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ABSTRACT

The parallel solution of Initial Value Problems for Ordi-
nary Differential Equations has become an active area of
research during the past few years. We briefly survey the
recent developments in this area, with particular emphasis
on traditional forward-step methods that offer the poten-
tial for effective small-scale parallelism on currently exist-
ing machines.

INTRODUCTION

It is widely believed that the only feasible means of solv-
ing many important computationally intensive problems
in science and engineering is to use parallel computers ef-
fectively. As a result, increasing numbers of researchers
have begun investigating numerical methods for a wide
variety of advanced machine architectures. In this paper,
we briefly survey parallel numerical methods for Initial
Value Problems (IVPs) for Ordinary Differential Equations
(ODEs):

y'(2) f(=z,y(2)),

y(zo) = Yo,

where y : R — R™ and f : Rx R™ — R™. See also the ear-
lier reviews of Gear [15, 16] and Burrage [7]. Although the
development of parallel algorithms in this area has lagged
that in several other fields, such as linear algebra and par-
tial differential equations, activity in parallel methods for
IVPs has recently increased significantly. Most of this re-
search, though, is preliminary in nature, its goal being the
exploration of new parallel algorithms rather than the im-
plementation, testing and evaluation of efficient, reliable,
robust mathematical software.

In the next section, we begin with a general discus-
sion of the need for parallelism in IVP solvers as well as
sources of and impediments to parallelism. In the third
section, we consider the potential for small-scale paral-
lelism in traditional forward-step methods, with particu-
lar emphasis on Runge-Kutta schemes. These methods are
suitable for machines with a few processors (e.g., 2-10) and
fast inter-processor communication, two properties charac-
teristic of shared-memory multiprocessors. We end with a

for z € [zg, Te, 1)
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list of references for methods having the potential for both
small- and large-scale parallelism. A more extensive, up-
to-date bibliography on parallel methods for both Initial-
and Boundary-Value Problems for ODEs may be obtained
upon request from the author.

We originally intended to review as well novel IVP
methods offering the potential for large-scale parallelism.
These include dynamic steration schemes — often called
waveform-relazation methods — as well as techniques
based upon the fast solution of linear recurrence relations.
However, space constraints prevented us from adequately
surveying in this brief article methods for both small- and
large-scale parallelism, two distinctly different classes of
schemes. An important consideration in our choice to re-
view the more traditional forward-step methods was that
some of these schemes are currently sufficiently well un-
derstood to be implemented effectively on existing shared-
memory multiprocessors. On the other hand, most of the
novel methods, offering the potential for large-scale paral-
lelism, require further investigation before effective meth-
ods can be implemented. Moreover, shared-memory ma-
chines with a few processors, appropriate for the former
class of methods, are currently widely available and rela-
tively easy to use. This is not the case for massively paral-
lel systems needed to run the novel methods. Although we
believe the novel IVP methods will play an important role
in scientific computing in the future, IVP methods having
the potential for small-scale parallelism are likely to be of
more value to the practitioner now. The reader interested
in large-scale parallelism for IVPs should see [1, 3, 4, 17,
18, 29, 30, 31, 33, 37, 38, 41, 43, 44, 46, 47, 48, 51, 54, 60]
and the references therein. For the applications of these
methods to partial differential equations, see {13, 14, 35,
36].

GENERAL _DISCUSSION

The desire for parallel IVP solvers arises from the need to
solve many important problems more rapidly than is cur-
rently possible. This may be because the solution is needed
in real time, as is the case for flight simulators or control
systems, or it may be because computation time on a con-
ventional sequential machine is so large that it adversely
affects the productivity of engineers and scientists work-
ing on the design of complex systems, for example. There
is also the technological imperative that chips are cheap,
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giving manufacturers the ability to build inexpensive par-
allel machines with massive computational potential. The
challenge to computational scientists is to exploit this po-
tential to solve problems more efficiently and/or reliably
than they could in the past, or to solve problems that were
previously intractable.

As discussed more fully in [53], the IVP (1) can be
time consuming to solve if

o f is expensive to evaluate, as might be the case if
each f evaluation requires the solution of an auxiliary
problem,

e the number of equations, m, in the system is large, a
property characteristic of spatially-discretized PDEs
or large electrical circuits,

¢ the interval of integration [zo, z.] is long, or

e the IVP must be solved repeatedly, as happens in pa-
rameter fitting problems.

