
A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS ∗

WILLIAM W. HAGER† AND HONGCHAO ZHANG‡
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1. Introduction. Conjugate gradient (CG) methods comprise a class of uncon-
strained optimization algorithms which are characterized by low memory requirements
and strong local and global convergence properties. CG history, surveyed by Golub
and O’Leary in [48], begins with research of Cornelius Lanczos and Magnus Hestenes
and others (Forsythe, Motzkin, Rosser, Stein) at the Institute for Numerical Analysis
(National Applied Mathematics Laboratories of the United States National Bureau of
Standards in Los Angeles), and with independent research of Eduard Stiefel at Eidg.
Technische Hochschule Zürich. In the seminal 1952 paper [59] of Hestenes and Stiefel,
the algorithm is presented as an approach to solve symmetric, positive-definite linear
systems.

In this survey, we focus on conjugate gradient methods applied to the nonlinear
unconstrained optimization problem

min {f(x) : x ∈ Rn},(1.1)

where f : Rn 7→ R is a continuously differentiable function, bounded from below. A
nonlinear conjugate gradient method generates a sequence xk, k ≥ 1, starting from
an initial guess x0 ∈ Rn, using the recurrence

xk+1 = xk + αkdk,(1.2)

where the positive step size αk is obtained by a line search, and the directions dk are
generated by the rule:

dk+1 = −gk+1 + βkdk, d0 = −g0.(1.3)

Here βk is the CG update parameter and gk = ∇f(xk)T, where the gradient ∇f(xk)
of f at xk is a row vector and gk is a column vector. Different CG methods correspond
to different choices for the scalar βk.

Let ‖·‖ denote the Euclidean norm and define yk = gk+1−gk. Table 1.1 provides
a chronological list of some choices for the CG update parameter. The 1964 formula of
Fletcher and Reeves is usually considered the first nonlinear CG algorithm since their
paper [45] focuses on nonlinear optimization, while the 1952 paper [59] of Hestenes
and Stiefel focuses on symmetric, positive-definite linear systems.
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βHSk =
gT
k+1yk
dT
kyk

(1952) in the original (linear) CG paper

of Hestenes and Stiefel [59]

βFRk =
‖gk+1‖2

‖gk‖2
(1964) first nonlinear CG method, proposed

by Fletcher and Reeves [45]

βDk =
gT
k+1∇2f(xk)dk
dT
k∇2f(xk)dk

(1967) proposed by Daniel [39], requires

evaluation of the Hessian ∇2f(x)

βPRPk =
gT
k+1yk
‖gk‖2

(1969) proposed by Polak and Ribière [84]

and by Polyak [85]

βCDk =
‖gk+1‖2

−dT
kgk

(1987) proposed by Fletcher [44], CD

stands for “Conjugate Descent”

βLSk =
gT
k+1yk
−dT

kgk
(1991) proposed by Liu and Storey [67]

βDYk =
‖gk+1‖2

dT
kyk

(1999) proposed by Dai and Yuan [27]

βNk =
(

yk − 2dk
‖yk‖2

dT
kyk

)T gk+1

dT
kyk

(2005) proposed by Hager and Zhang [53]

Table 1.1

Various choices for the CG update parameter

Daniel’s choice for the update parameter, which is fundamentally different from
the other choices, is not discussed in this paper. For large-scale problems, choices for
the update parameter that do not require the evaluation of the Hessian matrix are
often preferred in practice over methods that require the Hessian in each iteration. In
the remaining methods of Table 1.1, except for the new method at the end, the nu-
merator of the update parameter βk is either ‖gk+1‖2 or gT

k+1yk and the denominator
is either ‖gk‖2 or dT

kyk or −dT
kgk. The 2 possible choices for the numerator and the

3 possible choices for the denominator lead to 6 different choices for βk shown above.
If f is a strongly convex quadratic, then in theory, all 8 choices for the update pa-

rameter in Table 1.1 are equivalent with an exact line search. For non-quadratic cost
functions, each choice for the update parameter leads to different performance. Some
of today’s best performing CG algorithms are hybrid methods, which dynamically
adjust the formula for βk as the iterations evolve, and a method based on the recent
update parameter βNk , with close connections to memoryless quasi-Newton methods.
In numerical experiments reported in [54], using CUTEr test problems [6], the top
performance relative to CPU time was obtained by a code based on βNk , while the sec-
ond best performance was obtained by either a code based on a hybrid DY/HS scheme
[37] or a code based on the L-BFGS scheme of Nocedal [79] and Liu and Nocedal [66].
In all these codes, the best performance was obtained using the approximate Wolfe
line search developed in [53, 54].

In this paper, we focus on global convergence properties of CG methods; con-
sequently, n-step quadratic convergence results [14, 60], which should be taken into
account (see [54]) in the design of efficient CG algorithms, are not discussed. In Sec-
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tion 2 we discuss classical line search criteria based on the Wolfe conditions [100, 101],
and we present the related Zoutendijk condition. In Section 3, we briefly summarize
how the initial search direction affects global convergence. Section 4 discusses the
global convergence properties of CG methods with numerator ‖gk+1‖2 for the update
parameter, while Section 5 considers methods with gT

k+1yk in the numerator. The
convergence theory for the methods of Section 4 is more highly developed than the
theory for the methods of Section 5. On the other hand, the methods of Section
5 often perform better in practice. Section 6 introduces hybrid methods obtained
by dynamically adjusting the formula for βk as the iterations evolve, making use of
methods from both Sections 4 and 5. Section 7 discusses the CG method associated
with the new choice βNk for the update parameter, called CG DESCENT in [54]. An
important feature of this scheme, which distinguishes it from the other schemes, is
that dk+1 is always a descent direction for any stepsize αk > 0, as long as dT

kyk 6= 0.
Finally, Section 8 discusses preconditioning techniques for CG algorithms.

