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G
eneral-purpose multicore processors are 
being accepted in all segments of the 
industry, including signal processing 
and embedded space, as the need for 
more performance and general-pur-

pose programmability has grown. Parallel process-
ing increases performance by adding more parallel 
resources while maintaining manageable power 
characteristics. The implementations of multicore 
processors are numerous and diverse. Designs 
range from conventional multiprocessor machines 
to designs that consist of a “sea” of programmable 
arithmetic logic units (ALUs). In this article, we 
cover some of the attributes common to all multi-
core processor implementations and illustrate these 
attributes with current and future commercial multi-
core designs. The characteristics we focus on are applica-
tion domain, power/performance, processing elements, 
memory system, and accelerators/integrated peripherals. 

INTRODUCTION
Parallel processors have had a long history going back at least 
to the Solomon computer of the mid-1960s. The difficulty of 
programming them meant they have been primarily employed 
by scientists and engineers who understood the application 
domain and had the resources and skill to program them. 
Along the way, a surprising number of companies created par-
allel machines. They were largely unsuccessful since their dif-
ficulty of use limited their customer base, although, there were 
exceptions: the Cray vector machines are perhaps the best 
example. However, these Cray machines also had a very fast 

scalar processor that could be easily programmed in a conven-
tional manner, and the vector programming paradigm was not 
as daunting as creating general parallel programs. Recently 
the evolution of parallel machines has changed dramatically. 
For the first time, major chip manufacturers—companies 
whose primary business is fabricating and selling microproces-
sors—have turned to offering parallel machines, or single chip 
multicore microprocessors as they have been styled. 

There are a number of reasons behind this, but the leading one 
is to continue the raw performance growth that customers have 
come to expect from Moore’s law scaling without being over-
whelmed by the growth in power consumption. As single core 
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designs were pushed to ever 
higher clock speeds, the power 
required grew at a faster rate 
than the frequency. This power 
problem was exacerbated by 
designs that attempted to 
dynamically extract extra performance from the instruction 
stream, as we will note later. This led to designs that were complex, 
unmanageable, and power hungry. The trend was unsustainable. 
But ever higher performance is still desired as evident by predic-
tions from the ITRS Roadmap [1] predicting a need for 300x more 
performance by 2022 as shown in Figure 1. To meet these 
demands, chip designers have turned to multicore processors and 
parallel programming to continue the push for more performance, 
and in turn the ITRS Roadmap has projected that by 2022, there 
will be chips with upwards of 100x more cores than on current 
multicore processors. The main advantage to multicore systems is 
that raw performance increase can come from increasing the num-
ber of cores rather than frequency, which translates into a slower 
growth in power consumption. However, this approach represents 
a significant gamble because parallel programming science has not 
advanced nearly as fast as our ability to build parallel hardware. 

General-purpose multicores are becoming necessary even 
in the realm of digital signal processing (DSP) where, in the 
past, one general-purpose control core marshaled many spe-
cial purpose application-specific integrated circuits (ASICs) as 
part of a “system on chip.” This is primarily due to the variety 
of applications and performance required from these chips. 
This has driven the need for more general-purpose processors. 
Recent examples would include software-defined radio (SDR) 
base stations, or cell phone processors that are required to 
support numerous codecs and applications all with different 
characteristics, requiring a general programmable multicore. 

ARCHITECTURE CLASSIFICATIONS
Multicore architectures can be classified in a number of ways. 
In this section we discuss five of the most  distinguishing 
attributes: the application class, power/ performance, pro-
cessing elements, memory system, and accelerators/ integrat-
ed peripherals. 

APPLICATION CLASS
If a machine is targeted to a specific application domain, the 
architecture can be made to reflect this. The result is a design 
that is efficient for the domain in question but often ill-suited to 
other areas. The extreme example is an ASIC. Tuning to an 
application domain can have several positive consequences. 
Perhaps the most valuable is the potential for significant power 
savings. Conventional DSPs are a good example. 

There are two broad classes of processing into which an appli-
cation can fall: data processing dominated and control dominated. 

DATA PROCESSING DOMINATED
Data processing-dominated applications contain many familiar 
types of applications including graphics rasterization, image 

processing, audio processing, 
and wireless baseband process-
ing. Many of the classic signal 
processing algorithms are part 
of this group. The computation 
of these types of applications is 

typically a sequence of operations on a stream of data with little 
or no data reuse. The operations can frequently be performed 
in parallel and often require high throughput and performance 
to handle the large amounts of data. These kind of applications 
favor designs that have as many processing elements as practi-
cal in regards to desired power/performance ratio. 

CONTROL PROCESSING DOMINATED
Control-dominated applications include file compression/
decompression, network processing, and transactional query 
processing. The code for these types of applications tend to be 
dominated by conditional branches, complicating parallelism. 
The programs themselves often need to keep track of large 
amounts of state and often have a high amount of data reuse. 
These types of applications favor a more modest number of 
general-purpose processing elements to handle the unstruc-
tured nature of control dominated code. 

