other feasible vector x = (xi,∀i), the aggregate of proportional

change is non-positive, i.e.,
∑

i

xi−x∗

i

x∗

i
≤ 0. Here c = (cm,∀m) with each

element denoting the source rates to be allocated. A = (Aim,∀i,m) is a
matrix that satisfies: if node i is allocated source rate m, Aim = 1, otherwise
Aim = 0.

Source Node

Routing Path

Data 

Analysis

Base StationTraffic 

Analysis

Compromised Node

Fig. 7: Two types of privacy attacks in a WSN [29]: Data

analysis attack and traffic analysis attack conducted by a

malicious node.

is given by [84]

ek(u) = Ko/(1 + αdpk), (12)

where dk is the Euclidean distance between the target location

and the location of node k, p is the pathloss exponent that

typically assumes values in the range of [2, 4], while α is an

adjustable constant.
12) Network Security: Sensor nodes may be deployed in

an uncontrollable environment, such as a battlefield, where

an adversary might aim for launching physical attacks in

order to capture sensor nodes or to deploy counterfeit ones.

As a result, an adversary may retrieve private keys used

for secure communications by eavesdropping and decrypt the

communications of the legitimate sensors. Recently, much

attention has been paid to the security of WSNs. There are

two main types of privacy concerns, namely data-oriented and

context-oriented concerns [29]. Data-oriented concerns focus

on the privacy of data collected from a WSN, while context-

oriented concerns concentrate on contextual information, such

as the location and timing of traffic flows in a WSN. A simple

illustration of the two types of security attacks is depicted in

Fig. 7.
We can observe from Fig. 7 that a malicious node of

the WSN abuses its ability of decrypting data in order to

compromise the payload being transmitted in the case of

data analysis attack. In traffic-analysis attacks, the adversary

does not have the ability to decrypt data payloads. Instead,

it eavesdrops to intercept the transmitted data and tracks the

traffic flow on a hop-by-hop basis.
For the sake of improving the network security, we can

minimize the loss of privacy that is calculated based on

information theory as [110]

ζ = 1− 2−I(S,X), (13)

where I(S,X) is the mutual information between the random

variables S and X . More specifically, S represents the current

position of the node of interest, X is the observed variable

known to the attacker and correlated to S, while I(S,X) =
H(S)−H(S|X) with H(·) denoting the entropy. Additionally,

we can also minimize the probability of eavesdropping in a

WSN, as presented in [111], to improve the network security.
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Table II summarizes the representative existing contribu-

tions to optimizing the particular WSN performance metrics

mentioned above.

IV. TECHNIQUES OF MOO

In this section, we briefly present the MOO techniques pro-

posed in the literature for tackling various important problems

in WSNs.

A. Optimization Strategies

Optimization covers almost all aspects of human life and

work. In practice, the resources are limited, hence optimization

is important. Most research activities in computer science

and engineering involve a certain amount of modeling, data

analysis, computer simulations and mathematical optimization.

This branch of applied science aims for finding the particular

values of associated variables, which results in either the min-

imum or the maximum values of a single objective function

or multiple objective functions [40]. A typical optimization

process is composed of three components [43]: the model,

the optimizer/algorithm and the evaluator/simulator, as shown

in Fig. 8. The representation of the physical problem is

carried out by using mathematical formulations to establish

a mathematical model.

As an important step of solving any optimization problem,

an efficient optimizer or algorithm has to be designed for

ensuring that the optimal solution is obtained. There is no

single algorithm that is suitable for all problems. Optimization

algorithms can be classified in many ways, depending on the

specific characteristics that we set out to compare. In general,

optimization algorithms can be classified as:

1) Finitely terminating algorithms, such as the family of

simplex algorithms and their extensions, as well as the

family of combinatorial algorithms;

2) Convergent iterative methods that

• evaluate Hessians (or approximate Hessians, using

finite differences), such as Newton’s method and

sequential quadratic programming;

• evaluate gradients or approximate gradients using

finite differences (or even subgradients), such as

quasi-Newton methods, conjugate gradient meth-

ods, interior point methods, gradient descent (al-

ternatively, ”steepest descent” or ”steepest ascent”)

methods, subgradient methods, bundle method of

descent, ellipsoid method, reduced gradient method,

and simultaneous perturbation based stochastic ap-

proximation methods;

• and evaluate only function values, such as interpo-

lation methods and pattern search methods.

3) Heuristics/metaheuristics that can provide approximate

solutions to some optimization problems.

Recently, bio-mimetic heuristics/metaheuristics based strate-

gies have been widely used for solving MOPs, since they are

capable of obtaining near-optimal solutions to optimization

problems characterized by non-differential nonlinear objective

functions, which are particularly hard to deal with using

classical gradient- or Hessian-based algorithms.

A general MOP consists of a number of objectives to be

simultaneously optimized and it is associated with a number of

inequality and equality constraints. Without loss of generality,

a multi-objective minimization problem having n variables and

m (m > 1) objectives can be formulated as

min f(x) =min[f1(x), f2(x), · · · , fm(x)]

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,mie,

hj(x) = 0, j = 1, 2, . . . ,meq, (14)

where we have x ∈ R
n with R

n being the decision space,

and f(x) ∈ R
m with R

m representing the objective space.

The objective functions of (14) are typically in conflict with

each other in the real world. Explicitly, the improvement of

one of the objectives may result in the degradation of other

objectives, thus it is important to achieve the Pareto-optimality,

which represents the conditions when none of the objective

functions can be reduced without increasing at least one of

the other objective functions [13]. For the minimization of

m objectives f1(x), f2(x), · · · , fm(x), we have the following

definitions.

• Non-dominated solutions: A solution a is said to domi-

nate a solution b if and only if [170]:

(1) fi(a) ≤ fi(b) ∀i ∈ {1, 2, · · · ,m},

(2) fi(a) < fi(b) ∃i ∈ {1, 2, · · · ,m}.

Solutions that dominate the others but do not dominate

themselves are termed non-dominated solutions.

• Local optimality in the Pareto sense: A solution a is

said to be locally optimal in the Pareto sense, if there

exists a real ǫ > 0 such that there is no other solution b

dominating the solution a with b ∈ R
n ∩B(a, ǫ), where

B(a, ǫ) shows a bowl having a center a and a radius ǫ.
• Global optimality in the Pareto sense: A solution a is

globally optimal in the Pareto sense, if there does not

exist any vector b that dominates the vector a. The main

difference between global and local optimality lies in

the fact that for global optimality we no longer have a

restriction imposed on the decision space R
n .

• Pareto-optimality: A feasible solution is said to be Pareto-

optimal, when it is not dominated by any other solutions

in the feasible space. PS, which is also often referred to

as the efficient set, is the collection of all Pareto-optimal

solutions and their corresponding images in the objective

space are termed the PF.

The PF of an MOP is portrayed both with and without

constrains in Fig. 9. Observe from Fig. 9 (a) that the Pareto-

optimal solutions of the objective functions in the PF (marked

as asterisk) provide better values than any other solution in

R
m. The ideal solution marked by a square indicates the

joint minimum of the objective values f1 and f2 and it is

often difficult to reach. The remaining solutions marked as

solid circles are all dominated by at least one solution of the

PF. In contrast to the unconstrained scenario of Fig. 9 (a), in

Fig. 9 (b), the curve illustrates the PF of a constrained MOP.

The solid circles in the feasible region represent the feasible

solutions, while the remaining points outside the feasible

region (e.g. the points marked by triangles) are infeasible

[171].
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TABLE II: Major Existing Approaches for Evaluating/Improving/Optimizing Each Metric.

References
Major Evaluation/Improvement/Optimization Approaches

Protocol design Mathematical programming EAs SIOAs Hybrid algorithms Theoretical analysis Simulator

C
o
v
er

ag
e Area coverage [11], [91], [112]–[116] X X X X

Point coverage [117], [118] X

Barrier coverage [119]–[121] X X

Network connectivity [115], [122], [123] X

Network lifetime [11], [74], [107], [112],
[115], [124]–[131]

X X X X X X

Energy consumption [92], [116], [132]–[147] X X X X X X X

Energy efficiency [8], [91], [148]–[152] X X X X

Network latency [91], [92], [135]–[147],
[153], [154]

X X X X X X X

Differentiated detection levels [95], [155] X X

Number of nodes [98]–[103], [156]–[158] X X X

Fault tolerance [105], [159], [160] X

Fair rate allocation [107], [129], [161],
[162]

X X

Detection accuracy [84], [163]–[167] X X X X

Network security [110], [111], [168],
[169]

X X X

Optimization

Model

Optimizers/

Algorithms

Evaluators/

Simulators

· Mathematical model

· Numerical model

· Derivative free

· Derivative based

· Bio-mimic

· Trajectory based

· Population based

· Deterministic

· Stochastic

·Memory less

· History based

· Direct calculation

· Numerical simulator

· Experiment or trial-and-error

Fig. 8: A simple illustration of optimization process.

B. MOO Algorithms

Numerous studies have been devoted to the subject of

MOO and a variety of algorithms have been developed for

solving MOPs in WSNs. In fact, optimization algorithms are

more diverse than the types of objective functions, but the

right choice of the objective function has a much more grave

impact than the specific choice of the optimization algorithm.

Nevertheless, the careful choice of the optimization algorithm

is also vital, especially when complex MOPs are considered.

Solving an MOP means finding the PS of the MOP. As

mentioned in Section I, there are various classes of methods

designed for generating the PSs of MOPs, such as math-

ematical programming based scalarization methods, nature-

inspired metaheuristics, and so forth. It should be noted that

scalarizing an MOP means formulating a single-objective

optimization problem whose optimal solutions are also Pareto-

optimal solutions to the MOP [15]. Additionally, it is often

required that every Pareto-optimal solution can be reached

with the aid of specific parameters of the scalarization.

1) Mathematical Programming Based Scalarization Meth-

ods: Mathematical programming based classic scalarization

methods conceived for MOO include the linear weighted-
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1f
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2f

(a) PF of unconstrained MOP
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2f

Feasible region

PF

(b) PF of constrained MOP

Fig. 9: The PF of MOP with and without constrains, m = 2.

sum method, the ǫ-constraints method [15], and the goal

programming (GP) based methods [9], [172]–[177], as detailed

below.

a) Linear Weighted-Sum Method: The linear weighted-

sum method scalarizes multiple performance metrics into a

single-objective function by pre-multiplying each performance

metric (i.e., component objective) with a weight. Since differ-

ent performance metrics have different properties and each

metric may have a different unit, the normalization must

be implemented firstly when using the linear weighted-sum

method for striking compelling performance trade-offs. Then,

a different weight is assigned to each metric to get an eval-

uation function. Finally, the optimal compromise is obtained

according to the Pareto-optimal solutions generated by solving

multiple single-objective problems, each corresponding to a

specific vector of weight values. It can be proved that the

optimal solution to each of these single-objective problems

is a Pareto-optimal solution to the original multi-objective

problem, i.e., the image of these solutions belong to the PF.

