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Background

As the price of data storage has gone down and high performance computers have 

become more widely accessible, we have seen an expansion of machine learning (ML) 

into a host of industries including finance, law enforcement, entertainment, com-

merce, and healthcare. As theoretical research is leveraged into practical tasks, machine 

learning tools are increasingly seen as not just useful, but integral to many business 

operations.

Abstract 

With an ever-increasing amount of options, the task of selecting machine learning 

tools for big data can be difficult. The available tools have advantages and drawbacks, 

and many have overlapping uses. The world’s data is growing rapidly, and traditional 

tools for machine learning are becoming insufficient as we move towards distributed 

and real-time processing. This paper is intended to aid the researcher or professional 

who understands machine learning but is inexperienced with big data. In order to 

evaluate tools, one should have a thorough understanding of what to look for. To that 

end, this paper provides a list of criteria for making selections along with an analysis of 

the advantages and drawbacks of each. We do this by starting from the beginning, and 

looking at what exactly the term “big data” means. From there, we go on to the Hadoop 

ecosystem for a look at many of the projects that are part of a typical machine learning 

architecture and an understanding of how everything might fit together. We discuss 

the advantages and disadvantages of three different processing paradigms along with 

a comparison of engines that implement them, including MapReduce, Spark, Flink, 

Storm, and H2O. We then look at machine learning libraries and frameworks includ-

ing Mahout, MLlib, SAMOA, and evaluate them based on criteria such as scalability, 

ease of use, and extensibility. There is no single toolkit that truly embodies a one-size-

fits-all solution, so this paper aims to help make decisions smoother by providing as 

much information as possible and quantifying what the tradeoffs will be. Additionally, 

throughout this paper, we review recent research in the field using these tools and talk 

about possible future directions for toolkit-based learning.
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�e goal of machine learning is to enable a system to learn from the past or present 

and use that knowledge to make predictions or decisions regarding unknown future 

events. In the most general terms, the workflow for a supervised machine learning task 

consists of three phases: build the model, evaluate and tune the model, and then put the 

model into production. An example of this workflow is in Fig. 1.

At the heart of machine learning is the data that powers the models, and the new era 

of Big Data is catapulting machine learning to the forefront of research and industry 

applications. �e meaning of the term “big data” is still the subject of some disagree-

ment, but it generally refers to data that is too big or too complex to process on a single 

machine. We live in an age where data is growing orders of magnitude faster than ever 

before. According to International Data Corporation’s annual Digital Universe study [1], 

the amount of data on our planet is set to reach 44 zettabytes (4.4 × 1022 bytes) by 2020 

which would be ten times larger than it was in 2013. While no single entity is work-

ing with data at this magnitude, many industries are still generating data too large to be 

processed efficiently using traditional techniques. Ancestry.com, for example, stores bil-

lions of records totaling about 10 petabytes of data [2]. With such a growth rate in data 

production, the challenge faced by the machine learning community is how to best effi-

ciently process and learn from big data. Popular machine learning toolkits such as R [3] 

or Weka [4] were not built for these kinds of workloads. Although Weka has distributed 

implementations of some algorithms available, it is not on the same level as tools that 

were initially designed and built for terabyte-scale. Hadoop [5], a popular framework for 

working with big data, helps to solve this scalability problem by offering distributed stor-

age and processing solutions. While Hadoop is just a framework for processing data, it 

provides a very extensible platform that allows for many machine learning projects and 

applications; the focus of this paper is to present those tools.

�e proliferation of big data has forced us to rethink not just data processing frame-

works, but implementations of machine learning algorithms as well. Choosing the 

appropriate tools for a particular task or environment can be daunting for two reasons. 

First, the increasing complexity of machine learning project requirements as well as of 

the data itself may require different types of solutions. Second, often developers will find 

the selection of tools available to be unsatisfactory, but instead of contributing to exist-

ing open source projects, they begin one of their own. �is has led to a great deal of 

fragmentation among existing big data platforms. Both of these issues can contribute to 

the difficulty of building a learning environment, as many options have overlapping use 

Fig. 1 Supervised machine learning workflow
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cases, but diverge in important areas. Because there is no single tool or framework that 

covers all or even the majority of common tasks, one must consider the trade-offs that 

exist between usability, performance, and algorithm selection when examining differ-

ent solutions. �ere is a lack of comprehensive research on many of them, despite being 

widely employed on an enterprise level and there is no current industry standard.

�e goal of this paper is to facilitate these decisions by providing a comprehensive 

review of the current state-of-the-art in open source scalable tools for machine learning. 

Recommendations are offered for criteria with which to evaluate the various options, 

and comparisons are provided between various open source data processing engines as 

well as ML libraries and frameworks. �is paper presumes that the reader has a basic 

knowledge of machine learning concepts and workflows. It is intended for people who 

have experience with machine learning and want information on the different tools 

available for learning from big data. �e paper will be useful to anyone interested in big 

data and machine learning, whether a researcher, engineer, scientist, or software prod-

uct manager.

�e remainder of this paper will be organized as follows: �e section titled “Under-

standing big data” provides background on the problems that may arise when work-

ing with big data, and the “Hadoop ecosystem” section serves as an explanation and 

overview of the Hadoop ecosystem with a focus on tools that can help solve big data 

problems. �e “Data processing engines” section examines different data processing 

paradigms and outlines criteria for evaluation. “Machine learning toolkits” discusses cri-

teria for evaluation of machine learning tools and libraries, and “Evaluation of machine 

learning tools” provides an in-depth analysis of specific frameworks that can be used 

with the processing platforms. �e “Suggestions for future work” section contains a dis-

cussion of key elements missing among the major toolkits and the final section presents 

conclusions from this survey.

Understanding big data

�e term “big data” has become a buzzword and as such, it is often overused and misun-

derstood. While the frameworks we discuss in this paper are able to effectively process 

data of varying sizes and complexities, they were designed with very large data in mind 

and may not be the best choice for certain smaller projects. For this reason, the first step 

in choosing between big data frameworks is to determine if they are needed. In order to 

do this, it is important to have an understanding of what constitutes big data. �is sec-

tion provides definitions of big data and discusses the challenges associated with it.

�ere is no universally agreed-upon definition of big data, but the more widely 

accepted explanations tend to describe it in terms of the challenges it presents. �is is 

sometimes referred to as the “big data problem.” In 2001, Laney [6] described three-

dimensions of data management challenges. �is characterization, which addresses vol-

ume, velocity, and variety, is frequently documented in scientific literature. �ese three 

dimensions (commonly referred to as the 3 V’s) can be understood as follows:

  • Volume is the most obvious of the three, referring to the size of the data. �e massive 

volumes of data that we are currently dealing with has required scientists to rethink 
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storage and processing paradigms in order to develop the tools needed to properly 

analyze it.

  • Velocity addresses the speed at which data can be received as well as analyzed. In the 

“Data processing engines” section, we discuss the differences between batch process-

ing, which works on historical data, and stream processing, which analyzes the data 

in real-time as it is generated. �is also refers to the rate of change of data, which is 

especially relevant in the area of stream processing.

  • Variety refers to the issue of disparate and incompatible data formats. Data can come 

in from many different sources and take on many different forms, and just preparing 

it for analysis takes a significant amount of time and effort.

In the years since Laney’s paper was published, numerous people have proposed addi-

tions to this list and many refer to four or five V’s, adding in Value or Veracity [7]. How-

ever, we are skeptical that these additions add to an overall understanding of big data, so 

we focus our discussion here to the original three.

In 1997, Cox and Ellsworth [8] were among the first authors in scientific literature to 

discuss big data in the context of modern computing. �eir work focused on data visu-

alization, but their observations about the big data problem can easily be extrapolated to 

general data analytics and machine learning. �e big data problem, according to them, 

consists of two distinct issues:

  • Big data collections are aggregates of multiple datasets that are individually manage-

able, but as a group are too large to fit on disk. �e datasets in these collections typi-

cally come from different sources, are in disparate formats, and are stored in separate 

physical sites and in different types of repositories.

  • Big data objects are individual datasets that by themselves are too large to be pro-

cessed by standard algorithms on available hardware. Unlike collections, they typi-

cally come from a single source.

Today, the problem of big data collections is often solved through distributed storage 

systems, which are designed to carefully control access and management in a fault-tol-

erant manner. One solution for the problem of big data objects in machine learning is 

through parallelization of algorithms. �is is typically accomplished in one of two ways 

[9]: data parallelism, in which the data is divided into more manageable pieces and each 

subset is computed simultaneously, or task parallelism, in which the algorithm is divided 

into steps that can be performed concurrently.

It is not uncommon to encounter big collections of big objects as data grows and 

becomes more widely available. �is, coupled with unprecedented access to computing 

power through more affordable high performance machines as well as cloud services, is 

opening up many new opportunities for machine learning research. Many of these new 

directions utilize increasingly complex workflows which require systems built using a 

combination of state-of-the art tools and techniques. One option for such a system is to 

use projects from the Hadoop Ecosystem. �e remainder of this paper provides detailed 

information about these projects and discusses how they can be utilized together to 

build an architecture capable of efficiently learning from data of this magnitude.
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Hadoop ecosystem

Many people consider the terms Hadoop and MapReduce to be interchangeable, but 

this is not entirely accurate. Hadoop was initially introduced in 2007 as an open source 

implementation of the MapReduce processing engine linked with a distributed file sys-

tem [10], but it has since evolved into a vast web of projects related to every step of a 

big data workflow, including data collection, storage, processing, and much more. �e 

amount of projects that have been developed to either complement or replace these 

original elements has made the current definition of Hadoop unclear. For this reason, we 

often hear reference to the Hadoop Ecosystem instead, which encompasses these related 

projects and products. To fully understand Hadoop, one must look at both the project 

itself and the ecosystem that surrounds it. �e Hadoop project itself currently consists of 

four modules [10]:

  • Hadoop distributed file system (HDFS) A file system designed to store large amounts 

of data across multiple nodes of commodity hardware. HDFS has a master–slave 

architecture made up of data nodes which each store blocks of the data, retrieve data 

on demand, and report back to the name node with inventory. �e name node keeps 

records of this inventory (references to file locations and metadata) and directs traf-

fic to the data nodes upon client requests. �is system has built-in fault tolerance, 

typically keeping three or more copies of each data block in case of disk failure. Addi-

tionally, there are controls in case of name node failure as well, in which a system will 

either have a secondary name node, or will write backups of metadata to multiple file 

systems.