In almost all cases, no application can fit into these neat 
divisions, but execution phases of an application may. For 
instance the H.264/AVC [4] video codec is data dominant when 
performing the block filter, but control dominated when com-
pressing or decompressing video using context-adaptive binary 
arithmetic coding (CABAC) compression. It is valuable to 
think of applications as falling into these divisions to under-
stand how different multicores design aspects can affect per-
formance. An unbalanced architecture may do very well on the 
data dominated portion of the H.264/AVC, but be very ineffi-
cient for CABAC encoding/decoding, leading to less than 
desired performance. 

POWER/PERFORMANCE
Many applications and devices have strict performance and 
power requirements. For instance, a mobile phone that wants to 
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[FIG1] ITRS Roadmap [1] for frequency, number of data 
processing elements (DPE) and overall performance.

IN THE PAST DECADE, POWER HAS 
JOINED PERFORMANCE AS A FIRST 

CLASS DESIGN CONSTRAINT.
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support video playback has a 
strict power budget, but it also 
has to meet certain perfor-
mance characteristics. 

Performance has been the 
traditional goal. In the past 
decade, power has joined per-
formance as a first-class design constraint. This is, in large 
part, due to the rise of mobile phones and other forms of 
mobile computing where battery life and size are critical. More 
recently, power consumption has also become a concern for 
computers that are not mobile. The driving force behind this 
is the growth in data centers to support “cloud” computing. 
The typical general-purpose multicore processor is ideally 
suited to these centers, but these centers are now consuming 
more energy than heavy manufacturing in the United States. 
They are so large—Google now refers to them as warehouse-
scale computers—that the power consumption of the basic 
multicore component is critical to the cost and operation. 

PROCESSING ELEMENTS
In this section, we cover the architecture and microarchitec-
ture of a processing element. The architecture, or more fully 
the instruction set architecture (ISA), defines the hardware-
software interface. The microarchitecture is the implementa-
tion of the ISA. 

ARCHITECTURE
In conventional multicore processors, the ISA of each core is 
typically a legacy ISA from the corresponding uniprocessor 
with minor modifications to support parallelism such as the 
addition of atomic instructions for synchronization. The 
advantages to legacy ISAs is the existence of implementations 
and the availability of programming tools. An ISA may also be 
custom defined. 

ISAs can be classified as reduced instruction set computer 
(RISC) or complex instruction set computer (CISC). Although 
this was a controversial distinction years ago, in today’s 
designs, the microarchitectural distinctions have been blurred: 
most CISC machines look very much like their RISC counter-
parts once decoding has been done. On the code front, the dif-
ferences are still distinct. CISC has the edge in code size due 
to the greater selection of instructions and richer semantics 
available. RISC, on the other hand, has larger code sizes due to 
the need to emulate more complex instructions with the 
smaller set of RISC instructions. The advantage of RISC is it 
provides an easier target for compilers and allows for easier 
microarchitectural design. 

Beyond the base definition of the ISA, vendors have been con-
tinually adding ISA extensions to improve performance for com-
mon operations. Intel has added MMX, MMX2, and SSE1-4 [5] to 
improve multimedia performance. ARM has added similar 
instructions for multimedia with its NEON [6] instruction set. 
These instructions allow for a better performance/power con-
sumption ratio as specialized hardware can do operations like a 

vector transpose in one instruc-
tion. The soft-core provider 
Tensilica has made this the 
main selling point for their 
Xtensa CPUs [7], offering cus-
tomizable special purpose 
instructions for specific designs. 

MICROARCHITECTURE
The processing element microarchitecture governs, in many 
respects, the performance and power consumption that can 
be expected from the multicore. The microarchitecture of 
each processing element is often tailored to the application 
domain that is targeted by the multicore machine. Although 
the commercial offerings of the major chip manufacturers 
like Intel employ numbers of identical cores into a homoge-
neous architecture, it is often advantageous to combine dif-
ferent types of processing elements into a heterogeneous 
architecture. The idea is again to obtain a power advantage 
without loss of performance. A typical organization has a con-
trol processor marshaling the activities of an ensemble of 
simpler “data plane” cores. In data-dominated applications, 
such architectures can often provide high performance at low 
power. The drawback is that the programming model for het-
erogeneous architectures is much more complicated. 