Gear [15, 16] classifies the means of achieving paral-
lelism in IVP solvers into two main categories:

o parallelism across the method or equivalently paral-
lelism across time, and

e parallelism across the system or equivalently paral-
lelism across space,

with the second name for each category being motivated by
the parallel solution of time-dependent PDEs. Included in
the first class are algorithms that exploit several concurrent
function evaluations within each step, as do the Block and
Runge-Kutta methods discussed in the next section, as well
as techniques that solve for many steps simultaneously, as
do the fast parallel methods for linear recurrence relations
[17, 52] and some dynamic iteration schemes. Other dy-
namic iteration schemes, exploiting modular integration for
example, fall into the second class of methods, as do several
more obvious techniques such as exploiting parallelism in
the evaluation of f as well as in performing the vector op-
erations and in solving the linear and nonlinear equations
that arise at each step of an otherwise standard IVP solver.
Furthermore, we emphasize that many of these techniques
are complementary: a method might, for example, com-
pute several f evaluations simultaneously while assigning
several processors to compute each f. Although exploiting
parallelism in the f evaluations and linear and nonlinear
algebra within an IVP method can be effective (6, 42, 61,
62}, we do not discuss this approach further, since the focus
of this paper is on the IVP methods themselves.

There are several impediments to parallelism, the
seemingly natural forward propagation of information in
IVPs being a prime example. However, this is not always
as severe an impediment as one might first think. Gear
[17] notes that the problems y' = f(z), y(zo) = yo, and
0 = f(z,y) — in some sense two extreme limiting cases
of the IVP (1) — are “embarrassingly” parallel. He also
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observes that fast methods for the solution of linear IVPs
can be constructed from fast algorithms for the parallel so-
lution of linear recurrence relations (17, 52]. Further study
is needed to determine the character and extent of this
impediment.

Two other impediments to parallelism, common to
most application areas, are

¢ the narrowness of the computation lattice, an extreme
case of which is a portion of the computation that
must be performed on one processor, and

* the need for synchronization, forcing the computation
to halt on one processor while waiting for information
from another,

both of which are discussed by Gear [15] in the context
of IVP solvers. In discussing Amdakl’s law, Gustavson
[19] notes that the narrowness of the computation graph
is often not as serious an impediment to parallelism as it
first seems, since, as the problem size grows, the time to
execute the narrow sections frequently remains constant,
hence requiring a decreasing portion of the total execution
time. The need for synchronization is a considerably more
severe constraint, particularly for the traditional forward-
step methods discussed in the next section.

Because computation versus communications rates
vary dramatically across parallel machine architectures, it
is essential to match the needs of a method to the ca-
pabilities of a machine. This suggests that a useful way
to divide parallel methods is between those that require
fast communication between processors to function effi-
ciently and those for which this is not as important a con-
sideration. In the next section, we consider traditional
forward-step methods which require machines with a few
processors only but rapid communication between them,
two properties characteristic of shared-memory multipro-
cessors. The dynamic iteration methods, not reviewed in
this paper, can effectively use many more processors with
slower inter-processor communication speeds, characteris-
tic of message-passing machines.

SMALL-SCALE PARALLELISM IN
TRADITIONAL IVP METHODS

Two of the earliest papers on parallel methods for IVPs
were by Miranker and Liniger [39] and Miranker [40]. They
point out that many standard predictor-corrector schemes
based on multistep formulas, such as

h

Vhir = Yo+ 5 (gf(xnvyfz) - f(zn—layrcz—l)) (2)
h c

a1 = Vnt 5 (Fleni,vh) + f(2a,05) . (3)

are inherently sequential: yS must be computed before
yh .1, which in turn must be computed before yy, 4, etc.
However, if we substitute the predictor

Yhe1 = Y1 + 2R F(zn,9R), (4)
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for (2), then both y5,, and y§ from (4) and (3), respec-
tively, can be computed simultaneously. Setting

r= () me ms(MGEY ).

we can rewrite the predictor-corrector pair (4)—(3) as an
explicit one-step block method:

Y,‘ = Ayﬂ—l + hBFf‘_l (5)

0 I 2 0
= B= .
=l 1] |5 ]

Miranker and Liniger [39] go on to develop a theory for
more general multistep block methods of this type and
propose several schemes suitable for machines with a few
processors (e.g., 2 to 4).