  • MapReduce Data processing engine. A MapReduce job consists of two parts, a map 

phase, which takes raw data and organizes it into key/value pairs, and a reduce phase 

which processes data in parallel. A detailed discussion of this processing approach 

can be found in the following section.

  • YARN (“Yet Another Resource Negotiator”) [11] Prior the addition of YARN to the 

Hadoop project in version 2.0, Hadoop and MapReduce were tightly coupled, with 

MapReduce responsible for both cluster resource management and data process-

ing. YARN has now taken over the resource management duties, allowing a sepa-

ration between that infrastructure and the programming model. With YARN, if 

an application wants to run, its client has to request the launch of an application 

manager process from the resource manager, which then finds a node manager. �e 

node manager then launches a container which executes the application process. 

For any readers who are familiar with previous versions of Hadoop, the jobtracker 

responsibilities from MapReduce are now YARN, split between the resource man-

ager, application master, and timeline server (which stores application history), while 

the old tasktracker responsibilities are handled by the node managers. �is change 

has improved upon many of the deficiencies present in the old MapReduce. YARN is 

able to run on larger clusters, more than doubling the amount of jobs and tasks it can 

handle before running into bottlenecks [10]. Finally, YARN allows for a more gen-

eralized Hadoop which makes MapReduce just one type of YARN application. �is 

means it can be left out altogether in favor of a different processing engine.
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  • Common [12] A set of common utilities needed by the other Hadoop modules. It has 

native shared libraries that include Java implementations for compression codecs, 

I/O utilities, and error detection. Also included are interfaces and tools for configu-

ration of rack awareness, authorization of proxy users, authentication, service-level 

authorization, data confidentiality, and the Hadoop Key Management Server (KMS).

�e Hadoop ecosystem is made up of a vast array of projects built on top of and 

around the core modules described above. �ese projects have been designed to aid 

researchers and practitioners in all aspects of a typical data analysis or machine learning 

workflow. Several companies such as Cloudera [13], Hortonworks [14], and MapR [15] 

offer distributions of Hadoop which bundle a number of these projects. Free and enter-

prise versions of the software bundles are available.

�e general structure of the ecosystem can be described in terms of three layers: stor-

age, processing, and management. While the primary focus of this paper is on tools that 

reside in the processing layer, it is important to understand the context of how they can 

be used in a workflow by looking at the makeup of the ecosystem as a whole. An example 

of how tools for different tasks may fit together as part of an analytical stack is shown 

in Fig.  2. �e specific projects listed inside this diagram and discussed in this section 

are examples of commonly used tools, but since the ecosystem is made up of well over 

100 projects, it is not meant to be a comprehensive list. Readers who wish to learn more 

about the tools not discussed in this paper are encouraged to refer to the Hadoop web-

site or [10] for more information.

Storage layer

�e storage layer resides at the lowest level of this stack, and by default it includes the 

HDFS described previously. �ere are also a variety of other options for distributed data 

storage which either run on top of the HDFS or work as standalone systems. �e HDFS 

is not a database, but a file storage system designed for a specific purpose, and it doesn’t 

include all of the functionality that some of the other data storage solutions have. HDFS 

is known for its scalability and fault tolerance, and is a good option for historical data 

that does not need to be edited or accessed frequently, but there are several limitations 

that may impact Hadoop users, in particular one for whom fast random reads or writes 

Fig. 2 The Hadoop ecosystem
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are a priority. Tools do exist to support SQL queries, and they will be discussed in the 

next subsection. HDFS operates on a write-once, read-many paradigm, so if changes are 

needed on even a single data point, the entire file must be rewritten. For these reasons, 

many choose to add one or more storage solutions to their architecture.

Non-relational databases, collectively referred to as NoSQL (Not only SQL), can be 

suitable for machine learning tasks, because they support nested, semi-structured, and 

unstructured data. Databases in this category typically use one of four basic types of data 

models and the choice of database will ultimately depend on the data being stored as 

well as the demands of the project for which it is being used. �e four types of databases 

include:

1. Key-value stores �is is the simplest of the four models, implemented as what is 

essentially a large hash table. Each data item has a unique key pointing to it. �ey 

are fast and highly scalable. Some examples of databases built on this model include 

Voldemort [16] or Redis [17].

2. Document stores �ese can be thought of as nested key-value stores, where a key 

points to a collection of key-value stores rather than simply a value. Examples include 

CouchDB [18] and MongoDB [19].

3. Column-oriented Data is stored in columns rather than the typical row/column 

structure. Columns are grouped into column families. HBase [20] and Cassandra 

[21] are both examples of column-oriented data stores.

4. Graph-based models Designed for data that can be represented as a graph and can be 

used for tasks such as network analysis. �ey are more flexible than the other mod-

els, with no tables or rows. Examples include Titan [22], Neo4J [23], and OrientDB 

[24].

Processing layer

�e processing layer is where the actual analysis takes place. �e foundation of this 

layer is YARN, which allows one or more processing engines to run on a Hadoop clus-

ter. Processing engines will be discussed in detail in the next section. In addition to the 

processing engines, this layer includes a number of different tools that can be used for 

machine learning and data analysis. ML libraries and frameworks will be discussed in 

the “Machine learning toolkits” and “Evaluation of machine learning tools” sections.

In addition to processing frameworks and libraries, this layer includes tools for data 

movement and interaction. Examples of this are data integration tools such as Flume 

[25], Kafka [26], and Sqoop [27]. Flume handles collection, aggregation, and movement 

of log data into HDFS. Kafka is a distributed publish-subscribe messaging system on top 

of HDFS, and Sqoop transfers bulk data between the HDFS and relational databases. On 

the interaction side, we find query engines such as Hive [28] and Drill [29]. Hive que-

ries data stored in the HDFS and NoSQL databases using HiveQL, an extension of ANSI 

SQL which is similar to MySQL. Metadata for tables and partitions is kept in the Hive 

Metastore. Drill performs queries using ANSI SQL and supports self-describing data, in 

which schema is discovered dynamically on read, eliminating the need for data transfor-

mation which is a time-consuming process. It also offers plugins for configuration with 
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Hive allowing for use of the metastore and any user-defined functions that were previ-

ously built.

One of the main drawbacks to using MapReduce is that many algorithms do not trans-

late easily into this pattern [30]. Cascading [31] and Pig [32] aim to address this by offer-

ing high level abstractions which hide some of the complexity inherent to MapReduce 

jobs, thereby simplifying the programming process. Pig offers an execution framework 

and dataflow language called Pig Latin, a scripting language. It supports user-defined 

functions written in Python, Java, JavaScript, and Ruby which are then translated to 

MapReduce jobs. In addition to not requiring the user to think in terms of map and 

reduce, it offers a multi-query execution to batch statements, significantly cutting down 

on the amount of code the programmer has to write. It can be used for machine learning 

tasks, most notably used by Twitter, whose engineers note that it allows learning tasks to 

be executed and tuned using only a few lines of code [33]. Pig runs on MapReduce and 

Tez [34], which is an abstraction of MapReduce that represents data flow in the form of a 

directed acyclic graph.

A similar project, Cascading, offers an Application Programming Interface (API) that 

abstracts the traditional keys and values into tuples with field names and offers a number 

of operations on the tuples that help developers build complex applications more easily 

and in less time. �ey have also announced that upcoming releases will offer support 

for Spark, Storm, and Tez. Cascading primarily supports programming in Java, but also 

offers APIs for ANSI SQL, Predictive Model Markup Language (PMML), Scala, Clojure, 

JRuby, and Python. It also supports easy integration of a large number of different data 

sources.

Management layer

�e management layer includes tools for user interaction and high-level organization. 

�ese include scheduling, monitoring, coordination, and user interface. Oozie [35], a 

workflow scheduler, manages jobs for many of the tools in the processing layer, includ-

ing processing engines, Pig, Sqoop, and Hive, among others. For complex workflows 

which require multiple jobs and tools, it specifies a sequence of actions and coordinates 

between them to complete the tasks. It also facilitates scheduling of jobs which need to 

run on regular intervals.

Zookeeper [36] is a service for coordination and synchronization of distributed sys-

tems. It provides tools to handle coordination of data and protocols and is able to handle 

partial network failures, which are commonplace in distributed systems. It includes APIs 

for Java and C, and also has bindings for Perl, Python, and REST clients.

Hue [37], a web interface for Hadoop projects, supports many of the more widely used 

components of the Hadoop ecosystem. It features file browsers for HDFS and HBase and 

a job browser for MapReduce/YARN. It can be used to manage interactions with Hive, 

Pig, Sqoop, Zookeeper, and Oozie, and in addition also offers tools for data visualization. 

It is compatible with any version of Hadoop and is available in all of the major Hadoop 

distributions.
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Machine learning without Hadoop

While Hadoop is ubiquitous as a big data framework, there are a number of other open 

source options for machine learning that do not use it at all. MOA (Massive Online 

Analysis) [38] is a project related to Weka, which offers online stream analysis on a num-

ber of Weka algorithms and with the same user interface.1 MADlib is a collection of 

SQL-based algorithms designed to run at scale within the database rather than porting 

data between multiple runtime environments. It includes clustering, classification, 

regression, and topic models as well as tools for validation [39]. Dato, formerly 

GraphLab, is a standalone product that can be connected with Hadoop for graph analy-

sis and ML tasks. It was fully open source, but in late 2014, they transitioned into a com-

mercial product. �eir C++ processing engine Dato Core [40] has been released to the 

community on Github along with their interprocess communication library (for translat-

ing between C++ and Python) and graph analytics implementations. �eir machine 

learning libraries are unavailable outside of their enterprise packages. Distributed pro-

cessing on Hadoop enables large-scale learning, and the goal of this paper is to profile 

tools that can do exactly that. Non-distributed tools for machine learning are widely 

available, and are thus more mature for use in projects that do not handle Big Data. 