The simplest type of processing element is the in-order 
processing element. This type of processing element decodes 
and executes instructions in program order and dynamically 
accounts for data forwarding and control hazards. There are 
two main performance parameters that can be modified to get 
the desired performance. First, multiple pipelines can be 
added to fetch and issue more than one instruction in parallel, 
creating a superscalar processing element to increase perfor-
mance. However, increasing issue width requires extra logic 
to provide more complex data forwarding paths and hazard 
detection to assure correct code execution in the pipelines. 
The complexity of the logic grows greater than quadratically 
with the number of pipelines, and a point of diminishing 
returns is quickly reached. Experiments with general-purpose 
applications suggest that point is about three to four pipe-
lines, but of course this is highly dependent on the applica-
tions. Second, performance can also be improved by 
increasing the number of pipeline stages, thus reducing the 
logic per stage. This enables a faster clock at the expense of 
greater penalty if the instruction sequence is broken by 
branches. In-order elements have small die area, low power, 
and are easily combined in large numbers if an application 
has abundant thread level parallelism (TLP) and few perfor-
mance sensitive serial sections. For example, NVIDIA’s G200 
[8] gangs together 240 in-order cores because graphics pro-
cessing is highly parallel with few serial sections. 

Taking the superscalar core further to gain as much single 
thread performance as possible is the out-of-order architec-
ture. It attempts to dynamically find and schedule multiple 
instructions “out of order” to keep the pipelines full. The 

THE MAIN ADVANTAGE TO MULTICORE 
SYSTEMS IS THAT RAW PERFORMANCE 

INCREASE CAN COME FROM INCREASING 
THE NUMBER OF CORES RATHER 

THAN FREQUENCY.
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dynamic scheduling requires 
very complex and power hun-
gry circuitry to keep track of 
all in-flight instructions. Out-
of-order designed cores are 
most suitable for applications 
that have a wide range of behaviors and high performance is 
needed. However, logic complexity means that this type of 
processing element is not power efficient and requires sub-
stantial die area. Most out-of-order processors are multi-issue, 
as single-issue out-of-order processors do not have much 
advantage over a simpler in-order core. Because the out-of-or-
der core is large and power hungry, very few can be combined 
in practice. However, they are preferable if the applications to 
be run are control dominated and have large critical serial 
portions and moderate TLP. For example, the ARM Cortex A9 
[6] is targeted for netbook computers, and requires single 
thread performance over TLP, so it utilizes a handful of out-
of-order cores. 

To increase performance over superscalar architectures, 
but eliminate the complexity of the extra logic needed to prop-
erly execute the instruction stream, single-instruction, multi-
ple-data (SIMD) or very long instruction word (VLIW) 
architectures can be used. The SIMD architecture makes use 
of very wide registers split into lanes to process multiple data 
points with one instruction. A simple example is the addition 
of two vectors element-wise. Each pair of elements is pro-
cessed in its own lane. This style of architecture is well suited 
for data intensive applications that are data parallel. An exam-
ple is the IBM Cell [9] that uses many SIMD cores targeted 
towards data dominated applications. A SIMD architecture is 
highly inefficient for general-purpose processing. 

To avoid being limited to one instruction processing multiple 
data points, a VLIW can be used. VLIW uses multiple pipelines but 
does not typically have the forwarding, scheduling, and hazard 
detection logic of a superscalar core. Instead, the compiler is relied 
upon to group instructions into packets that can be executed in 
parallel and guarantee no data or control hazards—the complexity 

has been moved to the compiler. 
VLIW execution allows for very 
wide machines that can process 
multiple data points with multi-
ple instructions at the same 
time, giving it a distinct advan-

tage over SIMD. But VLIW can suffer severe under utilization 
problems if the compiler cannot find sufficient parallelism. VLIW 
and SIMD are both high-performance and power-efficient designs 
but are usually well suited for only very specific types of applica-
tion codes with large numbers of independent operations that can 
found by compilers or the programmer. Architectural and micro-
architectural design parameters are summarized in Table 1. 

MEMORY SYSTEM
In uniprocessor designs, the memory system was a rather sim-
ple component, consisting of a few levels of cache to feed the 
single processor with data and instructions. With multicores, 
the caches are just one part of the memory system, the other 
components include the consistency model, cache coherence 
support, and the intrachip interconnect. These determine how 
cores communicate impacting programmability, parallel appli-
cation performance, and the number of cores that the system 
can adequately support. 

CONSISTENCY MODEL
A consistency model defines how the memory operations may 
be reordered when code is executing. The consistency model 
determines how much effort is required by the programmer to 
write proper code. Weaker models require the programmer to 
explicitly define how code needs to be scheduled in the proces-
sor core and have complex synchronization protocols. Stronger 
models require less effort and have simpler synchronization 
protocols. On the other hand, the consistency models have an 
effect on performance. Strong consistency models place strict 
ordering constraints on how the memory system is allowed to 
propagate reads and writes to other processing elements. For 
example, sequential consistency requires all processors in a 

[TABLE 1] SUMMARY OF PROS AND CONS OF VARIOUS CORE DESIGN PARAMETERS.