More recently, several other authors [5, 7, 8, 11, 12, 32,
56, 57, 58, 23, 59] have considered similar explicit k-block

r-value schemes of the form

where

k 3
Yo= AYai+h) BiFai (6)
=1 =1

where Y,, € R™ consists of r y-values and F,, € R™ is f
evaluated at those y-values. (Formula (5) is a 1-block 2-
value scheme of this type.) These methods have the charac-
teristic that all r f evaluations within each F}, can be per-
formed simultaneously. Hence, these methods, like all oth-
ers considered in this section, are best suited for machines
with a few processors and fast inter-processor communica-
tion, two properties characteristic of shared-memory mul-
tiprocessors.

The example above suggests a simple general para-
digm for achieving parallelism across time in traditional
forward-step methods: group the stages of a method into
blocks for which all function evaluations associated with
each block can be performed simultaneously.

Simonsen [53] exploits the natural parallelism of this
type inherent in extrapolation schemes to construct an ef-
fective parallel method. The paradigm can also be ap-
plied to Runge-Kutta (RK) methods. Miranker and Lin-
iger [39] derived a class of parallel RK (PaRK) methods,
but their schemes are ineffective because of poor stabil-
ity. We briefly review below other classes of PaRK meth-
ods, both as instructive examples of variants of the general
paradigm noted above and also because PaRK schemes are
a promising class of methods. Many of the examples can
be easily generalized to a broader class of methods, but we
felt it best to illustrate them for RK schemes, since these
are better understood by a wider audience.

An s-stage RK formula may be written as

s
Yn,i = yn+h2a,-an'j, i=1,4..,3 (7)
=1
s
Ynt1 = Ynth biFn, (®)

i=1
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where the {Y,;} are the internal stage values, {Fn; =
f(zn + cih, Yy, i)} the associated function values, and the
{aij}, {b5}, {c;j} are the coeflicients of the formula. The
latter are frequently displayed in tableau form as

c| A
b

where A = [a;;] is a s X s matrix, b = (b;) and ¢ = (¢;) are
s-vectors.

The general paradigm enunciated above can be ap-
plied directly to both Ezplicit RK (ERK) formulas (for
which a;; = 0 for ¢ < j) and Diagonally-Implicit RK
(DIRK) formulas (for which a;; = 0 for ¢ < j). We seek
formulas for which the coeflicient matrix A can be written
in block form as

D, 0 0 0
Az Dy O 0

A= | 41 A2 Ds 0 (9)
Apr Apy - App1 Dy

where, for an ERK formula, each Dy is the zero matrix
and, for a DIRK formula, each Dy is a (possibly different)
diagonal matrix. Thus, for any k € {1,...,p}, all {Yn:}
in the k*® block of an ERK formula can be computed in
parallel once all {F, ;} in blocks 1,...,k — 1 are available.
After the {Y,;} have been computed, all {Fy;} associ-
ated with the k*® block can be evaluated simultaneously
in preparation to compute the &+ 1 block of {¥;}. Sim-
ilarly, for any k € {1,...,p}, each ¥, ; in the k*® block of a
DIRK formula depends on itself through F,, ; and the pre-
viously computed {Fy ;} in blocks 1,...,k—1 only. Thus,
all Y, ; and the associated F; in the kt® block can be
computed simultaneously by solving independent systems
of m equations each. Consequently, the ERK and DIRK
variants, respectively, retain their characteristic explicit or
diagonally-implicit property.

Regrettably, these ERK schemes offer little potential
for parallelism [21, 27], as the order of a p-block ERK for-
mula cannot exceed p and, if the order is p, the stability
region is {z : | 3°%_, 2'/i!| < 1}, which is not large. The
construction of parallel ERK formulas and some minor ad-
vantages of these schemes are discussed in [21, 27]. How-
ever, a predictor-corrector variant discussed below seems
more promising.