Using Hadoop for smaller scale workloads would not be advised, as there is overhead to 

distributed processing, and there are fewer algorithm and implementation choices. �is 

paper aims to profile tools that can effectively handle Big Data, therefore projects that do 

not run on Hadoop are outside the scope of this paper and will not be discussed in fur-

ther detail.

Data processing engines

When MapReduce was introduced in 2004 by Google engineers [41], it had some early 

critics [42], but was considered by many to be revolutionary. Regardless of the differing 

opinions on the value of this idea, it paved the road for Hadoop, which has played a sig-

nificant role in ushering in the big data era. In more recent years, MapReduce has begun 

to fall out of favor, particularly in the machine learning community, due to its high over-

head costs, lack of speed, and the fact that many machine learning tasks do not easily 

fit into the MapReduce paradigm. In 2014, Google announced that it was being phased 

out in favor of other projects [43]. Since MapReduce has been decoupled from Hadoop 

through YARN, it is now a lot easier to work with a new engine on an existing cluster, 

and over the course of the past few years, a number of projects have been introduced 

that attempt to solve the issues inherent in MapReduce.

�e processing models used for many of these may be categorized as either batch or 

streaming. A third model, known as bulk-synchronous parallel (BSP), is used for itera-

tive graphing tasks, but will not be discussed in detail in this paper. While graph algo-

rithms are related to ML, they are used more for traditional analytics and the focus of 

this paper is on other types of learning tasks. Examples of tools which employ the BSP 

model are Apache Giraph [44] and Apache Hama [45]. It should be noted though that 

Giraph has not had a commit since mid-2013. Both projects are open source implemen-

tations of Google’s Pregel [46].

1 A related project, SAMOA, does use Hadoop and is discussed in this paper.
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�e remainder of this section will discuss some of the more widely used projects 

which leverage the batch and streaming paradigms. A high-level overview of these pro-

jects is in Table 1. In addition to the underlying processing approach used, here are sev-

eral important considerations for evaluation of these tools:

1. Latency �is refers to the amount of time between starting a job and getting initial 

results. Speed may not be important for every project. If a project is not time-sen-

sitive, a batch system may be preferred for its simplicity, but for projects that are 

require real time or near-real time results, a streaming platform would be advised.

2. �roughput �roughput measures the amount of work done over a given time 

period. �is can be thought of as a measure of efficiency.

3. Fault tolerance All of the platforms discussed in this paper are fault-tolerant but the 

methods which they use to achieve that may vary. We look at the mechanisms that 

are in place to detect failures, as well as how the platform is able to recover after such 

a failure occurs.

4. Usability Despite the interfaces and abstractions discussed in the previous section 

and libraries for machine learning that will be discussed later in this paper, the typi-

cal user will spend a good deal of time interacting with the engine itself. With this in 

mind we ask, how difficult is it to install and configure? What interface language(s) 

does it use? How difficult is it to program for?

5. Resource expense In this paper, we consider expense mostly in terms of time involved 

from setting up a cluster to deploying the model and maintaining it after the fact. 

Most of this is covered in usability. While we don’t examine financial costs in this 

paper, they are important to consider as well. �is will depend on whether the user 

has access to a high performance computing cluster. Purchasing the necessary equip-

ment is not trivial, and the resources needed by processors can vary, so one decision 

may affect the other. Alternatively, clusters can be set up on cloud services such as 

Amazon EC2 [47] or Microsoft Azure [48], which charge on-demand prices based 

on compute time and storage space used.

Table 1 Data processing engines for Hadoop

Current 
stable 
release 
(as 
of June 1, 
2015)

Execution 
model

Supported 
languages

Associ-
ated ML 
tools

In-
memory 
process-
ing

Low 
latency

Fault  
tolerance

Enterprise 
support

MapReduce 2.7.0 Batch Java Mahout × × ✓ ×

Spark 1.3.1 Batch, 
streaming

Java, 
Python, R, 
Scala

MLlib, 
Mahout, 
H2O

✓ ✓ ✓ ✓

Flink 0.8.1 Batch, 
streaming

Java, Scala Flink-ML, 
SAMOA

✓ ✓ ✓ ×

Storm 0.9.4 Streaming Any SAMOA ✓ ✓ ✓ ×

H2O 3.0.0.12 Batch Java, 
Python, R, 
Scala

H2O, 
Mahout, 
MLlib

✓ ✓ ✓ ✓
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6. Scalability All of the processing engines discussed in this paper were designed to be 

scalable, but the different methods employed have varying degrees of success. For 

this reason, it is important to examine whether there are bottlenecks when data input 

or cluster sizes grow. Additionally, these engines were designed for very large data, 

but many real-world use cases involve at least some processing of smaller datasets. 

We look at how these are handled as well.

�e approaches to processing differ in terms of throughput and resource expense, and 

there are additional platform-dependent features that should also be used for evalua-

tion of these projects. To provide a comprehensive comparison, fault-tolerance methods, 

scalability, efficiency, interface language, and usability are covered below.

MapReduce

�e MapReduce approach to machine learning performs batch learning, in which the 

training data set is read in its entirety to build a learning model. �e biggest drawback to 

this batch model is a lack of efficiency in terms of speed and computational resources. In 

a typical batch-oriented workflow, the set of training data is read from the HDFS to the 

mapper as a set of key-value pairs. �e output, a list of keys and their associated values, 

is written to disk. In a classification task, for example, the initial key-value pair might be 

a filename and a list of instances, and the intermediate output from the mapper would 

be a list of each instance with its associated class. �is intermediate data is then read 

into one or more reducers to train a model based on this list. �e final model is then 

once again written to disk. �is process is illustrated in Fig. 3a.

�ese frequent I/O operations can become very expensive in terms of time, computa-

tional resources, and network bandwidth. Any model parameters that need to be tuned 

after the initial evaluation stage further add to the costs. �ese issues become more 

apparent in cases where it is necessary to update models with changing data, which is 

often the case in real-world ML production environments. While this approach may be 

suitable for certain projects such as analyzing past events, it becomes problematic when 

data evolves, as the full process must be repeated each time a model requires updating. 

Data must be in its final form before beginning a MapReduce job, as the mechanism 

does not have the ability to wait for new data to be generated. MapReduce is compatible 

with the Mahout library for ML, and the programming interfaces discussed in the previ-

ous section can be used as well. We mentioned Twitter, who built their analytics stack 

around Pig and performs ML tasks using Pig’s user-defined functions [33]. �ere is also 

a framework called Conjecture [49], which was developed by Etsy.com engineers for par-

allelized online learning in Scalding, a Scala wrapper for Cascading.

�e fault tolerance mechanism employed by MapReduce is achieved through data rep-

lication, which can affect scalability by increasing the size of data even further. �e need 

for data replication has been found to be responsible for 90  % of the running time of 

machine learning tasks in MapReduce [50] and is perhaps the biggest impediment to 

fast data processing. Another deficiency of MapReduce is that it does not easily allow 

for iterative processing, making it unsuitable for many machine learning projects. While 

it is possible to achieve iterative computation in MapReduce, this must be programmed 

manually through multiple MapReduce jobs requiring careful orchestration of execution 
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Fig. 3 Comparison of processing models for various processing engines: a MapReduce, b Spark & Flink, c 

Storm, d H2O, and e H2O with Sparkling Water
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[51]. �is process is complicated and unable to address any of the previously discussed 

issues relating to computational resources.

HaLoop [51], developed at the University of Washington, was an early project aimed at 

addressing these concerns via a programming interface which handles loop control and 

task scheduling. However, it lacks ongoing development, and is only compatible with 

older versions of Hadoop [52].

Spark

Spark [53], which was initially developed at the University of California, Berkeley [54] 

and is now an Apache top-level project, is based on MapReduce but addresses a number 

of the deficiencies described above. Like HaLoop, it supports iterative computation and 

it improves on speed and resource issues by utilizing in-memory computation. Spark’s 

approach to processing has seen widespread adoption in both research and industry. �e 

main abstractions used in this project are called Resilient Distributed Datasets (RDD), 

which store data in-memory and provide fault tolerance without replication [50]. RDDs 

can be understood as read-only distributed shared memory [55]. �is model, illustrated 

in Fig. 3b, streamlines the learning process through in-memory caching of intermediate 

results, significantly cutting down on the number of read and write operations necessary.

�e RDD API was extended in 2015 to include DataFrames, which allow users to 

group a distributed collection of data by column, similar to a table in a relational data-

base. �ey can be thought of as RDDs with Schema [56]. For example, an RDD of key-

value pairs can be converted into a DataFrame which is represented as a table with one 

column each for key and value. For users familiar with R or Python, the implementations 

are similar. DataFrames can be created from an existing RDD, Hive table, HDFS or a 

number of other data sources.

Spark’s speed was demonstrated in October 2014, when it won the Daytona GraySort 

Benchmark Contest [57]. �e previous record was held by Hadoop/MapReduce, for 

sorting 102.5 TB on 2100 nodes in 72 min. Spark sorted 100 TB on 206 nodes in only 

23 min, three times faster with one tenth the number of machines. It was then used to 

sort a petabyte in 234 min on 190 nodes (though this wasn’t an official part of the contest 

and was not posted with the winners) [58]. Additionally, it has been noted that Spark is 

easier to program [50, 59] and part of that reason is due to the fact that it can be coded 

in Java, R, Python, or Scala. For machine learning tasks, Spark ships with the MLlib [60] 

and GraphX [61] libraries and the latest version of the Mahout [62] library offers a num-

ber of Spark implementations as well.