ISA PRO CON 

LEGACY COMPILER AND SOFTWARE SUPPORT MAY BE INEFFICIENT FOR TARGETED APPS REQUIRING HIGH 
PERFORMANCE 

CUSTOM CAN BE HIGHLY OPTIMIZED FOR TARGET APPS COMPILER AND SOFTWARE SUPPORT CAN BE NONEXISTENT 
RISC EASIER MICROARCH DESIGN, EASIER COMPILER DESIGN CODE SIZE CAN BE LARGE, INEFFICIENT FOR CERTAIN APPS 
CISC MORE INSTS THAT MAY ALLOW FOR BETTER OPTIMIZATION, 

SMALLER CODE SIZE 
COMPLEX MICROARCH DESIGN TO SUPPORT ALL INSTS, COMPILER 
DESIGN COMPLICATED 

SPECIAL INSTS ALLOWS HIGHLY OPTIMIZED CODE FOR TARGETED 
FUNCTIONS 

COMPLEX TO DESIGN, MAY REQUIRE HAND CODING DUE TO 
LIMITED/NO COMPILER SUPPORT 

MICROARCH PRO CON 

IN-ORDER LOW TO MEDIUM COMPLEXITY, LOW POWER, LOW AREA SO 
MANY CAN BE PLACED ON DIE 

LOW TO MEDIUM SINGLE THREAD PERFORMANCE IN GENERAL 

OUT-OF-ORDER VERY FAST SINGLE THREAD PERFORMANCE FROM DYNAMIC 
SCHEDULING OF INSTS 

HIGH DESIGN COMPLEXITY, LARGE AREA, HIGH POWER 

SIMD VERY EFFICIENT FOR HIGHLY DATA-PARALLEL/VECTOR CODE CAN BE UNDER-UTILIZED IF CODE CAN NOT BE VECTORIZED, NOT 
APPLICABLE TO CONTROL-DOMINATED APPLICATIONS 

VLIW CAN ISSUE MANY MORE INSTRUCTIONS THAN OUT-OF-ORDER 
DUE TO REDUCED COMPLEXITY 

REQUIRES ADVANCED COMPILER SUPPORT, MAY HAVE WORSE PER-
FORMANCE THAN NARROWER OUT-OF-ORDER CORE IF COMPILER 
CAN NOT STATICALLY FIND ILP 

IT IS NOT UNCOMMON FOR 
MULTICORE DESIGNS TO OMIT CACHE 
COHERENCE TO REDUCE DESIGN AND 

VERIFICATION COMPLEXITY.
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 system to see that all reads and writes occur in the same order 
globally and in program order. This can severely impact perfor-
mance but makes programming simple as it is easy to reason 
about how parallel code will operate. Conversely, weak consis-
tency allows reads and writes in the system to be seen in any 
order by all processors. Because weak consistency models allow 
this memory reordering, primitives known as barriers and fenc-
es are added to the instruction set. These primitives allow pro-
grammers to enforce stricter consistency on memory accesses 
when needed, such as an access to a synchronization variable. 

Two consistency models are illustrated in Figure 2. In 
Figure 2, each of the processors P1–P4 are issuing write (e.g., 
X5 1) and read (e.g., R 1Z 2 5 0) requests. The memory model of 
a sequential system states that all reads and writes to all address-
es are observed to be in the same order. This means that when 
P2 reads Z, the value returned should be two, as a result of the 
earlier write by P4. This is accomplished by the processing ele-
ments and the memory system establishing a global ordering of 
all requests, typically enforced by the arbitration on an intercon-
nection network. In the weak consistency case, P2 reads Z and 
the result returned is zero. In this case the  consistency model 
allows different cores to see a different global ordering of events. 

Weak consistency models make the memory system easier to 
design but place an onus on the programmer to correctly iden-
tify and place instructions in the program that enforce proper 
behavior. On the other hand, sequential consistency makes pro-
gramming easier but makes the memory system more compli-
cated and slower as it is unable to take advantage of performance 
gains that can be had by allowing memory operations to com-
plete out-of-order. 

CACHE CONFIGURATION
Caches have increased importance in multicore processors. 
They give processing elements a fast, high bandwidth local 
memory to work with. This is of particular importance as an 
increasing number of cores are trying to access the relatively 
slow, low-bandwidth, off-chip memory. 

Caches can be tagged and managed automatically by hard-
ware or be explicitly managed local store memory. Automatically 
tagged caches are the most common form as they are transpar-

ent to the instruction stream which believes it has access to one 
uniform memory. The main drawbacks to automatically man-
aged caches is they have nondeterministic performance and use 
die area for storing tags for each entry. Local stores conversely 
can provide deterministic performance because they are 
 managed explicitly by the executing software stream and offer 
more storage for the same area because they do not need tags. 
This software management can be cumbersome and in most 
cases is only preferred by applications that require hard real-
time performance requirements. 

The amount of cache re  quired is very application depen-
dent. Bigger caches are better for performance but show 
diminishing returns as caches sizes grow. Large caches may 
also not be of use to applications where data is only used once, 
such as video decoding. In these situations, it may be desirable 
to have cache modes that distinguish between streaming 
accesses and normal accesses. The Microsoft Xenon [10] has 
this functionality to prevent cache pollution with data that 
will not be reused. Cache sizes are usually made as big as the 
die area and power budget will allow. This is a trend seen in 
control processing dominated architectures with heavy data 
reuse like the Intel Core i7 [2]. 