2. Line search and Zoutendijk type conditions. In each CG iteration, the
stepsize αk is chosen to yield an approximate minimum for the problem:

min
α≥0

f(xk + αdk).(2.1)

Since α ≥ 0, the direction dk should satisfy the descent condition

gT
kdk < 0,(2.2)

for all k ≥ 0. If there exists a constant c > 0 such that

gT
kdk < −c‖gk‖2(2.3)

for all k ≥ 0, then the search directions satisfy the sufficient descent condition.
The termination conditions for the CG line search are often based on some version

of the Wolfe conditions. The standard Wolfe conditions [100, 101] are

f(xk + αkdk)− f(xk) ≤ δαkgT
kdk,(2.4)

gT
k+1dk ≥ σgT

kdk,(2.5)

where dk is a descent direction and 0 < δ ≤ σ < 1. The strong Wolfe conditions
consists of (2.4) and the following strengthened version of (2.5):

|gT
k+1dk| ≤ −σgT

kdk.(2.6)

In the generalized Wolfe conditions [24], the absolute value in (2.6) is replaced by a
pair of inequalities:

σ1gT
kdk ≤ gT

k+1dk ≤ −σ2gT
kdk,(2.7)

where 0 < δ < σ1 < 1 and σ2 ≥ 0. The special case σ1 = σ2 = σ corresponds to the
strong Wolfe conditions. Ideally, we would like to terminate the line search in a CG
algorithm when the standard Wolfe conditions are satisfied. For some CG algorithms,
however, stronger versions of the Wolfe conditions are needed to ensure convergence
and to enhance stability.

Recently, we introduced the approximate Wolfe conditions

σgT
kdk ≤ gT

k+1dk ≤ (2δ − 1)gT
kdk,(2.8)
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where 0 < δ < 1/2 and δ < σ < 1. The first inequality in (2.8) is the same as (2.5).
The second inequality in (2.8) is equivalent to (2.4) when f is quadratic. In general,
when φ(α) = f(xk + αdk) is replaced by a quadratic interpolant q(·) that matches
φ(α) at α = 0 and φ′(α) at α = 0 and α = αk, (2.4) reduces to the second inequality
in (2.8). Observe that the approximate Wolfe conditions have the same form as the
generalized Wolfe condition (2.7), but with a special choice for σ2. Note though that
the decay condition (2.4) is one component of the generalized Wolfe conditions, while
in the approximate Wolfe conditions, the decay condition is approximately enforced
through the second inequality in (2.8).

The standard or generalized or strong Wolfe conditions are used to prove con-
vergence of CG algorithms. The approximate Wolfe conditions are used in efficient,
high accuracy implementations of CG algorithms for which there is no convergence
theory, but the practical performance is often much better than that of the rigorous
implementations. As shown in [53], the first Wolfe condition (2.4) limits the accuracy
of a CG algorithm to the order of the square root of the machine precision, while with
the approximation contained in (2.8), we can achieve accuracy on the order of the
machine precision. As explained further in [54], we often achieve faster convergence
when using the approximate Wolfe conditions since a local minimizer of φ satisfies
(2.8), while a point satisfying the standard or strong Wolfe conditions is obtained by
computing a local minimizer of the approximating function ψ introduced in [72]:

ψ(α) = φ(α)− φ(0)− αδφ′(0).

When using the approximate Wolfe conditions, we minimize the function f along the
search direction dk rather than an approximation ψ to f .

Either of the following assumptions are often utilized in convergence analysis for
CG algorithms:

Lipschitz Assumption: In some neighborhood N of the level set

L = {x ∈ Rn : f(x) ≤ f(x0)},

the gradient ∇f(x) is Lipschitz continuous. That is, there exists a constant L < ∞
such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x,y ∈ N .

Boundedness Assumption: The level set L is bounded. That is, there exists a
constant B <∞ such that

‖x‖ ≤ B for all x ∈ L.

The conclusion of the following theorem, often called the Zoutendijk condition, is
used to prove the global convergence of nonlinear CG methods; it was originally given
by Zoutendijk [108] and Wolfe [100, 101].

Theorem 2.1. Consider any iterative method of the form (1.2) where dk satisfies
the descent condition (2.2) and αk satisfies the standard Wolfe conditions. If the
Lipschitz Assumption holds, then

∞∑
k=0

(gT
kdk)2

‖dk‖2
< +∞.(2.9)

Global convergence proofs for CG methods are often based on the Zoutendijk
condition combined with analysis showing that
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(a) the sufficient descent condition gT
kdk ≤ −c‖gk‖2 holds and

(b) there exists a constant β such that ‖dk‖2 ≤ βk.

Combining (a), (b), and (2.9), we have

lim inf
k→∞

‖gk‖ = 0.(2.10)

Throughout this survey, the statement that a CG method converges globally means
either gk = 0 for some k or (2.10) holds.

Another result related to the Zoutendijk condition, found in [21] (also see [57]),
is the following: assuming the search directions are descent,

Theorem 2.2. Consider any iterative method of the form (1.2)–(1.3) where dk
satisfies the descent condition (2.2) and αk satisfies the strong Wolfe conditions. If
the Lipschitz Assumption holds, then either

lim inf
k→∞

‖gk‖ = 0

or

∞∑
k=1

‖gk‖4

‖dk‖2
<∞.

Notice that in Theorems 2.1 and 2.2, we assume both the descent condition and
the Wolfe conditions. These two requirements are essentially independent of each
other. Hence, when implementing a line search, we need to satisfy some version of the
Wolfe conditions, and we need to ensure that the new search direction is a descent
direction. In recent versions [27, 37] of the CG algorithms associated with the choice
βDYk , the descent condition holds automatically, when the line search satisfies the
standard Wolfe conditions. And in the very recent CG DESCENT [53, 54], sufficient
descent holds for xk+1 with c = 7/8 if dT

kyk 6= 0 (the second Wolfe condition (2.5)
implies that dT

kyk > 0).