In [59], Spark’s performance was tested against three other machine learning plat-

forms, SimSQL, GraphLab, and Giraph. �ey were run through an extensive set of tests 

in which they each trained five complex models on clusters of increasing size. �e study 

compared running times on each platform for each cluster size, as well as how much 

code was necessary for each implementation. �e results of the experiments varied, but 

generally showed Spark to be slower than the graphing implementations but faster than 

SimSQL. �ough implementation was slower, it required far less code than the graphing 

platforms on all experiments. Additionally, for Spark, they examined the running time in 

both Java and Python for comparison. While they found the Python implementation to 

be easy to use and the code to be clean and succinct, they noted that it was significantly 
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slower than Java on most tests. �e exception to this was one problem with 100-dimen-

sional linear algebra, in which Java was eight times slower than Python, which was pre-

sumably an issue with Java, rather than with Spark’s runtime. �e authors noted that 

Spark required a good deal of tuning and experimentation to get large or complicated 

problems working, and they were unable to figure this out for all problems, causing fail-

ures on several tests. �ey could not agree on the reason for these problems, but one 

theory put forth attributed these failures to heavy reliance on techniques like lazy evalu-

ation for speed and job scheduling. It should be noted, however, that Spark version 0.7.3 

was used in these experiments and many improvements have been made to the plat-

form (which is now in version 1.3.1) since then. Many of Spark’s issues can be reasonably 

attributed to the fact that it is still young. �ere is a large team of contributors working 

on it all the time, so issues are often resolved even before studies are published.

Other concerns about Spark’s approach deal with the distribution of data across nodes. 

Data transfers take place throughout the network, and because of the job isolation mech-

anism present, only one driver can serve requests to all of its RDDs, potentially leading 

to a bottleneck within the network when there are multiple requests to multiple nodes 

[52, 63, 64]. However, a 2015 study by Ousterhout et al. [65] used block-time analysis to 

identify performance bottlenecks in Spark and they found that improving network per-

formance only had a minimal effect on job completion time while the real bottlenecks 

were actually occurring on the CPU rather than I/O as previously thought.

While the iterative batch approach to data processing improves on many of the defi-

ciencies of the MapReduce paradigm, it still does not offer the ability to process data in 

real-time. Online data processing may be useful for projects such as clickstream analysis 

or event detection. Spark offers Spark Streaming, which uses micro-batching, a tech-

nique that may be thought of as a simulation of real-time processing. In this approach, 

an incoming stream is packaged into sequences of small chunks of data, which can then 

be processed by a batch system [66]. While this may be adequate for many projects, it is 

not a true real-time system. It is noted in [67] that this approach makes load balancing 

easier and is more robust to node failures. Additionally, the authors mention that while 

this model is slower than true streaming, the latency can be minimized enough for most 

real-world projects. Spark also offers integration of its streaming and batch options for 

more powerful interactive applications.

Storm

Storm [68] is used for processing data in real-time and was initially conceived to over-

come deficiencies of other processors in collecting and analyzing social media streams 

[69]. Development on Storm began at BackType, a social media analytics company and 

continued at Twitter after a 2011 acquisition. �e project was open sourced and became 

an Apache top-level project in September 2014 [70]. �e machine learning commu-

nity has been placing growing importance on real-time processing [71], and as a result, 

Storm is seeing increased adoption both in production and in research environments.

�e Storm architecture consists of spouts and bolts. A spout is the input stream (e.g. 

Twitter streaming API), while bolts contain most of the computation logic, processing 

data in the form of tuples from either the spout or other bolts. Networks of spouts and 

bolts, which are represented as directed graphs, are known as topologies. An example 
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of this is in Fig. 3c. �e project is primarily implemented in Clojure, but initially used 

Java for all APIs to encourage more widespread adoption. It now includes �rift [72], a 

framework for cross-language development, which allows topologies to be defined and 

submitted using any programming language [73]. Storm uses real-time streaming, but 

also offers micro-batch via its Trident API.

Fault tolerance is achieved by way of the topology: Spouts will keep messages in their 

output queues until the bolts acknowledge them. Messages will continue to be sent out 

until they are acknowledged, at which time they will be dropped out of the queue. A 

master node, known as Nimbus because it runs the Nimbus daemon, tracks the heart-

beats of worker nodes. If a worker node dies, then Nimbus will reassign the workers 

to another node. Nimbus also handles the responsibility of assigning tasks to workers, 

similar to jobtracker in MapReduce. �e biggest difference is if the jobtracker dies, all 

running jobs are lost, but if Nimbus dies, it is automatically restarted [74].

Storm was built as a stand-alone system independent from Hadoop, but since Hadoop 

moved to YARN, work has been done to integrate the two projects. Hortonworks added 

Storm to their Hadoop distribution beginning in version 2.1 and Yahoo! is working on an 

integration as well [75]. �e principal developer of Storm, Nathan Marz, coined the term 

“Lambda Architecture” in [76], describing a generalized approach to combine multiple 

paradigms into one system by breaking down processing into three layers: batch, serv-

ing, and speed. �e batch layer stores the master dataset and computes views which are 

sent to the serving layer for indexing and keeping track of the most current results. �e 

speed layer looks at new data only, as it arrives, and makes updates in real-time. New 

data is sent to both the batch layer and the speed layer for computation and results from 

each are merged when the system is queried. In terms of the processing engines we have 

discussed so far, the lambda architecture can be seen as a way to quickly run jobs on 

MapReduce and Storm simultaneously and combine the results. �is unifies the pro-

cessing of both real-time and historical data.

Storm does not ship with a machine learning library, but SAMOA, a platform for min-

ing big data streams, currently has implementations for classification and clustering 

algorithms running on Storm. H2O [77] has also offered a way to link the two projects 

[78]. Others have created their own implementations of various learning algorithms. For 

example, Wasson and Sales [79] describe the implementation of a particle learning algo-

rithm built on Storm. Trident-ML [80] offers a library of learning algorithms built on 

Storm, but has not been updated since early 2014.

Flink

Flink [81] was developed at the Technical University of Berlin under the name Strato-

sphere [82]. It graduated the Apache incubation stage in January 2015 and is now a top-

level project. It offers capability for both batch and stream processing, thus allowing for 

the implementation of a Lambda Architecture as described above. It is a scalable, in-

memory option that has APIs for both Java and Scala. It has its own runtime, rather than 

being built on top of MapReduce. As such, it can be integrated with HDFS and YARN, 

or run completely independent from the Hadoop ecosystem. Flink’s processing model 

applies transformations to parallel data collections [83, 84]. Such transformations gen-

eralize map and reduce functions, as well as functions such as join, group, and iterate. 
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Also included is a cost-based optimizer which automatically selects the best execution 

strategy for each job. Flink is also fully compatible with MapReduce, meaning it can run 

legacy code with no modifications [81].

Like Spark, Flink also offers iterative batch as well as streaming options, though their 

streaming API is based on individual events, rather than the micro-batch approach that 

Spark uses. �is is the same model that Storm uses for true real-time processing. Con-

nectors are offered which allow for processing data streams from Kafka, RabbitMQ (a 

platform-independent messaging system), Flume, Twitter, and user-defined data sources.

�e project is still in its infancy but machine learning tools are in development. Flink-

ML [85], a machine learning library, was introduced in April 2015. Additionally, an 

adapter is available for the SAMOA library, which offers learning algorithms for stream 

processing. Ni [55] performed a comprehensive comparison of the Flink and Spark plat-

forms and examined differences from a theoretical perspective as well as a practical one. 

In general, Spark was found to be superior in the areas of fault tolerance and handling of 

iterative algorithms, while Flink’s advantages were the presence of optimization mecha-

nisms and better integration with other projects. In terms of practical execution, Flink 

used more resources but was able to finish jobs in less time. Flink has undergone major 

changes since this study was published and more updated comparisons are needed. �e 

Flink team published benchmark results using Grep and PageRank, and Flink’s execu-

tion was significantly faster than that of Spark [86], but independent tests are needed to 

verify these claims.

H2O

H2O is an open source framework that provides a parallel processing engine, analyt-

ics, math, and machine learning libraries, along with data preprocessing and evalua-

tion tools. Additionally, it offers a web-based user interface, making learning tasks more 

accessible to analysts and statisticians who may not have strong programming back-

grounds. For those who wish to tweak the implementations, it offers support for Java, 

R, Python, and Scala. In addition to its native processing engine, which is illustrated in 

Fig. 3d, they have also released a project called Sparkling Water, shown in Fig. 3e, which 

integrates Spark and Spark Streaming into their platform. �is is only supported in ver-

sion 3.0. Additional efforts have been made towards integration with Storm for real-time 

streaming. H2O’s engine processes data completely in-memory using multiple execution 

methods, depending on what is best for the algorithm used. �e general approach used 

is Distributed Fork/Join, a divide-and-conquer technique, which is reliable and suitable 

for massively parallel tasks. �is is a method which breaks up a job into smaller jobs 

which run in parallel, resulting in dynamic fine-grain load balancing for MapReduce jobs 

as well as graphs and streams. �ey claim to be the fastest execution engine, but as of 

the time of this writing, no academic studies have been published which verify or refute 

these claims and further research is needed in this area.