The linear weighted-sum method is easy to implement and

can avoid complex computations, provided that the weights

are appropriately chosen, since only a single optimal value

has to be calculated for each single-objective problem. It is

worth pointing out that all the weights are in the range [0, 1],
and the sum of them is 1. However, there is no a priori

correspondence between a weight vector and a solution vector,

and the linear weighted-sum method usually uses subjective

weights, which often results in poor objectivity and makes the

objectives to be optimized sensitive to the weights. The need

to solve multiple single-objective optimization problems with

the aid of different sets of weight values also implies that a

substantial overall computational complexity may be imposed.

Furthermore, the lack of a reasonable weight allocation method

degrades its scientific acceptance. To elaborate a little further,

typically the decision maker is a priori unaware of which

weights are the most appropriate ones to generate a satisfactory

solution, hence he/she does not know in general how to

adjust the weights to consistently change the solution. This

also means that it is not easy to develop heuristic algorithms

that, starting from certain weights, are capable of iteratively

generating weight vectors to reach a certain portion of the PF.

In addition, the linear weighted-sum method is incapable of

reaching the non-convex parts of the PF. Finally, a uniform

spread of the weight values, in general, does not produce a

uniform spread of points on the PF. This fact implies that

usually all the points are grouped in certain parts of the PF,

while some (potentially significant) portions of the PF based

trade-off curve have not been reached.

Note that if the decision maker has a priori preference

among the multiple objectives considered, or he/she would like

to select the most satisfactory solution from the Pareto-optimal

solutions obtained, a powerful multiple criteria decision-

making method referred to as the analytical hierarchy process

(AHP) [178]–[182] can be used to determine the relative

weights. Using AHP, the weights can be flexibly altered ac-

cording to the specific application requirements. AHP has been

widely used in the context of trade-off mechanisms (e.g. [183]

and [184]), where AHP first decomposes a complex problem

into a hierarchy of simple subproblems, then synthesizes their

importance to the original problem, and finally chooses the

best solution.

b) ε-Constraints Method: The ε-constraints method cre-

ates a single-objective function, where only one of the orig-

inal objective functions is optimized while dealing with the

remaining objective functions as constraints. This method can

be expressed as [185]:

minfi(x)

s.t. fj ≤ εj, j 6= i,

H(x) = 0,

G(x) ≤ 0, (15)

where fi(x), i = (1, 2, . . . , N) is the selected function for op-

timization and the remaining N−1 functions act as constraints.

It was proved by Miettinen [186] that if an objective fj and

a vector ε = (ε1, ..., εj−1, εj+1, ..., εN ) ∈ R
N−1 exist, such

that x∗ is an optimal solution to the above problem, then x
∗ is

a weak Pareto optimum of the original MOP. Therefore, this

method is capable of obtaining weak Pareto-optimal points

by varying the ε vector, but it is not guaranteed to obtain

all of them. Under certain stronger conditions, it can even

obtain the strict Pareto optimum [186]. This method is very

intuitive and the parameters εj used as upper bounds are easy

to interpret. Another advantage of this method is that it is

capable of finding Pareto-optimal solutions on a non-convex

PF. Similar to the linear weighted-sum method, having to



ACCEPTED TO APPEAR ON IEEE COMMUNICATIONS SURVEYS & TUTORIALS, SEPT. 2016. 14

empirically vary the upper bound εj also implies a drawback

of the ε-constraints method, and it is not particularly efficient

if the number of objective functions is higher than two.

c) Goal Programming (GP): Instead of maximizing mul-

tiple objectives, GP is an analytical approach devised for

solving MOPs, where the goal values (or targets) have been

assigned to all the objective measures and where the decision-

maker is interested in minimizing the “non-achievement”

of the corresponding goals. In other words, the underlying

assumption of GP is that the decision-maker seeks a satis-

factory and sufficient solution with the aid of this strategy.

GP can be regarded as an extension or generalization of

linear programming to handle multiple conflicting objective

measures. Each of these measures is given a goal or target

value to be achieved. The sum of undesirable deviations from

this set of user-specified target values is then minimized with

the aid of a so-called achievement function. There are various

forms of achievement functions, which largely determine the

specific GP variant. The three oldest and still widely used

forms of achievement functions include the weighted-sum

(Archimedean), preemptive (lexicographic) and MINMAX

(Chebyshev) [9], [172]–[177].

There exist other scalarization methods devised for MOO,

such as the conic scalarization method of [176], [187].

2) Nature-Inspired Metaheuristic Algorithms: MOPs are

more often solved by nature-inspired metaheuristics, such as

multi-objective evolutionary algorithms (MOEAs) [16], [17]

and swarm intelligence based optimization algorithms (SIOAs)

[18]. This is because most classical optimization methods

are based on a limited number of standard forms, which

means that they have to comply with the particular structures

of objective functions and constraints. However, in realistic

scenarios it is often impossible to accurately characterize the

physical problem with an ideal standard-form optimization

problem model. Additionally, many complicated factors, such

as a large number of integer variables, non-linearities, and

so forth may occur. Both of them can make the realistic

problems hard to solve. Therefore, the classical mathematical

programming based optimization methods may not be suitable

for solving the MOPs encountered in real-world WSNs.

Over the most recent decade, metaheuristics have made

substantial progress in approximate search methods for solving

complex optimization problems [188]. A metaheuristic tech-

nique guides a subordinate heuristic using concepts typically

derived from the biological, chemical, physical and even

social sciences, as well as from artificial intelligence, to

improve the optimization performance. Compared to math-

ematical programming based methods, metaheuristics based

optimization algorithms are relatively insensitive to the specific

mathematical form of the optimization problems. However,

the higher the degree of accuracy required, the higher the

computational cost becomes. So far, the field of metaheuristics

based optimization algorithms has been mostly constituted

by the family of evolutionary algorithms (EAs) [17] and the

family of SIOAs [44]. In the following, we will review some

of their salient representatives.

a) Evolutionary Algorithms (EAs): EAs belong to the

family of stochastic search algorithms inspired by the natural

selection and survival of the fittest in the biological world. The

goal of EAs is to search for the globally near-optimal solutions

by repeatedly evaluating the objective functions or fitness func-

tions using exploration and exploitation methods. Compared

with mathematical programming, EAs are eminently suitable

for solving MOPs, because they simultaneously deal with a

set of solutions and find a number of Pareto-optimal solutions

in a single run of the algorithm. Additionally, they are less

susceptible to the specific shape or to the continuity of the PF,

and they are also capable of approximating the discontinuous

or non-convex PF [189]. The most efficient PF-based MOEAs

have been demonstrated to be powerful and robust in terms of

solving MOPs [17].

• Genetic Algorithms (GAs): GAs constitute the most pop-

ular branch of EAs [190]. GAs are based on genetics and

evolutionary theory, and they have been successfully used for

solving diverse optimization problems, including MOPs. They

have appealing advantages over traditional mathematical pro-

gramming based algorithms [44] in terms of handling complex

problems and convenience for parallel implementation. GA

can deal with all sorts of objective functions no matter they

are stationary or transient, linear or nonlinear, continuous or

discontinuous. These advantageous properties of GAs have

inspired their employment in solving MOPs of WSNs. GAs

rely on the bio-inspired processes of initialization, evaluation,

selection, crossover, mutation, and replacement, as portrayed

in its simplest form in the flow-chart of Fig. 10.

The MOGA [191] has attracted particularly extensive re-

search attention among all the algorithms of MOO. By op-

erating on the generation-by-generation basis, a number of

Pareto-optimal solutions can be found throughout the evolution

generations. Thus, obtaining the Pareto-optimal solution set

provides us with a set of flexible trade-offs. Several solution

methods based on MOGAs were presented in the literature

[112], [192] for optimizing the layout of a WSN. More

specifically, the authors of [112] advocated a MOGA for the

optimal deployment of static sensor nodes in a region of

interest, which simultaneously maximized the coverage area

and the network’s lifetime. The authors then extended their

work to three specific surveillance scenarios in [192] using

the same MOGA. Recently, the non-dominated sorting genetic

algorithm (NSGA) [193], the niched Pareto genetic algorithm

(NPGA) [194] and the SPEA [16] have been recommended as

the most efficient MOEAs.

• Differential Evolution (DE): DE was developed by Storn

and Price [195]. It is arguably one of the most powerful real-

valued optimization algorithms. DE relies on similar compu-

tational steps as employed by a standard EA. It commences

its operation from randomly initiated parameter vectors, each

of which (also called genome or chromosome) forms a can-

didate solution to the optimization problem. Then, a mutant

vector (known as donor vector) is obtained by the differential

mutation operation. To enhance the potential diversity of the

candidate solutions, a crossover operation comes into play

after generating the donor vector through mutation. The final

step of the algorithm calls for selection in order to determine

whether the target vector survives to the next generation [196].

The main stages of the DE algorithm are illustrated in Fig. 11.
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Fig. 10: Simplified flow-chart of a GA.
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Fig. 11: Simplified illustration of a DE algorithm.

However, unlike traditional EAs, the DE algorithm is much

simpler to implement, with only a few parameters to be

set. Therefore, DE has drawn much attention and has been

successfully applied in numerous domains of science and

engineering (see e.g., [197], [198]).

• Artificial Immune System (AIS): AIS is a computational

intelligence paradigm inspired by the biological immune sys-

tem. It has been applied to a variety of optimization problems

and has shown several attractive properties that allow EAs

to avoid premature convergence and to enhance local search

[199]. AIS is capable of recognizing and combating pathogens.

Molecular patterns expressed on those pathogens are referred

to as antigens. An antigen is any molecule that can be

recognized by the immune system and is capable of provoking

the immune response. This immune response is specific to

each antigen. The cells called lymphocytes have a vital role

in the immune system. There are two types of lymphocytes:

B cells and T cells. When an antigen is detected, B cells

that best recognize the antigen, will proliferate by cloning.

TABLE III: Pseudocode of Artificial Immune System.

Repeat

1. Select an antigen A from population of antigens;

2. Take R antibodies from population of antibodies;

3. For each antibody r ∈ R,

match it against the selected antigen A;

4. Find the antibody with the highest match score,

break ties randomly, and compute its match score;

5. Add match score of winning antibody to its fitness;

Until the maximum number of cycles is reached.

Some of these new cloned cells will differentiate into plasma

cells, which are the most active antibody secretors. These

cloning and mutation processes are termed the clonal selection

principle [200], which is one of the inspiring methodologies

employed in AIS for solving optimization problems. Based

on the clonal selection principle, an algorithm is developed,

where various immune system aspects are taken into account,

such as the maintenance of the memory cells, selection and

cloning of the most stimulated cells, death of non-stimulated

cells, re-selection of the clones with higher affinity, as well as

the generation and maintenance of diversity. The steps of the

AIS are provided in form of pseudocode in Table III.

Similar to the computational frameworks of EA, AIS can

be readily incorporated into the evolutionary optimization pro-

cess and particularly, AIS are often exploited in evolutionary

techniques devised for MOO to avoid premature convergence.

On the other hand, the main distinction between the field of

AIS and GAs is the nature of population development [201].