3. Starting search direction. It is critical to take d0 = −g0 in a CG algo-
rithm. In 1972 Crowder and Wolfe [16] gave a 3-dimensional example showing that
the convergence rate is linear if the initial search direction is not the steepest descent
direction, even for a strongly convex quadratic. In 1976 Powell [87] obtained an even
stronger result; he showed that if the objective function is a convex quadratic and if
the initial search direction is an arbitrary descent direction, then either optimality is
achieved in at most n+1 iterations or the rate of convergence is only linear. Moreover,
by analyzing the relationship between x0 and d0, it follows that linear convergence is
more common than finite convergence.

In order to achieve finite convergence for an arbitrary initial search direction,
Nazareth [73] proposed a CG algorithm based on a three-term recurrence:

dk+1 = −yk +
yT
kyk

dT
kyk

dk +
yT
k−1yk

dT
k−1yk−1

dk−1,(3.1)

with d−1 = 0 and d0 an arbitrary descent direction. If f is a convex quadratic, then
for any stepsize αk, the search directions generated by (3.1) are conjugate relative to
the Hessian of f . However, this interesting innovation has not seen significant use in
practice.
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4. Methods with ‖gk+1‖2 in the numerator of βk. The FR, DY and CD
methods all have the common numerator ‖gk+1‖2. One theoretical difference between
these methods, and the other choices for the update parameter, is that the global
convergence theorems only require the Lipschitz Assumption, not the Boundedness
Assumption. The first global convergence result for the FR method was given by
Zoutendijk [108] in 1970. He proved the FR method converges globally when αk is
an exact solution of the problem (2.1); in other words, global convergence is achieved
when the line search is exact. In 1977 Powell [88] pointed out that the FR method,
with exact line search, was susceptible to jamming. That is, the algorithm could take
many short steps without making significant progress to the minimum. The poor
performance of the FR method in applications was often attributed to this jamming
phenomenon.

The first global convergence result of the FR method for an inexact line search
was given by Al-Baali [1] in 1985. Under the strong Wolfe conditions with σ < 1/2,
he proved the FR method generates sufficient descent directions. More precisely, he
proved that

1− 2σ + σk+1

1− σ
≤ −gT

kdk
‖gk‖2

≤ 1− σk+1

1− σ
,

for all k ≥ 0. As a consequence, global convergence was established using the Zou-
tendijk condition. For σ = 1/2, dk is a descent direction, however, the analysis did
not establish sufficient descent.

In Liu et al. [65], the global convergence proof of Al-Baali is extended to the case
σ = 1/2. Dai and Yuan [24] analyzed this further, and showed that in consecutive
FR iterations, at least one iteration satisfies the sufficient descent property. In other
words,

max{−gT
kdk

‖gk‖2
,
−gT

k−1dk−1

‖gk−1‖2
} ≥ 1

2
.

The more recent result Theorem 2.2 can also be used to obtain a global convergence
result for FR implemented with a strong Wolfe line search and σ ≤ 1/2 since the
search directions are always descent directions.

In [35], Dai and Yuan show that with the FR scheme, the strong Wolfe conditions
may not yield a direction of descent when σ > 1/2, even for the function f(x) = λ‖x‖2,
where λ > 0 is a constant. Hence, the constraint σ ≤ 1/2 must be imposed to ensure
descent. In typical implementations of the Wolfe conditions, it is often most efficient
to choose σ close to 1. Hence, the constraint σ ≤ 1/2, needed to ensure descent,
represents a significant restriction in the choice of the line search parameters. On the
other hand, Dai and Yuan show in [29] that when σ > 1/2 and gT

kdk > 0, −dk can
be used for a search direction; if gT

kdk = 0, then the line search can be skipped by
setting xk+1 = xk. If there exists a constant γ such that ‖gk‖ ≤ γ, then under the
Lipschitz Assumption, the FR method, with a standard Wolfe line search and with
these special adjustments when gT

kdk ≥ 0, is globally convergent.
In [24] the strong Wolfe line search is relaxed to a generalized Wolfe line search.

Global convergence is obtained when σ1 + σ2 ≤ 1. For a strong Wolfe line search,
σ1 = σ2 = σ, in which case the constraint σ1 + σ2 ≤ 1 implies that σ ≤ 1/2. Hence,
the condition σ1 + σ2 ≤ 1 is weaker than the strong Wolfe constraint σ ≤ 1/2. And
it is possible to take σ1 close to 1, by taking σ2 close to 0.
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The CD method of Fletcher [44] is closely related to the FR method. With an
exact line search, βFRk = βCDk . One important difference between FR and CD is that
with CD, sufficient descent (2.3) holds for a strong Wolfe line search (the constraint
σ ≤ 1/2 that arose with FR, is not needed for CD). Moreover, for a line search that
satisfies the generalized Wolfe conditions (2.7) with σ1 < 1 and σ2 = 0, it can be
shown that 0 ≤ βCDk ≤ βFRk . Consequently, from the analysis in [1] or by Theorem
2.2, global convergence is achieved. On the other hand, if σ1 ≥ 1 or σ2 > 0, Dai
and Yuan [25] construct examples where ‖dk‖2 increases exponentially and the CD
method converges to a point where the gradient does not vanish. In particular, the
CD method may not converge to a stationary point for a strong Wolfe line search.