Machine learning toolkits

To perform machine learning tasks in Hadoop, one does not need a special platform or 

library. A person with programming skills may interact directly with any of the above 

platforms to roll their own code and many choose to go this route. A variety of machine 
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learning toolkits have been created to facilitate the learning process but many research-

ers and practitioners reject them for various reasons, most often because they lack 

needed features or are difficult to integrate into an existing environment. One issue is 

that machine learning is a broad field of study and many of the available toolkits lack 

important functionality. Another problem is that without true expertise in the areas of 

programming and system architecture, many people lack a full understanding of what 

the various platforms are capable of. �is is exacerbated by the fact that there has been 

little comprehensive research into many popular frameworks. Research moves much 

slower than development, so often by the time information becomes abundant, the 

community has already moved on to different tools. However, distributed learning algo-

rithms are not trivial to implement, and those who do not wish to reinvent the wheel 

may find that they can save themselves significant effort by using or extending exist-

ing implementations. Table 2 provides an overview of four of the more comprehensive 

machine learning packages that run on Hadoop. Only distributed algorithms are listed 

in this table. Mahout includes several implementations that are not distributed and 

therefore not included, but they are discussed in the “Evaluation of machine learning 

tools” section.

Selection criteria

In a research or production environment, the choice of machine learning packages or 

specific algorithms will come down to a variety of different factors, mostly dependent on 

the needs of the specific group or project. A number of authors have tackled this subject, 

including [87–89]. Based in part on these studies, we offer a list of important consid-

erations for evaluation of machine learning tools. �ese are presented in no particular 

order, since the prioritization of these factors will be dependent on particular use cases.

  • Scalability �is should be considered with regards to both the size and complexity 

of the data. One should consider what their data looks like now, as well as what data 

they might be working with in the future, in order to determine if a particular toolkit 

will be appropriate. Scalability should be looked at in both directions, as some of the 

best tools for big data perform poorly on small data, and vice versa. �is is also true 

for other data characteristics, such as dimensionality.

  • Speed �e biggest factor affecting speed is which processing platform the library or 

algorithm is running on rather than the library or algorithm itself. However, some 

libraries are tied to specific platforms, so this is still an important consideration when 

selecting ML tools. As noted in the previous section, speed may not be important 

for every project. If models do not require frequent updating, a batch system may 

be preferred for its simplicity, but for models that are updated often, this may be a 

crucial concern.

  • Coverage �is refers to the range of options contained in the toolkit in terms of dif-

ferent classes of machine learning as well as variety of implementations in each class. 

None of the available tools for big data provide a selection as comprehensive as some 

non-distributed frameworks such as Weka, but their scope may range from only a 

few algorithms to around two dozen. As many of the tools are difficult to set up and 

learn, it is important to consider future needs as well as current.
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  • Usability In this case, one must weigh their project goals against the skills and exper-

tise of their group. Usability may be considered in terms of initial setup, ongoing 

maintenance, programming languages available, user interface available, amount 

Table 2 Overview of machine learning toolkits

a Real-time streaming implementation

b Single machine, trained using Stochastic gradient descent

Mahout MLlib H2O SAMOA

Interface language Java Java, Python, Scala Java, Python, R, Scala Java

Associated platform MapReduce, spark 
(H2O and flink in 
progress)

Spark, H2O H2O, Spark, MapRe-
duce

Storm, S4, Samza

Current version (as of 
June 1, 2015)

0.10.1 1.3.1 3.0.0.12 0.2.0

Graphical user inter-
face

– – ✓ –

Classification and regression algorithms

 Decision tree – ✓ – ✓
a

 Logistic regression ✓
b

✓
a

✓ –

 Naïve Bayes ✓ ✓ ✓ –

 Support vector 
machine

– ✓ – –

 Gradient boosted 
trees

– ✓ ✓ –

 Random forest ✓ ✓ ✓ –

 Adaptive model rules – – – ✓
a

 Generalized linear 
model

– – ✓ –

 Linear regression – ✓
a

✓ –

Clustering algorithms

 k-Means ✓ ✓ ✓ –

 Fuzzy k-means ✓ – – –

 Streaming k-means ✓ ✓
a – –

 Power iteration – ✓ – –

 Spectral clustering ✓ – – –

 CluStream – – – ✓
a

Collaborative filtering (cf ) algorithms

 User-based CF ✓ – – –

 Item-based CF ✓ – – –

 Alternating least 
squares

✓ ✓ – –

Dimensionality reduction and feature selection tools

 Principal component 
analysis

✓ ✓ ✓ –

 QR decomposition ✓ – – –

 Singular value 
decomposition

✓ ✓ – –

 Chi squared ✓ – – –

Additional algorithms

 Association rule 
learning

✓ ✓ – ✓
a

 Deep learning – – ✓ –

 Topic modeling ✓ ✓ – –
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of documentation, or availability of a knowledgeable user community. If there is an 

existing analytics workflow, one should consider how well the tool can be integrated 

into this.

  • Extensibility Machine learning tasks are rarely one-size fits all. Whether it’s some-

thing as simple as setting the value of k in a k-means clustering task [90], or building 

an ensemble of learners [91], most jobs will require some amount of parameter tun-

ing before a model is deployed. �e implementations included in the various tools 

are often used as building blocks towards new platforms or systems, so it is impor-

tant to evaluate them in terms of how well they are able to fulfill this role.

Evaluation of machine learning tools

�is section provides an in-depth look at the strengths and weaknesses of the various 

machine learning tools for Hadoop. Published literature using related tools is reviewed 

here if it is available. For a complete look at how the tools and engines fit together, Fig. 4 

illustrates the relationships between processing engines, machine learning frameworks, 

and the algorithms they implement.

Mahout

Mahout is one of the more well-known tools for ML. It is known for having a wide selec-

tion of robust algorithms, but with inefficient runtimes due to the slow MapReduce 

engine. In April 2015, Mahout 0.9 was updated to 0.10.0, marking something of a shift 

in the project’s goals [92]. With this release, the focus is now on a math environment 

called Samsara, which includes linear algebra, statistical operations, and data structures. 

�e goal of the Mahout-Samsara project is to help users build their own distributed 

Fig. 4 Maching learning frameworks and their associated processing engines and learning algorithms
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algorithms, rather than simply a library of already-written implementations. �ey still 

offer a comprehensive suite of algorithms for MapReduce and many have been opti-

mized for Spark as well. Integrations with H2O and Flink are currently in development. 

�is version is very new, so there is no published literature on it at the time of this writ-

ing other than the initial announcement by the developer team introducing the new fea-

tures. Because most of the old algorithm implementations are still included, the rest of 

this section focuses on versions 0.9 and earlier.

Among the more commonly cited complaints about Mahout is that it is difficult to set 

up on an existing Hadoop cluster [93–95]. Additionally, while a lot of documentation 

exists for Mahout, much of it is outdated and irrelevant to people using the current ver-

sion. �e lack of documentation, a problem common to many machine learning tools, 

is partially alleviated by an active user community willing and able to help with many 

issues [96, 97]. One problem with using Mahout in production is that development has 

moved very slowly; version 0.10.0 was released nearly seven and a half years after the 

project was initially introduced. �e number of active committers is very low, with only 

a handful of developers making regular commits.

�e algorithms included in Mahout focus primarily on classification, clustering and 

collaborative filtering, and have been shown to scale well as the size of the data increases 

[98]. Additional tools include topic modeling, dimensionality reduction, text vectoriza-

tion, similarity measures, a math library, and more. One of Mahout’s most commonly 

cited assets is its extensibility and many have achieved good results by building off of 

the baseline algorithms [87, 99, 100]. However, in order to take advantage of this flex-

ibility, strong proficiency in Java programming is required [87, 95, 101]. Committer 

Ted Dunning noted “It’s not a product. It’s not a package. It’s not a service. Batteries are 

not included [102].” Some researchers have cited difficulty with configuration or with 

integrating it into an existing environment [33, 93–95]. On the other hand, a number 

of companies have reported success using Mahout in production. Notable examples 

include Mendeley [103], LinkedIn [104], and Overstock.com [102], who all use its rec-

ommendation tools as part of their big data ecosystems. Overstock even replaced a com-

mercial system with it, saving a significant amount of money in the process.

Classi�cation

Classification algorithms currently offered in Mahout are Logistic Regression, Naïve 

Bayes, Random Forest, Hidden Markov Models, and Multilayer Perceptron. �ere has 

been some additional work towards implementing support vector machines, but this 

approach is not currently available. Of these algorithms, only Naïve Bayes and Ran-

dom Forest are parallelized. �ere are no studies that we are aware of that have utilized 

Mahout’s implementations of Hidden Markov Models or Multilayer Perceptron. �is is 

most likely due to the fact that they are not parallelized.

Logistic Regression is trained via Stochastic Gradient Descent (SGD), negating the 

need for parallelization [105]. �is implementation is favorable due to speed and robust-

ness in the face of new data, but the lack of parallelization may be the reason its use 

seems to be sporadic. In benchmark tests among different tools [106], Mahout’s imple-

mentation of Logistic Regression with SGD was left out of that test entirely. �e authors 

stated that its implementation is too communication intensive and to include it in the 
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comparison would not be fair to Mahout. A different study [107] found Mahout’s imple-

mentation to be particularly slow in processing sparse data, and it did not fare much bet-

ter on dense data. Peng et al. [108] compared different approaches to Logistic Regression 

and noted that Mahout’s had poor precision, particularly on imbalanced data, but that 

it has good scalability and is an example of a sequential algorithm that can train mas-

sive data in acceptable time. �ey recommend Mahout for situations when only a single 

machine with limited memory is available.

Mahout’s implementation of Naïve Bayes is based on [109]. �ough this algorithm’s 

(often inaccurate) assumptions of independence may seem counterintuitive, it generally 

performs quite well in real-world situations, but the performance begins to decline when 

working with data that is highly imbalanced or dependent [110]. For this reason, Mahout 

also includes an implementation for Complementary Naïve Bayes, which bases the pre-

dictions for class C on the samples belonging to C’ (all classes other than the one we are 

predicting). Both versions have some overhead for training, due to their parallel execu-

tion, so they are most effective when using very large data and not recommended for 

smaller datasets [111]. Due to its simplicity, reliability, and ease of use, Mahout’s imple-

mentation of Naïve Bayes is often a go-to learner for those looking to demonstrate or 

test other parts of their system. For example, it was used by [112–114] to test and dem-

onstrate the capability of new data processing engines.