The number of cache levels has been increasing as processing 
elements both get faster and become more numerous. The driv-
ing consideration is how far away the main memory is, in cycles, 
from each processing element. The greater the number of cycles 
away, the greater the need for more cache levels. The first level of 
cache is usually rather small, fast, and private to each processing 
element. Subsequent levels can be larger, slower, and shared 
among processing elements. These levels are used to present the 
illusion that a processing element has access to a very fast mem-
ory when, in fact the main memory may be hundreds of cycles 
away. This is the case for server class multicores like the AMD 
Phenom [11] that have upwards of three levels of cache. For 
embedded multicores the main memory may be a few tens of 
cycles away and one level of cache may be sufficient conserving 
both die area and power. But even embedded cores are seeing fre-
quency increases, the Texas Instruments (TI) OMAP4430 [12] will 
be clocked at 1 GHz, so caches will continue to gain importance 
to hide the widening gap in memory latency and bandwidth. 

INTRACHIP INTERCONNECT
The intrachip interconnect is responsible for general com-
munication among processing elements and cache coher-
ence (if present). There are many styles of interconnects for 
intracore communications, such as bus, crossbar, ring, and 
network-on-chip (NoC). Each type has advantages and disad-
vantages in terms of  simplicity and performance. For exam-
ple, the bus is the simplest to design but quickly becomes 
bandwidth and latency limited when trying to scale up to a 
large number of processing elements. The NoC, on the other 
hand, scales very well with the number of processing ele-
ments but is more challenging to design. 

The interconnect also provides cache coherence, a very 
important feature because it governs the type of programming 
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[FIG2] Illustration of consistency models.
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models the architecture supports. Cache coherence maintains 
a single image of memory automatically visible to all proces-
sors in the system and is essential for programming models 
that implicitly depend on shared memory. It is very common 
in general-purpose processors like the ARM Cortex A9 [6]. Two 
ways coherence can be implemented are broadcast based or 
directory based. 

Broadcast-based coherence is simple; it achieves this by 
using the interconnect to only allow one processor at a time 
to perform an operation that is visible to all other proces-
sors. This is illustrated in Figure 3(a). In the broadcast pro-
tocol when a write (circled W) occurs, a single invalidate 
request (dashed lines) is sent to all the other processors to 
gain the proper permissions to perform the write. The 
 processor holding the data returns the value to P1 (solid 
line) and the write is performed (square W). Because the 
broadcast protocol (usually on a bus) occupies the entire 
interconnect, the read (dashed line circled R) by P3 must be 
delayed until the write is completed. At that time the read 
(circled R) requests in a single request seen by all other pro-
cessors (dashed line), and the data is returned by the current 
owner, completing the read (square R). Overall, for small 
numbers of processors the broadcast based approach is rea-
sonable. Usually on the order of eight cores can be supported 
as is the case for the Intel Core i7 [2]. 

Directory-based coherence, on the other hand, scales to 
larger numbers of processors than broadcast-based coher-
ence because it enables multiple coherence actions to occur 
concurrently. Directory coherence works by having nodes 
query a distributed directory. The directory contains infor-
mation about which caches contain each memory address. 
Each address is assigned a home node where its portion of 
the directory is stored. When an access is required, the pro-
cessor will query the home node of that address to obtain a 
list of processors currently holding that cache block. The 
requestor, in turn, gains access rights from all the relevant 
processors. Figure 3(b) shows how a directory scheme can 
perform multiple operations in parallel. In the directory pro-

tocol, the write performed by P1 first queries the home node 
(P2) of the address to determine the current owner/sharers 
(P3) of that cache block. P2 responds with the list and P1 
then sends out an invalidate request individually to each 
owner/sharer. Each node will respond with an acknowledg-
ment. Once P1 has received all the acknowledgments it can 
perform the write. A similar process is done for the read 
from P3 to the home node (P4) and owner (P4). In this case, 
since the network is not entirely occupied by a broadcast, 
both the read and write can be performed in parallel. 
Directory coherence is suitable for weak consistency models 
and large systems (tens to hundreds of cores), such as the 
Tilera TILE64 [13]. 

It is not uncommon for multicore designs to omit cache 
coherence to reduce design and verification complexity. A 
number of current multicore processors lack cache  coherence, 
examples include the TI TMS320DM6467 [14] and the IBM 
Cell [9]. The lack of cache coherence means that the software 
must enforce the desired memory state seen by all the cores 
during execution. This limits the programming models to 
variants of message passing. For application domains that only 

[TABLE 2] SUMMARY OF PROS AND CONS OF MEMORY SYSTEM DESIGN DECISIONS.