The DY method, first developed in [27], is fundamentally different from either
the FR or the CD method. With a standard Wolfe line search, the DY method al-
ways generates descent directions. Furthermore, there is global convergence when
the Lipschitz Assumption holds. In the paper [19], Dai analyzed the DY method fur-
ther and established the following remarkable property, relating the descent directions
generated by DY to the sufficient descent condition:

Theorem 4.1. Consider the method (1.2)–(1.3), where βk = βDYk . If the DY
method is implemented with any line search for which the search directions are descent
directions, and if there exist constants γ1 and γ2 such that γ1 ≤ ‖gk‖ ≤ γ2 for all
k ≥ 0, then for any p ∈ (0, 1), there exists a constant c > 0 such that the sufficient
descent condition

gT
i di ≤ −c‖gi‖2

holds for at least bpkc indices i ∈ [0, k], where brc denotes the largest integer ≤ r.

In the process of analyzing the DY method, Dai and Yuan also established a
convergence result applicable to any method for which βk can be expressed as a ratio:

βk =
Φk+1

Φk
.(4.1)

The FR method corresponds to the choice Φk = ‖gk‖2. Utilizing (1.3), βDYk can be
rewritten as

βDYk =
gT
k+1dk+1

gT
kdk

.

Hence, the DY method has the form (4.1) with Φk = gT
kdk. The following result was

established [36, 38]:
Theorem 4.2. Consider any iterative method of the form (1.2)–(1.3) where

βk has the form (4.1), dk satisfies the descent condition (2.2), and the Lipschitz
Assumption holds. If the Zoutendijk condition holds and if

∞∑
k=0

(gT
kdk)2

Φ2
k

=∞ or
∞∑
k=0

‖gk‖2

Φ2
k

=∞ or
∞∑
k=1

k∏
i=1

β−2
i =∞,

then the iterates are globally convergent.
As a corollary of this result, the DY method is globally convergent when implemented
with a standard Wolfe line search since

N∑
k=0

(gT
kdk)2

Φ2
k

= N + 1 when Φk = gT
kdk.
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FR is globally convergent when implemented with a strong Wolfe line search with
σ ≤ 1/2 since

N∑
k=0

‖gk‖2

Φ2
k

= N + 1 when Φk = ‖gk‖2.

Notice that a general CG method can be expressed in the form (4.1) by taking Φ0 = 1,
and

Φk =
k∏
j=1

βk, for k > 0.

5. Methods with gT
k+1yk in the numerator of βk. Despite the strong con-

vergence theory that has been developed for methods with ‖gk+1‖2 in the numerator
of βk, these methods are all susceptible to jamming, as discussed earlier. That is,
they begin to take small steps without making significant progress to the minimum.
The PRP, HS and LS methods, which share the common numerator gT

k+1yk, possess a
built-in restart feature that addresses the jamming problem: When the step xk+1−xk
is small, the factor yk = gk+1 − gk in the numerator of βk tends to zero. Hence, βk
becomes small and the new search direction dk+1 is essentially the steepest descent
direction −gk+1. In a sense, the the PRP, HS, and LS method automatically adjust
βk to avoid jamming; in general, the performance of these methods is better than the
performance of methods with ‖gk+1‖2 in the numerator of βk.

In [84] global convergence of the PRP method is established when f is strongly
convex and the line search is exact. Powell [88] proved that for a general nonlinear
function, if

(a) the step size sk = xk+1 − xk approaches zero,
(b) the line search is exact, and
(c) the Lipschitz Assumption holds,

then the PRP method is globally convergent. On the other hand, Powell showed
later [89], using a 3 dimensional example, that with an exact line search, the PRP
method could cycle infinitely, without converging to a stationary point. Hence, the
assumption that the stepsize tends to zero is needed for convergence.

Under the assumption that the search direction is a descent direction, Yuan [104]
established the global convergence of the PRP method for strongly convex objective
functions and a Wolfe line search. However, for a strong Wolfe line search, Dai
[17] gave an example which showed that even when the objective function is strongly
convex and σ ∈ (0, 1) is sufficiently small, the PRP method may still fail by generating
an ascent search direction.

In summary, the convergence of the PRP method for general nonlinear function is
uncertain; Powell’s example shows that when the function is not strongly convex, the
PRP method may not converge, even with an exact line search. And Dai’s example
shows that even for a strongly convex function, the PRP method may not generate a
descent direction with an inexact line search. Based on insight gained from Powell’s
example, he suggested [89] the following modification in the update parameter for the
PRP method:

βPRP+
k = max{βPRPk , 0}.

In [47] Gilbert and Nocedal proved the convergence of the PRP+ method.
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The analysis of Gilbert and Nocedal applies to a class of CG algorithms which
have the following property:

Consider a method of the form (1.2)–(1.3), and suppose that 0 < γ ≤
‖gk‖ ≤ γ̄, for all k ≥ 0, where γ and γ̄ are two positive constants.
Property (?) holds if there exist constants b > 1 and λ > 0 such that
for all k,

|βk| ≤ b and ‖sk‖ ≤ λ implies |βk| ≤
1
2b
.

The following result is proved in [47]
Theorem 5.1. Consider any CG method (1.2)–(1.3) that satisfies the following

conditions:
(a) βk ≥ 0.
(b) The search directions satisfy the sufficient descent condition (2.3).
(c) The Zoutendijk condition holds.
(d) Property (?) holds.

If the Lipschitz and Boundedness Assumptions hold, then the iterates are globally
convergent.

As a corollary of this result, when the search direction satisfies the sufficient
descent condition and when a standard Wolfe line search is employed, the PRP+
method is globally convergent. In [26], Dai and Yuan gave examples to show that
the Boundedness Assumption is really needed to obtain the global convergence of
Theorem 5.1; moreover, the constraint βk ≥ 0 can not be relaxed to max{βPRPk ,−ε}
for any choice of ε > 0. In [21] it is shown that the sufficient descent condition in
Theorem 5.1 can be relaxed to a descent condition if a strong Wolfe line search is
used.