Random Forest is also popular due to its high accuracy and time efficiency [115]. In 

terms of scalability, Racette et al. [116] compared it with R to predict global conflicts. R 

crashed when attempting to build more than 250 trees but they were able to use Mahout 

to build 10,000 on a single node without problems. It should be noted that this is an 

unfair comparison since R is not built for computation of big data. More research is 

needed to compare Mahout with similar tools to itself, such as the ones discussed in 

this paper. Mahout’s Random Forest implementation has been applied across many dif-

ferent application domains, but has been used particularly often in healthcare-related 

studies. It has been used to predict the severity of motor neuron disease [117], identify 

high risk patients [118], and predict the risk of readmission for congestive heart failure 

patients [119]. It has also been used as part of a general predictive healthcare analytics 

framework.

Many studies have described building frameworks for practical machine learning 

using Mahout. One example is at Honeywell [120], where they built a cloud comput-

ing platform combining HBase, Mahout, other analytics tools, and a web interface. In it, 

they utilized Mahout’s Random Forest and Naïve Bayes algorithms to predict events and 

failures in auxiliary power units before they cause operational interrupts. �is system 

was able to increase predictive accuracy for auto-shutdown events by a factor of more 

than three.

Clustering

Mahout’s library uses several variations of the popular k-Means Clustering algorithm, 

including the traditional k-Means, Fuzzy k-Means, and Streaming k-Means. Spectral 

Clustering is also supported. Esteves et al. [101] looked at the performance of Mahout’s 

implementation of k-Means on various sizes of input files and confirmed that Mahout 

scales very well to larger datasets, but probably would not be a good choice for smaller 
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ones. Esteves and Rong [121] compared the speed and quality of the traditional and 

fuzzy implementations of this algorithm by clustering Wikipedia articles. Most experi-

ments were performed 10 times each and they noticed large variations in execution time 

for the different runs. On average, fuzzy c-means converged faster with less iterations, 

but k-means was faster on some runs, showing how dependent these measures are on 

the initial seeding of the centroids. �is issue of unpredictable results due to the ini-

tial centroid placement has also been noted by [122]. While they initially expected bet-

ter results from fuzzy k-means due to the inclusion of overlaps, their observed results 

showed the opposite—centroids were too close together, so the majority of the samples 

had membership in all clusters. �is was attributed to the high dimensionality of the fea-

ture vectors, because when they normalized the features during pre-processing it failed 

to show many of the characteristics that could have better divided the data. In general, 

k-means produced much more meaningful results than fuzzy k-means, leading to the 

conclusion that fuzzy k-means is not advised for datasets with high levels of noise.

To the best of our knowledge, no research on Mahout’s streaming k-means algorithm 

has been published. However, Dan Filimon, the designer of Mahout’s implementation, 

presented it at Berlin Buzzwords 2013 [122], and reported his own results from com-

parisons of k-means and streaming k-means. He found the quality of the clusters formed 

by each to be comparable, but the streaming implementation was significantly faster. In 

creating 20 clusters, he found the streaming implementation to be 2.4 times faster, and 

after going up to 1000 clusters, it finished 8 times faster. To the best of our knowledge 

this has not yet been independently verified.

In a comparison study of different Spectral Clustering algorithms, Gao et  al. [123] 

noted that Mahout’s standard implementation did not scale to datasets larger than 215 

instances. However, after some modifications and the addition of local sensitivity hash-

ing as a preprocessing step, they were able to achieve processing times more than an 

order of magnitude faster than any other implementation.

Collaborative �ltering

Mahout is probably the best-known framework for collaborative filtering tools, also 

known as recommendation engines. �e selection of tools they offer in this area is far 

more robust than what is offered in any of the other toolkits. Currently, Mahout offers 

implementations for user-based recommendations, item-based based recommenda-

tions, and several variations of matrix factorization. Mahout also offers a number of 

tools to compute the similarity measures of any of the above recommenders. �ese 

include Pearson correlation, Euclidean distance, Cosine similarity, Tanimoto coefficient, 

log-likelihood, and others. Evaluation of recommenders is tricky, due to the nature of the 

task, so if testing a system using feedback from actual users is not possible, Mahout pro-

vides a hold-out test, in which a portion of the training data is set aside to use for testing 

[111].

In a comparison between MLI (an API for distributed machine learning built on 

Spark), GraphLab, Mahout, and MATLAB of collaborative filtering with alternating 

least squares [106], it was observed that Mahout’s recommenders are fairly easy to set up 

on an existing cluster but significant tuning is required to run them effectively on large 

datasets while ensuring good performance. Mahout’s implementation had significantly 
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more lines of code, was slower on all datasets, and didn’t scale as well as any of the oth-

ers. �ere is some disagreement on scalability though, as “proven scalability” is cited by 

[124] as one of Mahout’s strengths in this area. However, the same study criticized its 

lack of built-in hybrid recommenders, support for groups, or context awareness.

Some of these issues are likely indicative of a problem with MapReduce rather than the 

Mahout code. Iterative algorithms are known not to run well on Hadoop/MapReduce 

because of the need to access data and variables from disks [125]. However, to the best 

of our knowledge, Mahout’s implementation has not been formally benchmarked on a 

memory-based platform such as Spark or H2O, and until this happens, it is difficult to 

properly judge the scalability of the actual code. Also not explored in these studies is the 

fact that Mahout’s recommenders are designed to be highly extensible, so good or bad 

performance on a baseline implementation may not be indicative of what the tools are 

capable of when tuned properly for a specific application or dataset. A study designed 

to compare the baseline algorithms offered out-of-box to various customized versions 

found significant improvement in performance when employing new techniques such 

as significance weighting and mean-centered prediction [98]. Mendeley, an applica-

tion used by students and researchers to organize and share reference material, lever-

ages Mahout’s collaborative filtering algorithms to help users discover new articles and 

papers [103]. When evaluating the item-based recommender, they determined it was 

efficient but could be improved upon. By allocating additional mappers and reducers 

and using an appropriate partitioner, they were able to reduce processing time by 63 %.

Said and Bellogín [126] stress the importance of having clear guidelines in comparison 

of recommender systems to allow for reproducibility and comparison of results. �ey 

note that a true comparison of results from different recommender systems is difficult 

due to the many different designs available, as well as myriad differences in implementa-

tion strategies from modification and tuning. With that in mind, they looked at three 

popular frameworks which include Mahout, LensKit, and MyMediaLite, and compared 

various research papers based on the reproducibility of the results. For each framework, 

a controlled evaluation was performed as well as one using the framework’s internal 

evaluation methods. �e results of the controlled evaluation showed Mahout’s perfor-

mance to be consistent and fast for all algorithms, but its performance was still slightly 

slower than Lenskit. �e authors note that these results are specific to the datasets used 

and may differ when running on datasets with different characteristics. When consider-

ing root-mean-squared error, Mahout was the worst of the three. �is study only used 

non-distributed implementations from Mahout for fair comparisons, so their observa-

tions should not be extrapolated to the distributed implementations offered.

MLlib

MLlib covers the same range of learning categories as Mahout, and also adds regression 

models, which Mahout lacks. �ey also have algorithms for topic modeling and frequent 

pattern mining. Additional tools include dimensionality reduction, feature extrac-

tion and transformation, optimization, and basic statistics. In general, MLlib’s reliance 

on Spark’s iterative batch and streaming approaches, as well as its use of in-memory 

computation, enable jobs to run significantly faster than those using Mahout [88, 127]. 
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However, the fact that it is tied to Spark may present a problem for those who perform 

machine learning on multiple platforms [128].

MLlib is still relatively young compared to Mahout. As such, there is not currently an 

abundance of published case studies that have used this library, and there is very little 

research providing meaningful evaluation. �e research that has been published indi-

cates it is considered to be a relatively easy library to set up and run [129], helped in 

large part by the fact that it ships as part of its processing engine, thus avoiding some of 

the configuration issues people have reported with Mahout. Zheng and Dagnino [127] 

note that the underlying optimization primitives make it easy to extend existing algo-

rithms or write new parallel implementations. �ere have been questions raised about 

performance and reliability of their algorithms and more research needs to be done in 

this area [127]. Efficiency issues have also been noted due to slow convergence requiring 

a large number of iterations as well as high communication costs [130, 131]. Other stud-

ies [129, 131, 132] have discussed problems in how the implemented tools handle less-

than-ideal data such as very low or very high dimensional vectors.

�e documentation is thorough, but the user community is not nearly as active as 

the community developing for it. �is issue is expected to improve as more people are 

migrating from MapReduce to Spark. �e large and active group of developers means 

that many complaints are fixed before they are even published. Notable examples of 

companies that use MLlib in production are OpenTable and Spotify [133], both for their 

recommendation engines.

Algorithms

For most of its lifetime, much of the effort that has gone into this project has focused on 

developing the Spark platform rather than expanding libraries. �e focus has been on 

developing a few widely-understood algorithms well rather than the grab-bag approach 

taken by Mahout. Recently, however, they have upped their efforts in this area and 

expanded their offerings. One would expect them to stay on this track given the increas-

ingly widespread adoption of the Spark platform. For classification, they have Support 

Vector Machines, Logistic Regression, Naïve Bayes, Decision Trees, Random Forest, 

and Gradient-Boosted Trees. Clustering algorithms include k-Means, Gaussian Mixture, 

and Power Iteration Clustering. �ey offer implementations for Linear Regression and 

Isotonic Regression, and one collaborative filtering algorithm using Alternating Least 

Squares.

For online learning, streaming versions of Logistic Regression, Linear Regression, and 

k-Means Clustering are included. For all other algorithms, models can be learned offline 

using historic data and applied online to new streaming data. MLlib includes APIs for 

development in Scala, Java and Python, but not every tool is available in all languages.