ON-DIE MEMORY PRO CON 

CACHES TRANSPARENTLY PROVIDE APPEARANCE OF LOW LATENCY ACCESS TO 
MAIN MEMORY, CAN BE CONFIGURED EASILY INTO MULTIPLE LEVELS 

NO REAL-TIME PERFORMANCE GUARANTEE, NEED TO USE 
DIE AREA TO STORE TAGS 

LOCAL STORE CAN STORE MORE DATA PER DIE AREA AS CACHES, PROVIDE REAL-TIME 
GUARANTEE 

MUST BE SOFTWARE CONTROLLED 

COHERENCE PRO CON 
YES PROVIDES A SHARED MEMORY MULTIPROCESSOR, SUPPORTS ALL PRO-

GRAMMING MODELS 
HARD TO IMPLEMENT 

NO EASY TO IMPLEMENT RESTRICTS PROGRAMMING MODELS SUPPORTED 

INTERCONNECT PRO CON 
BUS EASY TO IMPLEMENT, ALL PROCESSORS SEE UNIFORM LATENCIES TO 

EACH OTHER AND ATTACHED MEMORIES 
LOW BISECTION BANDWIDTH, SUPPORTS SMALL 
NUMBER OF CORES 

RING HIGHER BISECTION BANDWIDTH THAN BUS, SUPPORTS LARGE NUMBER 
OF PROCESSORS 

NONUNIFORM ACCESS LATENCIES, HIGH VARIANCE IN 
ACCESS LATENCIES, REQUIRES ROUTING LOGIC 

NOC HIGH BISECTION BANDWIDTH, SUPPORTS LARGE NUMBER OF CORES, 
NONUNIFORM LATENCIES ARE LOWER VARIANCE THAN RING 

REQUIRES SOPHISTICATED ROUTING AND ARBITRATION 
LOGIC 

CROSSBAR HIGHEST BISECTION BANDWIDTH, CAN SUPPORT LARGE NUMBER OF 
CORES, UNIFORM ACCESS LATENCIES 

REQUIRES SOPHISTICATED ARBITRATION LOGIC, NEEDS 
LARGE AMOUNT OF DIE AREA
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[FIG3] Illustration of (a) broadcast and (b) directory coherence.
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share a limited amount of memory between cores, this can be 
a practical option. Memory system design decisions are sum-
marized in Table 2.

ACCELERATORS/INTEGRATED PERIPHERALS
Accelerators or integrated peripherals are typically ASICs or 
highly specialized processors that can not be efficiently emulat-
ed by software. Some examples include graphics rasterizers, 
codec accelerators, memory controllers, etc. These are usually 
one of the smaller contributors to power consumption but can 
have a large impact on overall performance in many cases. An 
example of accelerators would be the image processing engines 
found on the TI OMAP4430 [12]. 

SOME CURRENT COMMERCIAL MULTICORES
In recent years, there has been a wide of range of multicore 
architectures produced for the commercial market. They have 
targeted every market segment from embedded to general-
purpose desktop and server realms. As we have noted before, 
this is in large part due to the desire for increased performance 
with acceptable power increases. 

The first four entries of Table 3 shows a selection of general- 
purpose multicores. The microarchitecture of their cores is tra-
ditional and based on a powerful conventional uniprocessor. 
They all employ a modest number of identical copies of these 
cores with large caches. These chips are intended for applica-
tions found in the desktop and server markets in which power 
is not an overriding concern. The remaining entries in Table 3 
are also multicores but ones for general-purpose mobile and 
embedded applications. They too have identical general-purpose 
cores that are well suited to control dominated applications. 
Power is an overriding concern for these chips because many 
are intended to run from batteries and in all but one case they 
consume 1 W or less. 

The next set of architectures, shown in Table 4, are more 
specialized and are targeted to high-performance computing. 
These architectures target high performance in their applica-
tion domain and, for the most part, employ significant num-
bers of cores—for the AMD R700 and NVIDIA G200, this 
number is in the hundreds. The IBM Cell implements a het-
erogeneous architecture with a modest number of very spe-
cialized data processing engines. These designs are generally 
very high power ranging from 100 W to 180 W. 

Table 5 presents multicore architectures that are special-
ized for specific application domains. They exhibit the most 
variety. Most of them target data dominated application 
domains such as wireless baseband, and audio/visual codecs 
where simple parallelism can often be exploited. Ac  cordingly, 
they support high computation rates. Many feature intercon-
nection networks that are tuned to the needs of their intended 
application domain. These architectures achieve these high 
computation rates without excessive power requirements. 

In the remainder of this section we will discuss several 
multicores in more depth. They are selected from several dis-
tinct categories: server, mobile, graphics, and DSP. [T
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TILERA TILE64–DIGITAL SIGNAL PROCESSING
The Tilera TILE64 [13] is a DSP-focused processor that takes 
the concept of a multicore to a logical extreme. It uses up to 
64 simple, three-way VLIW cores connected by an NoC inter-
connect that is fully coherent. Because the individual cores 
are very small and low powered, the chip needs to needs 
massive parallelism in the application to achieve reasonable 
performance. Many DSP programs can take advantage of the 
many threads this processor exposes to the programmer. A 
block diagram of the architecture is provided in Figure 4.