On the other hand, paralle]l DIRK formulas offer some
advantage. For example, Iserles and Ngrsett [26] derive
a family of 4-stage, 4*"-order 2-parallel DIRK formulas,
which includes the L-stable (but not B-stable) formula

1/2 | 172 0 0 0
23] 0 2/3 0 0
12 5/2 5/2 1/2 0
1/3 | -5/3 4/3. 0 2/3
| -1 3/2 -1 3/2
for which Y5 ; and Y52 can be computed simultaneously,
after which Y, 3 and Y, 4 can be computed simultaneously.
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Moreover, because a;; = az; and agp = a44, only two
matrices need to be factored to solve for all four Yo by
Newton’s method. Other formulas of this type are given in
[22, 26, 27, 34], where restrictions on the attainable order
and stability for this class of formulas are considered.

It is instructive to write (7) in the tensor product form

Yn =.e:®yn + h(A®Im)Fn (10)

where e, is the vector of s ones, I, is the m x m identity
matrix, Yo = (Yni)i; € R*™, Fy = (Fn,)ie; € R*™, and

A yzA - A
IQA = : € Rkwxtv,
TetA YA - A

for any matrices I = [v;;] € R**! and A € R#**¥. Consider
applying either simple iteration

Y = e,@yn + (AR Ly )F® (11)
or a variant of Newton’s method
NE (D —¥E) = 6@y + h(ABT)FP - Y® (12)

to solve (10), where ¥;® is the kth approximation to ¥,
F,(.k) is F, evaluated at Y,Sk) instead of Y;,, and N,’f is an
approximation to the Newton iteration matrix. We see
immediately that the application of either (11) or (12) to
solve (10) leads to a block formulation of the method in
which all s f evaluations needed for F,(.k) at each iteration
can be performed simultaneously. This specific observa-
tion concerning the inherent parallelism in (11) and (12)
generalizes to the application of iterative methods in many
contexts.

Butcher [9] proposed an effective scheme for solving
the linear equations associated with (12). His technique
transforms this system of sm coupled linear equations to
s linear systems of m equations. If 4 can be diagonalized,
then these s systems are independent and can therefore
be solved simultaneously. Several authors [2, 27, 24, 25,
50] have studied these transformations for PaRK schemes,
with particular emphasis on the restrictions that this tech-
nique places on the choice of coefficients for Fully-Implicit
RK formulas. This work has yielded some promising theo-
retical and numerical results for the solution of stiff IVPs.

The inherent parallelism in both (11) and (12) can
be exploited in Predictor-Corrector (PC) variants of RK
formulas. In this context, we introduce an extension of
(11) proposed in [22]:

YD = €,@yn + h[(A — D)@ I F¥ + A(D® Iy ) FS+D

(13)
where D is a diagonal matrix. Since Y;**% is an argument
of F,(,k“), we must solve for Y ¥*) i (13). However,
each Y,E‘k,-ﬂ) is independent of all other Y,f,kjﬂ), giving (13)
a diagonally-implicit character. Moreover, it follows that
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(13) is composed of s independent systems of m equations
each, and these can therefore be solved simultaneously.

If the initial guess ero) for ¥, depends only on y, and
possibly Y,.EO) itself, then the iterations (11) and (13) yield
a “true” RK formula with coefficient matrix of the form
(9); (12) yields a Rosenbrock method. Promising results
for RK PC methods based on (11) and (13) are reported
in 20, 21, 22, 28]. If, on the other hand, the initial guess
Y,EU) depends on previously computed values other than y,,
then the resulting PC formula looses the one-step property
of the underlying RK formula. Although this adds to the
complexity of the scheme, results in (7, 8, 28] suggest that
this approach may yield very effective parallel methods.

Several authors have studied the potential for paral-
lelism in General Linear Methods (GLMs). (GLMs [10]
form a broad class of methods including all the schemes
considered above.) Tam [56] and Skeel and Tam [55] ana-
lyze the stability regions of explicit GLMs, and show that
in some sense parallelism cannot improve the stability of
explicit methods. However, Tam’s results [56, 57, 58] show
that explicit paralle] methods afford one more opportu-
nity than sequential methods to obtain a formula that has
both a large stability region and small truncation errors.
Burrage’s analysis [8] of truncation errors in PC GLMs
contributes to our understanding of the derivation of such
schemes. However, much more work in this area is needed.
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