ML pipelines

As we have discussed throughout this paper, building machine learning pipelines can be 

a difficult task, particularly when working with a combination of disparate tools. Spark 

ML, a set of uniform APIs for creation and tuning of pipelines was introduced in ver-

sion 1.2 to address these issues, making it easier to combine multiple algorithms into 

one workflow. �is package includes tools for dataset transformations and combining 
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algorithms. It works by representing a pipeline as a sequence of dataset transformations. 

An easy example of this is to think of a learner which transforms a DataFrame with 

features into one with predictions. �is package is designed to handle all steps of the 

learning process, starting with importing data from a source, to extracting features, and 

training and evaluating models.

MLbase

�ough it is not currently available, there has been ongoing research and development at 

Berkeley’s AMP lab on a platform called MLbase, which wraps MLlib, Spark, and other 

projects to make machine learning on data sets of all sizes accessible to a broader range 

of users [134–136]. In addition to MLlib and Spark, the other core components are MLI, 

an API for feature extraction and algorithm development, and ML Optimizer, which 

automates the tuning of hyperparameters.

A new component called TuPAQ (Training-supported Predictive Analytic Query Plan-

ner) [137] was recently introduced, which builds on the initial idea of ML Optimizer. 

TuPAQ serves as a query interface that allows a user to input high level queries in a 

declarative language and then selects for them the best model and parameters. One of 

the goals in the development of MLbase was to make machine learning accessible for the 

non-expert. TuPAQ is an important step toward this goal as it pushes hyperparameter 

tuning, feature selection and algorithm selection down into the system. Another stated 

goal was to also make this system valuable for the experts. In this architecture, they are 

able to work directly with MLI and MLlib to develop their own implementations or tune 

existing ones, effectively skipping the PAQ step. �ey have also recently introduced a 

new tool, GHOSTFACE, which aims to automatically perform model selection for the 

user [138].

H2O

Out of all of the tools discussed in this paper, H2O is the only one that can be consid-

ered a product, rather than a project. While they offer an enterprise edition with two 

tiers of support, nearly all of their offerings are available open source as well and can be 

used without the purchase of a license. �e most notable features of this product are that 

it provides a graphical user interface (GUI), and numerous tools for deep neural net-

works. Deep learning has shown enormous promise for many areas of machine learn-

ing, making it an important feature of H2O. [139]. �ere is another company offering 

open source implementations for deep learning, Deeplearning4j [140], but it is targeted 

towards business instead of research, whereas H2O targets both. Additionally, Deep-

learning4j’s singular focus is on deep learning, so it doesn’t offer any of the other types of 

ML tools that are in H2O’s library. �ere are also other options for tools with a GUI, such 

as Weka, KNIME [141], or RapidMiner [142], but none of them offer a comprehensive 

open source machine learning toolkit that is suitable for big data.

Programming in H2O is possible with Java, Python, R and Scala. Users without pro-

gramming expertise can still utilize this tool via the web-based UI. Because H2O comes 

as a package with many of the configurations already tuned, set up is easy, requiring 

less of a learning curve than most other free options. While H2O maintains their own 
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processing engine, they also offer integrations that allow use of their models on Spark 

and Storm.

As of May 2015, the machine learning tools offered cover a range of tasks, including 

classification, clustering, generalized linear models, statistical analysis, ensembles, opti-

mization tools, data preprocessing options and deep neural networks [143]. On their 

roadmap for future implementation are additional algorithms and tools from these cate-

gories as well as recommendation and time-series. Additionally, they offer seamless inte-

gration with R and R Studio, as well as Sparkling Water for integration with Spark and 

MLlib. An integration with Mahout is currently in the works as well. �ey offer thor-

ough documentation and their staff is very communicative, quickly answering questions 

in their user group and around the web.

To the best of our knowledge, only a single paper has been published so far that used 

this product in a study [144]. �eir work found H2O to be an effective and reliable tool 

for analyzing sensor data and predicting missing measurements. �is study looked at 

Gradient Boosted Model (GBM) and Generalized Linear Model (GLM) and found them 

to be comparable when used for classification, though GBM produced better accuracy 

when used for regression. More independent research is needed to properly evaluate the 

speed, performance, and reliability of this tool. One notable example of a company using 

H2O in production is Share�is, who uses predictive modeling to maximize advertising 

ROI (return on investment).

SAMOA

SAMOA, a platform for machine learning from streaming data, was originally developed 

at Yahoo! Labs in Barcelona in 2013 and has been part of the Apache incubator since 

late 2014. Its name stands for Scalable Advanced Massive Online Analysis. It is a flexible 

framework that can be run locally or on one of a few stream processing engines, includ-

ing Storm, S4, and Samza. �is is done through a minimal API designed for a general 

distributed stream processing engine which allows users to easily write bindings to port 

SAMOA to new stream processors [145].

�ough they currently offer far fewer algorithms, they like to call themselves “Mahout 

for streaming.” SAMOA’s algorithms are represented as directed graphs, referred to as 

topologies (borrowing terminology from Storm). �e algorithms implemented so far can 

be used for classification, clustering, regression, and frequent pattern mining, along with 

boosting, and bagging for ensemble creation. Additionally, there is a common platform 

provided for their implementations, as well as a framework for the user to write their 

own distributed streaming algorithms. It does not yet have an active community, but it 

offers thorough documentation.

�is platform is meant for users with very big data that is constantly being updated. 

Streaming models are for projects aimed at finding out what is happening right now, 

and feedback occurs in real-time. SAMOA was designed with the goals of flexibil-

ity in updating the library (developing new implementations as well as reusing exist-

ing ones from other frameworks), scalability in its handling of an increasing amount of 

data, and extensibility in terms of the APIs described above [146]. Internal tests have 

resulted in high speed and accuracy. Severien [147] evaluated the flexibility of the plat-

form by implementing CluStream, a stream clustering algorithm, using SAMOA’s API 
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for creating data flow topologies. One of the benefits to this API is that it allows the user 

to implement new algorithms that will automatically be able to run on any processing 

engine that is able to plug into SAMOA. While more research is needed to fully evaluate 

these tools, results from this study indicated that it is a flexible platform with the ability 

to scale up to larger workloads and shows good potential for use in a large-scale dis-

tributed environment. �is implementation is now part of SAMOA’s library. Romsaiyud 

[148] implemented a topic modeling algorithm and compared experimental results using 

both SAMOA and MOA. Results indicated significantly higher throughput on SAMOA 

and showed the framework to be robust and stable.

So far, there are only a few learning tools implemented in SAMOA, but they cover 

the many of the common ML tasks. For clustering, they now offer CluStream, and for 

classification there is the Vertical Hoeffding Tree, which utilizes vertical parallelism on 

top of the Very Fast Decision Tree, or Hoeffding Tree. �is is the standard decision tree 

algorithm for streaming classification tasks. Regression can be accomplished through 

the Adaptive Model Rules Regressor, which includes implementations for both vertical 

and horizontal parallelism. �e library also includes Distributed Stream Frequent Item-

set Mining, which is based on PARMA [149]. Prequential Evaluation is available as well, 

which enables measurement of model accuracy, either from the start or based on a slid-

ing window of recent instances. Bagging, Adaptive Bagging, and Boosting can be used 

to create ensembles of classifiers. For additional learning algorithms, there is a plugin 

available called SAMOA-MOA [150] which allows the use of MOA classifiers and clus-

tering algorithms inside the SAMOA platform. However, it is important to keep in mind 

that this does not change the underlying implementations of MOA’s algorithms, which 

are not distributed. SAMOA is a very young project and new tools are continually being 

developed to expand the library [151].

�ere is not a great deal of independent research on this platform, though that is likely 

to change as SAMOA becomes more well-known and online learning becomes more 

widely used. Rahnama [152] used SAMOA and Storm to perform sentiment analysis on 

real-time Twitter streams. To round out the project, he developed an open source Java 

library called Sentinel [153] which includes tools for stream reading, data pre-process-

ing, query response, feature selection and frequent itemset mining tailored to sentiment 

analysis tasks on Twitter data. Analysis was carried out through an ensemble of Vertical 

Hoeffding Trees using Adaptive Bagging. Other projects have leveraged SAMOA as part 

of frameworks for efficiently finding top-k items [154] and for recognition of internet 

traffic patterns [155].

Comparison of major machine learning frameworks

Using the evaluation standards that were discussed in the previous section, we have 

assigned a rating to each of the four major frameworks based on the available literature.2 

A comparison of the frameworks is shown in Fig. 5. �e figure is meant to be viewed as a 

comparative ranking of the tools displayed in the figure, with each tool ranked according 

to the selection criteria that have been outlined in this paper. �ese are relative ratings 

based on comprehensive literature and online documentation review, not our own 

2 �ere is not yet any literature available on the newest version of Mahout, so these ratings reflect the results of studies 
using versions 0.9 and earlier.
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experimental results. Future work will include quantitative comparisons of these tools 

based on formally defined criteria, but for this survey, we provide qualitative rankings 

based on our exposure to each tool and related works. While a number of other tools are 

available, some of which will be discussed below, there is not yet enough literature in 

order to properly evaluate them.

As stated previously, the choice of ML framework will be largely application and user-

specific. MLlib and H2O are very good options for general needs; each is fast, scalable 

to different dataset sizes, and has a fairly diverse selection of algorithms. MLlib offers 

a better selection for most areas of machine learning, but H2O is the only tool that has 

solutions for deep learning. In terms of usability, both have APIs for programming in 

multiple languages, and H2O also offers a GUI, making it easier to use for those without 

a high level of programming expertise.

SAMOA and Mahout (through the new Mahout-Samsara) both focus on offering plat-

forms through which the user can create his or her own implementations of learning 

algorithms, so if none of the libraries contain needed algorithms or if future extensibil-

ity is an important factor, one of the two would be advisable. SAMOA allows the user 

to create implementations of streaming algorithms, while Mahout-Samsara can be used 

for batch implementations. SAMOA is the only one which is designed for true real-time 

streaming, making it the fastest and most scalable option.