The fully coherent interconnect is not typical for a processor 
targeted towards DSP applications. However, it allows the  processor 
to run more general-purpose shared memory programs. The inter-

connect is a large NoC, and because of the high number of cores it 
has a directory-based coherence policy to achieve scalable perfor-
mance. Because of the extra general- purpose additions, such as a 
coherent interconnect and wider individual processing elements, 
its power consumption is, at 18 W, higher than most in its class. 

ELEMENT CXI ECA-64–DIGITAL SIGNAL PROCESSING
The Element CXI ECA-64 [3] is a very low-power multicore tar-
geted at DSP. It takes a very different design philosophy from any 
other multicore presented in this section by using a handful of 
control cores to manage a “sea” of ALUs. This is shown in the 
block diagram in Figure 5. This core is focused on data driven 
applications and very low power. The programming model is simi-
lar to programming a field-programmable gate array (FPGA). 

The focus on low power is helped by a heterogeneous 
design. The processor itself is made up of four clusters of 16 
processing elements. These clusters each include one RISC 
style processing core and 15 ALUs that are each specialized for 
different purposes. Also, each ALU is data driven, only 
 performing operations when data is present at the input help-
ing to keep power consumption low. 

The memory subsystem follows design decisions made for 
low power. Each cluster shares 32 kB of local memory that is 
managed by software. The interconnect is hierarchial. It tightly 
couples four processing elements via a crossbar, and then four 
of these tightly coupled groups are connected using a point-to-
point set of queues to form a cluster of 16 elements. The clus-
ters then are able to communicate by a bus to each other. 
Although this is a low-power memory organization, the need 
for software control can make programming a challenge. 

SILICON HIVE HIVEFLEX CSP2X00 
SERIES–DIGITAL SIGNAL PROCESSING
The HiveFlex CSP2x00 [29] series are soft cores offered by 
Silicon Hive. They are very low power, operating at around one 
quarter of a watt. A block diagram of the architecture is pro-
vided in Figure 6.

To achieve this low power, the series employs a heterogeneous 
collection of cores to attain the desired performance target. It has 
a control chip that is a general-purpose two-way VLIW design 
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with small standard caches used to run the main program. It then 
off-loads data intensive work to so-called “complex cores.” The 
“complex cores” are five-way VLIW cores with customized ALUs 
for accelerating mathematical operations connected to a large 
local store RAM. The “complex cores” do not support branching, 
so they must be fed straight line code from the control core. The 
removal of branching support simplifies the “complex cores” to 
allow for savings in area and, more importantly, power. 

In addition, the CSP2x00 has a very simple memory hierar-
chy. Coherence and consistency is controlled by software run-
ning on the control core. The bus interconnect of the CSP2x00 
is primarily for transferring commands from the control core to 
the complex cores, which then communicate amongst them-
selves through the local store. All these design characteristics 
make for a very low-power yet high-performance chip. However, 
creating efficient software is a challenge. 

ARM CORTEX A9–GENERAL-PURPOSE MOBILE
The ARM Cortex A9 [6] is a general-purpose mobile embedded 
soft core that can be custom tailored before manufacturing; a 
block diagram is provided in Figure 7. The most common con-
figurations are very low power—1 W or less. The design is tar-
geted to general-purpose computing from smart phones to full 
featured netbooks. This entails a design that handles control 
dominated applications well. The individual processing cores on 
the A9 are three-way out-of-order that offer high general-pur-
pose performance. The chip is targeted to run an OS and more 
traditional desktop style applications. 

The interconnect used for the memory system is a fully 
coherent bus. The coherence is broadcast based since the 
number of cores this design uses is small. The caches are fairly 
large for a processor targeted at embedded applications. These 
are required to support the high clock speed and aggressive 
single thread design of the individual processing elements. 
More data dominated applications will not execute particularly 
efficient on this machine, because as noted, the chip is geared 
to traditional desktop style applications. 

TI OMAP 4430–GENERAL-PURPOSE 
MOBILE SOC
The TI OMAP 4430 [12] is a general-purpose system-on-chip 
(SoC) targeted to future smart phones and mobile-Internet-de-
vices (MIDs). A block diagram is provided in Figure 8. The 
design is also very low power, reported to be about 1 W, with 
significant processing capabilities and a large number of periph-
erals. It uses two ARM Cortex A9 processors for general-purpose 
applications and a C64x DSP to be used for emerging data-dom-
inated media applications. To process most media and graphics, 
it has three fixed function ASICs to accelerate performance at 
very low power: a GPU, image processor, and audio/visual codec 
processor. It also has many peripherals and other accelerators 
like encryption on chip. This chip is predominantly a collection 
of ASICs that are controlled by the general-purpose processors. 
This is done to save as much power as possible. In cases where 
the ASICs can not be employed, like running a new media 

codec, it has ample processing capabilities from the three gen-
eral-purpose cores but uses more power. 