Specifically, the population of GAs is evolved using crossover

and mutation operations. However, in the AIS, similar to

evolutionary strategies where reproduction is a cloning, each

child produced by a cell is an exact copy of its parent. Both

algorithms then use mutation to alter the progeny of the cells

and introduce further genetic variations.

• Imperialist Competitive Algorithm (ICA): Inspired by the

socio-political evolution process of imperialism and imperial-

istic competition, ICA was originally proposed by Atashpaz-

Gargari and Lucas in 2007 [202]. Similar to other EAs, ICA

starts with an initial population, with each of them termed a

country. The countries can be viewed as population individuals

and are basically divided into two groups based on their power,

i.e., imperialists (countries with the least cost function value)

and colonies. After forming initial empires, the colonies start

moving toward their relevant imperialist. This movement is a

simple manifestation of the assimilation policy, which is pur-

sued by some of the imperialists and results in improvements

of the socio-political characteristics, such as culture, language

and economical policy, in the colonies. Then, the imperialistic

competition starts among all the empires. The imperialistic

competition will gradually result in an increase of the power

of stronger empires and a decrease in the power of weaker

ones. In this process, weak empires will lose their colonies

and eventually collapse. In the long run, ICA converges to a

state where only a single powerful empire exists in the world
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and all the other countries are colonies of that empire3. In this

state, the best solution of the optimization problem is given

when all colonies and the corresponding imperialist have the

same cost.

ICA has been successfully applied in numerous single-

objective optimization problems [203], [204], where most

results indicate that it is superior to the GA in terms of both

its accuracy and convergence rate. The basic structure of the

multi-objective imperialist competitive algorithm (MOICA) is

the same as that of the ICA. However, new methods are devel-

oped to determine the imperialist countries, to define the power

of the imperialist countries, and to calculate the total power

of empires for imperialistic competition. Selecting imperialists

(best countries) from a set of Pareto-optimal solutions impacts

both the coverage and the diversity of solutions. This impact

is more significant when the optimization problem has a

high number of objectives. A novel MOICA was proposed

in [157] for handling node deployment, where both the fast

non-dominated sorting and the Sigma method were employed

for selecting the best countries as imperialists.

b) Swarm Intelligence Optimization Algorithms (SIOAs):

Swarm intelligence constitutes a branch of artificial intelli-

gence (AI), and it exploits the collective behavior of self-

organized, decentralized systems that rely on a social structure,

such as bird flocks, ant colonies and fish schools. These sys-

tems consist of low-intelligence interacting agents organized

in small societies (also referred to as swarms), exhibiting traits

of intelligence, such as the ability of reacting to environmental

threats and the decision making capacities. Swarm intelligence

has been utilized in the global optimization framework of

controlling robotic swarms in [44]. Three main SIOAs have

been developed, namely, ACO [24], PSO [205] and artificial

bee colony (ABC) [206].

• Ant Colony Optimization (ACO): ACO was inspired by

the foraging behavior of some ant species. These ants deposit

pheromones on the ground in order to mark their nest-to-food

paths that should be followed by other members of the colony.

Additionally, they also deposit a different type of pheromone

to mark dangerous paths for the others to avoid any threat. The

ACO algorithm is capable of solving discrete/combinatorial

optimization problems in various engineering domains. It was

initially proposed by Dorigo in [23], [207] and has since been

widely researched and diversified to solve a class of numerical

problems. To illuminate the basic principle of ACO, let us

consider the paths A and B of Fig. 12 between a nest and a

food source as an example [40]. Furthermore, let us denote

by nA(t) and nB(t) the number of ants along the paths A
and B at the time step t, respectively, and by PA and PB

the probability of choosing path A and path B, respectively.

Then, the probability of an ant choosing path A at the time

step t+ 1 is given by

PA(t+ 1) =
[c+ nA(t)]

α

[c+ nA(t)]α + [c+ nB(t)]α
= 1− PB(t+ 1),

(16)

3This might not be the case in realistic world, since every empire in the
history has a limited life cycle.

where c is the degree of attraction of a hitherto unexplored

branch and α (α ≥ 0) is the bias towards using pheromone

deposits in the decision process. An ant chooses between

the path A or path B using the following decision rule: if

U(0, 1) ≤ PA(t + 1) then choose path A, otherwise choose

path B. Here, U is a random number having a uniform

distribution in the range of [0, 1]. ACO performs well in the

dynamic and distributed routing problems of WSNs.

• Particle Swarm Optimization (PSO): Similar to the under-

lying philosophy of other swarm intelligence approaches, PSO

aims for mimicking the social behavior of a flock of birds. It

consists of a swarm of s candidate solutions, termed particles,

which explore an n-dimensional hyperspace in search of the

global solution. In PSO, the particles regulate their flying

directions based both on their own flying experience and on

their neighbors’ flying experience [208]. After several im-

provements conceived by researchers, PSO became an often-

used population-based optimizer, which is capable of solving

stochastic nonlinear optimization problems at an affordable

complexity. The position of the ith particle is represented as

Xi,d, while its velocity is represented as Vi,d. Each particle

is evaluated through an objective function f(x1, x2, ..., xn),
where we have f : Rn −→ R. The cost (fitness) of a particle

close to the global solution is lower (higher) than that of a

particle being farther away. The best position of particle i is

denoted as Pi,d. Then, the particles are manipulated according

to the following two equations [208]:

Vi,d(t+ 1) = wVi,d(t) + λ1r1(t)[Pi,d(t)−Xi(t)]

+λ2r2(t)[Pd(t)−Xi(t)], (17)

Xi,d(t+ 1) = Xi,d(t) + Vi,d(t+ 1), (18)

where we have 1 ≤ i ≤ s and 1 ≤ d ≤ n. Additionally, λ1

and λ2 are constants, w is the so-called inertia weight, while

Pd is the position of the best particle. Still referring to (17),

r1(t) and r2(t) are random numbers uniformly distributed in

[0, 1]. In the tth iteration, the velocity V and the position X are

updated using (17) and (18). The update process is iteratively

repeated until either an acceptable Pd is achieved or a fixed

number of iterations tmax is reached. The general framework

of the multi-objective PSO is shown in Fig. 13, which includes

some key operations, such as the maintenance of the archive,

global optimum selection, as well as the velocity and position

update [209]. More explicitly, the particle population relies on

an archive for storing the Pareto-optimal solutions during the

iterative process and for selecting the global optimum from

these solutions. This is the key point in which the multi-

objective PSO is different from the traditional single-objective

optimization.

The employment of the PSO as a stochastic global optimiza-

tion algorithm in the MOP of WSNs is relatively new and

hence there is a paucity of contributions. A multi-objective

routing model based on ACO was proposed in [24], which

optimizes the network’s delay, energy consumption and data

packet loss rate. This novel method has been shown to be

capable of adapting to different service requirements. The

authors of [115] developed a MOO model based on PSO
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Fig. 12: A stylized optimization process of ACO.
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Fig. 13: The general framework of the multi-objective PSO.

and fuzzy logic (FL) for sensor node deployment, aiming for

maximizing the network’s coverage, connectivity and lifetime.

They have shown that the technique provides efficient and

accurate decisions for node deployment in conjunction with

low estimation errors.

• Artificial Bee Colony (ABC): The ABC algorithm was first

introduced by Karaboga and Basturk [206], and it was derived

from the behavior of honey bees in nature. Since the structure

of the algorithm is simple, it has been widely used for solving

optimization problems. In the ABC model, the position of a

food source represents a possible solution to the optimization

problem and the amount of nectar in a food source corresponds

to the quality (fitness) of the associated solution. The honey

bee swarm consists of three groups of bees, namely the

employed bees, onlookers and scouts. Correspondingly, the

ABC algorithm has three phases [151], [210]. It is assumed

that there is only a single artificial employed bee for each food

source. Therefore, the number of employed bees in the honey

bee swarm is equal to the number of food sources around the

hive.

i) Employed bee phase: At the first step, the randomly

distributed initial food sources are produced for all employed

bees. Then, each employed bee flies to a food source in

its memory and determines a neighbor source, whose nectar

amount is then evaluated. If the nectar amount of the neighbor

source is higher than that of the previous source, the employed

bee memorizes the new source position and forgets the old one.

Otherwise, it keeps the position of the one in its memory. In

other words, an employed bee updates the source position in

its memory if it discovers a better food source.

ii) Onlooker phase: After all employed bees have completed

the above food-source search process, they return to the hive to

share the position and nectar amount of their individual food

source with the onlookers. Each onlooker evaluates the nectar
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information taken from all employed bees and then chooses a

food source depending on the nectar amounts of these sources.

Therefore, food sources with high nectar content attract a large

number of onlooker. Similar to the case of the employed bee,

an onlooker then updates the source position in its memory by

checking the nectar amount of a neighbor source. If its nectar

amount is higher than that of the previous one, the onlooker

memorizes the new position and forgets the old one.

iii) Scout phase: As a result, the sources abandoned have

been determined, and the employed bee whose food source has

been abandoned becomes a scout. New sources are randomly

produced by scouts, without considering any experience, in

order to replace the abandoned ones.

The above foraging behavior can be simulated using an

ABC algorithm to determine the globally optimal solutions

of optimization problems, as shown in [210].

c) Artificial Neural Network (ANN): ANN is a sophisti-

cated computational intelligence structure inspired by the neu-

robiological system. It is used for estimating or approximating

functions that depend on a large number of inputs that are

generally unknown [211]. The biological neuron consists of

dendrites, an axon and a cell body called soma. Each neuron

may form a connection to another neuron via the synapse,

which is a junction of an axon and a dendrite. The so-

called postsynaptic potentials generated within the synapses

are received via dendrites and chemically transformed within

the soma. The axon carries away the action potential sent out

by the soma to the next synapse. The analogy of biological

neurons to artificial neurons is explained as follows. In ar-

tificial neurons, the incoming signals are weighted, which is

analogous to what is done in synapses. Then, the weighted

signals are further processed. The function f(x) is basically

a weighted-sum of all inputs, while the output corresponds to

the axon. In the context of WSNs, the sensor node converts

the physical signal to an electronic signal, which is filtered

or preprocessed using weighting (analogous to synapse). The

subsequent processing within the processor is represented

by the particular function h(x), which corresponds to the

chemical processing accomplished by the soma. Eventually, a

sensor node sends out the modified sensor reading via the radio

link. This strong analogy shows that the sensor node itself can

be viewed as a biological or artificial neuron [212]. Therefore,

we can readily extend our horizon and regard some WSNs as

large-scale ANNs. Having said this, we are fully aware of

the inherent dangers of analogies. The shift procedure from a

biological neuron to a sensor node is portrayed in Fig. 14.