The PRP+ method was introduced to rectify the convergence failure of the PRP
method when implemented with a Wolfe line search. Another approach for rectifying
the convergence failure is to retain the PRP update formula, but modify the line
search. In particular, Grippo and Lucidi [49] proposed a new Armijo type line search
of the following form:

αk = max{λj τ |g
T
kdk|

‖dk‖2
}

where j ≥ 0 is the smallest integer with the property that

f(xk+1) ≤ f(xk)− δα2
k‖dk‖2,(5.1)

and

−c1‖gk+1‖2 ≤ gT
k+1dk+1 ≤ c2‖gk+1‖2,(5.2)

where 0 < c2 < 1 < c1, 0 < λ < 1 and τ > 0 are constants. With this new line search,
they prove global convergence of the PRP method. In the more recent paper [50],
they combine this line search with a “trust region” technique.

In another avenue of research, it is shown in [35] that the PRP method is globally
convergent when the line search employs a constant stepsize αk = η < 1/4L, where
L is a Lipschitz constant for ∇f . In [97] Sun and Zhang give a global convergence
result for the choice αk = −δ gT

kdk
dT
kQkdk

, where Qk is some positive definite matrix with
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smallest eigenvalue νmin > 0, δ ∈ (0, νmin/L), and L is a Lipschitz constant for ∇f .
For these stepsize choices, the search directions are no longer conjugate when f is
a quadratic. Hence, these methods should be viewed as steepest descent methods,
rather than conjugate gradient methods.

The HS method has the property that the conjugacy condition

dT
k+1yk = 0(5.3)

always holds, independent of line search. For an exact line search, βHSk = βPRPk .
Hence, the convergence properties of the HS method should be similar to the conver-
gence properties of the PRP method. In particular, by Powell’s example [89], the HS
method with an exact line search may not converge for a general nonlinear function.
It can be verified that if the search directions satisfy the sufficient descent condition
and if a standard Wolfe line search is employed, then the HS method satisfies Property
(?). Similar to the PRP+ method, if we let

βHS+
k = max{βHSk , 0},

then it follows from Theorem 5.1, that the HS+ method is globally convergent.
The LS method is also identical to the the PRP method for an exact line search.

Although not much research has been done on this choice for the update parameter,
except for the paper [67], we expect that the techniques developed for the analysis of
the PRP method should apply to the LS method.

6. Hybrid CG methods and parametric families. As we have seen, the first
set of methods FR, DY, and CD have strong convergence properties, but they may
not perform well in practice due to jamming. On the other hand, although the second
set of methods PRP, HS, and LS may not converge in general, they often perform
better than the first set of methods. Consequently, combinations of methods have
been proposed to try to exploit attractive features of each set. Touati-Ahmed and
Storey [98] suggested the following hybrid method:

βk =

{
βPRPk if 0 ≤ βPRPk ≤ βFRk ,

βFRk otherwise.

Thus, when the iterations jam, the PRP update parameter is used. By the same
motivations, Hu and Storey [61] suggested to take

βk = max{0,min{βPRPk , βFRk }}.

In [47] it is pointed out that βPRPk can be negative, even for strongly convex
functions. In an effort to extend the allowed choices for the PRP update parameter,
while retaining global convergence, Nocedal and Gilbert [47] suggested taking

βk = max{−βFRk ,min{βPRPk , βFRk }}.

With this hybrid method, βk can be negative since βFRk is always nonnegative. Note
that in the numerical results reported in [47], the performance of this hybrid method
was not better than that of PRP+.

Convergence results for CG methods that can be bounded in terms of the FR
method are developed in [47, 57, 61]. In particular, the following result is established
in [57]:
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Theorem 6.1. Consider any CG method of the form (1.2)–(1.3) which employs
a strong Wolfe line search with σ ≤ 1/2. If the Lipschitz Assumption holds and
2σ|βk| ≤ βFRk , then the iterates are globally convergent, and the search directions are
always descent directions.
In [47, 61], global convergence and sufficient descent are established when 2σ|βk| <
βFRk , while Theorem 6.1 claims global convergence and descent when 2σ|βk| ≤ βFRk .

Recall that the DY method has even better global convergence properties than the
FR method. As a result, Dai and Yuan [37] studied the possibility of combining DY
with other CG methods. For a standard Wolfe line search and for βk ∈ [−ηβDYk , βDYk ],
where η = (1 − σ)/(1 + σ), they establish global convergence when the Lipschitz
Assumption holds. The following two hybrid method were proposed in [37]:

βk = max{−(
1− σ
1 + σ

)βDYk ,min{βHSk , βDYk }}

and

βk = max{0,min{βHSk , βDYk }}.

The numerical experiments in [23] indicated that the second hybrid method gave the
best result, performing better than the PRP+ method.

Another hybrid method, proposed by Dai in [20], employs either the DY scheme
or the CD scheme:

βk =
‖gk+1‖2

max{dT
kyk,−gT

kdk}

He shows that this hybrid scheme generates descent directions, independent of the
line search. This descent property is stronger than that of the DY scheme itself,
where descent holds for a Wolfe line search. Dai shows that for this hybrid scheme,
βk ∈ [0, βDYk ]. This property, together with the descent property of the hybrid scheme,
imply convergence for typical line search methods.

In the same way that quasi-Newton methods have been combined together by
introducing parameters, as in the Broyden [7] family, CG methods can be combined
together. In [33, 38], Dai and Yuan proposed a one-parameter family of CG methods
with

βk =
‖gk+1‖2

λk‖gk‖2 + (1− λk)dT
kyk

,

where λk ∈ [0, 1] is a parameter. The FR method corresponds to λk = 1, while the
DY method corresponds to λk = 0. In [34], this family is extended by considering
λk ∈ (−∞,∞); if the Lipschitz Assumption holds, then there is global convergence
for each member of the family when a generalized Wolfe line search is employed with

σ1 − 1 ≤ (σ1 + σ2)λk ≤ 1.