The interconnect used for the memory system is a fully 
coherent bus between the ARM cores for general-purpose 
shared memory programming. The bus between the accelera-
tors and C64x is noncoherent, requiring the ARM cores to 
explicitly manage data movement to and from the accelerators 
and DSP. The memory controller is shared, making the point 
of coherence for the entire system at the main memory level. 

NVIDIA G200–GRAPHICS/
HIGH-PERFORMANCE COMPUTE
The NVIDIA G200 [21] is a high-performance architecture spe-
cifically aimed at data dominated applications, particularly ras-
ter graphics. However, it is also able to provide more general 
programmability to support nongraphics related, data depen-
dant applications. 

The architecture itself contains 240 simple one-way in-order 
cores. Each core is grouped together with 24 other cores in a 
cluster. Every group of eight cores share a 16 kB local store 
memory. The 24 cores are controlled in a SIMD manner: each 
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core executes the same instruction from different “threads.” 
Unlike an SIMD processor, each core is capable of branching, but 
if this happens, all the other cores must execute both paths of the 
branch and only keep the path they would have followed. The 
G200 cores can also access memory in a non-SIMD like fashion, 
e.g., if core one accesses address x, core two can access address y 
rather than only x1 1 as would be the case in a traditional SIMD 
machine. Though accessing memory in this  fashion imparts a 
performance penalty as the memory controller cannot, in gener-
al, coalesce memory accesses. This makes the G200 more general 
than a traditional SIMD machine and is closer to a multiple 
instruction multiple data (MIMD) machine. But because the 

architecture incurs  penalties when the 
instruction streams and memory accesses 
for processors in a group diverge, it sits in 
between traditional MIMD machines from 
manufacturers like Intel and its previous 
fixed function GPU predecessors. 

The design of the memory system is 
also tuned to data dominated applications. 
The memory system is noncoherent and 
uses small local stores instead of a stan-
dard cache style architecture (caches do 
exist, but they are used as texture caches 
for raster graphics and not general-pur-
pose computing). The G200 has relatively 
little on die memory, instead favoring 
compute resources. It is able to accommo-
date this by using very low latency high 
speed RAM, since power is not a factor in 
this design. Even though the memories 
are noncoherent, the G200 does provide 
some facility for more general parallel 
programs by providing “atomic operation” 
units as seen in Figure 9. These are used 
for controlling access to shared data struc-
tures that live in the GPU’s main memory. 

As noted, this architecture is well suited 
for applications that are highly data domi-

nated, for example, medical imaging,  and financial data process-
ing. It however, is not very well suited for control-dominated 
applications because branches and random memory accesses incur 
stiff performance penalties. The G200 is a unique architecture that 
is almost a general-purpose MIMD but to maximize compute den-
sity was designed with certain restrictions and specializations to 
accomplish its primary task, which is graphics processing. 

INTEL CORE I7–GENERAL PURPOSE
The Intel Core i7 [2] is a high-performance general-purpose pro-
cessor in all respects. It attempts to do everything well. This 
comes at the cost of a high (140 W) maximum power dissipation. 

It is implemented with up to eight four-issue out-of-order, 
two-way symmetric multithreading (SMT) cores, as seen in 
Figure 10. These cores contain many complex enhancements to 
extract as much performance out of a single thread as possible. 
Each core also  contains a 128-b SIMD unit to take advantage of 
some data parallelism. In keeping with most Intel processors, it 
supports the CISC x86 ISA. This design allows it to do many 
things well, but lower power more specialized designs can com-
pete favorably in particular application domains. 

The memory system is typical of that found in a general-
purpose multicore machine with just a few cores. It uses a 
fully coherent memory system and has large standard caches. 
The coherence is broadcast based, which is sufficient because 
of the limited number of cores. These characteristics come 
together to create a chip that is good at a wide variety of appli-
cations provided power is not a constraint. 
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CONCLUSION
With the emergence of commercial multicore architectures in 
an array of application domains, it is important to  understand 
the major design characteristics common among all multi-
cores. In this article, we defined five major attributes common 
among multicore architectures and discussed the tradeoffs for 
each attribute in the context of actual commercial products. 
These areas were application domain, power/performance, pro-
cessing elements, memory, and accelerators/integrated periph-
erals. We then covered in greater detail several commercial 
examples of multicore chips in a variety of application areas. 
We illustrated how attributes such as DSP, general-purpose 
mobile, and high-performance general purpose directed these 
example architectures to very unique designs.  

With transistor budgets still increasing every few years and 
the desire for more performance still apparent, multicore archi-
tectures will continue to be produced. As more applications are 
developed that can take advantage of multicore, the designs will 
continue to evolve to offer the desired balance of programmabil-
ity and specialization. 
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