The entire sensor network can be modelled from an ANN

perspective. For each sensor node within the sensor network,

we can also rely on ANNs to decide the output action. Thus,

it is possible to envision a two-layer ANN architecture for

WSNs.

d) Reinforcement Learning (RL): RL is a powerful math-

ematical framework that enables an agent (sensor node) to

learn via interacting with its environment and to model a

problem as a Markov decision process (MDP) [213]. The most

well-known RL technique is Q-learning. The visualization of

Q-learning is shown in Fig. 15, where an agent (sensor node)

regularly updates its achieved reward based on the action taken
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Fig. 14: The shift procedure from a biological neuron to a

sensor node.
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Fig. 15: Visualization of the Q-learning.

at a given state. The future total reward (i.e., the Q-value) of

performing an action at at state st is calculated using

Q(st+1, at+1) = Q(st, at) + λ · [r(st, at)−Q(st, at)], (19)

where r(st, at) represents the immediate reward of performing

an action at at state st, and 0 ≤ λ ≤ 1 is the learning rate

that determines how fast learning takes place. This algorithm

can be easily implemented in a distributed architecture like

WSNs, where each node seeks to choose specific actions that

are expected to maximize its long-term rewards. For instance,

Q-learning has been efficiently used in WSN routing problems

[214], [215].

3) Other Advanced Optimization Techniques: There are

several other advanced optimization methods capable of

achieving appealing performance trade-offs, such as fuzzy

logic, game theory, and so forth. Although these methods are

less frequently used in WSNs, the trade-offs achieved by them

can be compelling.

a) Fuzzy Logic (FL): FL as a mathematical model was

introduced by Zadeh in the 1960s [216]. It is a useful technique

that can use human language to describe inputs as well as

outputs, and it provides a simple method of achieving a conclu-

sion based on imprecise or ambiguous input information. Since

then, the applications of FL have been expanding, especially

in adaptive control systems and system identification.

A fuzzy system comprises four basic elements, namely,

fuzzifier, inference engine, fuzzy rule base and defuzzifier

[217], as shown in Fig. 16. The fuzzifier converts the inputs

into fuzzy variables using membership functions, each of

which represents for each object a degree of belongingness
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Fig. 16: Typical structure of the FL.

to a specific fuzzy set. Fuzzy variables provide a mapping

of objects to a continuous membership value, which is nor-

malized in the range [0, 1]. Each fuzzy set is represented by a

linguistic term, such as “high”, “low”, “medium”, “small” and

“large”. The inference engine is often a collection of if-then

rules, by which the fuzzy input is mapped to a linguistic output

variable according to the fuzzy rule base. This output variable

has to be converted into a crisp output by the defuzzification

process, such as the centroid method, averaging method, root

sum squared method, and mean of maximum.

Low-complexity FL is suitable for WSNs, and various areas

of WSNs have been investigated using the rules of FL. For

example, the FL-based routing path search for a maximum

network lifetime and minimum delay was investigated in [37],

where a fuzzy membership function (edge-weight function)

was used for formulating a multi-objective cost aggregation

function, which may reflect the effects of all the objectives

collectively as a scalar value. As a beneficial result, it offers a

beneficial trade-off between maximizing the network lifetime

and minimizing the source-to-sink delay.
b) Game Theory: Game theory is a powerful mathe-

matical tool that characterizes the phenomenon of conflict

and cooperation between rational decision-makers [218]. Since

game theory introduces a series of successful mechanisms,

such as the pricing mechanism, it has achieved a great success

in the design of WSNs. In particular, the pricing schemes

can guide the nodes’ behaviors towards an efficient Nash

equilibrium by introducing a certain degree of coordination

into a non-cooperative game. In [219], a Nash equilibrium-

based game model, a cooperative coalition game model and

an evolutionary game model were used for solving MOPs,

respectively.

Indeed, a number of MOO approaches have appeared in

the literature over the past decade. For the sake of clarity,

some representative MOO algorithms are summarized in Table

IV, including the MOGA [191], NPGA [194], NSGA [193],

NSGA-II [21], SPEA [16], the strength Pareto evolutionary

algorithm-2 (SPEA2) [220], the multi-objective messy genetic

algorithm (MOMGA) [221], the multi-objective messy genetic

algorithm-II (MOMGA-II) [222], the Bayesian optimization

algorithm (BOA) [223], the hierarchical Bayesian optimiza-

tion algorithm (HBOA) [224], the Pareto archive evolution

strategy (PAES) [225], the Pareto envelope-based selection

algorithm (PESA) [226], the Pareto envelope-based selection

algorithm-II (PESA-II) [227], multi-objective differential evo-

lution (MODE) [196], multi-objective evolutionary algorithm

based on decomposition (MOEA/D) [228]. Additionally, there

are some other methods, such as the multi-objective genetic

local search (MOGLS) [229], the multi-objective Tabu search

(MOTS) [230], the multi-objective scatter search (MOSS)

[231], ACO [24], PSO [205], ABC [151], FL [37], ANN, AIS,

game theory [219], MOICA [157], memetic algorithm (MA)

[232], and centralized immune-Voronoi deployment algorithm

(CIVA) [116], just to name a few.

C. Software Tools

At the time of writing, numerous software tools are available

for solving MOPs. These software packages are briefly intro-

duced in Table V, including BENSOLVE [233], the distributed

evolutionary algorithms in Python (DEAP) [234], Decisionar-

ium [235], D-Sight [236], the graphical user interface designed

for multi-objective optimization (GUIMOO) [237], the intel-

ligent decision support system (IDSS) [238], iSIGHT [239],

jMetal [240], the multiple objective metaheuristics library in

C++ (MOMHLib++) [241], ParadisEO-MOEO [242], [243],

SOLVEX [244] and WWW-NIMBUS [245].

V. EXISTING LITERATURE ON USING MOO IN WSNS

The performance metrics presented in Section II entail

conflicting objectives, e.g., the coverage versus lifetime, and

the energy consumption versus delay, etc. Therefore, it is nec-

essary to balance multiple trade-offs efficiently by employing

MOO techniques. In this section, we present an overview of

the existing contributions that are focused on using MOO in

the context of WSNs.

A. Coverage-versus-Lifetime Trade-offs

The reasons why the coverage and the lifetime of a WSN

constitute conflicting objectives are given as follows. Op-

timizing the coverage represents the maximization of the

proportion of the adequately monitored area relative to the total

area. From another perspective, the coverage objective desires

having a “spread-out” network layout, where sensor nodes are

as far apart from each other as possible in order to minimize

the overlap between their sensing disks. This results in a large

number of relay transmissions taking place at the intermediate

sensor nodes, especially for those communicating directly with

the base station. Hence, the depletion of energy at these sensor

nodes will happen sooner, and the network lifetime will then

be shorter. On the other hand, in order to get a longer lifetime,

all the sensor nodes tend to communicate using as few hops as

possible (or even communicate directly) with the base station,

so that their energy is used for their own data transmission

as much as possible. This implies a clustered configuration

around the base station, with substantial overlap between

sensing disks and yielding a poor coverage performance. Table

VI shows a summary of the existing major contributions on

coverage-versus-lifetime trade-offs.

More specifically, Jourdan et al. [112] conceived a MOGA

for optimizing the layout of WSNs, i.e., the locations of

nodes, by considering both the sensing and communication

connectivity requirements. The algorithm aims for maximizing
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TABLE IV: Qualitative Comparison of Representative MOO Algorithms.

Approach Complexity Convergence Scalability Optimality

linear weighted-sum
method

moderate fast limited mathematically guaranteed optimal

ε-constraints method low fast limited mathematically guaranteed optimal

GP moderate fast good mathematically guaranteed optimal

MOGA moderate fast limited empirically very near-optimal

NSGA high slow limited empirically very near-optimal

NSGA-II moderate fast good empirically very near-optimal

NPGA low slow limited empirically very near-optimal

SPEA high fast good empirically very near-optimal

SPEA2 high fast good empirically very near-optimal

PAES moderate fast limited empirically very near-optimal

PESA moderate moderate moderate empirically very near-optimal

PESA-II low moderate good empirically very near-optimal

MOEA/D low fast good empirically very near-optimal

MOGLS moderate fast limited empirically very near-optimal

MOMGA high moderate moderate empirically very near-optimal

MOMGA-II low fast good empirically very near-optimal

MOTS moderate slow good near-optimal

MOSS moderate moderate limited near-optimal

MODE high moderate limited empirically very near-optimal

BOA high slow moderate near-optimal

HBOA low moderate limited near-optimal

PSO low slow limited empirically very near-optimal

ACO high moderate good empirically very near-optimal

ABC low fast good empirically very near-optimal

FL low fast limited empirically very near-optimal

ANN low slow good empirically very near-optimal

AIS moderate moderate good near-optimal

MOICA moderate fast good near-optimal

Game Theory moderate low good empirically very near-optimal

MA moderate fast good near-optimal

CIVA low slow good near-optimal

RL low fast good empirically very near-optimal
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TABLE V: Representative Software Tools.

Software Tools

(alphabetically)

License Brief Introduction

BENSOLVE open source BENSOLVE is a solver for vector linear programs, particularly for the subclass of multiple objective linear programs,
which is based on Benson’s algorithm and its extensions. [Online] Available: http://bensolve.org/.

DEAP open source The DEAP framework is built with the Python programming language that provides the essential glue for assembling
sophisticated evolutionary computation systems. [Online] Available: http://deap.readthedocs.io/en/master/.

Decisionarium open source Decisionarium is the first public site for interactive multicriteria decision support with tools for individual decision
making as well as for group collaboration and negotiation. Also, Decisionarium offers access to complete e-learning
modules based on the use of the software. [Online] Available: www.decisionarium.hut.fi.

D-Sight open source D-Sight developed by Quantin Hayez at the CoDE-SMG laboratory is a relatively new MOO software. It offers multiple
interactive and visual tools that help the decision maker to better understand and manage MOPs. Compared to the
previous software, several functional improvements have been implemented in addition to a modern user interface.
[Online] Available: http://aca.d-sight.com/.

GUIMOO open source GUIMOO is free software for analyzing results in MOPs. It provides visualization of approximative PFs and metrics
for quantitative and qualitative performance evaluation. [Online] Available: http://guimoo.gforge.inria.fr.

IDSS open source IDSS is a decision support system that makes the extensive use of AI techniques. The development of the IDSS software
package is a primary exploration that puts the decision support method into the context of the real-life world. [Online]
Available: http://idss.cs.put.poznan.pl/site/software.html.

iSIGHT commercial iSIGHT is a generic software framework for integration, automation, and optimization of design processes,
which was developed on the foundation of interdigitation to solve complex problems. [Online] Available:
http://www.3ds.com/products-services/simulia/products/isight-simulia-execution-engine/portfolio/.

jMetal open source jMetal is a an object-oriented Java-based framework for solving MOPs using metaheuristics. It is a flexible, extensible,
and easy-to-use software package. [Online] Available: http://jmetal.sourceforge.net.

MOMHLib++ open source MOMHLib++ is a library of C++ classes that implements a number of multiple objective metaheuristics. Each method
only needs the local search operation to be implemented. [Online] Available: http://home.gna.org/momh/.

ParadisEO-
MOEO

open source ParadisEO-MOEO is a white-box object-oriented software framework dedicated to the reusable design of metaheuristics
for MOO. Technical details on the implementation of evolutionary MOO algorithms under ParadisEO-MOEO can be
found on the ParadisEO website. [Online] Available: http://paradiseo.gforge.inria.fr.