By considering convex combinations of the numerators and denominators of βFRk
and βHS , Nazareth [78] independently proposes a two-parameter family of CG meth-
ods:

βk =
µk‖gk+1‖2 + (1− µk)gT

k+1yk
λk‖gk‖2 + (1− λk)dT

kyk
,
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where λk, µk ∈ [0, 1]. This two-parameter family includes FR, DY, PRP, and HS
methods as extreme cases.

Observing that the six standard CG methods share two numerators and three
denominators, Dai and Yuan [36] considered an even wider family of CG methods by
introducing one more parameter; they chose

βk =
µk‖gk+1‖2 + (1− µk)gT

k+1yk
(1− λk − ωk)‖gk‖2 + λkdT

kyk − ωkdT
kgk

,

where λk, µk ∈ [0, 1] and ωk ∈ [0, 1−λk]. This three-parameter family includes the six
standard CG methods, the previous one-parameter and two-parameter families, and
many hybrid methods as special cases. In order to ensure that the search directions
generated by this family will be descent directions, Powell’s [88] restart criterion is
employed: set dk = −gk if

|gT
kgk−1| > ξ‖gk‖2,

where ξ > 0 is some fixed constant. For a strong Wolfe line search where

(1 + ξ)σ ≤ 1
2
,

Dai and Yuan show that the search directions dk are descent directions. Global
convergence results are also established in [36].

In [22] Dai and Liao modify the numerator of the HS update parameter to obtain

βDLk =
gT
k+1(yk − tsk)

dT
kyk

= βHSk − t
gT
k+1sk
dT
kyk

,

where t > 0 is some constant. For an exact line search, gk+1 is orthogonal to sk =
xk+1 − xk = αkdk. Hence, for an exact line search, the DL method reduces to the
HS and PRP methods. Again, due to Powell’s example, the DL method may not
converge for an exact line search. Similar to the PRP+ method, Dai and Liao also
modified their formula in the following way to ensure convergence:

βDL+
k = max{

gT
k+1yk
dT
kyk

, 0} − t
gT
k+1sk
dT
kyk

.

If the Lipschitz and Boundedness Assumptions hold and if dk satisfies the sufficient
descent condition (2.3), it is shown in [22] that DL+, implemented with a strong
Wolfe line search, is globally convergent.

Very recently, in a further development of this update strategy, Yabe and Takano
[103] derive the following choice for the update parameter, based on a modified secant
condition given by Zhang et al. [106, 107]:

βY Tk =
gT
k+1(zk − tsk)

dT
kzk

,

where

zk = yk +
(
ρθk

sT
kuk

)
uk,

θk = 6(fk − fk+1) + 3(gk + gk+1)Tsk,
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ρ ≥ 0 is a constant and uk ∈ Rn satisfies sT
kuk 6= 0; for example, uk = dk. Again,

similar to PRP+, Yabe and Takano modified their formula in the following way to
ensure convergence:

βY T+
k = max{

gT
k+1zk
dT
kzk

, 0} − t
gT
k+1sk
dT
kzk

.

They show that the YT+ scheme is globally convergent if the Lipschitz and Bounded-
ness Assumptions hold, dk satisfies the sufficient descent condition (2.3), and a strong
Wolfe line search is employed with

0 ≤ ρ < 1− σ
3(1 + σ − 2δ)

.

Preliminary numerical results reported for both the DL+ and YT+ schemes indicate
these CG method are efficient with a proper choice of the parameters. However, for
different choices of the parameters, the performance of the methods can be quite
different. Notice that both the DL and YT schemes are not scale invariant. That
is, if f is multiplied by a positive scalar, then the values of βDLk and βY Tk typically
change. Hence, if a proper choice of t is found for some f , then t must be changed
when f is rescaled. In contrast, all the methods of Table 1.1 are scale invariant.

7. CG DESCENT. In the previous discussion, we have seen that the global
convergence of CG methods is closely connected to the descent conditions (2.2) and
(2.3) – we must not only employ a Wolfe type line search, but we must constrain αk
so that dk+1 a direction of descent. The final method of Table 1.1 was devised in
order to ensure sufficient descent, independent of the accuracy of the line search. We
obtain this method by modifying the HS method in the following way:

βθk = βHSk − θk

(
‖yk‖2gT

k+1dk
(dT
kyk)2

)
,(7.1)

where θk ≥ 0. (We assume that dT
kyk 6= 0 so that βHSk is defined. With a standard

Wolfe line search, dT
kyk > 0 when gk 6= 0).

An attractive feature of the HS method is that the conjugacy condition (5.3)
always holds, independent of the line search. Consequently, if θk in (7.1) is near
zero, then the conjugacy condition holds approximately. Also, the HS method is not
susceptible to jamming. The expression multiplying θk in (7.1) has the following
properties:

(a) it is scale invariant (βθk does not change when f is multiplied by a positive
scalar),

(b) it goes to zero when the iterates jam, and
(c) it enhances descent.

With regard to (b), observe that for an approximate Wolfe line search, we have

|gT
k+1dk|
dT
kyk

≤ max{σ, 1− 2δ}|dT
kgk|

(1− σ)|dT
kgk|

=
max{σ, 1− 2δ}

(1− σ)
.