Additional tools

�e learning frameworks discussed in this section have been chosen due to their wide-

spread use or versatility with respect to implemented tools on a range of applications. 

�is is by no means a comprehensive list of all open source learning tools for Hadoop 

and there are additional frameworks which show promise for large-scale machine learn-

ing tasks. �is section provides a brief overview of several such frameworks that were 

left out of the main discussion either because they aren’t very versatile or there is a lack 

of published research.

Flink-ML is a machine learning library currently in development for the Flink plat-

form. It supports implementations of Logistic Regression, k-Means Clustering, and 

Alternating Least Squares (ALS) for recommendation. It also supports Mahout’s DSL 

(Domain Specific Language) for linear algebra which can be used for optimization of 

learning algorithms, and plans are underway to implement pre- and post-processing 

Fig. 5 Comparison of machine learning frameworks
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tools. For graph processing, they have the Gelly API which provides methods for vertex-

centric iterations.

Weka began including wrappers for distributed processing on Hadoop in version 3.7 

[156]. distributedWekaBase is a package that provides map and reduce tasks that are not 

tied to a specific platform, and could potentially be used to add new platforms in the 

future. distributedWekaHadoop provides utilities specific to Hadoop, including loader 

and savers for HDFS and configuration for Hadoop tasks. �is is only available for 

Hadoop version 1.1.2, which was pre-YARN, meaning it will only run on MapReduce. 

One reason for Weka’s appeal is the vast amount of tools in their library. While their 

classifiers and regressors are able to be used on Hadoop, most of them are not able to 

be parallelized. �ese algorithms are essentially trained as ensembles, in which smaller 

data subsets are trained individually but instead of merging them into a final model dur-

ing the reduce phase, they are combined using voting techniques. �is integration was 

introduced in 2013, but has not seen widespread adoption. �is may be due to the lack 

of parallel algorithms. A similar package for Spark, distributedWekaSpark was intro-

duced in March 2015. Currently it can only accept input from .csv files.

Oryx (formerly Myrrix) [157] does not offer a broad selection of algorithms, but still 

covers the major areas of classification, clustering, and collaborative filtering for real-

time large scale ML. Its architecture consists of a computation layer which builds models 

and a serving layer which exposes a REST API that can be accessed from a browser or 

any tool that is able to make HTTP requests. It offers implementations for k-Means++, 

Random Forests, and Matrix Factorization based on a variant of Alternating Least 

Squares for Collaborative Filtering. Oryx implements a lambda architecture so models 

can be updated and queried in real time. While documentation is very limited, it is said 

to be easy to configure and get running [93]. It currently runs on MapReduce, but ver-

sion 2 [158], which is in development, is built on Spark and Kafka.

Vowpal Wabbit [159] is a fast online learner originally developed at Yahoo! Research 

Labs and currently sponsored by Microsoft Research. It is designed for terafeature data-

sets and offers support for classification, matrix factorization, topic modeling, and opti-

mization. It is extremely fast and efficient due to its use of feature hashing. However, 

documentation is lacking, and while it is popular among researchers, it has been said to 

be difficult to integrate into a production environment [111].

Suggestions for future work

�us far, most of the research in the area of machine learning for big data has focused on 

processing paradigms and algorithm implementation and optimization. Largely ignored 

in the research is the development of tools for the data itself, specifically for preprocess-

ing techniques. We argue that while each of the above tools has their advantages and 

drawbacks, all of them could be improved with easier to use, and more efficient tools for 

dealing with problems inherent to big data. Some of these issues include:

  • Mislabeled data As data grows, the likelihood of having mislabeled instances grows 

as well. When dealing with millions of instances, it is not possible to efficiently check 

whether all of the training data is properly labeled, and training models on incorrect 

data will lead to less accuracy [160]. While some big data algorithms include mech-
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anisms to handle this problem, it may be helpful to have tools that offer solutions 

before classification begins.

  • Missing values Similar to mislabeled data, missing values also lead to less robust, 

inaccurate models, particularly with clustering and collaborative filtering algo-

rithms which depend on similarity computations. �is issue is generally solved either 

through imputation techniques or by removing the example completely [161].

  • Noise Noisy data refers to data that is irrelevant or meaningless. �is can lead to 

models that suffer from overfitting. Clustering or similarity measures can help iden-

tify noisy data points, but toolkits lack algorithms which are specifically optimized 

for this task [162].

  • High dimensionality �is occurs when the feature-to-instance ratio is very large and 

is a common characteristic of big data. Algorithms for dimensionality reduction, 

most commonly Principal Component Analysis (PCA), are included in most toolkits. 

Feature selection is a well-known method to handle high-dimensionality [163], and 

PCA is just one option of many that could be included.

  • Imbalance In classification problems, imbalanced training data (when there are many 

more instances in one or more classes than in others) can lead to weak learners. �is 

is typically alleviated by using data sampling techniques [164].

A number of studies have suggested that many of the learning algorithms imple-

mented in these tools do not stand up well to these kinds of problems [121, 165 166]. 

�ere are well-used and often simple techniques to combat these issues. Some of them 

are implemented in various machine learning packages, but many are not. And when 

they are included, they can be difficult to find or use. Most libraries have tools address-

ing dimensionality reduction, but solutions to the other problems listed have not been 

widely implemented. �ere is a huge need for effective tools, particularly in production 

environments [167], making this a valuable problem to address. �ere are a number 

of studies which examine solutions to these issues for the platforms discussed in this 

paper [99, 168], but none within the context of a machine learning toolkit. Any of the 

platforms discussed in this paper could become much more robust with the addition of 

some of these tools.

Conclusion

Current trends in technology, such as increased adoption of wearable computers and 

other Internet of �ings (IoT) devices, are allowing for unprecedented access to massive 

amounts of heterogeneous data. Efficient learning from this data often requires complex 

architectures that utilize a combination of tools and techniques for collection, storage, 

processing, and analysis [169]. Putting together such an architecture would be extremely 

difficult even if there were limited options from which to choose. �e open-source data 

science community is prolific, resulting in many options and many more decisions to be 

made.

As machine learning concepts are being increasingly adopted in research and produc-

tion settings, the need for tools to facilitate learning tasks is becoming more important. 

Many of these tools are very young, and more research is needed to properly benchmark 

and evaluate all of the different options. Areas where this research is insufficient have 
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been noted throughout this paper. We discussed the Hadoop ecosystem and a number 

of tools that are a part of it in order to provide context to how machine learning fits 

into an analytics environment. �ree major approaches to processing (batch, iterative 

batch, and real-time streaming) were described and projects using each of them were 

presented and compared. Additionally, a list of criteria for evaluation and selection of 

machine learning frameworks was presented along with an in-depth look at both widely 

used and up-and-coming projects, with a discussion of their advantages and drawbacks.

We chose to focus the bulk of our research on processing engines and machine learn-

ing frameworks because those are the two most important types of tools in an ML pipe-

line. We chose projects in the Hadoop ecosystem for a number of reasons. First, they are 

among the most innovative we have seen. Additionally, there are few end-to-end ser-

vices out there for machine learning and Hadoop projects tend to be designed with the 

intention of connecting with ones that already exist in this group. Finally, Apache pro-

jects tend to draw large numbers of active users who are helpful when problems arise.

�e choice of tools will largely depend on the applications they are being used for 

as well as user preferences. For example, Mahout, MLlib, Flink-ML, and Oryx include 

options for recommendations, so if the intended application is an e-commerce site or 

social network, one may wish to choose from them for features such as item or user sug-

gestions. Social media or IoT data may require real-time results, necessitating the use of 

Storm or Flink along with their associated ML libraries. Other domains such as health-

care often produce disparate datasets that may require a mix of batch and streaming 

processing, in which case Flink, Oryx, or Spark would be the best choice.

In this paper, we examined five processing platforms. MapReduce, once the de facto 

standard for big data projects, is becoming outmoded in the machine learning commu-

nity and is not recommended for the majority of applications due to its slowness and 

lack of support for iterative algorithms. Spark is seen by many as a natural successor. It 

is based in MapReduce so the transition is not difficult, but it offers support for itera-

tive tasks and is able to support all of the machine learning libraries that MapReduce 

does plus others. However, if real-time solutions are of importance, one may wish to 

consider Storm or Flink instead, since they offer true stream processing while Spark’s 

use of microbatch streaming may have a small lag associated with it in receiving results. 

Flink offers the best of both worlds in this regard, with a combination of batch and true 

stream processing, but it is a very young project and needs more research into its viabil-

ity. Additionally, it does not currently support nearly as many machine learning solu-

tions as the other platforms. H2O is the only end-to-end system discussed in this paper 

and offers two features not present in other systems, which are a graphical user interface, 

and support for deep learning. Additionally, it supports as many or more machine learn-

ing tools than any of the other engines we studied. Like Flink, there is very little research 

on H2O, so more is needed for a proper evaluation.

No distributed ML libraries have the same amount of options as some of the non-

distributed tools such as Weka because not every algorithm lends itself well to paral-

lelization. Mahout and MLlib are the most well-rounded big data libraries in terms of 

algorithm coverage and both work with Spark and H2O. MLlib has a wider overall selec-

tion of algorithms and a larger and more dedicated team working on it, but is young 

and largely unproven. Mahout includes the most options for recommendation and has 
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more maturity than the others. While Mahout was falling out of favor due to its reliance 

of MapReduce but this may change due to modifications made in the newest version. 

Now that it is focused more on the math needed for users to create their own algorithm 

implementations, we can conceive of situations in which a user may wish to be famil-

iar with and utilize both Mahout and MLlib. SAMOA, like the new version of Mahout, 

has a focus on giving users the necessary tools to create their own implementations, the 

small amount of research in this area suggests it to be a viable option for stream process-

ing. Real-time learning is increasing in popularity and we expect the amount of options 

available for it to increase as well.
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