SOLVEX open source SOLVEX is a FORTRAN library of more than 20 numerical algorithms for solving MOPs. We have both the SOLVEX
Windows and the SOLVEX DOC versions. [Online] Available: http://www.ccas.ru/pma/product.htm.

WWW-
NIMBUS

open source WWW-NIMBUS has been designed to solve differentiable and non-differentiable MOPs subject to nonlinear and
linear constraints with bounds on the variables, and it can also accommodate integer variables. [Online] Available:
http://nimbus.mit.jyu.fi/.

TABLE VI: Coverage-versus-Lifetime Trade-offs.

Ref. Technical Tasks Optimization Objectives Algorithms Type of Sensors Topology Evaluation

Methodology

Scope of Applications

[112] deployment maximize coverage; maxi-
mize lifetime

MOGA homogeneous-static flat experimental trial satellite or a high-altitude aircraft

[11] deployment maximize coverage; maxi-
mize lifetime

MOEA/D homogeneous-static flat simulation general-purpose

[246] deployment maximize coverage; maxi-
mize lifetime

MOEA/D homogeneous-static flat simulation general-purpose

[115] deployment maximize coverage; max-
imize connectivity; maxi-
mize lifetime

hybrid FL and PSO heterogeneous-static flat simulation general-purpose

[91] data aggregation maximize coverage; maxi-
mize lifetime (via minimiz-
ing latency)

recursive algorithm homogeneous-static flat simulation densely deployed environment

[116] deployment maximize coverage; maxi-
mize lifetime

CIVA homogeneous-mobile flat simulation general-purpose

http://bensolve.org/
http://deap.readthedocs.io/en/master/
http://aca.d-sight.com/
http://guimoo.gforge.inria.fr
http://idss.cs.put.poznan.pl/site/software.html
http://www.3ds.com/products-services/simulia/products/isight-simulia-execution-engine/portfolio/
http://jmetal.sourceforge.net
http://home.gna.org/momh/
http://paradiseo.gforge.inria.fr
http://www.ccas.ru/pma/product.htm
http://nimbus.mit.jyu.fi/
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both the coverage and the lifetime of the network, hence

yielding a PF from which the network can dynamically choose

its most desired solution. Konstantinidis et al. [11], [247]

considered optimizing both the locations and the transmit

power levels of sensor nodes, i.e., the so-called deployment

and power assignment problem (DPAP) for maximizing the

network coverage and lifetime. Using the MOEA/D of [228],

the multi-objective DPAP was decomposed into a set of

scalar subproblems in [11], [247]. By extending [11], the

authors further addressed the K-connected DPAP in WSNs

for maximizing the network coverage and lifetime under the

K-connectivity constraints by using, again, the MOEA/D ap-

proach [246]. Furthermore, Rani et al. [115] proposed a multi-

objective PSO and FL based optimization model for sensor

node deployment, which is based on the maximization of the

network’s coverage, connectivity and lifetime. Choi et al. [91]

proposed a randomized k-disjoint-sensor selection scheme that

traded off the coverage against the data reporting latency,

while enhancing the attainable energy efficiency depending

on the specific type of applications. Additionally, a CIVA was

proposed for mobile WSNs in [116] to strike an improved

trade-off between coverage and lifetime. The CIVA comprises

two phases: in the first phase, CIVA controls the locations and

the sensing ranges of mobile nodes to maximize the coverage;

in the second phase, CIVA adjusts the transmit power of

active/sleep mobile nodes to minimize the number of active

nodes.

B. Energy-versus-Latency Trade-offs

Indeed, minimizing the energy consumption requires trans-

mitting the sensed data over reduced distance in each hop. By

contrast, minimizing the delay requires minimizing the number

of intermediate forwarders between a source and the sink. This

goal may be achieved by maximizing the distance between

any pair of consecutive forwarders. Furthermore, a reduced

search space for candidate forwarders yields an unbalanced

distribution of the data forwarding load among nodes, thus

causing a non-uniform depletion of their available energy

[249], [250]. Therefore, it is necessary to jointly optimize the

network’s energy consumption and delay. The energy-versus-

latency trade-off related issues have been lavishly documented

in various specific WSN scenarios [92], [135]–[147], [248],

[249], [251]–[253]. Table VII shows a summary of the exist-

ing major contributions to energy-consumption-versus-latency

trade-offs.

More specifically, in [248] the authors studied the energy-

latency-density trade-off of WSNs by proposing a topology-

and-energy-management scheme, which promptly wakes up

nodes from a deep sleep state without the need for an ultra-

low-power radio. As a result, the WSN designer can trade

the energy efficiency of this sleep state against the latency

associated with waking up the node. In addition, the authors

integrated their scheme with the classic geographical adap-

tive fidelity algorithm to exploit excess network density. In

[135] Zorzi et al. developed the energy-versus-latency trade-

offs based on the geographical location of the nodes, and

proposed a collision avoidance protocol. Then, Yang et al.

[136] designed a node wake-up scheme, namely the so-called

“pipelined tone wake-up”, which struck a balance between

the energy savings and the end-to-end delay. This node wake-

up scheme was based on an asynchronous wake-up pipeline,

where the wake-up procedures overlapped with the packet

transmissions. It used wake-up tones that allowed a high

duty-cycle ratio without imposing a large wake-up delay at

each hop. Yu et al. [137] studied the energy-versus-latency

trade-offs using the so-called data aggregation tree4 [254] in

a real-time scenario with a specified latency constraint, and

developed algorithms for minimizing the overall energy dissi-

pation of the sensor nodes. The authors of [138] presented the

first work on energy-balanced task allocation in WSNs where

both the time and the energy costs of the computation and

communication activities were considered. They explored the

energy-versus-latency trade-offs of communication activities

over the data aggregation tree for modelling the packet flow

in multiple-source single-sink communications. A numerical

algorithm was conceived for obtaining the exact optimal

solution, and a dynamic programming based approximation

algorithm was also proposed.

In [140] Borghini et al. considered the problem of analyzing

the trade-offs between the energy efficiency and the delay for

large and dense WSNs. They used an analytical model, which

facilitated the comparison of the trade-offs in scenarios em-

ploying different deployment-phase protocols, and presented a

pair of novel algorithms (i.e., latency-oriented/energy-oriented

data aggregation tree construction algorithms), which outper-

formed the existing ones. In [92], Ammari et al. investigated

the energy-versus-delay trade-offs of a WSN by varying the

transmission range. Huynh et al. [141] proposed a cluster-and-

chain based energy-delay-efficient routing protocol for WSNs,

where each k-hop cluster uses both cluster-based and chain-

based5 approaches. Each communication round consisted of a

cluster- and chain-formation phase, as well as a data transmis-

sion phase.

Furthermore, Moscibroda et al. [142] analyzed the energy-

efficiency versus propagation-delay trade-offs by defining a

formal model, with a particular emphasis on the deployment

phase. Specifically, the authors presented two new algorithms,

one of which is entirely unstructured, while the other is

based on clustering. Leow et al. [143] provided an asymptotic

analysis of the transmission delay and energy dissipation of

a 2D multi-state WSN, where the sensor nodes were equally

spaced in a line or in a square grid. They also discussed the

transmission delay-energy trade-offs for the case where the

energy transmitted attenuates according to the inverse second-

power pathloss law. As a further development, the authors

4In general, data aggregation tree is interpreted as a tree that aggregates
information from multiple sources en route to the sink (or recipient). In a tree-
based network, sensor nodes are organized into a tree, where data aggregation
is performed at intermediate nodes along the tree and a concise representation
of the data is transmitted to the root node. Tree-based data aggregation is
suitable for applications that involve in-network data aggregation.

5Note that sensor nodes are distributed into multiple clusters, and each
cluster has a cluster head that aggregates all data sent to it by all its members.
Afterwards, cluster heads form multiple binary chains, in which each node
communicates with the closest neighbor and takes turns transmitting to the
base station.
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TABLE VII: Energy-versus-Latency Trade-offs.

Ref. Technical Tasks Optimization Objectives Algorithms Type of Sensors Topology Evaluation

Methodol-

ogy

Scope of Applications

[248] topology and en-
ergy management

minimize energy consump-
tion; minimize latency; mini-
mize network density

a node wake-up based
topology-and-energy-
management algorithm and
the classic geographical
adaptive fidelity algorithm

homogeneous-static flat simulation general-purpose

[135] localization minimize energy consump-
tion; minimize latency

a collision avoidance pro-
tocol

homogeneous-static flat simulation general-purpose

[136] clustering minimize energy consump-
tion; minimize latency

a node wake-up scheme
based on an asynchronous
wake-up pipeline

homogeneous-static flat with
clustering

simulation large-scale WSNs

[137] data aggregation minimize energy consump-
tion; minimize latency

dynamic programming heterogeneous-static flat simulation real-time monitoring or
mission-critical applications

[138] task allocation minimize energy consump-
tion; minimize latency

a three-phase heuristic homogeneous-static flat simulation real-time application

[139] data aggregation minimize energy consump-
tion; minimize latency

tabu search and ACO heterogeneous-static flat simulation large-scale WSNs

[140] data aggregation minimize energy consump-
tion; minimize latency

re-routing algorithms homogeneous-static flat simulation large and dense WSNs

[92] routing minimize energy consump-
tion; minimize latency

a data dissemination proto-
col

homogeneous-static flat simulation general-purpose

[141] routing minimize energy consump-
tion; minimize latency

a cluster-and-chain based
energy-delay-efficient rout-
ing protocol

homogeneous-static flat with
clustering

simulation inhospitable physical environ-
ments

[142] deployment minimize energy consump-
tion; minimize latency

uniform algorithm; cluster
algorithm

homogeneous-static flat simulation harsh environments

[143] scheduling minimize energy consump-
tion; minimize latency

analytical method homogeneous-static flat analytical abstract multi-state one- and
two-dimensional line WSN

[144] scheduling and
MAC

minimize energy consump-
tion; minimize latency

hybrid GA and PSO homogeneous-static flat simulation general-purpose

[145] routing minimize energy consump-
tion; minimize latency

FL homogeneous-static flat simulation delay-sensitive WSNs

[146] clustering minimize energy consump-
tion; minimize latency

NSGA-II heterogeneous-static flat simulation general-purpose

[147] data aggregation minimize energy consump-
tion; minimize latency

energy-efficient minimum-
latency data aggregation
algorithm

homogeneous-static flat simulation general-purpose

[249], [250] data forwarding minimize energy consump-
tion; uniform battery power
depletion; minimize latency

weighted scale-uniform-
unit sum algorithm

homogeneous-static flat simulation sensing applications

[251] routing minimize energy consump-
tion; minimize latency

queue theory heterogeneous-static hierarchical simulation general-purpose

[139] data aggregation minimize energy consump-
tion; minimize latency; max-
imize lifetime

centralized and distributed
heuristics inspired by tech-
niques developed for a
variant of the vehicle rout-
ing problem

heterogeneous-static flat simulation general-purpose

[252] data aggregation
and processing

minimize energy consump-
tion; minimize latency

integer programming homogeneous-static flat simulation industrial Internet of Things

[253] data aggregation minimize energy consump-
tion; minimize latency

queue theory homogenous-static flat with
clustering

simulation sensing applications
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of [144] presented a new MOO framework conceived for

slot scheduling in many-to-one sensor networks. Two specific

optimization objectives were considered in [144]. The first one

was to minimize the energy consumption, while the other was

to shorten the total delay. Minhas et al. [145] proposed a

routing algorithm based on FL for finding a path that offers a

desirable balance between the maximum lifetime (associated

with energy consumption) and the minimum source-to-sink

delay.