If the search direction dk satisfies the sufficient descent condition (2.3), it follows that

‖yk‖2|gT
k+1dk|

(dT
kyk)2

≤
(

max{σ, 1− 2δ}
c(1− σ)

)(
‖yk‖
‖gk‖

)2

.
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When the iterates jam, yk becomes tiny while ‖gk‖ is bounded away from zero.
Consequently, when the iterates jam, the θk term in (7.1) becomes negligible.

To see the effect of the new term on descent, we multiply the update formula
(1.3) by gT

k+1 to obtain

gT
k+1dk+1 = −‖gk+1‖2 +

(
gT
k+1yk(gT

k+1dk)
dT
kyk

)
− θk

(
(‖yk‖2(gT

k+1dk)2

(dT
kyk)2

)
.(7.2)

Due to the minus in front of the θk term above, it follows that the θk modification
of the HS formula has enhanced descent. In fact, the only term on the right side of
(7.2) that could be positive is the middle term, associated with βHSk .

An upper bound for the middle term in (7.2) is obtained using the inequality

uT
kvk ≤

1
2
(
‖uk‖2 + ‖vk‖2

)
with the choice

uk =
1√
2θk

(dT
kyk)gk+1 and vk =

√
2θk(gT

k+1dk)yk.

We have

gT
k+1yk(gT

k+1dk)
dT
kyk

=
gT
k+1yk(dT

kyk)(gT
k+1dk)

(dT
kyk)2

≤ 1
4θk
‖gk+1‖2 + θk

(
(‖yk‖2(gT

k+1dk)2

(dT
kyk)2

)
.

Combining this with (7.2) gives

gT
k+1dk+1 ≤ −

(
1− 1

4θk

)
‖gk+1‖2.(7.3)

Hence, if θk = θ̄ > 1/4 for each k, then the scheme (7.1) satisfies the sufficient descent
condition (2.3) with c = 1− (4θ̄)−1.

The parameter θk essentially controls the relative weight placed on conjugacy
versus descent. As θk becomes small, the last term in (7.1) goes to zero, and the update
parameter approaches the HS parameter, which satisfies the conjugacy condition (5.3).
As θk tends to infinity, the sufficient descent parameter c = 1 − (4θ̄)−1 increases,
approaching 1. The update parameter βNk given in Table 1.1 corresponds to βθk and
the choice θk = 2. As discussed in [53], for strongly convex functions and a relatively
accurate line search, the search directions generated by θk = 2 are approximately
multiples of the search directions produced by the memoryless quasi-Newton method
of Perry [83] and Shanno [93].

In order to obtain global convergence for general nonlinear functions, we need to
truncate βθk, similar to PRP+. In [53] we introduce the following truncation:

βθ+k = max
{
βNk , ηk

}
, ηk =

−1
‖dk‖min{η, ‖gk‖}

,(7.4)

where η > 0 is a constant. In [53] and [54] we give numerical results for the update
parameter βNk of Tabel 1.1, corresponding to θk = 2. For a broad set of large-scale
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unconstrained optimization problems in the CUTEr library [6], the new scheme, called
CG DESCENT in [54], performed better than either PRP+ or L-BFGS.

As in [53, Thm 1.1], the update parameter βθ+k satisfies the sufficient descent
condition (7.3), when θk ≥ θ̄ > 1/4 for all k. Similar to the result established in [53]
for the N+ scheme (corresponding to θk = 2 in βθ+k ), we have the following result for
the more general scheme based on βθ+k with θk bounded away from 1/4:

Theorem 7.1. Suppose the Lipschitz and the Boundedness Assumptions hold,
and the line search satisfies the standard Wolfe conditions (2.4) and (2.5). Then the
CG method (1.2) and (1.3), with βk = βθ+k and θk ≥ θ̄ > 1/4 for all k, is globally
convergent.

In Theorem 7.1, θk ≥ θ̄ > 1/4. Global convergence also holds when θk approaches
1/4 from the right, but with a strong Wolfe line search instead of the standard Wolfe
line search. The proof of this result is based on Theorem 2.2, not the approach in [53].
Although global convergence for a standard Wolfe line search is still an open question,
we have the following result: If we perform a restart, taking dk = −gk whenever

gT
kgk−1 ≤ −ζ‖gk‖‖gk−1‖,(7.5)

where ζ ∈ (0, 1), then for a standard Wolfe line search and for θk > 1/4, we obtain
global convergence. The condition (7.5) is a one-sided version of the restart condition
suggested by Powell [88] for Beale’s 3-term CG method. Note that ζ should be taken
close to 1 to reduce the number of restarts.

8. Preconditioning. The idea behind preconditioning is to make a change of
variables x = Sy where S is an invertible matrix chosen to speedup the convergence.
After writing the conjugate gradient algorithm in the transformed variable y and
converting back to the x variable, we obtain the iteration:

xk+1 = xk + αkdk,

dk+1 = Pgk+1 + β̄kdk, d0 = Pg0,(8.1)

where P = SST. The update parameter β̄k is the same as βk except that gk and dk
are replaced by STgk and S−1dk respectively. As illustrations, we have

β̄FRk =
gT
k+1Pgk+1

gT
kPgk

and β̄CDk =
gT
k+1Pgk+1

−dT
kgk

.

To obtain insights into the effect of preconditioning, we examine how the con-
vergence speed of CG depends on the eigenvalues of the Hessian. Suppose that f is
quadratic:

f(x) =
1
2
xTQx + bTx,(8.2)

where Q is a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. With an
exact line search, the error in the k-th CG iterate satisfies the following bound [95]:

(xk − x∗)TQ(xk − x∗) ≤ min
p∈Pk−1

max
1≤i≤n

(1 + λip(λi))2 (x0 − x∗)TQ(x0 − x∗),

where Pk denotes the set of polynomials of degree at most k. Given some integer
l ∈ [1, k], it follows that if p ∈ Pk−1 is chosen so that the degree k polynomial
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1 + λp(λ) vanishes with multiplicity 1 at λi, 1 ≤ i ≤ l − 1, and with multiplicity
k − l + 1 at (λl + λn)/2, then we have

(xk − x∗)TQ(xk − x∗) ≤
(
λl − λn
λl + λn

)2(k−l+1)

(x0 − x∗)TQ(x0 − x∗).(8.3)

After the change of variables x = Sy in (8.2), we obtain

f(Sy) =
1
2
yTSTQSy + bTSy.