In the same spirit, Cheng et al. [146] proposed a MOO

framework for cluster-based WSNs. The framework was de-

signed to strike attractive trade-offs between the energy con-

sumption and the duration of the data collection process.

The effectiveness of this framework was evaluated with a

pair of energy-aware clustering algorithms. However, cluster-

ing techniques typically impose bottlenecks during the data

collection process and cause extra delays. Li et al. [147]

investigated the trade-offs of data aggregation in WSNs in

the presence of interference, and they conceived an energy-

efficient minimum-latency data aggregation algorithm, which

achieved the asymptotically minimal aggregation latency as

well as the desired energy-versus-latency trade-offs. Ammari

[249], [250] proposed a data forwarding protocol for finding

the best trade-offs among minimum energy consumption,

uniform battery power depletion and minimum delay, which

relied on slicing the communication range of the nodes into

concentric circular bands. He also conceived a novel approach

termed the weighted scale-uniform-unit sum, which was used

by the source nodes for solving this MOP. Shahraki et al.
[251] defined a new cost function and developed a new intra-

cluster routing scheme for balancing the attainable cluster

lifetime against the end-to-end delay between the cluster

members and the cluster head. In [139], Yao et al. devel-

oped a data collection protocol for balancing the trade-offs

between energy-efficiency (associated with lifetime) and delay

in heterogeneous WSNs, in which a centralized heuristic was

devised for reducing the computational cost and a distributed

heuristic was conceived for making the algorithm scalable.

Both heuristics were inspired by recent techniques developed

for the so-called “open vehicle routing problems with time

deadlines”, which is mainly studied in operational research. In

[253], Dong et al. investigated the trade-offs between energy

consumption and transport latency minimization under certain

reliability constraints in WSNs. Based on the analysis strategy

conceived for satisfying sensing application requirements, they

proposed a data gathering protocol named broadcasting com-

bined with multi-NACK/ACK to strike attractive trade-offs.

In [252], the authors proposed an energy-efficient and delay-

aware wireless computing system for industrial WSNs based

smart factories.

C. Lifetime-versus-Application-Performance Trade-offs

In certain sensor network applications, the specific applica-

tion’s performance strongly depends on the amount of data

gathered from each sensor node in the network. However,

higher data rates result in increased sensing and communica-

tion costs across the sensor network, as well as in escalating

energy consumption and reduced network lifetime [255]. Thus,

there is an inherent trade-offs between the network lifetime

and a specific application’s performance, while the latter is

often correlated to the rate at which the application can

reliably send its data across sensor networks. This problem

has been extensively studied in recent years. Table VIII shows

a summary of the existing major contributions to lifetime-

versus-application-performance trade-offs.
In [128], Nama et al. investigated the trade-offs between

network utility and network lifetime maximization in a WSN.

They proposed a general cross-layer optimization-based frame-

work that took into account the associated radio resource

allocation issues and designed a distributed algorithm by rely-

ing on the so-called dual decomposition [258] of the original

problem. Similarly, in [129], Zhu et al. studied the trade-off

between network lifetime (associated with energy conserva-

tion) and rate-allocation by using the gradient projection [259]

method. However, no detailed information was provided about

how to distributively implement this algorithm in the interest

of solving the lifetime-versus-rate-allocation trade-off problem

in each layer of the open systems interconnection (OSI) model.

Zhu et al. also studied the trade-offs between the network’s

lifetime and fair rate allocation in the context of multi-path

routing sensor networks [107], where they formulated an

MOP subject to a set of convex constraints. They invoked

the NUM framework [104] and introduced an adjustable

factor to guarantee rate-allocation fairness amongst all sensor

nodes. Chen et al. [74] have addressed the utility-versus-

lifetime trade-offs with the aid of an optimal flow control in a

practical WSN. They formulated the problem as a non-linear

MOP subjected to certain constraints and introduced auxiliary

variables for decoupling the individual objectives embedded

in the scalar-valued multi-objective function. The concept

of inconsistent coordination price6 was first introduced for

balancing the energy consumption of the sensor node and the

gradient projection method [259] was adopted for designing a

distributed algorithm that is capable of finding the optimal rate

allocation. In [130], He et al. focused on the rate allocation

problem in multi-path routing WSNs subjected to time-varying

channel conditions with two objectives in mind: maximizing

the aggregate utility and prolonging the network’s lifetime,

respectively. They decomposed the optimization problem with

the aid of the classic Lagrange dual decomposition [258] and

adopted the stochastic quasi-gradient algorithm [259] for solv-

ing the primal-dual problem in a distributed way. Luo et al.
[131] have also carried out a systematic study of the trade-

offs between the network’s throughput and lifetime for WSNs

having stationary nodes, where the link transmissions were

carefully coordinated to avoid interference. The authors used

a realistic interference model based on the SINR for modeling

the conflicts to avoid, when scheduling the wireless links’

transmissions. Their analytical and numerical results provided

novel insights into the interplay among the throughput, lifetime

and transmit power. Xie et al. [256] adopted a specific fairness

concept to analyze the performance degradation experienced

6Inconsistent coordination price can be interpreted as the auxiliary variable
(Lagrange multiplier) for coordinating the energy consumption among the
sensor nodes in the constrained MOP formulated.
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TABLE VIII: Lifetime-versus-Application-Performance Trade-offs.

Ref. Technical Tasks Optimization Objectives Algorithms Type of Sensors Topology Evaluation

Methodology

Scope of Applications

[128] routing maximize lifetime; maximize
network utility

subgradient algorithm heterogeneous-static hierarchical simulation self-regulating WSNs

[129] routing maximize lifetime; maximize
network utility

gradient projection algo-
rithm

heterogeneous-static hierarchical simulation cross-layer applications

[107] routing maximize lifetime; maximize
network utility

subgradient algorithm homogeneous-static flat simulation large-scale WSNs

[74] optimal flow control maximize lifetime; maximize
network utility

gradient projection algo-
rithm

heterogeneous-static flat simulation video technology WSNs

[130] routing maximize lifetime; maximize
aggregate utility

stochastic quasi-gradient
algorithm

heterogeneous-static hierarchical simulation online query applications

[131] scheduling and MAC maximize lifetime; maximize
throughput

analytic method homogeneous-static flat simulation general-purpose

[256] MAC routing maximize lifetime; maximize
throughput

improved MAC protocol homogeneous-static flat with clustering simulation information service oriented
sensing

[257] optimal flow control maximize lifetime; maximize
network utility

distributively extended
primal-dual algorithm

homogeneous-static flat simulation streaming video and audio ap-
plications

in multirate WSNs and then took into account the trade-

offs between the throughput attained and energy consumption

imposed. Eventually, a multirate-supportive MAC protocol

was proposed for balancing the throughput versus energy con-

sumption. Liao et al. [257] generalized the NUM model to a

multiutility framework using MOO and applied this framework

to trade off the network utility against the lifetime in WSNs.

An extended Lagrange duality method was proposed, which

is capable of converging to a selected Pareto-optimal solution.

D. Trade-offs Related to the Number of Nodes

Intuitively, deploying more sensor nodes would improve

the overall event-detection probability of the system, albeit

at the expense of increasing both the energy consumption and

deployment cost. This indicates the trade-offs among multiple

conflicting objectives related to the number of nodes. Table IX

portrays a number of existing contributions to these trade-offs

at a glance.

To elaborate, in [98], a pair of multi-objective metaheuristic

algorithms (MOEA and NSGA-II) have been used for solving

the WSN’s layout problem, determining both the number

and the locations of the sensor nodes that formed a WSN,

so that reliable full coverage of a given sensor field was

achieved. Specifically, the authors focused their attention on

the energy efficiency of the network as well as on the number

of nodes, while the coverage obtained by the network was

considered as a constraint. In [101], Jia et al. proposed a

new coverage control scheme based on an improved NSGA-II

using an adjustable sensing radius. The objective was to find

the most appropriate balance among the conflicting factors of

the maximum coverage rate, the least energy consumption, as

well as the minimum number of active nodes. As a further

development, Woehrle et al. [99] have invoked the MOEA

to identify attractive trade-offs between low deployment-cost

and highly reliable wireless transmission, i.e., to minimize

transmission failure probability at as low deployment-cost

as possible. Cheng et al. [158] investigated the trade-offs

between the maximum affordable number of nodes and the

minimum duration of the data collection process in a delay-

aware data collection network by exploiting the concepts of

Pareto-optimality.

In [102], Rajagopalan employed the evolutionary multi-

objective crowding algorithm (EMOCA) for solving the sensor

placement problem. There were three objectives: maximizing

the probability of global target detection, minimizing the

total energy dissipated by the sensor network and minimiz-

ing the total number of nodes to be deployed. The MOO

approach simultaneously optimized the three objectives and

obtained multiple Pareto-optimal solutions. In [103], Aitsaadi

et al. considered a multi-objective combinatorial optimization

problem, where a new multi-objective deployment algorithm

(MODA) was proposed. The optimization objective was to

reduce the number of deployed nodes, to satisfy the target

quality of monitoring, to guarantee the network’s connectivity

and finally to maximize the network’s lifetime. In [100], Le

Berre et al. formulated an MOP of maximizing three objec-

tives. The first objective was the maximization of the coverage

area in real time, the second objective was the maximization

of the network’s lifetime depending on the coverage, and the

final objective was to minimize the number of deployed nodes

subject to the connectivity on the network. The solutions found

by three different algorithms (i.e. NSGA-II, SPEA2 and ACO)

were compared. Recently, a novel MOICA was proposed for

sensor node deployment in [157], where the minimization of

the number of active sensor nodes and the maximization of

the coverage were jointly considered. The numerical results of

[157] demonstrated that the MOICA was capable of providing

more-accurate solutions at a lower computational complexity

than the existing methods.

E. Reliability-Related Trade-offs

The main objective behind the deployment of WSNs is to

capture and transmit pictures, videos and other important data

to the sink reliably. These applications require us to maintain
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TABLE IX: Trade-offs Related to the Number of Sensor Nodes.

Ref. Technical Tasks Optimization Objectives Algorithms Type of Sensors Topology Evaluation

Methodology

Scope of Applications

[98] deployment minimize number of nodes;
minimize energy consumption

MOEA; NSGA-II heterogeneous-static flat experimental trial complex and real WSNs

[101] coverage control minimize number of nodes;
minimize energy consumption

NSGA-II heterogeneous-static hierarchical simulation event detection

[99] deployment minimize number of nodes;
guarantee high transmission
reliability

MOEA homogeneous-static flat simulation general-purpose

[158] data aggregation maximize number of nodes;
minimize latency

analytic method homogeneous-static flat simulation time-sensitive applications

[102] deployment minimize number of nodes;
minimize energy consumption

EMOCA homogeneous-static flat simulation event detection

[103] deployment minimize number of nodes;
guarantee network connectiv-
ity; maximize lifetime

MODA homogeneous-static flat simulation forest fire detection

[100] deployment minimize number of
nodes; maximize coverage;
maximize lifetime

NSGA-II; SPEA2; ACO homogeneous-static flat experimental trial general-purpose

[157] deployment minimize number of nodes;
maximize coverage

MOICA homogeneous-static flat simulation densely deployed environment

a strict QoS guarantee [260], [261]. However, maintaining the

QoS during routing hinges on numerous factors, such as the

energy status of the nodes in the network, the delay, the band-

width and the reliability requirements. Hence, sophisticated

routing protocols have to take into considerations multiple

potentially conflicting factors, which makes the problem even

more challenging. Table X shows a summary of the existing

contributions to reliability-related trade-offs.

To expound a little further, Miller et al. [152] studied the

trade-offs amongst the energy, latency and reliability. They

conceived a meritorious probability-based broadcast forward-

ing scheme for minimizing both the energy usage and the

latency, whilst improving the reliability. EkbataniFard et al.
[262] have developed a QoS-based energy-aware routing pro-

tocol for a two-tier WSN from the perspective of MOO. The

proposed protocol utilizing the NSGA-II efficiently optimized

the QoS parameters formulated in terms of the reliability

and end-to-end delay, whilst reducing the average power

consumption of the nodes, which substantially extended the

lifetime of the network.

A high data rate can be maintained by a link at the expense

of a reduced delivery reliability, and/or increased energy

consumption, which in turn reduces the network lifetime.

Again, there is an inherent trade-off among the data rate,

reliability and network lifetime. Although numerous treatises

have extensively studied the data rate, reliability and network

lifetime in isolation, only a few of them have considered

the trade-offs among them. Xu et al. [263] jointly consid-

ered the rate, reliability and network lifetime in a rigorous

framework. They addressed the optimal rate-reliability-lifetime

trade-offs under a specific link capacity constraint, reliability

constraint and energy constraint. However, the optimization

formulation was neither separable nor convex. Hence, a series

of transformations have been invoked and then a separa-

ble and convex problem was derived. Finally, an efficient

distributed subgradient dual decomposition (SDD) algorithm

was developed for striking an appealing trade-off. In [8], Lu

et al. formulated WSN routing as a fuzzy random multi-

objective optimization (FRMOO) problem, which simultane-

ously considered the multiple objectives of delay, reliability,

energy, delay jitter, the interference aspects and the energy

balance of a path. They introduced a fuzzy random variable

for characterizing the link delay, link reliability and the nodes’

residual energy, with the objective of accurately reflecting the

random characteristics in WSN routing. Eventually, a hybrid

routing algorithm based on FRMOO was designed. In [264],

Razzaque et al. proposed a QoS-aware routing protocol for

body sensor networks, in which a lexicographic optimization

approach was used for trading off the QoS requirements and

energy costs. In [151], Lanza-Gutierrez et al. considered the

deployment of energy harvesting relay nodes for resolving

the conflict among average energy cost, average sensing area

and network reliability. Two multi-objective metaheuristics,

i.e., the ABC algorithm and the firefly algorithm (FA), were

applied for solving the problem, respectively. Ansari et al.
[265] considered the energy consumption, reliability, coverage

intensity and end-to-end delay trade-offs based on the location

of the nodes, and a new multi-mode switching protocol was

adopted. Liu et al. [266] proposed an energy-efficient cooper-

ative spectrum sensing scheme for a cognitive WSN by taking

into account the energy consumption and the spectrum sensing

performance, both of which were jointly optimized using fast

MODE. Xiao et al. [267] proposed a time-sensitive utility

model for low-duty-cycle WSNs, where they simultaneously

took into account the transmission cost, utility, reliability and

latency. Moreover, they designed two optimal time-sensitive

utility-based routing algorithms to strike the most appropriate

balance among these four metrics.
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TABLE X: Reliability-Related Trade-offs.

Ref. Technical Tasks Optimization Objectives Algorithms Type of Sensors Topology Evaluation

Methodology

Scope of Applications

[152] scheduling and
MAC

energy-latency-reliability
trade-off

a probability-based broad-
cast forwarding scheme

homogeneous-static flat simulation general-purpose

[262] routing latency-reliability trade-off NSGA-II heterogeneous-static hierarchical simulation real time audio-visual applications

[263] flow control rate-reliability-lifetime trade-
off

stochastic subgradient al-
gorithm

heterogeneous-static hierarchical simulation WSNs with time-varying channel

[8] routing latency-reliability-energy
trade-off

hybrid FRMOO and GA heterogeneous-static hierarchical simulation agriculture surveillance and build-
ing monitoring

[264] routing reliability-energy trade-off lexicographic optimization
approach

homogeneous-static flat simulation human body location

[151] deployment energy-reliability-sensing area
trade-off

ABC and FA homogeneous-static flat simulation intensive agriculture

[265] deployment energy-reliability-coverage-
latency trade-off

multi-mode switching pro-
tocol

homogeneous-static flat simulation general-purpose

[266] spectrum sensing energy-reliability trade-off fast MODE homogeneous-static flat simulation cognitive WSNs

[267] routing energy-utility-reliability-
latency trade-off

time-sensitive utility-based
routing algorithm

homogeneous-static flat simulation general-purpose

F. Trade-offs Related to Other Metrics

As mentioned in Section I, in practice it is unfeasible to

jointly satisfy the optimum of several potentially conflict-

ing objectives. To circumvent this dilemma, the concept of

Pareto-optimal has been widely invoked, resulting in a PF

generated by all Pareto-optimal solutions of a MOP, where

it is impossible to improve any of the objectives without

degrading one or several of the others. Therefore, according

to the needs of decision makers and the actual situation of

the WSN considered, efficient routing algorithms are required

for finding a satisfactory path in WSNs. Table XI summarizes

other metrics and their trade-offs.

As seen in Table XI, Lozano-Garzon et al. [268] proposed

a distributed N -to-1 multi-path routing scheme for a WSN

by taking into account the number of hops, the energy con-

sumption and the free space loss7, and these three objectives

were optimized by the SPEA2 [220] with the aim of using the

energy efficiently in the network, whilst reducing the packet-

loss rate. Bandyppadhyay et al. [269] proposed a transmission

scheduling scheme using a collision-free protocol for gathering

sensor data. Moreover, they studied diverse trade-offs amongst

the energy usage, the sensor density, and the temporal/spatial

sampling rates. As a further advance, Rajagopalan et al. [84]

developed a MOO framework for mobile agent routing in

WSNs. The multi-objective evolutionary optimization algo-

rithms EMOCA and NSGA-II were employed to find the mo-

bile agents’ routes, aiming for maximizing the total detected

signal energy, while minimizing the energy consumption by

reducing the hop-length. In [24], Wei et al. established a

multi-objective routing model that relies on the delay, en-

ergy consumption, data packet-loss rate as its optimization

objectives. By adjusting the specific weight of each function,

the algorithm adapts well to various services having different

7Note that the concept of free space loss is defined as the ratio of the power
radiated by the transmitting antenna over that picked up by the recipient in
free space conditions. Free space loss is the basic propagation loss.

energy cost, delay and packet-loss rate requirements. This

protocol was implemented using an advanced ACO algorithm

that is based on a cloud model8.

For a typical WSN, the accuracy of an application and

the longevity of the network are inversely proportional to

each other, which is partially due to the finite energy re-

serves of the nodes and owing to the desire for applications

to have large volumes of fresh data to process. Adlakha

et al. [166] created a four-dimensional design space based

on four independent QoS parameters, namely the accuracy,

delay, energy consumption and the node density. In order to

achieve an improved accuracy or lifetime, various parameters

of the individual techniques can be adjusted. The insights and

relationships identified in [166] were not unique to mobility

tracking applications, many potential applications of WSNs

requiring a balance amongst the factors of energy consump-

tion, node density, latency and accuracy may also benefit

from exploiting the results and trends identified in [166]. For

instance, the energy-density-latency-accuracy (EDLA) trade-

offs have been studied in the context of WSNs in [167].

By contrast, Armenia et al. [110] introduced a Markov-

based modeling of the random routing behavior for evaluating

the trade-offs between location privacy and energy efficiency

in a WSN. Notably, their approach used the information

theoretic concept of privacy loss. Both the network security

and lifetime have been studied by Liu et al. in [111], where

they proposed a three-phase routing scheme, which is termed

security and energy-efficient disjoint routing. Based on the

secret-sharing algorithm, this routing scheme dispersively and

randomly delivered its source-information to the sink node,

8In contrast to the “cloud” concept related to cloud computing and cloud-
based networking, herein the “cloud model” represents an effective tool
designed for characterizing the uncertain transformation between a qualita-
tive concept, which is expressed by natural language, and its quantitative
expression. It mainly reflects two kinds of uncertainty, such as fuzziness and
randomness of the qualitative concept. As a reflection of the randomness and
fuzziness, the cloud model constructs a mapping from qualities to quantities.
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ensuring that the network security was maximized without

degrading the lifetime of WSNs. As a further development,

Tang et al. [270] proposed a geography-based cost-aware

secure routing protocol to address the conflicting lifetime-

versus-security trade-off issue in multi-hop WSNs. The design

goal was achieved by controlling energy deployment balance

and invoking a random walking routing strategy. Attea et al.
[271] studied the MOP of how to optimally divide sensor

nodes into multiple disjoint subsets so that two conflicting

objectives, namely the network lifetime and coverage prob-

ability, can be jointly maximized. Each subset of sensors is

required to completely cover a set of targets having known

locations. Hence, they formulated a multi-objective disjoint

set cover (DSC) problem, which was tackled by MOEA/D

and NSGA-II. In [272], Sengupta et al. employed a novel

heuristic algorithm, termed MOEA/D with fuzzy dominance

(MOEA/DFD), for finding the best trade-offs among coverage,

energy consumption, lifetime and the number of nodes, while

maintaining the connectivity between each sensor node and the

sink node. In [273], Wang et al. quantified the probabilistic

performance trade-offs among the network lifetime, end-to-

end communication delay and network throughput in real-time

WSNs. A heuristic-based multiple-local-search technique was

employed for finding the solutions. Inspired by the concept of

potential field from the discipline of physics, Zhang et al.
[274] designed a novel potential-based routing algorithm,

known as the integrity and delay differentiated routing for

WSNs. The objective was to improve the data fidelity for

high-integrity applications and to reduce the end-to-end delay

simultaneously.

VI. OPEN PROBLEMS AND DISCUSSIONS

Despite the increasing attention paid to the MOO of WSNs,

this research area still has numerous open facets for future

work, as discussed below.