The matrix STQS associated with the quadratic in y is similar to the matrix QSST =
QP. Hence, the best preconditioner is P = Q−1, which leads to convergence in one
step since the eigenvalues of STQS are all 1.

When f is a general nonlinear function, a good preconditioner is any matrix that
approximates ∇2f(x∗)−1. As an illustration showing how to choose P, let us consider
a nonlinear, equality constrained optimization problem

min f(x) subject to h(x) = 0,

where h : Rn → R
m. The quadratic penalty approximation is the unconstrained

problem

min f(x) +
π

2
‖h(x)‖2,(8.4)

where the penalty parameter π is a relatively large number. The Hessian of the
penalized problem (8.4), evaluated at a local minimizer x∗, is

H(π) = ∇2f(x∗) + π∇h(x∗)T∇h(x∗).

If the rank of ∇h(x∗) is m, then by a result of Loewner [68], H(π) has m eigenvalues
that approach +∞ as π tends to +∞. Hence, the ratio between the largest and the
smallest eigenvalue of H(π) tends to ∞ as π tends to ∞ if m < n.

A suitable preconditioner for the penalized problem is presented in [51] where the
following result is established:

Theorem 8.1. If C is a symmetric, positive-definite matrix and the rows of B
are linearly independent, then for any A, we have

lim
π→∞

(A + πBTB)(C + πBTB)−1 = D,

where

D = AC−1 + (I−AC−1)BT(BC−1BT)−1BC−1.

Moreover, D is nonsingular if and only if

min
By = 0
‖y‖ = 1

max
Bx = 0
‖x‖ = 1

xTAy > 0.

Thus, if B is an m by n rank m matrix, the matrix A +πBTB has m eigenvalues
that tend to ∞ as π tends to ∞. For the preconditioner P = (C + πBTB)−1, the
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eigenvalues of the product (A + πBTB)(C + πBTB)−1 approach a finite limit as π
tends to∞. Consequently, when the rows of ∇h(x∗) are linearly independent and the
second order sufficient optimality conditions hold at x∗, a suitable preconditioner for
CG methods applied to (8.4) is P = (I + π∇h(x0)∇h(x0))−1. In practice, we would
periodically update the preconditioner and restart the CG method as the iterations
converge.

A possible CG preconditioning strategy for a general nonlinear function f is to
take P = Dk where Dk is an approximation to ∇2f(x∗)−1 generated by a quasi-
Newton update formula, such as the Broyden family:

Dk+1 =
(

I− skyT
k

sT
kyk

)
Dk

(
I− yksT

k

sT
kyk

)
+

sksT
k

sT
kyk

+ αvkvT
k(8.5)

where α ≥ 0 is a parameter, and

vk = (yT
kDkyk)1/2

(
Dkyk

yT
kDkyk

− sk
sT
kyk

)
.

This idea was first discussed by Nazareth [74] and Buckley [8]. In [74], Nazareth
showed that when the objective function is quadratic and an exact line search is
employed, preconditioned CG with a fixed preconditioner P = D0 is identical to pre-
conditioned CG with P = Dk at iteration k provided Dk is generated by the BFGS
formula (corresponding to α = 0 in (8.5)). Moreover, Buckley shows [8] that if the
quasi-Newton preconditioner Dk is randomly updated by the BFGS formula, the iter-
ates are identical to preconditioned CG with fixed preconditioner P = D0. Although
there would appear to be no benefit from utilizing a preconditioner generated by a
quasi-Newton update, at least in the special case of BFGS and a quadratic cost func-
tion, it is expected that for inexact arithmetic or for a general nonlinear function, the
quasi-Newton preconditioner will improve the problem conditioning.

In [9] Buckley considers infrequent quasi-Newton updates. A quasi-Newton step
was performed and the preconditioner was updated when∣∣∣∣gT

kPgk+1

gkPgk

∣∣∣∣ ≤ ρ,
where ρ ∈ (0, 1) is a constant. With infrequent quasi-Newton updates, he could
store the vectors used to generate the quasi-Newton matrix rather than the matrix
itself. Buckley reports [9] that these infrequent updates led to improvements over the
unpreconditioned CG. Another general preconditioning strategy is to use the matrix
generated from a limited memory update such as Liu and Nocedal’s L-BFGS formula
[66]. For a nice survey concerning the relationship between preconditioned CG and
quasi-Newton methods, see [75]. The development of effective ways to precondition
optimization problems remains an area of interest.

9. Conclusion. The conjugate gradient method has been the subject of intense
analysis for more than 50 years. It started out as an algorithm for solving symmet-
ric, positive-definite linear systems of equations. It was soon extended to nonlinear
unconstrained optimization. As seen Table 1.1, various choices for the CG update
parameter have been proposed. Problems with the early choices concern jamming
or loss of descent or convergence failure. Recent choices, such as that of Dai and
Yuan provides descent for a Wolfe line search, while the scheme of Hager and Zhang
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provides sufficient descent independent of the line search. Hybrid schemes exploit
advantages of several different methods, leading to excellent performance in practice.
The development of efficient CG preconditioners is an area of active research. To-
day, the conjugate gradient method is an important component of general constrained
optimization algorithms that are based on the iterative solution of unconstrained or
bounded constrained problems ([15, 52, 55]).
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