Most of the studies investigated the MOO of single-hop

transmission, whereas only a limited amount of contributions,

such as [275], paid attention to multi-hop WSNs. Clearly,

multi-hop transmission in energy-limited WSNs is essential

for conserving transmission energy and thus for prolonging

the network’s lifetime. Therefore, it is promising to intensify

the research of MOO in the context of multi-hop WSNs.

Sensor nodes may move from one place to another as

required by the application or may be displaced by objects

(human, animals, etc). Hence, the mobility of the nodes has a

substantial impact on the network’s connectivity. For example,

if a data packet is long and the node changes its current

location during the packet’s forwarding, part of the data may

be lost at the receiving node. Similarly, when a node selects

a routing path but the nodes in the routing path change

their locations, the connectivity between the source nodes and

destination nodes will be affected. Therefore, the deployment

of nodes in highly dynamic scenarios requires a deployment

approach that equips the network with a self-organizing capa-

bility. Artificial potential field (APF) techniques9 have been

applied to the problems of formation control and obstacle

avoidance in multi-robot systems [277]. Since these problems

are of similar nature to the deployment problem of sensor

nodes, the APF techniques may also be used to devise a

deployment approach for WSNs.

Since WSNs are typically deployed in physically open and

possibly hostile environments, they will be confronted with

security attacks ranging from passive attacks, active attacks,

and denial-of-service (DoS) attacks. Therefore, their security

is one of the imperative aspects in future research. Since

the security may gravely affect the network performance,

especially during the information exchange phase, designing a

secure routing protocol for WSNs is a must. Most of the known

routing algorithms assume that the nodes are static and rely

on a single path. Once the routing is attacked, the network’s

performance will be significantly degraded. Therefore, it is

necessary to study multi-route protocols conceived for mobile-

node based routing capable of satisfying the security and

QoS requirements in any real-time application. The trade-offs

between the security and QoS requirements will bring about

further new challenges.

Existing contributions often assume that the sensor networks

are spread across a two-dimensional plane, but in practice they

are indeed of three-dimensional (3D) nature. The extension of

a 2D network into 3D is both interesting and challenging.

In two-tier WSNs, multiple objectives have to be satisfied

by the routing algorithms. The authors of [8] proposed a

routing solution based on the fuzzy random expected value

model and the standard deviation model of [278]10 to meet the

requirements of different applications of the clustered network

advocated. Since the fuzzy random expected value model

may become inaccurate in uncertain environments, improved

routing model based on MOO is necessitated. Moreover, due

to the limitation of GAs, the distributed solving methods based

on local information and on the decomposition theory are

expected to be further investigated.

Serious natural disasters, such as sandstorms, tsunamis,

landslides etc, have routinely damaged the natural environ-

ment and inflicted the loss of human lives. Although WSNs

provide a promising solution to realize real-time environment

monitoring, numerous issues have to be resolved for their

practical implementation. One of the major issues is how

to effectively deploy WSNs to guarantee large-area sensing

coverage and reliable communication connectivity in hostile

propagation scenarios.

In recent years, considering the similarity between multi-

objective design and game theory, the latter has also been em-

9The APF techniques mainly rely on force vectors, associated with the
obstacles or target positions, which may be linear or tangential and are
generated by a potential functions. The concept of APF can be schematically
described as “the manipulator moves in a field of forces, the position to be
reached is an attractive pole for the end effector and obstacles are repulsive
surfaces for the manipulator parts”. It has been widely used for mobile robots
[276].

10In fact, both random uncertainty and fuzzy uncertainty simultaneously
exist in link quality and nodes’ residual energy. From the perspective of
statistics, fuzzy random expected value reflects the average value of a fuzzy
random variable, while the standard deviation reflects the degree measure of
deviating from the expected value.
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TABLE XI: Trade-offs Related to Other Metrics.

Ref. Technical Tasks Optimization Objectives Algorithms Type of Sensors Topology Evaluation

Methodology

Scope of Applications

[268] routing minimize energy consump-
tion; minimize packet loss;
minimize hop count

SPEA2 homogeneous-static flat experimental
trial

general-purpose

[269] scheduling density-energy-throughput-
delay-temporal sampling
rates-spatial sampling rates
trade-off

analytical method homogeneous-static flat with clustering simulation general-purpose

[84] routing maximize detection accuracy;
minimize energy consump-
tion; minimize path loss

EMOCA; NSGA-II heterogeneous-mobile hierarchical simulation general-purpose

[24] routing minimize energy consump-
tion; minimize latency; mini-
mize packet loss

improved ACO heterogeneous-mobile flat simulation large-scale WSNs

[166] deployment accuracy-delay-energy-
density trade-off

analytical method homogeneous-static flat simulation general-purpose

[167] target tracking energy-density-latency-
accuracy trade-off

n/a homogeneous; static and
mobile

flat simulation adaptive mobility tracking

[110] security privacy loss and energy effi-
ciency trade-off

analytical method homogeneous-static flat simulation data mining systems

[111] data aggregation maximize network security;
maximize lifetime

a security and energy-
efficient disjoint routing
scheme

homogeneous-static flat simulation densely deployed environment

[270] routing maximize network security;
maximize lifetime

a cost-aware secure rout-
ing protocol

homogeneous-static flat simulation general-purpose

[271] scheduling maximize coverage probabil-
ity; maximize network life-
time

the multi-objective DSC
problem formulated was
solved using MOEA/D
and NSGA-II

homogenous-static flat simulation large-scale surveillance applications

[272] deployment maximize coverage, minimize
energy consumption, maxi-
mize lifetime, and minimize
the number of nodes

MOEA/DFD homogenous-static flat simulation general-purpose

[273] deployment maximize lifetime, maximize
throughput, and minimize la-
tency

heuristic-based multiple-
local-search

homogenous-static flat simulation general-purpose

[274] routing maximize data fidelity and
minimize latency

an integrity and delay
differentiated routing al-
gorithm

homogenous-static flat simulation integrity-sensitive applications

ployed to solve multi-objective design problems. By analogy,

m-objective designs can be regarded as m-player games. The

authors of [279] introduced game theory and the concept of

co-evolution into GAs for the sake of solving the MOPs, which

has been shown to perform well. In [219] a Nash-equilibrium

based game model, a cooperative coalition game model and an

evolutionary game model were used for solving MOP. Since

EAs are capable of finding the global solution of MOPs with

good robustness, while Nash games can be used for conflict

resolution and Stackelberg games for hierarchical design, it

is promising to solve MOPs of WSNs by combining a Nash

game with EAs or combining a Stackelberg game with EAs.

As an adaptive parameter control method based on sensitivity

results, the Pascoletti-Serafini scalarization method [280] is

a more general formulation relying on an unrestricted search

direction and an auxiliary vector variable. It has been used

for both linear and nonlinear MOPs [280]. Naturally, this

method can also be applied to solve MOPs in WSNs, yielding

approximate solutions of the problems considered. Indeed, for

the MOP of multicell networks [281], the relationship between

the parameters and the optimal solutions was elucidated by the

Pascoletti-Serafini scalarization.

The mutually interfering networks are ubiquitous, hence

finding innovative cross-layer and cross-network solutions

becomes essential. To this end, we believe that many hy-

brid computational intelligence algorithms which combine the

benefits of two or more algorithms should be given careful

attention, such as swarm-FL control, neuro-FL control, GA-

PSO, GA-ANN, and neuro-immune systems, etc.

Cognitive radio (CR) is an emerging wireless communica-

tion paradigm, in which the transceivers are capable of intelli-

gently detecting in their vicinity which specific communication

channels are in use and which are not. Then, they promptly

switch to vacant channels while avoiding occupied ones. This

is essentially a form of dynamic spectrum access (DSA)

[282], which may substantially improve the exploitation of the

available wireless spectrum. Typically, a transceiver in CR may

be capable of determining its geographic location, identifying

and authorizing its users, sensing neighboring wireless devices,

and automatically adjusting its transmission and reception
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parameters to allow more concurrent wireless communications

in a given spectrum band at a specific location. Depending

on which parts of spectrum are available for the operation

of CR, we have CR operating either in licensed bands, or

in unlicensed bands. On the other hand, WSNs often use the

unlicensed ISM band for communications, but with the rapidly

increasing demand of the Internet of Things (IoT) based

applications (e.g., healthcare and tele-medicine), the currently

available ISM band may become insufficient, which can result

in various technical problems, such as unreliable transmission

of useful data. Therefore, in order to alleviate this “spectrum

crunch”, an emerging trend in WSNs is to equip the wireless

sensor nodes with the CR based DSA capability, thus giving

birth to CR aided WSNs (CR-WSNs) [283]–[285]. Due to its

potential advantages, CR-WSN might be a promising solution

for some specific WSN applications, such as indoor sensing,

multiclass heterogeneous sensing, and real-time surveillance

[283]. Additionally, WBAN, which is a promising technology

for ubiquitous health monitoring systems, is also an applica-

tion area of CR-WSN. In general, CR-WSNs constitute an un-

explored field with only a handful of studies. More specifically,

the authors of [286] determined the optimal packet size that

maximizes the energy-efficiency of a practical realization of

a CR-WSN. In [287], the authors proposed a spectrum-aware

clustering protocol to address the event-to-sink communication

coordination issue in mobile CR-WSNs. A cross-layer frame-

work that employed CR to circumvent the hostile propagation

conditions for the smart grid was discussed in [288], and the

MAC-layer delay of a cognitive sensor node was modeled

in [289]. The realization of CR-WSN primarily requires an

efficient spectrum management framework for regulating the

DSA of densely deployed resource-constrained sensor nodes.

Therefore, MOO techniques invoked for designing CR-WSNs

should be sufficiently intelligent to differentiate between the

traffic types and to satisfy their QoS requirements. The current

research efforts on MOPs for large-scale CR-WSNs have to

be strengthened.

WSNs play a key role in creating a highly reliable and

self-healing smart electric power grid that rapidly responds

to online events with appropriate actions. However, due to

the broadcast nature of radio propagation and varying spectral

characteristics, establishing a secure and robust low-power

smart grid over the WSN must be addressed. Other technical

challenges of WSNs in the smart grid include harsh environ-

mental conditions, tight reliability and latency requirements,

as well as low packet errors and variable link capacity. Until

now, there have been only a few approaches available, and

more studies are needed in these areas.

VII. CONCLUSIONS

In this paper, we have provided a tutorial and survey of

the research of MOO in the context of WSNs. We commence

with the rudimentary concepts of WSNs and the optimization

objectives in WSNs, then focus on illuminating the family of

algorithms for solving MOPs. Since having multiple objectives

in a problem gives rise to a set of Pareto-optimal solutions

instead of a single globally optimal solution, none of these

Pareto-optimal solutions can be considered to be better than

the others on the Pareto front without any further information.

Thus the MOO algorithms may be invoked for finding as many

Pareto-optimal solutions as possible. Additionally, diverse de-

sign trade-offs relying both on classical optimization methods

and on the recent advances of MOO have been reviewed in

the context of WSNs. Future research directions on MOO

conceived for WSNs include multi-hop transmissions, the de-

ployment of nodes in highly dynamic scenarios, secure multi-

path routing protocols and solving optimization problems in

3D networks, CR-WSNs and smart grid.
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